JP2006181662A - Device and method for measuring and polishing large-sized optical element - Google Patents

Device and method for measuring and polishing large-sized optical element Download PDF

Info

Publication number
JP2006181662A
JP2006181662A JP2004376177A JP2004376177A JP2006181662A JP 2006181662 A JP2006181662 A JP 2006181662A JP 2004376177 A JP2004376177 A JP 2004376177A JP 2004376177 A JP2004376177 A JP 2004376177A JP 2006181662 A JP2006181662 A JP 2006181662A
Authority
JP
Japan
Prior art keywords
polishing
polished
measuring
tool
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376177A
Other languages
Japanese (ja)
Inventor
Hitoshi Omori
整 大森
Imin Hayashi
偉民 林
Shinya Morita
晋也 森田
Yutaka Watanabe
裕 渡邉
Yoshihiro Uehara
嘉宏 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2004376177A priority Critical patent/JP2006181662A/en
Publication of JP2006181662A publication Critical patent/JP2006181662A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for measuring and polishing a large-sized optical element, measuring and polishing a large-sized segment lens or mirror with a diameter of 1 to 3m with high accuracy, and comparatively lowering the manufacturing cost. <P>SOLUTION: This measuring and polishing device includes: an element positioning device 10 holding a large-sized optical element 1 substantially horizontally with a surface 2 to be polished up; a non-contact measuring device 20 for measuring an error from the target value of the surface to be polished in non-contact state; a self-running polishing device 30 moved along the surface to be polished to partially polish the surface to be polished; and a polishing control device 40 for giving a command for a polishing position to the self-running polishing device according to the measurement result of the non-contact measuring device, wherein the surface to be polished is polished while being measured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大型光学素子を高精度に計測し研磨する計測研磨装置及び方法に関する。   The present invention relates to a measurement polishing apparatus and method for measuring and polishing a large optical element with high accuracy.

地球外から降り注ぐ光(特に赤外光)を観測することにより、その光の強度、波長、エネルギー等を計測することにより、光や宇宙の起源、その光を発する天体の解析、距離の特定、イメージング、宇宙空間における生体材料の合成等の反応の特定等による地球型惑星探査等の情報を入手できる。   By observing light falling from outside the earth (especially infrared light), measuring the intensity, wavelength, energy, etc. of the light, analyzing the origin of light and the universe, analyzing the celestial body that emits the light, identifying the distance, Information on Earth planetary exploration by imaging, identification of reactions such as biomaterial synthesis in outer space, etc. can be obtained.

このような観測を目的として、「すばる望遠鏡」が既に製作され、米国ハワイ州に設置されている。「すばる望遠鏡」は、直径約8.2mの大型の主鏡(ミラー)を備えた反射望遠鏡である。この主鏡は、複数のガラス製ミラーを溶着して一体化し、これを大型の研磨装置で仕上げたものである。しかし、かかる製造手段では、温度変化の少ない大型加工室(例えば深い地中)を必要とし、加工に長期間を必要とする問題点があった。   For this purpose, the "Subaru Telescope" has already been manufactured and installed in Hawaii, USA. The “Subaru Telescope” is a reflective telescope having a large primary mirror (mirror) having a diameter of about 8.2 m. This primary mirror is obtained by welding and integrating a plurality of glass mirrors and finishing them with a large polishing apparatus. However, such a manufacturing means has a problem that it requires a large processing chamber (for example, deep underground) with little temperature change and requires a long time for processing.

なお、大型の光学素子(例えば反射ミラー)の加工手段として、特許文献1〜3が従来から提案されていた。
また、非球面計測を非接触で行う手段として、ホログラム干渉が従来から知られている(例えば、非特許文献2、3)。
Patent Documents 1 to 3 have been proposed as processing means for large optical elements (for example, reflection mirrors).
Further, hologram interference has been conventionally known as means for performing aspheric measurement in a non-contact manner (for example, Non-Patent Documents 2 and 3).

近年、口径が30mを超える大口径望遠鏡が各国で計画されている。例えば、欧州では、口径50mと100mの2つのプロジェクト、米国では口径30mのプロジェクトがそれぞれ進行している(非特許文献1)。また我国でも、口径30m前後の大口径望遠鏡プロジェクトが検討されている。   In recent years, large-diameter telescopes having a diameter exceeding 30 m have been planned in various countries. For example, two projects with a diameter of 50 m and 100 m are progressing in Europe, and a project with a diameter of 30 m is progressing in the United States (Non-patent Document 1). In Japan, a large-aperture telescope project with a diameter of about 30 m is also being studied.

Paul Shore,"Production Challenge of the Optical Segments for Extra Large Telescopes", International Progress on Advanced Optics and Sensors, pp.25−30 2003.Paul Shore, "Production Challenge of the Optical Segments for Extra Large Telescopes", International Progress on Advanced Optics and Sensors. 25-30 2003. 天神林 孝二、「ホログラム干渉計」、光技術コンタクト、Vo.25. No.10 (1987).Koji Tenjinbayashi, “Hologram Interferometer”, Optical Technology Contact, Vo. 25. No. 10 (1987). 谷田貝 豊彦、「計算機ホログラムによる非球面計測」Toyohiko Yadagai, “Aspherical measurement using computer generated hologram”

特開2001−353648号公報、「大口径工作物のELID鏡面研削装置及び方法」JP 2001-353648 A, "ELID Mirror Grinding Apparatus and Method for Large Diameter Workpiece" 特開2002−11656号公報、「大型超精密非球面の加工測定装置及び方法」Japanese Patent Application Laid-Open No. 2002-11656, “Machining and Measuring Apparatus and Method for Large Ultraprecision Aspherical Surface” 国際公開WO03/047833A1、「大型湾曲両面フレネルレンズの製造方法および装置」International Publication WO 03/047833 A1, “Manufacturing method and apparatus for large curved double-sided Fresnel lens”

上述した口径が30mを超える大口径望遠鏡に用いる光学素子(例えば主鏡(ミラー))は、直径が例えば1〜3mのセグメントレンズを多数組み合わせて構成することが検討されている。各セグメントレンズは、熱膨張の影響を低減するため、熱膨張率の極めて小さい特殊ガラス(例えば、ドイツ、ショット社の「ゼロヂュア」(登録商標))を用い、それぞれ分離したまま独立に配置される。   An optical element (for example, a primary mirror (mirror)) used in the above-described large-aperture telescope having a diameter exceeding 30 m is considered to be configured by combining many segment lenses having a diameter of, for example, 1 to 3 m. In order to reduce the influence of thermal expansion, each segment lens uses a special glass having a very low thermal expansion coefficient (for example, “Zerodure” (registered trademark) of Schott, Germany), and is arranged independently while being separated from each other. .

しかし、このように構成する場合であっても、セグメントレンズの形状を長径1mの六角形にした場合、口径30mの場合で、約30×30=900個以上のセグメントレンズを必要とする。
「すばる望遠鏡」の場合、直径約8.2mの主鏡の製作に数カ月を要している。また、長径1mの六角形セグメントレンズを、特許文献1〜3の手段で製造しても、研削から、研磨及び計測が完了するまでには少なくとも1週間は必要であり、900個以上のセグメントレンズの製作に900週間=17年以上を要することになる。
また、長径1mの六角形セグメントレンズを加工可能な大型研削装置は、数億円の製造コストを要するので、例えば製作年数を2年程度に短縮しようとする場合大型研削装置を10数台製造するために、数10億円の費用を要するため、実現可能性が低い。
そこで、1台または数台の大型研削装置で、セグメントレンズの研削(例えばELID研削)までを高能率に実施し、研磨及び計測を安価な多数の大型研磨計測装置を同時並行して用いて行うことが検討されている。
However, even in the case of such a configuration, when the shape of the segment lens is a hexagon having a major diameter of 1 m, about 30 × 30 = 900 or more segment lenses are required in the case of the aperture of 30 m.
In the case of the "Subaru Telescope", it takes several months to make a primary mirror with a diameter of about 8.2m. In addition, even if a hexagonal segment lens having a major diameter of 1 m is manufactured by means of Patent Documents 1 to 3, at least one week is required from grinding until polishing and measurement are completed. More than 900 segment lenses It takes 900 weeks = 17 years or more to produce.
In addition, a large grinding apparatus capable of processing a hexagonal segment lens having a major diameter of 1 m requires a manufacturing cost of several hundred million yen. For example, when it is attempted to reduce the number of production years to about two years, a dozen large grinding apparatuses are manufactured. Therefore, since the cost of several billion yen is required, the feasibility is low.
Therefore, with one or several large grinding machines, segment lens grinding (for example, ELID grinding) is carried out with high efficiency, and polishing and measurement are performed simultaneously using a large number of inexpensive large grinding measuring machines. It is being considered.

本発明はかかる要望を満たすために創案されたものである。すなわち、本発明の目的は、直径が例えば1〜3mの大型セグメントレンズやミラーを、高精度に計測し研磨でき、かつ製造コストを比較的低く抑えることができる大型光学素子の計測研磨装置及び方法を提供することにある。   The present invention has been developed to meet such a demand. That is, an object of the present invention is to measure and polish a large segment lens or mirror having a diameter of, for example, 1 to 3 m with high accuracy, and to measure and polish a large optical element with a relatively low manufacturing cost. Is to provide.

本発明によれば、被研磨面を上向きにして大型光学素子をほぼ水平に保持する素子位置決め装置と、
前記被研磨面の目標値からの誤差を非接触で計測する非接触計測装置と、
前記被研磨面に沿って移動し被研磨面を部分的に研磨する自走研磨装置と、
非接触計測装置の計測結果に基づき自走研磨装置に研磨位置を指令する研磨制御装置とを備え、被研磨面を計測しながら研磨する、ことを特徴とする大型光学素子の計測研磨装置が提供される。
According to the present invention, an element positioning device that holds a large optical element almost horizontally with a surface to be polished facing upward,
A non-contact measuring device for measuring an error from the target value of the polished surface in a non-contact manner;
A self-propelled polishing apparatus that moves along the surface to be polished and partially polishes the surface to be polished;
Provided with a measuring and polishing apparatus for large optical elements, comprising a polishing control device for instructing a polishing position to a self-propelled polishing device based on a measurement result of a non-contact measuring device, and polishing while measuring a surface to be polished Is done.

本発明の好ましい実施形態によれば、前記非接触計測装置は、素子位置決め装置に下端が固定され、被研磨面の上方からレーザー光を用いて被研磨面を計測する干渉計測装置である。   According to a preferred embodiment of the present invention, the non-contact measuring device is an interference measuring device that measures the surface to be polished using laser light from above the surface to be polished, the lower end of which is fixed to the element positioning device.

また、前記自走研磨装置は、被研磨面を部分的に研磨する研磨ツールと、該研磨ツールを昇降させるツール昇降装置と、該ツール昇降装置を所望の位置に移動させる被研磨面上を移動可能な自走台車と、研磨ツールによる研磨位置を非接触で受発信する受発信装置とからなる。   Further, the self-propelled polishing apparatus includes a polishing tool for partially polishing a surface to be polished, a tool lifting / lowering device for lifting / lowering the polishing tool, and a surface to be polished for moving the tool lifting / lowering device to a desired position. It consists of a possible self-propelled carriage and a receiving and transmitting device that receives and transmits the polishing position by the polishing tool in a non-contact manner.

前記研磨ツールは、ツール昇降装置に昇降可能かつ揺動可能に取り付けられた剛性の高い剛体部材と、被研磨面に追従可能な下面を有する可撓性の薄肉研磨部材と、剛体部材と薄肉研磨部材の間に挟持され内部に粘弾性媒体を内蔵する弾性容器とからなる、ことが好ましい。   The polishing tool includes a rigid member having high rigidity attached to a tool lifting / lowering device so as to be movable up and down, a flexible thin polishing member having a lower surface capable of following the surface to be polished, a rigid member, and thin polishing. It is preferable that it consists of an elastic container sandwiched between members and containing a viscoelastic medium inside.

また、前記研磨ツールは、ツール昇降装置に取り付けられた磁場発生部材と、該磁場発生部材と被研磨面の間に介在する磁性研磨剤とからなる、ことが好ましい。   Moreover, it is preferable that the said polishing tool consists of a magnetic field generating member attached to the tool lifting / lowering device and a magnetic abrasive agent interposed between the magnetic field generating member and the surface to be polished.

また本発明によれば、被研磨面を上向きにして大型光学素子をほぼ水平に保持する素子位置決めステップと、
前記被研磨面の目標値からの誤差を非接触で計測する非接触計測ステップと、
前記被研磨面を部分的に研磨する部分研磨ステップと、
非接触計測ステップの計測結果に基づき部分研磨ステップの研磨位置を決定する研磨制御ステップとを備え、被研磨面を計測しながら研磨する、ことを特徴とする大型光学素子の計測研磨方法が提供される。
Further, according to the present invention, an element positioning step for holding the large optical element almost horizontally with the surface to be polished facing upward,
A non-contact measurement step of measuring an error from the target value of the polished surface in a non-contact manner;
A partial polishing step of partially polishing the surface to be polished;
And a polishing control step for determining the polishing position of the partial polishing step based on the measurement result of the non-contact measurement step, and a polishing method for measuring a polished surface is provided. The

上記本発明の装置及び方法によれば、素子位置決め装置と非接触計測装置(例えば干渉計測装置)を備えるので、素子位置決めステップと非接触計測ステップにおいて、大型光学素子の被研磨面を上向きにしてほぼ水平に保持し、被研磨面の目標値からの誤差を非接触で計測することができ、直径が大型のセグメントレンズやミラーであっても、短時間に高精度に計測することができる。
また、自走研磨装置と研磨制御装置を備えるので、部分研磨ステップと研磨制御ステップにおいて、非接触計測装置の計測結果に基づき研磨位置を決定して自走研磨装置に研磨位置を指令し、自走研磨装置を被研磨面に沿って移動して被研磨面を部分的に研磨することができ、被研磨面を計測しながら高精度に研磨することができる。なお、研磨剤により計測精度が低下する場合には、計測と研磨を交互に行ってもよい。
さらにこれらの装置は、直径が例えば1〜3mの大型光学素子であっても、大型かつ高精度を必要とする数値制御用のガイドやセンサを必要としないので、製造コストを比較的低く抑えることができる。
According to the apparatus and method of the present invention, since the element positioning device and the non-contact measuring device (for example, the interference measuring device) are provided, the polished surface of the large optical element faces upward in the element positioning step and the non-contact measuring step. An error from the target value of the surface to be polished can be measured in a non-contact manner while being held almost horizontally, and even a segment lens or mirror having a large diameter can be measured with high accuracy in a short time.
In addition, since the self-propelled polishing apparatus and the polishing control apparatus are provided, the polishing position is determined based on the measurement result of the non-contact measuring apparatus in the partial polishing step and the polishing control step, and the polishing position is commanded to the self-propelled polishing apparatus. The running polishing apparatus can be moved along the surface to be polished to partially polish the surface to be polished, and the surface to be polished can be polished with high accuracy. In addition, when measurement accuracy falls with an abrasive | polishing agent, you may perform a measurement and grinding | polishing alternately.
Furthermore, even if these devices are large optical elements having a diameter of, for example, 1 to 3 m, they do not require numerical guides or sensors for large-scale and high accuracy, so that the manufacturing cost can be kept relatively low. Can do.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
以下の例において、大型光学素子1は、例えば口径が30mを超えるような反射ミラーを構成するセグメントミラーである。各セグメントミラーは、直径が例えば1〜3mの六角形ミラーであり、その反射面は、全体で反射ミラーを構成するようにそれぞれ異なる非球面に予めELID研削等を用いた大型研削装置で研削加工される。
各セグメントミラーに要求される非球面形状は、反射ミラーの中心からの距離によって異なり、口径が30mの反射ミラーを直径が1mの六角形ミラーで構成する場合、約30種となる。
ELID法と超精密/ナノ精密・大型研削装置および機上計測法を融合した先進研削技術により、30cm以上の大型光学素子が、ナノレベルの粗さ、サブミクロンの形状精度で能率良く加工でき、必要な種類、枚数のセグメントミラーを短期に研削加工できる。
本発明の前加工として、ELID研削による超精密研削が有力かつ有効であるが、粗さおよび形状の精度の改善とともに、研削による加工ダメージはゼロにはならないため、そのダメージを極限にまで低減させる必要があることから、本発明による研磨プロセスが極めて重要なものとなる。特に、研削ダメージが残留した状態では、天体望遠鏡等の使用環境において、研削ダメージが(振動や温度変化等による経年変化により)少しずつ進展する懸念があり、本発明は重要なものとなる。
このように予め非球面形状に研削加工された大型光学素子1(セグメントミラー)の反射面2を、以下「被研磨面」と呼ぶ。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
In the following example, the large-sized optical element 1 is a segment mirror that constitutes a reflecting mirror whose aperture exceeds 30 m, for example. Each segment mirror is a hexagonal mirror having a diameter of, for example, 1 to 3 m, and the reflecting surface thereof is ground by a large grinding device using ELID grinding or the like in advance on different aspheric surfaces so as to constitute a reflecting mirror as a whole. Is done.
The aspherical shape required for each segment mirror varies depending on the distance from the center of the reflecting mirror, and when the reflecting mirror having a diameter of 30 m is constituted by a hexagonal mirror having a diameter of 1 m, there are about 30 types.
With advanced grinding technology that combines ELID method with ultra-precision / nano-precision / large-scale grinding equipment and on-machine measurement method, large optical elements over 30cm can be processed efficiently with nano-level roughness and sub-micron shape accuracy. Necessary types and number of segment mirrors can be ground in a short time.
As the pre-processing of the present invention, ultra-precision grinding by ELID grinding is powerful and effective, but with the improvement of roughness and shape accuracy, the processing damage by grinding does not become zero, so that damage is reduced to the limit Since there is a need, the polishing process according to the present invention is extremely important. In particular, in a state where grinding damage remains, there is a concern that grinding damage may gradually develop (due to secular change due to vibration, temperature change, etc.) in the use environment such as an astronomical telescope, and the present invention becomes important.
The reflection surface 2 of the large optical element 1 (segment mirror) that has been previously ground into an aspheric shape in this way is hereinafter referred to as a “surface to be polished”.

図1は、本発明による大型光学素子計測研磨装置の全体構成図である。この図において、本発明の大型光学素子計測研磨装置は、素子位置決め装置10、非接触計測装置20、自走研磨装置30、及び研磨制御装置40を備える。   FIG. 1 is an overall configuration diagram of a large optical element measuring and polishing apparatus according to the present invention. In this figure, the large optical element measuring and polishing apparatus of the present invention includes an element positioning apparatus 10, a non-contact measuring apparatus 20, a self-propelled polishing apparatus 30, and a polishing control apparatus 40.

素子位置決め装置10は、上述した被研磨面2を上向きにして大型光学素子1をほぼ水平に保持する。また、前工程である研削加工(例えばELID研削)において、研削装置上にそのまま搭載し、回転、割り出し、揺動などの動作も加えながら、被研磨面2の研削作業を行うことができ、研削作業後は研削装置から取り外し、自立して使用できる。
非接触計測装置20は、素子位置決め装置10に下端が固定され、被研磨面2の上方からレーザー光3を用いて被研磨面2を計測する干渉計測装置であり、被研磨面2の目標値からの誤差を非接触で計測する。
自走研磨装置30は、被研磨面2に沿って移動し被研磨面2を部分的に研磨する。
研磨制御装置40は、非接触計測装置20の計測結果に基づき自走研磨装置30に研磨位置を指令する。
The element positioning device 10 holds the large optical element 1 substantially horizontally with the above-described polished surface 2 facing upward. Further, in the grinding process (e.g., ELID grinding) as a pre-process, the work surface 2 can be ground while being mounted on a grinding apparatus as it is, and operations such as rotation, indexing, and swinging can be added. After work, it can be removed from the grinding machine and used independently.
The non-contact measuring device 20 is an interference measuring device that has a lower end fixed to the element positioning device 10 and measures the surface 2 to be polished from above the surface 2 to be polished using the laser beam 3. The error from is measured without contact.
The self-propelled polishing apparatus 30 moves along the surface 2 to be polished and partially polishes the surface 2 to be polished.
The polishing control device 40 commands the polishing position to the self-propelled polishing device 30 based on the measurement result of the non-contact measuring device 20.

図2は、本発明による非接触計測装置の全体構成図である。この図に示すように、非接触計測装置20は、干渉計測装置であり、レーザー装置21、照射光学系22、参照素子23、反射光学系24、干渉縞観測装置25、等を備える。
レーザー装置21でレーザー光3を発振し、照射光学系22でレーザー光3を被研磨面2に向けて照射し、その反射光4を反射光学系24で干渉縞観測装置25に結像させる。参照素子23は、参照面を有するレンズ、または計算機ホログラムであり、干渉縞観測装置25で被研磨面2の目標値からの誤差に対応する干渉縞5を観測するようになっている。
FIG. 2 is an overall configuration diagram of a non-contact measuring apparatus according to the present invention. As shown in this figure, the non-contact measurement device 20 is an interference measurement device, and includes a laser device 21, an irradiation optical system 22, a reference element 23, a reflection optical system 24, an interference fringe observation device 25, and the like.
The laser device 21 oscillates the laser beam 3, the irradiation optical system 22 irradiates the laser beam 3 toward the surface to be polished 2, and the reflected light 4 is imaged on the interference fringe observation device 25 by the reflection optical system 24. The reference element 23 is a lens having a reference surface or a computer generated hologram, and the interference fringe 5 corresponding to an error from the target value of the polished surface 2 is observed by the interference fringe observation device 25.

この例において、参照素子23は、参照面を有するレンズであり、図示しないピエゾ装置により位置を微調整できるようになっている。
また、干渉縞観測装置25は、CCDとモニターからなり、その観測画像を研磨制御装置40に入力する。
In this example, the reference element 23 is a lens having a reference surface, and the position can be finely adjusted by a piezo device (not shown).
The interference fringe observation device 25 includes a CCD and a monitor, and inputs the observation image to the polishing control device 40.

研磨制御装置40は、画像処理プログラムを記憶した演算装置(例えばコンピュータ)であり、入力された観測画像を処理して、被研磨面2の目標値からの誤差を演算し、誤差が大きい位置を研磨位置として自走研磨装置30に指令する。   The polishing control device 40 is an arithmetic device (for example, a computer) that stores an image processing program, processes an input observation image, calculates an error from the target value of the surface 2 to be polished, and selects a position where the error is large. The self-propelled polishing apparatus 30 is commanded as a polishing position.

図3は、本発明による自走研磨装置の全体構成図である。 この図において、自走研磨装置30は、研磨ツール32、ツール昇降装置34、自走台車36及び受発信装置38からなる。
研磨ツール32は、ツールモータ33により軸心を中心に回転し、被研磨面2を部分的に研磨する機能を有する。
ツール昇降装置34は、自走台車36に鉛直もしくは研磨ツールの回転中心が被研磨面2に所定の角度で接触するように取付けられたアクチュエータ(例えば空圧シリンダ)であり、研磨ツール32を昇降する機能を有する。
自走台車36は、例えば1対のクローラ装置36aとその操縦装置(図示せず)を備え、被研磨面2の上を走行して移動し、ツール昇降装置32を所望の位置に移動させる。
FIG. 3 is an overall configuration diagram of a self-propelled polishing apparatus according to the present invention. In this figure, the self-propelled polishing apparatus 30 includes a polishing tool 32, a tool lifting / lowering apparatus 34, a self-propelled carriage 36 and a receiving / transmitting apparatus 38.
The polishing tool 32 has a function of rotating the tool center 33 around the axis by a tool motor 33 to partially polish the surface 2 to be polished.
The tool lifting / lowering device 34 is an actuator (for example, a pneumatic cylinder) attached to the self-propelled carriage 36 so that the center of rotation of the polishing tool is in contact with the surface 2 to be polished at a predetermined angle. Has the function of
The self-propelled carriage 36 includes, for example, a pair of crawler devices 36a and a control device (not shown), travels and moves on the surface 2 to be polished, and moves the tool lifting device 32 to a desired position.

受発信装置38は、例えば、研磨ツールの研磨位置近傍に設置された無線発信器であり、研磨ツールによる研磨位置を非接触で検出する。
自走研磨装置30は、受発信装置38が検出する信号(例えば無線LAN等に使用される電波もしくは赤外線や超音波)を得る複数のセンサ(図示せず)を有し、検出された信号から研磨ツールによる研磨位置を非接触で検出するとともに、研磨制御装置からの指令値と照合しながら、そのデータを基に自走研磨装置30を制御するようになっている。
The receiving / transmitting device 38 is, for example, a wireless transmitter installed in the vicinity of the polishing position of the polishing tool, and detects the polishing position by the polishing tool in a non-contact manner.
The self-propelled polishing apparatus 30 has a plurality of sensors (not shown) for obtaining signals (for example, radio waves used in a wireless LAN or the like, infrared rays or ultrasonic waves) detected by the transmission / reception apparatus 38, and from the detected signals. The polishing position by the polishing tool is detected in a non-contact manner, and the self-propelled polishing apparatus 30 is controlled based on the data while collating with a command value from the polishing control apparatus.

上述した装置を用い、本発明の方法は、素子位置決めステップ、非接触計測ステップ、部分研磨ステップおよび研磨制御ステップからなる。各ステップはこの順で行うのが好ましいが、必要に応じて、順を変えても、繰り返してもよい。
素子位置決めステップでは、被研磨面を上向きにして大型光学素子をほぼ水平に保持する。
非接触計測ステップでは、前記被研磨面の目標値からの誤差を非接触で計測する。
部分研磨ステップでは、前記被研磨面を部分的に研磨する。
研磨制御ステップでは、非接触計測ステップの計測結果に基づき部分研磨ステップの研磨位置を決定する。
Using the apparatus described above, the method of the present invention comprises an element positioning step, a non-contact measurement step, a partial polishing step, and a polishing control step. Each step is preferably performed in this order, but the order may be changed or repeated as necessary.
In the element positioning step, the large optical element is held almost horizontally with the surface to be polished facing upward.
In the non-contact measurement step, an error from the target value of the surface to be polished is measured in a non-contact manner.
In the partial polishing step, the surface to be polished is partially polished.
In the polishing control step, the polishing position of the partial polishing step is determined based on the measurement result of the non-contact measurement step.

図4は、本発明による研磨ツールの第1実施形態図である。この例において、研磨ツール32は、弾性研磨ツールであり、剛体部材52、薄肉研磨部材54及び弾性容器56からなる。
剛体部材52は、剛性の高い例えば金属板であり、ツール昇降装置34(例えば空圧シリンダ)の昇降部材(例えばシリンダロッドの下端)に、球面継手51を介して取り付けられ、昇降可能かつ揺動可能に構成されている。
薄肉研磨部材54は、被研磨面2に追従可能な下面を有する可撓性のポリシャである。
弾性容器56は、剛体部材52と薄肉研磨部材54の間に挟持され、内部に粘弾性媒体57(例えば流体)を内蔵する。
この構成により、研磨ツール32を被研磨面2に向けて下降させることで、等方性粘弾性媒体57を介して薄肉研磨部材54(ポリシャ)に等方性の圧力を付与し、ポリシャの下面を被研磨面2に追従させ砥粒を伴いながら一定の圧力で被研磨面2を研磨することができる。
FIG. 4 is a first embodiment of a polishing tool according to the present invention. In this example, the polishing tool 32 is an elastic polishing tool, and includes a rigid member 52, a thin polishing member 54, and an elastic container 56.
The rigid member 52 is, for example, a metal plate having high rigidity, and is attached to a lifting member (for example, a lower end of a cylinder rod) of a tool lifting device 34 (for example, a pneumatic cylinder) via a spherical joint 51 and can be lifted and lowered. It is configured to be possible.
The thin polishing member 54 is a flexible polisher having a lower surface that can follow the surface 2 to be polished.
The elastic container 56 is sandwiched between the rigid member 52 and the thin polishing member 54 and contains a viscoelastic medium 57 (for example, fluid) therein.
With this configuration, by lowering the polishing tool 32 toward the surface 2 to be polished, an isotropic pressure is applied to the thin polishing member 54 (polisher) via the isotropic viscoelastic medium 57, and the lower surface of the polisher. Can follow the surface 2 to be polished, and the surface 2 to be polished can be polished with a constant pressure while being accompanied by abrasive grains.

図5は、本発明による研磨ツールの第2実施形態図である。この例において、研磨ツール32は、磁性流体ツールであり、磁場発生部材62と磁性研磨剤64とからなる。
磁場発生部材62は、ツール昇降装置34(例えば空圧シリンダ)の昇降部材(例えばシリンダロッドの下端)に取り付けられ、磁性体を下面に吸着させる磁場を発生させる。
磁性研磨剤64は、磁性体粉末(例えば鉄粉、コバルト粉体)、砥粒(例えばダイヤモンド砥粒)、及び適度の粘性を付与するポリマーや油脂などからなる。
この構成により、磁場発生部材62によりその下面に磁性研磨剤64を吸着させ、これに含まれる砥粒で被研磨面2を研磨することができる。
本発明においては、いずれの研磨ツールを用いる場合においても、前加工である研削工程で用いた砥粒サイズに比べ、小径の砥粒(例えばサブミクロン)を用いることが望ましい。砥粒としては、例えばダイヤモンド、酸化セリウム、シリカ、CG、アルミナなどが望ましい。
FIG. 5 is a diagram showing a second embodiment of the polishing tool according to the present invention. In this example, the polishing tool 32 is a magnetic fluid tool, and includes a magnetic field generating member 62 and a magnetic abrasive 64.
The magnetic field generating member 62 is attached to an elevating member (for example, the lower end of the cylinder rod) of the tool elevating device 34 (for example, a pneumatic cylinder), and generates a magnetic field that attracts the magnetic material to the lower surface.
The magnetic abrasive 64 is made of magnetic powder (for example, iron powder, cobalt powder), abrasive grains (for example, diamond abrasive grains), and a polymer or oil that imparts an appropriate viscosity.
With this configuration, the magnetic abrasive 64 can be adsorbed to the lower surface of the magnetic field generating member 62 and the surface to be polished 2 can be polished with the abrasive grains contained therein.
In the present invention, when any polishing tool is used, it is desirable to use a small-diameter abrasive grain (for example, submicron) as compared with the abrasive grain size used in the grinding process as the pre-processing. As the abrasive grains, for example, diamond, cerium oxide, silica, CG, alumina and the like are desirable.

上述した本発明の装置及び方法によれば、素子位置決め装置10と非接触計測装置20(例えば干渉計測装置)を備えるので、素子位置決めステップと非接触計測ステップにおいて、大型光学素子1の被研磨面2を上向きにしてほぼ水平に保持し、被研磨面2の目標値からの誤差を非接触で計測することができ、例えば直径が1〜3mの大型セグメントレンズやミラーであっても、短時間に高精度に計測することができる。
また、自走研磨装置30と研磨制御装置40を備えるので、部分研磨ステップと研磨制御ステップにおいて、非接触計測装置20の計測結果に基づき研磨位置を決定して自走研磨装置30に研磨位置を指令し、自走研磨装置30を被研磨面に沿って移動して被研磨面を部分的に研磨することができ、被研磨面を計測しながら高精度に研磨することができる。なお、研磨剤により計測精度が低下する場合には、計測と研磨を交互に行ってもよい。
さらにこれらの装置は、例えば直径が1〜3mの大型光学素子であっても、大型かつ高精度を必要とする数値制御用のガイドやセンサを必要としないので、製造コストを比較的低く抑えることができる。
本発明により、大型光学素子表面の平均的な粗さ(例えばRaやrms)として1ナノからサブナノレベルを狙い、セグメント全体の形状として100〜300nm近辺の精度までを狙う。
According to the apparatus and method of the present invention described above, since the element positioning device 10 and the non-contact measuring device 20 (for example, an interference measuring device) are provided, the surface to be polished of the large optical element 1 in the element positioning step and the non-contact measuring step. 2 can be held almost horizontally and the error from the target value of the polished surface 2 can be measured in a non-contact manner. For example, even a large segment lens or mirror having a diameter of 1 to 3 m can be measured in a short time. Can be measured with high accuracy.
Further, since the self-propelled polishing device 30 and the polishing control device 40 are provided, the polishing position is determined based on the measurement result of the non-contact measuring device 20 in the partial polishing step and the polishing control step, and the polishing position is set in the self-propelled polishing device 30. The self-propelled polishing apparatus 30 can be moved along the surface to be polished to partially polish the surface to be polished, and polishing can be performed with high accuracy while measuring the surface to be polished. In addition, when measurement accuracy falls with an abrasive | polishing agent, you may perform a measurement and grinding | polishing alternately.
Furthermore, even if these devices are large optical elements having a diameter of 1 to 3 m, for example, they do not require large-sized and highly accurate guides and sensors for numerical control, so that manufacturing costs can be kept relatively low. Can do.
According to the present invention, the average roughness (for example, Ra and rms) of the surface of the large optical element is aimed at 1 nano to sub-nano level, and the shape of the entire segment is aimed at an accuracy around 100 to 300 nm.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない限りで種々に変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously, unless it deviates from the summary of this invention.

本発明による大型光学素子計測研磨装置の全体構成図である。1 is an overall configuration diagram of a large optical element measuring and polishing apparatus according to the present invention. 本発明による非接触計測装置の全体構成図である。1 is an overall configuration diagram of a non-contact measuring apparatus according to the present invention. 本発明による自走研磨装置の全体構成図である。1 is an overall configuration diagram of a self-propelled polishing apparatus according to the present invention. 本発明による研磨ツールの第1実施形態図である。It is 1st Embodiment figure of the grinding | polishing tool by this invention. 本発明による研磨ツールの第2実施形態図である。It is 2nd Embodiment figure of the grinding | polishing tool by this invention.

符号の説明Explanation of symbols

1 大型光学素子(セグメントミラー)、2 被研磨面(反射面)、
3 レーザー光、4 反射光、5 観測画像(干渉縞)、
10 素子位置決め装置、20 非接触計測装置、
21 レーザー装置、22 照射光学系、23 参照素子、
24 反射光学系、25 干渉縞観測装置、
30 自走研磨装置、32 研磨ツール、
33 ツールモータ、34 ツール昇降装置、
36 自走台車、36a クローラ装置、38 受発信装置、
40 研磨制御装置(コンピュータ)、
51 球面継手、52 剛体部材、54 薄肉研磨部材、
56 弾性容器、57 粘弾性媒体、
62 磁場発生部材、64 磁性研磨剤

1 Large optical element (segment mirror), 2 surface to be polished (reflection surface),
3 Laser light, 4 Reflected light, 5 Observation image (interference fringe),
10 element positioning device, 20 non-contact measuring device,
21 laser device, 22 irradiation optical system, 23 reference element,
24 reflection optical system, 25 interference fringe observation device,
30 self-propelled polishing equipment, 32 polishing tools,
33 Tool motor, 34 Tool lifting device,
36 self-propelled carriage, 36a crawler device, 38 receiving and transmitting device,
40 Polishing control device (computer),
51 spherical joint, 52 rigid member, 54 thin abrasive member,
56 elastic container, 57 viscoelastic medium,
62 Magnetic field generating member, 64 Magnetic abrasive

Claims (6)

被研磨面を上向きにして大型光学素子をほぼ水平に保持する素子位置決め装置と、
前記被研磨面の目標値からの誤差を非接触で計測する非接触計測装置と、
前記被研磨面に沿って移動し被研磨面を部分的に研磨する自走研磨装置と、
非接触計測装置の計測結果に基づき自走研磨装置に研磨位置を指令する研磨制御装置とを備え、被研磨面を計測しながら研磨する、ことを特徴とする大型光学素子の計測研磨装置。
An element positioning device for holding the large optical element almost horizontally with the surface to be polished facing upward;
A non-contact measuring device for measuring an error from the target value of the polished surface in a non-contact manner;
A self-propelled polishing apparatus that moves along the surface to be polished and partially polishes the surface to be polished;
A measuring and polishing apparatus for a large optical element, comprising: a polishing control apparatus that commands a polishing position to a self-propelled polishing apparatus based on a measurement result of a non-contact measuring apparatus, and polishing while measuring a surface to be polished.
前記非接触計測装置は、素子位置決め装置に下端が固定され、被研磨面の上方からレーザー光を用いて被研磨面を計測する干渉計測装置である、ことを特徴とする請求項1に記載の大型光学素子の計測研磨装置。   2. The non-contact measurement apparatus according to claim 1, wherein the non-contact measurement apparatus is an interference measurement apparatus in which a lower end is fixed to the element positioning device and the surface to be polished is measured using laser light from above the surface to be polished. Measuring and polishing equipment for large optical elements. 前記自走研磨装置は、被研磨面を部分的に研磨する研磨ツールと、該研磨ツールを昇降させるツール昇降装置と、該ツール昇降装置を所望の位置に移動させる被研磨面上を移動可能な自走台車と、研磨ツールによる研磨位置を非接触で受発信する受発信装置とからなる、ことを特徴とする請求項1に記載の大型光学素子の計測研磨装置。   The self-propelled polishing apparatus is capable of moving on a polishing tool that partially polishes a surface to be polished, a tool lifting device that lifts and lowers the polishing tool, and a surface to be polished that moves the tool lifting device to a desired position. The measuring and polishing apparatus for a large optical element according to claim 1, comprising a self-propelled carriage and a receiving and transmitting apparatus that receives and transmits a polishing position by a polishing tool in a non-contact manner. 前記研磨ツールは、ツール昇降装置に昇降可能かつ揺動可能に取り付けられた剛性の高い剛体部材と、被研磨面に追従可能な下面を有する可撓性の薄肉研磨部材と、剛体部材と薄肉研磨部材の間に挟持され内部に粘弾性媒体を内蔵する弾性容器とからなる、ことを特徴とする請求項3に記載の大型光学素子の計測研磨装置。   The polishing tool includes a rigid member having high rigidity attached to a tool lifting / lowering device so as to be movable up and down, a flexible thin member having a lower surface capable of following the surface to be polished, and a rigid member and a thin member. 4. The measuring and polishing apparatus for a large optical element according to claim 3, comprising an elastic container sandwiched between members and containing a viscoelastic medium therein. 前記研磨ツールは、ツール昇降装置に取り付けられた磁場発生部材と、該磁場発生部材と被研磨面の間に介在する磁性研磨剤とからなる、ことを特徴とする請求項3に記載の大型光学素子の計測研磨装置。   4. The large-sized optical device according to claim 3, wherein the polishing tool includes a magnetic field generating member attached to a tool lifting device and a magnetic abrasive interposed between the magnetic field generating member and a surface to be polished. Element measuring and polishing equipment. 被研磨面を上向きにして大型光学素子をほぼ水平に保持する素子位置決めステップと、
前記被研磨面の目標値からの誤差を非接触で計測する非接触計測ステップと、
前記被研磨面を部分的に研磨する部分研磨ステップと、
非接触計測ステップの計測結果に基づき部分研磨ステップの研磨位置を決定する研磨制御ステップとを備え、被研磨面を計測しながら研磨する、ことを特徴とする大型光学素子の計測研磨方法。
An element positioning step for holding the large optical element almost horizontally with the surface to be polished facing upward;
A non-contact measurement step of measuring an error from the target value of the polished surface in a non-contact manner;
A partial polishing step of partially polishing the surface to be polished;
And a polishing control step for determining a polishing position of the partial polishing step based on the measurement result of the non-contact measurement step, and polishing while measuring the surface to be polished.
JP2004376177A 2004-12-27 2004-12-27 Device and method for measuring and polishing large-sized optical element Pending JP2006181662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376177A JP2006181662A (en) 2004-12-27 2004-12-27 Device and method for measuring and polishing large-sized optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376177A JP2006181662A (en) 2004-12-27 2004-12-27 Device and method for measuring and polishing large-sized optical element

Publications (1)

Publication Number Publication Date
JP2006181662A true JP2006181662A (en) 2006-07-13

Family

ID=36735135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376177A Pending JP2006181662A (en) 2004-12-27 2004-12-27 Device and method for measuring and polishing large-sized optical element

Country Status (1)

Country Link
JP (1) JP2006181662A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114360A (en) * 2006-11-07 2008-05-22 Dong Gu Enterprise Co Ltd Rotary type automatic polishing device of glass lens
JP2010516900A (en) * 2007-01-29 2010-05-20 トーソー エスエムディー,インク. Ultra-smooth surface sputtering target and method of manufacturing the same
WO2011096090A1 (en) * 2010-02-08 2011-08-11 株式会社ナノオプトニクス・エナジー Worked surface measuring system and method of semicontinuous processing and measurement of worked surface using same
CN106767367A (en) * 2016-12-08 2017-05-31 中国科学院长春光学精密机械与物理研究所 The measuring method and measurement apparatus of heavy caliber primary mirror position and attitude

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114360A (en) * 2006-11-07 2008-05-22 Dong Gu Enterprise Co Ltd Rotary type automatic polishing device of glass lens
JP2010516900A (en) * 2007-01-29 2010-05-20 トーソー エスエムディー,インク. Ultra-smooth surface sputtering target and method of manufacturing the same
WO2011096090A1 (en) * 2010-02-08 2011-08-11 株式会社ナノオプトニクス・エナジー Worked surface measuring system and method of semicontinuous processing and measurement of worked surface using same
CN106767367A (en) * 2016-12-08 2017-05-31 中国科学院长春光学精密机械与物理研究所 The measuring method and measurement apparatus of heavy caliber primary mirror position and attitude

Similar Documents

Publication Publication Date Title
Walker et al. Novel CNC polishing process for control of form and texture on aspheric surfaces
Dong et al. Study on removal mechanism and removal characters for SiC and fused silica by fixed abrasive diamond pellets
Comley et al. Grinding metre scale mirror segments for the E-ELT ground based telescope
Bingham et al. Novel automated process for aspheric surfaces
CN109834577A (en) System, control method and instrument for chemical mechanical grinding
Faehnle Process optimization in optical fabrication
Lin et al. Development and theoretical analysis of novel center-inlet computer-controlled polishing process for high-efficiency polishing of optical surfaces
Sidpara Magnetorheological finishing: a perfect solution to nanofinishing requirements
Ihara et al. Study on removal mechanism at the tool rotational center in bonnet polishing of glass
Zhong et al. Generation of parabolic and toroidal surfaces on silicon and silicon-based compounds using diamond cup grinding wheels
JP2006181662A (en) Device and method for measuring and polishing large-sized optical element
Li et al. Advanced techniques for robotic polishing of aluminum mirrors
US10953513B2 (en) Method for deterministic finishing of a chuck surface
Ruckman et al. Recent advances in aspheric and conformal grinding at the center for optics manufacturing
Walker et al. New developments in the Precessions process for manufacturing free-form, large-optical, and precision-mechanical surfaces
Li et al. Wheel setting error modeling and compensation for arc envelope grinding of large-aperture aspherical optics
Walker et al. Technologies for producing segments for extremely large telescopes
JP2007083359A (en) Grinding method
Tonnellier et al. Robot based sub-aperture polishing for the rapid production of metre-scale optics
Korhonen et al. Polishing and testing of the 3.5 m SiC M1 mirror of the Herschel space observatory of ESA
Gubbels et al. Flexible manufacturing of large aspheres for VLT's Optical Tube Assemblies
Hallock et al. Cycle time and cost reduction in large-size optics production
Walker et al. Manufacture of segments for extremely large telescopes: a new perspective
Mohring et al. CONFERENCE PROCEEDING
Rice et al. Fabrication and Implementation of a New Ceramic Material in an Adaptive Optics System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100310