JP2006180653A - Shaft driven generator - Google Patents

Shaft driven generator Download PDF

Info

Publication number
JP2006180653A
JP2006180653A JP2004372869A JP2004372869A JP2006180653A JP 2006180653 A JP2006180653 A JP 2006180653A JP 2004372869 A JP2004372869 A JP 2004372869A JP 2004372869 A JP2004372869 A JP 2004372869A JP 2006180653 A JP2006180653 A JP 2006180653A
Authority
JP
Japan
Prior art keywords
shaft
generator
current
commutated converter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004372869A
Other languages
Japanese (ja)
Other versions
JP4736082B2 (en
Inventor
Toshiaki Mitsuhata
利昭 光畑
Tadashi Fujimoto
正 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishishiba Electric Co Ltd
Original Assignee
Nishishiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishishiba Electric Co Ltd filed Critical Nishishiba Electric Co Ltd
Priority to JP2004372869A priority Critical patent/JP4736082B2/en
Publication of JP2006180653A publication Critical patent/JP2006180653A/en
Application granted granted Critical
Publication of JP4736082B2 publication Critical patent/JP4736082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an occurrence of overcurrent trip in an externally commutated converter and burnout of a thyristor element and make it possible for a ship to continue navigation using a shaft generator for electric propulsion or propulsion assistance. <P>SOLUTION: A shaft driven generator 1 is obtained by connecting: the shaft generator 4; the externally commutated converter 5 that converts frequencies, outputted from the shaft generator, into a constant value; a reactor 7 that smooths voltage waveform distortion in the externally commutated converter; and a synchronous condenser 6 that supplies reactive power to the externally commutated converter and an electric power system, and forms the output voltage waveform of the shaft generator and reduces its voltage distortion factor. A current transformer 12 is installed on the side of the externally commutated converter as viewed from the reactor. When the shaft generator is operated as motor, the current of the externally commutated converter is controlled by the output of the current transformer. Therefore, the output current of the externally commutated converter can be properly controlled, and an occurrence of overcurrent trip can be prevented in the externally commutated converter and burnout of a thyristor element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、船舶の主機関及びプロペラ軸系に設置されて使用される軸駆動発電装置に関する。   The present invention relates to a shaft drive power generator that is installed and used in a main engine and a propeller shaft system of a ship.

従来の軸駆動発電装置で軸発電機を電動機として運転するシステムを図3を参照して説明する。
図において、1は軸駆動発電装置で、軸発電機4と他励式変換装置5と同期調相機6とリアクトル7及び変流器11を備えている。2は主機関、3はプロペラ軸系である。8は電力系統、9は船内電源である。
A system for operating a shaft generator as an electric motor in a conventional shaft drive generator will be described with reference to FIG.
In the figure, reference numeral 1 denotes a shaft drive power generator, which includes a shaft generator 4, a separately excited converter 5, a synchronous phase adjuster 6, a reactor 7, and a current transformer 11. 2 is a main engine and 3 is a propeller shaft system. 8 is a power system, and 9 is an onboard power source.

一般航海時においては省燃費、省エネルギー対策の一環として、軸駆動発電装置1は回転数が変化する主機関2の回転エネルギーをプロペラ軸系3に設けられた軸発電機4で周波数が変動する電気エネルギーに変換し、他励式変換装置5、同期調相機6及びリアクトル7を介して一定電圧、一定周波数の電力に変換して電力系統8へ電力を供給している。
しかし、主機関2の故障時や電力系統8に余剰電力がある場合は軸発電機4を電動機として運転を行い電気推進や推進加勢として使用する場合がある。
As part of measures to save fuel and energy during general voyages, the shaft-driven power generator 1 uses the shaft generator 4 provided in the propeller shaft system 3 to change the frequency of the rotational energy of the main engine 2 whose speed changes. The energy is converted into energy, converted into electric power of a constant voltage and a constant frequency via the separately excited conversion device 5, the synchronous phase shifter 6 and the reactor 7, and supplied to the power system 8.
However, when the main engine 2 fails or when there is surplus power in the power system 8, the shaft generator 4 may be operated as an electric motor and used for electric propulsion or propulsion.

軸発電機4を電動機として運転する場合には、船内電源9からリアクトル7、同期調相機6及び他励式変換装置5を介して軸発電機4へ電力を供給し、故障した主機関2の替わりにプロペラ軸系3を駆動して電気推進を行っている。あるいは荒天時や経年劣化による主機2の馬力不足を補い推進加勢を行っている。   When the shaft generator 4 is operated as an electric motor, power is supplied from the inboard power source 9 to the shaft generator 4 via the reactor 7, the synchronous phase adjuster 6, and the separately excited converter 5, and the failed main engine 2 is replaced. The propeller shaft system 3 is driven to perform electric propulsion. Alternatively, the propulsion boost is performed to compensate for the lack of horsepower of the main engine 2 due to stormy weather or deterioration over time.

また、図4のように電力系統8の電圧歪率の低減効果をさらに高めるために、リアクトル7を二重巻線リアクトル10に替えた軸駆動発電装置もあるが、その他の構成は同一でありその動作も上記で述べたものと同じ動作である。   Further, as shown in FIG. 4, there is a shaft drive power generator in which the reactor 7 is replaced with the double winding reactor 10 in order to further enhance the effect of reducing the voltage distortion rate of the power system 8, but the other configurations are the same. The operation is also the same as described above.

電気推進時もしくは推進加勢時は船内電源9から電力を軸発電機4へ供給し、電動機として運転することで船舶の推力を得ているが、船速の増加や波の影響で推進に必要な馬力が増加すると船内電源9が接続されている電力系統8は負荷の増加に伴い電圧降下が発生する。同期調相機6は電力系統8の電圧歪率の低減や力率遅れを抑制する効果があるため電力系統8に接続されている。同期調相機6は船内電源9からわずかな有効電力をもらい無効電力を発生しているが、電力系統8で電圧降下が発生しても同期調相機6は自己の慣性力で電圧を維持し続けるため、電圧降下が発生した電力系統8から見れば同期調相機6の電圧の方が高くなり、その結果同期調相機6から電力系統8へ横流と呼ばれる電流が流れる。他励式変換装置5は変流器11の出力電流から出力電流の演算を行っており、同期調相機6の横流の影響で変流器11の出力電流と実際に他励式変換装置5へ流れ込む電流との間に差が生じると、他励式変換装置5の出力電流に狂いが起こり軸発電機4に変磁が発生して他励式変換装置5で過電流トリップの発生やサイリスタ素子が焼損するなどの問題がある。   During electric propulsion or propulsion, power is supplied from the inboard power supply 9 to the shaft generator 4 and operated as an electric motor to obtain the thrust of the ship, but it is necessary for propulsion due to the increase in ship speed and the influence of waves. When the horsepower increases, a voltage drop occurs in the power system 8 to which the inboard power supply 9 is connected as the load increases. The synchronous phase adjuster 6 is connected to the power system 8 because it has the effect of reducing the voltage distortion rate of the power system 8 and suppressing the power factor delay. The synchronous phase adjuster 6 receives a small amount of active power from the inboard power supply 9 and generates reactive power. Even if a voltage drop occurs in the power system 8, the synchronous phase adjuster 6 continues to maintain the voltage with its own inertial force. Therefore, when viewed from the power system 8 where the voltage drop occurs, the voltage of the synchronous phase adjuster 6 becomes higher, and as a result, a current called a cross current flows from the synchronous phase adjuster 6 to the power system 8. The separately excited converter 5 calculates the output current from the output current of the current transformer 11, and the current that actually flows into the separately excited converter 5 due to the cross current of the synchronous phase adjuster 6 and the output current of the current transformer 11. If a difference occurs between them, the output current of the separately-excited conversion device 5 is distorted, and the shaft generator 4 is changed in magnetism, causing an overcurrent trip in the separately-excited conversion device 5 and burning the thyristor element. There is a problem.

本発明は、上記問題を解決するためになされたもので、その課題は軸発電機の負荷が増加した時でも同期調相機から流れる横流の影響を考慮した場所に変流器を設置することで他励式変換装置の出力電流を正しく制御することが可能となり、他励式変換装置の過電流トリップの発生やサイリスタ素子の焼損を防止し、軸発電機を電気推進または推進加勢として船舶が航行を継続することのできる軸駆動発電装置を提供することである。   The present invention has been made to solve the above problems, and the problem is that a current transformer is installed in a place that takes into account the influence of the cross current flowing from the synchronous phase adjuster even when the load on the shaft generator increases. It is possible to correctly control the output current of the separately excited converter, preventing the overcurrent trip of the separately excited converter and burning of the thyristor element, and continuing the navigation with the shaft generator as electric propulsion or propulsion. It is providing the shaft drive electric power generating apparatus which can do.

上記課題を解決するために、請求項1に記載の発明は、回転数が変化する船舶の主機関によって駆動される軸発電機と、前記軸発電機から出力される変動周波数を一定に変換する他励式変換装置と、前記他励式変換装置の出力電力の電圧波形歪を平滑にするリアクトルと、前記他励式変換装置及び電力系統への無効電力供給し、軸発電装置の出力電圧波形の形成及び電圧歪率を低減する同期調相機を接続した軸駆動発電装置において、前記軸発電機を電動機として運転する際に、変流器を前記リアクトルからみて前記他励式変換装置側に設置し、前記変流器の出力により前記他励式変換装置の電流を制御することを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 converts a shaft generator driven by a main engine of a ship whose rotational speed changes, and a variable frequency output from the shaft generator to a constant value. A separately excited converter, a reactor for smoothing the voltage waveform distortion of the output power of the separately excited converter, a reactive power supply to the separately excited converter and the power system, formation of an output voltage waveform of the shaft generator, and In a shaft drive power generator connected to a synchronous phase adjuster that reduces the voltage distortion rate, when operating the shaft generator as an electric motor, a current transformer is installed on the side of the separately-excited converter when viewed from the reactor, and The current of the separately excited conversion device is controlled by the output of the flow device.

このように構成することにより、軸発電機の負荷が増加した時でも他励式変換装置の過電流トリップの発生やサイリスタ素子の焼損を防止し、軸発電機を電気推進または推進加勢として船舶が航行を継続することのできる軸駆動発電装置を提供することができる。   With this configuration, even when the load on the shaft generator increases, the overcurrent trip of the separately-excited converter and the thyristor element can be prevented from burning, and the vessel can navigate with the shaft generator as an electric propulsion or propulsion booster. It is possible to provide a shaft drive power generator that can continue the operation.

本発明によると、軸駆動発電装置で軸発電機を電動機として運転するシステムにおいて、軸発電機の負荷が増加した時でも同期調相機から流れる横流の影響を考慮した場所に変流器を設置することで他励式変換装置の出力電流を正しく制御することが可能となり、他励式変換装置の過電流トリップの発生やサイリスタ素子の焼損を防止し、軸発電機を電気推進または推進加勢として船舶が航行を継続することができる。   According to the present invention, in a system in which a shaft generator is operated as an electric motor by a shaft drive power generator, a current transformer is installed in a place that takes into consideration the influence of the cross current flowing from the synchronous phase adjuster even when the load on the shaft generator increases. This makes it possible to control the output current of the separately-excited converter correctly, prevents overcurrent trip of the separately-excited converter and prevents the thyristor element from being burned out, and the vessel navigates with the shaft generator as electric propulsion or propulsion. Can continue.

以下、本発明を実施するための最良の形態を説明する。
図1は本発明の第1実施形態に係るシステム構成図である。
図1において、既に説明した図3の従来の軸駆動発電装置と異なる構成は、従来の軸駆動発電装置の変流器11の替わりに変流器12をリアクトル7からみて他励式変換装置5側に設けた点にあり、その他の構成は同一であるので、同一構成要素には同一符号を付して、その説明は省略する。
Hereinafter, the best mode for carrying out the present invention will be described.
FIG. 1 is a system configuration diagram according to the first embodiment of the present invention.
In FIG. 1, the configuration different from the conventional shaft drive power generator of FIG. 3 already described is that the current transformer 12 is viewed from the reactor 7 instead of the current transformer 11 of the conventional shaft drive power generator. Since other configurations are the same, the same components are denoted by the same reference numerals, and description thereof is omitted.

本実施形態では、他励式変換装置5は変流器12の出力電流から出力電流の演算を行っており、変流器12を流れる電流は同期調相機6から流れ出す横流の影響を考慮した最終的に他励式変換装置5へ流れる電流であり、実際に他励式変換装置5へ流れ込む電流と等しく軸発電機4の負荷変動による同期調相機6から発生する横流の影響を防ぐことができる。   In the present embodiment, the separately excited converter 5 calculates the output current from the output current of the current transformer 12, and the current flowing through the current transformer 12 is finally considered in consideration of the influence of the cross current flowing out of the synchronous phase adjuster 6. The current flowing into the separately excited conversion device 5 is equal to the current actually flowing into the separately excited conversion device 5, and the influence of the cross current generated from the synchronous phase adjuster 6 due to the load fluctuation of the shaft generator 4 can be prevented.

したがって、同期調相機の横流の影響で変流器12の出力電流と実際に他励式変換装置5へ流れ込む電流との間に差が生じないので、他励式変換装置5の出力電流に狂いが起こり軸発電機4に変磁が発生して他励式変換装置5で過電流トリップの発生やサイリスタ素子が焼損するなどの問題は発生しない。   Therefore, there is no difference between the output current of the current transformer 12 and the current that actually flows into the separately excited converter 5 due to the cross current of the synchronous phase adjuster, so that the output current of the separately excited converter 5 is distorted. Problems such as occurrence of an overcurrent trip or burning of the thyristor element in the separately excited conversion device 5 due to the occurrence of a change of magnetic field in the shaft generator 4 do not occur.

図2は本発明の第2実施形態を示すシステム構成図である。
図2に示すように、本実施形態が、図1の第1実施形態と異なる構成は、リアクトル7の替りに二重巻線リアクトル10を設けた点であり、その他の構成は同一であるので、同一構成要素には同一符号を付して、その説明は省略する。
FIG. 2 is a system configuration diagram showing a second embodiment of the present invention.
As shown in FIG. 2, the present embodiment is different from the first embodiment in FIG. 1 in that a double-winding reactor 10 is provided instead of the reactor 7, and other configurations are the same. The same components are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態では、電力系統8の電圧歪率の低減効果をさらに高めるために、リアクトル7を二重巻線リアクトル10に替えているが、その動作は上記第1実施形態と同じ動作を行う。すなわち、本実施形態では、他励式変換装置5は変流器12の出力電流から出力電流の演算を行っており、変流器12を流れる電流は同期調相機6から流れ出す横流の影響を考慮した最終的に他励式変換装置5へ流れる電流であり、実際に他励式変換装置5へ流れ込む電流と等しく軸発電機4の負荷変動による同期調相機6から発生する横流の影響を防ぐことができる。   In the present embodiment, the reactor 7 is replaced with the double-winding reactor 10 in order to further increase the voltage distortion rate reduction effect of the power system 8, but the operation is the same as that of the first embodiment. That is, in this embodiment, the separately excited converter 5 calculates the output current from the output current of the current transformer 12, and the current flowing through the current transformer 12 takes into account the influence of the cross current flowing out of the synchronous phase adjuster 6. This is the current that finally flows into the separately excited conversion device 5, and is equal to the current that actually flows into the separately excited conversion device 5, so that it is possible to prevent the influence of the cross current generated from the synchronous phase adjuster 6 due to the load fluctuation of the shaft generator 4.

したがって、同期調相機の横流の影響で変流器12の出力電流と実際に他励式変換装置5へ流れ込む電流との間に差が生じないので、他励式変換装置5の出力電流に狂いが起こり軸発電機4に変磁が発生して他励式変換装置5で過電流トリップの発生やサイリスタ素子が焼損するなどの問題は発生しない。   Therefore, there is no difference between the output current of the current transformer 12 and the current that actually flows into the separately excited converter 5 due to the cross current of the synchronous phase adjuster, so that the output current of the separately excited converter 5 is distorted. Problems such as occurrence of an overcurrent trip or burning of the thyristor element in the separately excited conversion device 5 due to the occurrence of a change of magnetic field in the shaft generator 4 do not occur.

本発明の第1の実施形態の軸駆動発電装置のシステム構成図。The system block diagram of the shaft drive electric power generating apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の軸駆動発電装置のシステム構成図。The system block diagram of the shaft drive electric power generating apparatus of the 2nd Embodiment of this invention. 従来の軸駆動発電装置のシステム構成図。The system block diagram of the conventional shaft drive electric power generating apparatus. 従来の他の軸駆動発電装置のシステム構成図。The system block diagram of the other conventional shaft drive electric power generating apparatus.

符号の説明Explanation of symbols

1…軸駆動発電装置、2…主機関、3…プロペラ軸系、4…軸発電機、5…他励式変換装置、6…同期調相機、7…リアクトル、8…電力系統、9…船内電源、10…二重巻線リアクトル、11…変流器、12…変流器。

DESCRIPTION OF SYMBOLS 1 ... Shaft drive power generation device, 2 ... Main engine, 3 ... Propeller shaft system, 4 ... Shaft generator, 5 ... Separately excited conversion device, 6 ... Synchronous phase adjuster, 7 ... Reactor, 8 ... Electric power system, 9 ... Inboard power supply 10 ... Double winding reactor, 11 ... Current transformer, 12 ... Current transformer.

Claims (1)

回転数が変化する船舶の主機関によって駆動される軸発電機と、前記軸発電機から出力される変動周波数を一定に変換する他励式変換装置と、前記他励式変換装置の出力電力の電圧波形歪を平滑にするリアクトルと、前記他励式変換装置及び電力系統への無効電力供給し、軸発電装置の出力電圧波形の形成及び電圧歪率を低減する同期調相機を接続した軸駆動発電装置において、前記軸発電機を電動機として運転する際に、前記変流器を前記リアクトルからみて前記他励式変換装置側に設置し、前記変流器の出力により前記他励式変換装置の電流を制御することを特徴とする軸駆動発電装置。

A shaft generator driven by a main engine of a ship whose rotational speed changes, a separately excited conversion device that converts the fluctuation frequency output from the shaft generator to a constant, and a voltage waveform of the output power of the separately excited conversion device In a shaft-driven power generator connected to a reactor that smoothes distortion, and a synchronous phase adjuster that supplies reactive power to the separately-excited converter and the power system, and forms an output voltage waveform of the shaft power generator and reduces a voltage distortion rate When the shaft generator is operated as an electric motor, the current transformer is installed on the side of the separately excited converter when viewed from the reactor, and the current of the separately excited converter is controlled by the output of the current transformer. A shaft drive power generator characterized by the above.

JP2004372869A 2004-12-24 2004-12-24 Shaft drive generator Active JP4736082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372869A JP4736082B2 (en) 2004-12-24 2004-12-24 Shaft drive generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372869A JP4736082B2 (en) 2004-12-24 2004-12-24 Shaft drive generator

Publications (2)

Publication Number Publication Date
JP2006180653A true JP2006180653A (en) 2006-07-06
JP4736082B2 JP4736082B2 (en) 2011-07-27

Family

ID=36734215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372869A Active JP4736082B2 (en) 2004-12-24 2004-12-24 Shaft drive generator

Country Status (1)

Country Link
JP (1) JP4736082B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961734B1 (en) * 2015-08-06 2016-08-02 西芝電機株式会社 Shaft drive power generation system
CN110649631A (en) * 2019-09-09 2020-01-03 国网湖南省电力有限公司 AVC control method, system and medium based on phase modulator and capacitor bank coordination control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839298A (en) * 1981-08-29 1983-03-07 Shinko Electric Co Ltd Main-shaft driven generating set
JPH01255445A (en) * 1988-04-01 1989-10-12 Taiyo Electric Mfg Co Ltd Protecting method for shaft driving generator
JPH0641399U (en) * 1992-10-20 1994-05-31 西芝電機株式会社 Current detection circuit for marine shaft power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839298A (en) * 1981-08-29 1983-03-07 Shinko Electric Co Ltd Main-shaft driven generating set
JPH01255445A (en) * 1988-04-01 1989-10-12 Taiyo Electric Mfg Co Ltd Protecting method for shaft driving generator
JPH0641399U (en) * 1992-10-20 1994-05-31 西芝電機株式会社 Current detection circuit for marine shaft power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961734B1 (en) * 2015-08-06 2016-08-02 西芝電機株式会社 Shaft drive power generation system
CN110649631A (en) * 2019-09-09 2020-01-03 国网湖南省电力有限公司 AVC control method, system and medium based on phase modulator and capacitor bank coordination control

Also Published As

Publication number Publication date
JP4736082B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR101089905B1 (en) Method for operation of a marine-vessel propulsion system with waste-heat recovery, as well as a marine-vessel propulsion system with waste-heat recovery
KR101474016B1 (en) Power converters
JPH05219654A (en) Power system for ship
US8786262B2 (en) Systems and methods for synchronous power generation
JP5126751B2 (en) Marine electric propulsion system
JP2009044836A (en) Power supply system for shipping
US11850951B2 (en) Electric propulsion systems
JP2007151218A (en) Marine power system
JP6678564B2 (en) Ship hybrid propulsion device
JP4736082B2 (en) Shaft drive generator
KR20130114744A (en) Electric drive system for a water vehicle and method for operating such a drive system
Yun et al. Dc bus voltage regulation strategy in maritime dc power system for minimized converter loss
JP2009255636A (en) Marine vessel propulsion system
JP5025176B2 (en) Electric propulsion ship control device
JP2006345583A (en) Ac power regulator
JP2000037082A (en) Power factor control system for plant power supply employing inverter driver
JPS602094A (en) Field controller of shaft generating motor
KR20160128938A (en) Device for using a exhaust gas heat of a ship propulsion
CN112567620A (en) Inverter device
JPS5840440B2 (en) Ship shaft power generator
US11183956B2 (en) Integrated electric propulsion system
JP5928688B2 (en) Ship power supply system
US11527975B2 (en) Low-power bias supply to facilitate the low-RPM startup of three-phase AC aircraft generators
JP2003319696A (en) Generating set
JP3879029B2 (en) Power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4736082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3