JP2006179504A - Electron beam device with aberration corrector - Google Patents

Electron beam device with aberration corrector Download PDF

Info

Publication number
JP2006179504A
JP2006179504A JP2006088092A JP2006088092A JP2006179504A JP 2006179504 A JP2006179504 A JP 2006179504A JP 2006088092 A JP2006088092 A JP 2006088092A JP 2006088092 A JP2006088092 A JP 2006088092A JP 2006179504 A JP2006179504 A JP 2006179504A
Authority
JP
Japan
Prior art keywords
aberration corrector
aberration
lens
electron beam
corrector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088092A
Other languages
Japanese (ja)
Other versions
JP4291827B2 (en
Inventor
Takeshi Kawasaki
猛 川▲崎▼
Takao Yoshida
高穂 吉田
Yoichi Ose
洋一 小瀬
Hideo Todokoro
秀男 戸所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006088092A priority Critical patent/JP4291827B2/en
Publication of JP2006179504A publication Critical patent/JP2006179504A/en
Application granted granted Critical
Publication of JP4291827B2 publication Critical patent/JP4291827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that an electron beam device with an aberration corrector using a multipole lens is not clear in distinguishing a failure in axial matching in the aberration corrector unit and a failure in axial matching in the portion other than the aberration corrector at the optical axis adjustment and, therefore, it takes a long time for adjustment. <P>SOLUTION: The device is provided with a scanning mode for operating the aberration corrector and a scanning mode for not operating it, and operation of the aberration corrector and capacitor lens or the like is controlled so that the object point of the objective lens may not change in both modes. When the secondary electron images of the testpiece are compared in both modes, the image magnification and focus are not changed and thereby only the effect of the aberration corrector can be distinguished and evaluated for adjustment, and axis adjustment time can be shortened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子線装置のビームスポットを最小化する技術に関するもので、特に走査形電子顕微鏡(SEM)、測長SEM(CD−SEM)、電子線描画装置等に関する。   The present invention relates to a technique for minimizing a beam spot of an electron beam apparatus, and more particularly to a scanning electron microscope (SEM), a length measuring SEM (CD-SEM), an electron beam drawing apparatus, and the like.

半導体デバイスのパターン寸法を高精度で計測する測長SEMなどの装置では、近年のデバイスパターンの微細化により、3〜1nm程度の分解能を、試料を破壊しないよう加速電圧1kV以下の電子ビームで達成することが必要になっている。このためには電子ビームを試料面上に所望の分解能以下の径で収束させる必要がある。このような低加速の場合、第1に問題となるのが対物レンズの色収差である。この色収差を低減するために、対物レンズの設計を工夫し色収差を小さくすることは、既にいろいろ試みられている。   In a device such as a length measuring SEM that measures the pattern dimensions of semiconductor devices with high accuracy, a resolution of about 3 to 1 nm is achieved with an electron beam with an accelerating voltage of 1 kV or less so as not to destroy the sample by miniaturizing the device pattern in recent years. It is necessary to do. For this purpose, it is necessary to focus the electron beam on the sample surface with a diameter less than a desired resolution. In such a low acceleration, the first problem is chromatic aberration of the objective lens. In order to reduce this chromatic aberration, various attempts have already been made to reduce the chromatic aberration by devising the design of the objective lens.

1990年代には電子の加速電圧をVだけ高くしてより高いエネルギーで対物レンズを通過させる一方、試料に−Vの電圧を印加して電子を減速し、試料入射時の電子線エネルギーを低いままに抑えるリターディングの手法が行われるようになった。この手法によると、Vを電子銃部での電子加速電圧として、式(1)に示す割合で色収差は減少する。 While passing the objective lens with a higher energy by increasing the electron acceleration voltage by V r in the 1990s, by applying a voltage of -V r to the sample to decelerate the electrons, the electron beam energy at the sample entrance A retarding technique to keep it low is now used. According to this method, chromatic aberration is reduced at a rate shown in Expression (1), where V 0 is an electron acceleration voltage in the electron gun section.

Figure 2006179504
しかし、Vがあまり大きいと試料が電界により破壊されるため、かけられるVには限界があった。そのほかに放出エネルギー幅の小さい電子源を使えばその分色収差は減るが、現在は電界放出電子銃(放出電子エネルギー幅0.3eV程度)、ショットキー電子銃(0.6eV程度)などが使われており、これらより小さい放出電子エネルギー幅と安定性をもつ電子源が探索されている段階である。
Figure 2006179504
However, if V r is too large, the sample is destroyed by the electric field, so that there is a limit to the applied V r . In addition, if an electron source with a small emission energy width is used, the chromatic aberration will be reduced. However, field emission electron guns (emission electron energy width of about 0.3 eV), Schottky electron guns (about 0.6 eV) are currently used. At this stage, an electron source having a smaller emission electron energy width and stability is being searched.

このような新しい電子源がまだ実用化されていないので、現在上記の方法による色収差低減は限界にきている。   Since such a new electron source has not yet been put into practical use, the reduction of chromatic aberration by the above method is now at the limit.

これを解決する方法として、モノクロメーターの使用と収差補正器による色収差低減の二つの方法が注目されている。このうち多極子レンズを組み合わせて収差補正器を構成し対物レンズの収差を打ち消すことができることは1947年にScherzerにより提唱され1970年代にはすでに具体的な構成が非特許文献1、あるいは、非特許文献2に発表されている。最近この技術が電磁界複合型4重4極子/8極子の収差補正器を使い実験的に検証された(非特許文献3)。   As a method for solving this problem, attention has been paid to two methods of using a monochromator and reducing chromatic aberration using an aberration corrector. Among them, it is proposed by Scherzer in 1947 that an aberration corrector can be constructed by combining a multipole lens to cancel out the aberration of the objective lens. Published in Reference 2. Recently, this technique has been experimentally verified using an electromagnetic field composite quadrupole / octupole aberration corrector (Non-patent Document 3).

この型の収差補正器の動作の概略を図4により説明する。収差補正器10は、4極子場と8極子場を重畳して発生させるために、多極子レンズ11、複合型多極子レンズ12、複合型多極子レンズ13、多極子レンズ14から構成される。収差補正器10内では4極子場のために光軸(z軸)に垂直な2方向(x軸、y軸)で各々、収束作用と発散作用が生じて近軸軌道を分離させる。図4では電子ビームの軌道を細線にて模式的に示した。クロスオーバー41より発する電子線は収差補正器10の初段の多極子レンズ11によりx方向の軌道(x軌道)は発散(図中の矢印1つの軌道)、y方向の軌道(y軌道)は収束(図中の矢印2つの軌道)され、分離する。任意の方向の軌道はこれらx軌道、y軌道の線形結合として考えることができる。第2段の複合型多極子レンズ12は4極子電場と、x−y面内で左記4極子電場に比べ光軸に対し45°回転した4極子磁場を発生させることができ、x−y面内で電場、磁場を複合して印加できる。y軌道は複合型多極子レンズ12の中心付近でクロスするように第1段の多極子レンズ11が励起される。このときx軌道は最大に離軸しており、複合型多極子レンズ12の中心でx方向に延びた線状クロスオーバー42を形成する。複合型多極子レンズ12の4極子の励起は第3段の複合型多極子レンズ13の中心付近でx軌道がクロスするように調整されている。このときの線状クロスオーバー43はy方向に伸びた線状をしている。第4段の多極子レンズ14を経て分離したx軌道とy軌道はクロスオーバー44にて一致する。クロスオーバー41がスティグマティックにクロスオーバー44に結像されるように収差補正器10を動作させる。   The outline of the operation of this type of aberration corrector will be described with reference to FIG. The aberration corrector 10 includes a multipole lens 11, a composite multipole lens 12, a composite multipole lens 13, and a multipole lens 14 in order to generate a quadrupole field and an octupole field in a superimposed manner. In the aberration corrector 10, due to the quadrupole field, a converging action and a diverging action are generated in two directions (x-axis and y-axis) perpendicular to the optical axis (z-axis) to separate the paraxial trajectory. In FIG. 4, the trajectory of the electron beam is schematically shown by a thin line. The electron beam emitted from the crossover 41 is diverged in the x-direction trajectory (x trajectory) by the first multipole lens 11 of the aberration corrector 10 (the single trajectory in the figure), and the y-direction trajectory (y trajectory) is converged. (Two orbited arrows in the figure) are separated. A trajectory in any direction can be considered as a linear combination of these x and y trajectories. The second-stage compound multipole lens 12 can generate a quadrupole electric field and a quadrupole magnetic field rotated by 45 ° with respect to the optical axis in the xy plane as compared with the left quadrupole electric field. It is possible to apply electric and magnetic fields in combination. The first stage multipole lens 11 is excited so that the y orbit crosses in the vicinity of the center of the composite multipole lens 12. At this time, the x-orbit is deviated to the maximum, and a linear crossover 42 extending in the x direction at the center of the composite multipole lens 12 is formed. The quadrupole excitation of the composite multipole lens 12 is adjusted so that the x-orbit crosses near the center of the third-stage composite multipole lens 13. The linear crossover 43 at this time has a linear shape extending in the y direction. The x trajectory and the y trajectory separated through the fourth stage multipole lens 14 coincide with each other at the crossover 44. The aberration corrector 10 is operated so that the crossover 41 is imaged on the crossover 44 in a stigmatic manner.

このとき収差補正器10においては、複合型多極子レンズ12を、基準となるエネルギーをもつ入射電子に働く合力を変化させないという拘束条件のもとで、電場と磁場の4極子場の強さの比を変えて励起することができる。この場合、基準とずれたエネルギーをもった電子はその速度が基準となるエネルギーをもつ電子と異なっているので、電場と磁場の強さの比が変わると働く力が変わり軌道がずれる。このずれは光軸から離れているx方向で大きく、多極子場の中心をめがけて通るy方向はほとんど影響されない。複合型多極子レンズ13を通るときはこの関係がx、y逆になる。つまり複合型多極子レンズ12、13において電場と磁場の4極子場の強さの比を変えることによりx方向、y方向、独立に入射エネルギーのずれたものだけ軌道を変えることができる。   At this time, in the aberration corrector 10, the intensity of the quadrupole field of the electric field and the magnetic field is controlled under the constraint that the combined multipole lens 12 does not change the resultant force acting on the incident electrons having the reference energy. It can be excited by changing the ratio. In this case, since the electron having the energy deviated from the reference is different from the electron having the reference energy, the working force changes and the orbit shifts when the ratio of the electric field and magnetic field strength changes. This deviation is large in the x direction away from the optical axis, and the y direction passing through the center of the multipole field is hardly affected. When passing through the composite multipole lens 13, this relationship is reversed x, y. In other words, by changing the ratio of the intensity of the quadrupole field of the electric field and the magnetic field in the composite type multipole lenses 12 and 13, the trajectory can be changed only in the x direction and the y direction independently of the incident energy.

このことを利用して、収差補正器10であらかじめ、後に続く対物レンズの色収差を相殺する量だけ、エネルギーの高い電子の軌道を外側に、エネルギーの低い電子の軌道を内側にずらしておいて色収差を相殺する。レンズ11から14までの多極子レンズで4極子場に加えて8極子場を発生させることにより、非特許文献3の3.7節に記載のごとく球面収差も補正することが可能である。   By utilizing this fact, the aberration corrector 10 shifts the high-energy electron trajectory to the outside and the low-energy electron trajectory to the inside by an amount that cancels out the chromatic aberration of the subsequent objective lens. Offset. By generating an octupole field in addition to a quadrupole field with the multipole lenses 11 to 14, it is possible to correct spherical aberration as described in Section 3.7 of Non-Patent Document 3.

これらの公知例においては4極子場と8極子場を重畳するために12極子を使っている例が示されている。これらの公知例では収差補正器そのもので生じる高次収差をも低減する観点で電子光学系が構成されているが、微小プローブを形成することが必要であるため、電子線装置に収差補正器を組み込みんだ場合に、装置全体の総合的な軸合わせが困難である。   In these known examples, an example is shown in which a 12-pole is used to superimpose a 4-pole field and an octupole field. In these known examples, the electron optical system is configured from the viewpoint of reducing higher-order aberrations generated by the aberration corrector itself. However, since it is necessary to form a microprobe, an aberration corrector is installed in the electron beam apparatus. When incorporated, it is difficult to align the entire device.

特開2000−195453号公報JP 2000-195453 A Optik 33(1971)1〜24ページOptik 33 (1971) 1-24 pages Optik 83(1989)30〜40ページOptik 83 (1989) 30-40 Nuclear Instruments and Methods in Physics Research,A 363 (1995),316〜325ページNuclear Instruments and Methods in Physics Research, A 363 (1995), pp. 316-325

このような収差補正器を電子線装置に導入する場合、収差補正器内の4段の4極子ないし8極子の励起や軸ずれを調整し、同時に装置のその他の部分の電子光学軸まで合わせるのは煩雑で時間がかかる。その理由は試料の2次電子像を観察しても収差補正器単体の軸合わせ不良と収差補正器以外の部分の軸合わせ不良による像の劣化が、渾然一体となり、原因の切り分けがつかないからである。   When such an aberration corrector is introduced into an electron beam apparatus, the excitation and axial misalignment of four stages of quadrupoles and octupoles in the aberration corrector are adjusted, and at the same time, the electron optical axes of other parts of the apparatus are aligned. Is cumbersome and time consuming. The reason for this is that even when the secondary electron image of the sample is observed, the deterioration of the image due to the poor alignment of the aberration corrector alone and the misalignment of the parts other than the aberration corrector are unifying, and the cause cannot be identified. It is.

本発明では収差補正の効果が容易に確認でき、その調整手順を短縮でき、使いやすい収差補正器付電子線装置を提供する。   The present invention provides an electron beam apparatus with an aberration corrector that can easily confirm the effect of aberration correction, shorten the adjustment procedure, and is easy to use.

本発明の収差補正器付電子線装置においては、電子線装置が備える各レンズおよび収差補正器を制御するコンピュータが、収差補正器を動作させる走査モードと、収差補正器を動作させない走査モードとを持ち、その両モードで対物レンズの物点位置が変わらないように、収差補正器を制御する。あるいはコンデンサーレンズの励磁と収差補正器の動作を連動させることにより、両モードで対物レンズの物点位置が変わらないように、収差補正器を制御する。上記二つのモードでレンズ、偏向器および収差補正器等の連動動作を可能ならしめるため、レンズ、偏向器および収差補正器等の電源をコンピュータで統一的にコントロールするシステムを構築する。   In the electron beam apparatus with an aberration corrector according to the present invention, a computer that controls each lens and aberration corrector provided in the electron beam apparatus has a scan mode in which the aberration corrector is operated and a scan mode in which the aberration corrector is not operated. The aberration corrector is controlled so that the object point position of the objective lens does not change in both modes. Alternatively, the aberration corrector is controlled so that the object point position of the objective lens does not change in both modes by linking the excitation of the condenser lens and the operation of the aberration corrector. In order to enable the linked operation of the lens, deflector, aberration corrector, and the like in the above two modes, a system for uniformly controlling the power sources of the lens, deflector, aberration corrector, etc. with a computer is constructed.

このような構成によれば、まず収差補正器を動作させない走査モードにおいて、対物レンズへの入射軸合わせや、フォーカス、非点などのビーム収束に必要な通常の調整が一通り実行できる。引き続き収差補正器を動作させる走査モードに切り替える。このモードでは対物レンズの物点を動かさないので、像倍率やフォーカスは変わらない。この結果、収差補正器が電子ビームに与える効果のみを、この手順の前後での2次電子像や描画パターンの変化から評価することができる。つまり、この段階での各種収差によるプローブ径の増大や変形は、収差補正器の調整の不完全さによるものと切り分けができる。そこで次に収差補正器の各多極子の励起を個別に微調整して、最終的に対物レンズの色収差や球面収差を相殺して最小プローブ径、最良の分解能を得ることができる。収差補正器の調整とそれ以外の対物レンズ軸合わせの調整を独立におこなうことにより軸合わせのプロセスが簡略化され装置全体の調整手順が短縮される。   According to such a configuration, first, in the scanning mode in which the aberration corrector is not operated, normal adjustment necessary for beam focusing such as alignment of the incident axis to the objective lens, focus, astigmatism, and the like can be performed. Subsequently, the scanning mode for operating the aberration corrector is switched. In this mode, the object point of the objective lens is not moved, so the image magnification and focus are not changed. As a result, only the effect of the aberration corrector on the electron beam can be evaluated from changes in the secondary electron image and the drawing pattern before and after this procedure. In other words, the increase or deformation of the probe diameter due to various aberrations at this stage can be distinguished from the incomplete adjustment of the aberration corrector. Then, the excitation of each multipole element of the aberration corrector can be finely adjusted individually to finally cancel out the chromatic aberration and spherical aberration of the objective lens to obtain the minimum probe diameter and the best resolution. By independently adjusting the aberration corrector and the other objective lens axis alignment, the axis alignment process is simplified and the adjustment procedure of the entire apparatus is shortened.

本発明によれば、収差補正器のON/OFFにかかわらず、対物レンズの結像条件を一定に保てるので、収差補正の効果が容易に確認でき、収差補正器の調整操作が容易に行なえる。装置全体の調整手順を短縮でき、装置稼働率の高い収差補正器付電子線装置を提供することができる。   According to the present invention, the imaging condition of the objective lens can be kept constant regardless of ON / OFF of the aberration corrector, so that the effect of aberration correction can be easily confirmed and the adjustment operation of the aberration corrector can be easily performed. . An adjustment procedure for the entire apparatus can be shortened, and an electron beam apparatus with an aberration corrector having a high apparatus operating rate can be provided.

図1に本発明が適用される収差補正器付電子線装置の一例の構造の概要を示す。ショットキー電子源1はタングステンの単結晶に、酸素とジルコニウムなどを拡散させショットキー効果を利用する電子源で、その近傍にサプレッサー電極2、引き出し電極3が設けられる。ショットキー電子源1を加熱し、引き出し電極3との間に+2kV程度の電圧を印加することにより、ショットキー電子源1よりショットキー電子を放出させることができる。サプレッサー電極2には負電圧が印加されショットキー電子源1の先端以外から放出される電子を抑制する。引き出し電極3の穴を出た電子は第1陽極4、第2陽極5で形成される静電レンズにより加速、収束される。続いて第1コンデンサーレンズ6、コンデンサー絞り(図示せず)にてビーム径を制限され、第2コンデンサーレンズ7、および上偏向コイル8、下偏向コイル9を通り所望の角度で収差補正器10に入射する。収差補正器10は多極子レンズ11、複合型多極子レンズ12、複合型多極子レンズ13および多極子レンズ14を光軸を共通軸として配置したものである。色収差を補正しようとする場合には光軸に垂直な面内に、多極子レンズ11および14により4極子電場あるいは4極子磁場、複合型多極子レンズ12および13により4極子電場およびx−y面内で左記4極子電場に比べ光軸に対し45°回転した4極子磁場を形成する。これらの場は4極、8極、あるいは12極の電極(磁極を兼ねてもよい)を用いて形成する。色収差だけでなく球面収差まで補正しようとする場合は、上記電極で4極子場の他に8極子場を形成して重畳する。この場合は多極子レンズは8極子や12極子が必要である。収差補正器10により対物レンズ17と相殺する色収差や球面収差を与えられた電子ビームは上走査コイル15、下走査コイル16を経て対物レンズ17にて、試料18上に収束、走査される。   FIG. 1 shows an outline of an example of the structure of an electron beam apparatus with an aberration corrector to which the present invention is applied. The Schottky electron source 1 is an electron source that diffuses oxygen and zirconium into a single crystal of tungsten and uses the Schottky effect. A suppressor electrode 2 and an extraction electrode 3 are provided in the vicinity thereof. By heating the Schottky electron source 1 and applying a voltage of about +2 kV to the extraction electrode 3, Schottky electrons can be emitted from the Schottky electron source 1. A negative voltage is applied to the suppressor electrode 2 to suppress electrons emitted from other than the tip of the Schottky electron source 1. Electrons exiting the hole of the extraction electrode 3 are accelerated and converged by the electrostatic lens formed by the first anode 4 and the second anode 5. Subsequently, the beam diameter is limited by the first condenser lens 6 and the condenser diaphragm (not shown), and passes through the second condenser lens 7, the upper deflection coil 8, and the lower deflection coil 9 to the aberration corrector 10 at a desired angle. Incident. The aberration corrector 10 includes a multipole lens 11, a composite multipole lens 12, a composite multipole lens 13, and a multipole lens 14 arranged with an optical axis as a common axis. When correcting chromatic aberration, a quadrupole electric field or quadrupole magnetic field is provided by the multipole lenses 11 and 14 in a plane perpendicular to the optical axis, and a quadrupole electric field and an xy plane are provided by the composite multipole lenses 12 and 13. A quadrupole magnetic field rotated by 45 ° with respect to the optical axis as compared with the quadrupole electric field shown on the left is formed. These fields are formed using 4-pole, 8-pole, or 12-pole electrodes (which may also serve as magnetic poles). In order to correct not only chromatic aberration but also spherical aberration, an octupole field is formed with the above electrodes and superimposed. In this case, the multipole lens needs an octupole or a 12-pole. The electron beam given chromatic aberration or spherical aberration that cancels the objective lens 17 by the aberration corrector 10 is converged and scanned on the sample 18 by the objective lens 17 via the upper scanning coil 15 and the lower scanning coil 16.

走査顕微鏡として使用する場合には、2次電子や反射電子を検出し画像化する機構が取り付けられるが、ここでは図示していない。対物レンズ17は磁界型あるいは電界型あるいは電界磁界複合型の回転対称のレンズが用いられる。電子ビームによる試料破壊を防ぎ、収差を減らすために、試料18と対物レンズ17の間で電子が減速されるようにリターディング電源29にて試料18に電圧をかける場合もある。上に説明した電子線装置の部品はすべて真空容器19に格納され、真空外の各々の電流源や電圧源(20〜29)とコネクターを通じて電気的に繋がっている。真空容器19内の各部品の支持法については簡単のため図示していない。これらの電源をコンピュータ30を通じてコントロールすることにより電子ビームを発生させ、走査など制御することができる。   When used as a scanning microscope, a mechanism for detecting and imaging secondary electrons and reflected electrons is attached, but is not shown here. The objective lens 17 is a rotationally symmetric lens of a magnetic field type, an electric field type, or an electric field magnetic field composite type. In order to prevent the sample from being destroyed by the electron beam and reduce the aberration, a voltage may be applied to the sample 18 by the retarding power source 29 so that the electrons are decelerated between the sample 18 and the objective lens 17. All the components of the electron beam apparatus described above are stored in the vacuum container 19 and are electrically connected to each current source and voltage source (20 to 29) outside the vacuum through connectors. A method of supporting each component in the vacuum vessel 19 is not shown for simplicity. By controlling these power supplies through the computer 30, it is possible to generate an electron beam and control scanning.

(実施例1)
図2は、本発明の第1の実施例を説明する図である。図1に示す収差補正器付電子線装置の構成を基本として、電子ビーム軌道に着目して、実施例1による制御を説明する。
(Example 1)
FIG. 2 is a diagram for explaining a first embodiment of the present invention. Based on the configuration of the electron beam apparatus with an aberration corrector shown in FIG. 1, focusing on the electron beam trajectory, the control according to the first embodiment will be described.

ショットキー電子源1で放出された電子は、最初実線の軌道に沿い、第1陽極4、第2陽極5間で加速され、第1コンデンサーレンズ6、コンデンサー絞り39、第2コンデンサーレンズ7により収束されて収差補正器10に達する(コンデンサーレンズは必ずしも2つ必要ではない)。収差補正器10を動作させない走査モード(OFFモード)においてはx軌道、y軌道は分離せず収差補正器10内を図中の破線の軌道に沿って直進し44の位置にクロスオーバーを形成する。これが対物レンズ17の物点になる。   The electrons emitted from the Schottky electron source 1 are first accelerated along the trajectory of the solid line between the first anode 4 and the second anode 5, and are converged by the first condenser lens 6, the condenser aperture 39 and the second condenser lens 7. As a result, the aberration corrector 10 is reached (two condenser lenses are not necessarily required). In the scanning mode (OFF mode) in which the aberration corrector 10 is not operated, the x trajectory and the y trajectory are not separated, and the aberration corrector 10 moves straight along the broken line trajectory in the drawing to form a crossover at the position 44. . This is the object point of the objective lens 17.

この状態での最高分解能を得るように、対物レンズ17の電流中心を電子ビームが通るよう、対物アライナー38を調整する。この手法は確立されているが厳密には対物レンズ17へ斜め入射になる。この段階で発生する非点収差、像面湾曲収差は非点補正コイル36により補正可能であり、歪曲収差は像ボケの原因にならない。コマ収差、倍率色収差を総合的に見て最小にするような軸合わせをしていると考えられる。さらに、特許文献1に開示されるような方法によれば、対物レンズ17への斜め入射に起因するこれらの収差をなくせるが、球面収差と軸上色収差は最後まで残存している。   In order to obtain the maximum resolution in this state, the objective aligner 38 is adjusted so that the electron beam passes through the current center of the objective lens 17. Although this method has been established, strictly speaking, it is obliquely incident on the objective lens 17. Astigmatism and field curvature aberration generated at this stage can be corrected by the astigmatism correction coil 36, and distortion does not cause image blur. It is considered that the axes are aligned so as to minimize coma aberration and lateral chromatic aberration. Furthermore, according to the method disclosed in Patent Document 1, these aberrations caused by the oblique incidence on the objective lens 17 can be eliminated, but the spherical aberration and the longitudinal chromatic aberration remain to the end.

OFFモードにおいて軸調整を終了させた後、そのままの状態で収差補正器10を動作させる(ONモード)。この状態では、収差補正器10に第2コンデンサーレンズ7により収束されて入射した電子は、図4を参照して説明したように、収差補正器10内でx、y方向で分離し、図2中の実線で記された近軸軌道に沿って進む、このとき収差補正器10は44の位置にクロスオーバーを形成するように各多極子レンズの強さが設定されている。実際にこのようにするために、収差補正器10の各段の4極子場の強さは数値計算により以下のような考え方で決定することができる。ここでは簡単のために多極子レンズ11と複合型多極子レンズ12の間隔および複合型多極子レンズ13と多極子レンズ14の間隔をゼロとし、多極子レンズの電極、磁極形状を双極線型として高次の場は考えず、解析的計算式を明示するが実際はこれらの多極子間距離を有限にし、電極、磁極形状を入力して以下と同様の考え方で計算機シミュレーションにより場を求める。   After completing the axis adjustment in the OFF mode, the aberration corrector 10 is operated in the state as it is (ON mode). In this state, the electrons that are converged and incident on the aberration corrector 10 by the second condenser lens 7 are separated in the x and y directions in the aberration corrector 10 as described with reference to FIG. The intensity of each multipole lens is set so that the aberration corrector 10 forms a crossover at the position 44 at this time along the paraxial orbit indicated by the solid line. In practice, in order to do this, the intensity of the quadrupole field at each stage of the aberration corrector 10 can be determined by numerical calculation based on the following concept. Here, for the sake of simplicity, the distance between the multipole lens 11 and the composite multipole lens 12 and the distance between the composite multipole lens 13 and the multipole lens 14 are set to zero, and the electrode and magnetic pole shape of the multipole lens are high as a dipole line type. Although the next field is not considered, analytical formulas are specified, but in reality, the distance between these multipoles is made finite, electrodes and magnetic pole shapes are input, and the field is obtained by computer simulation based on the same concept as below.

4極子レンズの近軸軌道方程式は、z方向を光軸方向として式(2)および(3)のようにあらわされる。   The paraxial trajectory equation of the quadrupole lens is expressed as in equations (2) and (3) with the z direction as the optical axis direction.

Figure 2006179504
ここに、βは式(4)で表される。
Figure 2006179504
Here, β 2 is expressed by the formula (4).

Figure 2006179504
k(z)はz方向の場の分布、φは4極子磁場の強度、φは4極子電場の強度、φは軸上の電位を表し、電極に加える電圧およびコイル電流により決まる。各段についてβ(i=1〜4)を求めればよい。実際には無次元パラメータθ=βLを求める。ここにLは各電極のZ軸方向の厚み、多極子レンズ11にはθ、複合型多極子レンズ12にはθ、複合型多極子レンズ13にはθ、多極子レンズ14にはθが対応する。ここで、第2コンデンサーレンズ7、対物レンズ17、収差補正器10、クロスオーバー44の位置は与えられているものとする。
Figure 2006179504
k (z) is the distribution of the field in the z direction, φ 2 is the intensity of the quadrupole magnetic field, φ 2 is the intensity of the quadrupole electric field, φ is the potential on the axis, and is determined by the voltage applied to the electrode and the coil current. Β i (i = 1 to 4) may be obtained for each stage. Actually, the dimensionless parameter θ i = β i L is obtained. Where L is the Z-axis direction thickness of each electrode, 1 to multipole lens 11 theta, composite multipole lens for 12 theta 2, composite multipole lens for 13 theta 3, the multipole lens 14 θ 4 corresponds to this. Here, it is assumed that the positions of the second condenser lens 7, the objective lens 17, the aberration corrector 10, and the crossover 44 are given.

以上の条件で4つの変数(θ〜θ)を以下の各式のように計算し各段の4極子の強さを決める。 Under the above conditions, four variables (θ 1 to θ 4 ) are calculated as in the following equations to determine the strength of the quadrupole at each stage.

1)収差補正の可能な条件として、図4を参照して説明したように、y軌道が2段目の複合型多極子レンズ12の中心を通ることより式(5)の条件が得られる。   1) As a possible condition for aberration correction, as described with reference to FIG. 4, the condition of Expression (5) is obtained when the y-orbit passes through the center of the composite multipole lens 12 at the second stage.

Figure 2006179504
ここにa×Lは複合型多極子レンズ12と複合型多極子レンズ13間の距離、p×Lは多極子レンズ14下端面を通る光軸に垂直な面とクロスオーバー44間の距離である。
Figure 2006179504
Here, a × L is the distance between the composite multipole lens 12 and the composite multipole lens 13, and p × L is the distance between the plane perpendicular to the optical axis passing through the lower end surface of the multipole lens 14 and the crossover 44. .

2)収差補正器10には円錐形収束ビームが入射するから、x軌道、y軌道の収差補正器10上端面での座標と傾きの関係から式(6)および式(7)の条件が得られる。   2) Since the conical converging beam is incident on the aberration corrector 10, the conditions of the equations (6) and (7) are obtained from the relationship between the coordinates and the inclination of the upper end surface of the aberration corrector 10 on the x-orbit and y-orbit. It is done.

Figure 2006179504
Figure 2006179504

Figure 2006179504
3)収差補正器10のON/OFFにかかわらずクロスオーバー44の位置が一定で、その点でx、y軌道が傾きも含めて一致するスティグマティックな結像条件から式(8)が得られる。
Figure 2006179504
3) Expression (8) is obtained from a stigmatic imaging condition in which the position of the crossover 44 is constant regardless of ON / OFF of the aberration corrector 10 and the x and y trajectories coincide with each other including inclination. .

Figure 2006179504
4)以上4つの式より数値的にθ〜θを求め、近軸軌道が決定される。これらの条件では線状クロスオーバー43は複合型多極子13の厳密に中央で形成されるわけではない。解の存在は自明ではない。aやpの値によっては上記4つの式を同時に満たすθ〜θは存在しないこともある。その場合はx軌道とy軌道のクロスオ−バー位置が一致せず、クロスオーバー44でのスティグマティックな結像ができないので収差補正することができないことを意味する。この場合はクロスオーバー44の位置設定をずらしてpの値を変えたり、収差補正器の複合型多極子レンズ12と複合型多極子レンズ13間の距離を変えるなどθ〜θの解が存在するように装置の設計を考慮して対処する。
Figure 2006179504
4) θ 1 to θ 4 are obtained numerically from the above four equations, and the paraxial trajectory is determined. Under these conditions, the linear crossover 43 is not formed exactly at the center of the composite multipole element 13. The existence of a solution is not obvious. Depending on the values of a and p, θ 1 to θ 4 that simultaneously satisfy the above four expressions may not exist. In this case, the crossover position of the x-orbit and the y-orbit do not coincide with each other, and stigmatic imaging at the crossover 44 cannot be performed, so that the aberration cannot be corrected. In this case, the solutions of θ 1 to θ 4 are changed by changing the position of the crossover 44 to change the value of p, or changing the distance between the composite multipole lens 12 and the composite multipole lens 13 of the aberration corrector. Take into account the design of the device so that it exists.

5)上記4)で求まったθ、θの大きさを変えずに、4極子電場と4極子磁場の強さの比を変えて、エネルギーの異なる入射電子線についてクロスオーバー44での色収差によるボケ量を計算し、対物レンズ17の色収差(既知)を相殺するように電場と磁場の強さの比を決める。 5) Chromatic aberration at the crossover 44 for incident electron beams with different energies by changing the intensity ratio between the quadrupole electric field and the quadrupole magnetic field without changing the magnitudes of θ 2 and θ 3 obtained in 4) above. And the ratio of the strength of the electric field and the magnetic field is determined so as to cancel out the chromatic aberration (known) of the objective lens 17.

6)球面収差まで補正する場合は、上記条件で収差補正器10の球面収差を計算し、対物レンズ17の球面収差(既知)を相殺するように、多極子レンズ11〜14各々で8極子場を重畳して補正する。このときθ〜θは変わらないので近軸軌道は変わらない。 6) When correcting up to spherical aberration, the spherical aberration of the aberration corrector 10 is calculated under the above conditions, and the octupole field is obtained in each of the multipole lenses 11 to 14 so as to cancel the spherical aberration (known) of the objective lens 17. Correct by superimposing. At this time, since θ 1 to θ 4 do not change, the paraxial trajectory does not change.

以上の手順で、図2のような対物レンズ17の物点を一定にしたまま収差補正器10のONモードでの動作条件(各4極子場、8極子場の励起条件)が決定できる。   With the above procedure, the operation conditions (excitation conditions for each quadrupole field and octupole field) of the aberration corrector 10 in the ON mode can be determined while keeping the object point of the objective lens 17 as shown in FIG. 2 constant.

次に、この状態でOFFモードの場合よりも良い分解能が得られなければ、その原因は収差補正器10の調整不足にあるから、例えば、前述した非特許文献3の319ページ、第3節に記載の方法により、収差補正器10の軸合わせ調整をすることにより残存している対物レンズ17の球面収差と色収差を補正して、総合的に最良の分解能が得られる。   Next, if better resolution than in the OFF mode cannot be obtained in this state, the cause is insufficient adjustment of the aberration corrector 10. For example, in Non-Patent Document 3, page 319, Section 3 above. By the adjustment of the axis of the aberration corrector 10, the spherical aberration and chromatic aberration of the remaining objective lens 17 are corrected by the described method, so that the best overall resolution can be obtained.

(実施例2)
図3に本発明の実施例2を示す。この例では収差補正器10のOFFモードの場合は、実施例1と同様、コンデンサーレンズ7を弱励磁で使い(破線)、対物レンズ17の物点となるクロスオーバー44を収差補正器10の後側に結ぶ。第2コンデンサーレンズ7の強励磁/弱励磁の切替と収差補正器10のON/OFFをコンピュータ30により連動させて、ONモードのときは第2コンデンサーレンズ7を強励磁で使い、収差補正器10の前側にクロスオーバー41を形成する(実線)。それを収差補正器10によりクロスオーバー44の位置にスティグマティック結像させて対物レンズ17の物点とする。収差補正器10のONモードの場合、クロスオーバー44までのスポットのトータル倍率が、収差補正器10のOFFモードの場合より小さいことが必要である。さもないと収差補正器10がうまく軸調整できても収束スポット45の径がもともと大きいので分解能が向上しない。
(Example 2)
FIG. 3 shows a second embodiment of the present invention. In this example, when the aberration corrector 10 is in the OFF mode, the condenser lens 7 is used with weak excitation (broken line) as in the first embodiment, and the crossover 44 that is the object point of the objective lens 17 is used after the aberration corrector 10. Tie to the side. The switching of strong excitation / weak excitation of the second condenser lens 7 and ON / OFF of the aberration corrector 10 are linked by the computer 30. In the ON mode, the second condenser lens 7 is used with strong excitation, and the aberration corrector 10 A crossover 41 is formed on the front side (solid line). This is stigmatically imaged at the position of the crossover 44 by the aberration corrector 10 to be an object point of the objective lens 17. In the ON mode of the aberration corrector 10, the total magnification of the spots up to the crossover 44 needs to be smaller than that in the OFF mode of the aberration corrector 10. Otherwise, even if the aberration corrector 10 can adjust the axis well, the resolution is not improved because the diameter of the convergence spot 45 is originally large.

このような収差補正器10の使い方では、多極子レンズ11と多極子レンズ14および複合型多極子レンズ12と複合型多極子レンズ13の組が対称性よく励起されるので収差補正器10自体が持つ球面収差が第1の実施例の場合よりも小さくなり球面収差補正をするための8極子場の強度を小さくできる利点がある。   In such use of the aberration corrector 10, the set of the multipole lens 11, the multipole lens 14, and the composite multipole lens 12 and the composite multipole lens 13 are excited with good symmetry, so that the aberration corrector 10 itself is used. Since the spherical aberration is smaller than that in the first embodiment, there is an advantage that the intensity of the octupole field for correcting the spherical aberration can be reduced.

本発明が適用される収差補正器付電子線装置の一例の構造の概要を示す図である。It is a figure which shows the outline | summary of a structure of an example of the electron beam apparatus with an aberration corrector with which this invention is applied. 実施例1の収差補正器付電子線装置の電子光学系を説明する図である。It is a figure explaining the electron optical system of the electron beam apparatus with an aberration corrector of Example 1. FIG. 実施例2の収差補正器付電子線装置の電子光学系を説明する図である。It is a figure explaining the electron optical system of the electron beam apparatus with an aberration corrector of Example 2. FIG. 従来の収差補正器内での電子光学系を説明する図である。It is a figure explaining the electron optical system in the conventional aberration corrector.

符号の説明Explanation of symbols

1…ショットキー電子源、2…サプレッサー電極、3…引き出し電極、4…第1陽極、5…第2陽極、6…第1コンデンサーレンズ、7…第2コンデンサーレンズ、8…上偏向コイル、9…下偏向コイル、10…収差補正器、11…多極子レンズ、12…複合型多極子レンズ、13…複合型多極子レンズ、14…多極子レンズ、15…上走査コイル、16…下走査コイル、17…対物レンズ、18…試料、19…真空容器、20…電子銃電源、21…制御電圧源、22…加速電圧源、23…第1コンデンサーレンズ電源、24…第2コンデンサーレンズ電源、25…偏向コイル電源、26…収差補正器電源、27…走査コイル電源、28…対物レンズ電源、29…リターディング電源、30…コンピュータ、35…非点補正コイル電源、36…非点補正コイル、37…対物アライナー電源、38…対物アライナー、39…コンデンサー絞り、40…クロスオーバー、41…クロスオーバー、42…線状クロスオーバー、43…線状クロスオーバー、44…クロスオーバー、45…収束スポット。   DESCRIPTION OF SYMBOLS 1 ... Schottky electron source, 2 ... Suppressor electrode, 3 ... Extraction electrode, 4 ... 1st anode, 5 ... 2nd anode, 6 ... 1st condenser lens, 7 ... 2nd condenser lens, 8 ... Upper deflection coil, 9 DESCRIPTION OF SYMBOLS ... Lower deflection coil, 10 ... Aberration corrector, 11 ... Multipole lens, 12 ... Composite type multipole lens, 13 ... Composite type multipole lens, 14 ... Multipole lens, 15 ... Upper scanning coil, 16 ... Lower scanning coil , 17 ... objective lens, 18 ... sample, 19 ... vacuum vessel, 20 ... electron gun power source, 21 ... control voltage source, 22 ... acceleration voltage source, 23 ... first condenser lens power source, 24 ... second condenser lens power source, 25 ... deflection coil power supply, 26 ... aberration corrector power supply, 27 ... scanning coil power supply, 28 ... objective lens power supply, 29 ... retarding power supply, 30 ... computer, 35 ... astigmatism correction coil power supply, 36 Astigmatism correction coil, 37 ... objective aligner power supply, 38 ... objective aligner, 39 ... condenser aperture, 40 ... crossover, 41 ... crossover, 42 ... linear crossover, 43 ... linear crossover, 44 ... crossover, 45: Converging spot.

Claims (2)

電子銃と、コンデンサーレンズと、複数個の多極子レンズを組み合わせて対物レンズの色収差あるいは球面収差あるいはその両方を同時に相殺するよう機能する収差補正器と、電子ビームを試料表面に収束させる対物レンズと、収束された電子ビームを試料面上を走査させるための走査コイルと、前記各レンズおよび収差補正器を制御するコンピュータとを備えた収差補正器付電子線装置において、前記コンピュータは収差補正器を動作させる走査モードと、収差補正器を動作させない走査モードとを持ち、いずれのモードでも対物レンズの物点位置が実質的に変わらないように、前記各レンズおよび収差補正器を制御することを特徴とする収差補正器付電子線装置。   An aberration corrector that functions to simultaneously cancel chromatic aberration and / or spherical aberration of the objective lens by combining an electron gun, a condenser lens, and a plurality of multipole lenses, and an objective lens that converges the electron beam on the sample surface An electron beam apparatus with an aberration corrector comprising: a scanning coil for scanning a focused electron beam on a sample surface; and a computer for controlling the lenses and the aberration corrector. The computer includes an aberration corrector. It has a scanning mode for operating and a scanning mode for not operating the aberration corrector, and the lens and the aberration corrector are controlled so that the object point position of the objective lens does not substantially change in any mode. An electron beam apparatus with an aberration corrector. 電子銃と、コンデンサーレンズと、複数個の多極子レンズを組み合わせて対物レンズの色収差あるいは球面収差あるいはその両方を同時に相殺するよう機能する収差補正器と、電子ビームを試料表面に収束させる対物レンズと、収束された電子ビームを試料面上を走査させるための走査コイルと、前記各レンズおよび収差補正器を制御するコンピュータとを備えた収差補正器付電子線装置において、前記コンピュータは収差補正器を動作させる走査モードと、収差補正器を動作させない走査モードとを持ち、前記コンデンサーレンズの励磁の強さの切替と収差補正器のON/OFFとを連動させることにより、いずれのモードでも対物レンズの物点位置が実質的に変わらないように、前記各レンズおよび収差補正器を制御することを特徴とする収差補正器付電子線装置。   An aberration corrector that functions to simultaneously cancel chromatic aberration and / or spherical aberration of the objective lens by combining an electron gun, a condenser lens, and a plurality of multipole lenses, and an objective lens that converges the electron beam on the sample surface An electron beam apparatus with an aberration corrector comprising: a scanning coil for scanning a focused electron beam on a sample surface; and a computer for controlling the lenses and the aberration corrector. The computer includes an aberration corrector. There is a scanning mode to be operated and a scanning mode in which the aberration corrector is not operated. By switching the excitation intensity of the condenser lens and ON / OFF of the aberration corrector, the objective lens can be operated in any mode. The lens and the aberration corrector are controlled so that the object position does not substantially change. Electron beam apparatus with the aberration corrector.
JP2006088092A 2006-03-28 2006-03-28 Method for adjusting scanning electron microscope or length measuring SEM Expired - Fee Related JP4291827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088092A JP4291827B2 (en) 2006-03-28 2006-03-28 Method for adjusting scanning electron microscope or length measuring SEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088092A JP4291827B2 (en) 2006-03-28 2006-03-28 Method for adjusting scanning electron microscope or length measuring SEM

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003094285A Division JP4275441B2 (en) 2003-03-31 2003-03-31 Electron beam device with aberration corrector

Publications (2)

Publication Number Publication Date
JP2006179504A true JP2006179504A (en) 2006-07-06
JP4291827B2 JP4291827B2 (en) 2009-07-08

Family

ID=36733356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088092A Expired - Fee Related JP4291827B2 (en) 2006-03-28 2006-03-28 Method for adjusting scanning electron microscope or length measuring SEM

Country Status (1)

Country Link
JP (1) JP4291827B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287495A (en) * 2006-04-18 2007-11-01 Jeol Ltd 2-lens optical system scanning type aberration corrected focused ion beam device, 3-lens optical system scanning type aberration corrected focused ion beam device, and 2-lens optical system projection type aberration corrected ion lithography device as well as 3-lens optical system projection type aberration corrected ion lithography device
JP2008243485A (en) * 2007-03-26 2008-10-09 Hitachi High-Technologies Corp Scanning electron microscope
JP2008288024A (en) * 2007-05-17 2008-11-27 Hitachi High-Technologies Corp Charged particle beam device, its aberration correction calculation device, and its aberration correction program
WO2011081463A2 (en) * 2009-12-29 2011-07-07 한국기초과학지원연구원 Lens control apparatus of tem for easily obtaining ped pattern
JP2012227160A (en) * 2006-11-21 2012-11-15 Hitachi High-Technologies Corp Charged particle beam orbit correcting unit and charged particle beam apparatus
WO2012169665A1 (en) * 2011-06-07 2012-12-13 한국기초과학지원연구원 Apparatus for controlling digital alignment coils of tem for ped analysis and apparatus for displaying rotation speed and rotation angle of electronic beam
JP2020074329A (en) * 2014-05-25 2020-05-14 ケーエルエー コーポレイション Electron beam imaging device and method
CN112236837A (en) * 2018-06-04 2021-01-15 株式会社日立高新技术 Electron beam apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287495A (en) * 2006-04-18 2007-11-01 Jeol Ltd 2-lens optical system scanning type aberration corrected focused ion beam device, 3-lens optical system scanning type aberration corrected focused ion beam device, and 2-lens optical system projection type aberration corrected ion lithography device as well as 3-lens optical system projection type aberration corrected ion lithography device
JP2012227160A (en) * 2006-11-21 2012-11-15 Hitachi High-Technologies Corp Charged particle beam orbit correcting unit and charged particle beam apparatus
JP2008243485A (en) * 2007-03-26 2008-10-09 Hitachi High-Technologies Corp Scanning electron microscope
US8217363B2 (en) 2007-03-26 2012-07-10 Hitachi High-Technologies Corporation Scanning electron microscope
JP2008288024A (en) * 2007-05-17 2008-11-27 Hitachi High-Technologies Corp Charged particle beam device, its aberration correction calculation device, and its aberration correction program
WO2011081463A2 (en) * 2009-12-29 2011-07-07 한국기초과학지원연구원 Lens control apparatus of tem for easily obtaining ped pattern
WO2011081463A3 (en) * 2009-12-29 2011-11-10 한국기초과학지원연구원 Lens control apparatus of tem for easily obtaining ped pattern
KR101167565B1 (en) 2009-12-29 2012-07-27 한국기초과학지원연구원 Apparatus for Controling-and-Displaying the Rotating angle and speed of Electron-beam in TEM for 3-D Diffraction Pattern Analysis
WO2012169665A1 (en) * 2011-06-07 2012-12-13 한국기초과학지원연구원 Apparatus for controlling digital alignment coils of tem for ped analysis and apparatus for displaying rotation speed and rotation angle of electronic beam
JP2020074329A (en) * 2014-05-25 2020-05-14 ケーエルエー コーポレイション Electron beam imaging device and method
CN112236837A (en) * 2018-06-04 2021-01-15 株式会社日立高新技术 Electron beam apparatus
CN112236837B (en) * 2018-06-04 2024-03-15 株式会社日立高新技术 Electron beam apparatus

Also Published As

Publication number Publication date
JP4291827B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4275441B2 (en) Electron beam device with aberration corrector
JP4620981B2 (en) Charged particle beam equipment
JP6554288B2 (en) Charged particle beam equipment
JP4988216B2 (en) Charged particle beam equipment equipped with an aberration correction device
JP4291827B2 (en) Method for adjusting scanning electron microscope or length measuring SEM
US8841630B2 (en) Corrector for axial aberrations of a particle-optical lens
JP6134145B2 (en) Charged particle beam apparatus and trajectory correction method in charged particle beam apparatus
JP2009043533A (en) Aberration correction unit, and charged particle beam device using the same
WO2017002243A1 (en) Aberration correction method, aberration correction system, and charged particle beam device
EP1780763B1 (en) Charged particle beam system with higher-order aberration corrector
CN102737933A (en) Distortion free stigmation of a tem
WO2012132228A1 (en) Multipole and charged particle beam apparatus using same
JP2004363045A (en) Aberration correction method in charged particle beam device and charged particle beam device
EP3428949B1 (en) Electron beam system for aberration correction
JP4705812B2 (en) Charged particle beam device with aberration correction device
JP2006216299A (en) Charged particle beam device, and axis adjusting method of aberration correction device of the same
WO2012014870A1 (en) Aberration correction device and charged particle beam device employing same
JP6737539B2 (en) Charged particle beam device
JP2008171610A (en) Charged particle beam device
JP2011040256A (en) Scanning charged particle beam device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees