JP2006177841A - Nondestructive inspection device and method - Google Patents

Nondestructive inspection device and method Download PDF

Info

Publication number
JP2006177841A
JP2006177841A JP2004372756A JP2004372756A JP2006177841A JP 2006177841 A JP2006177841 A JP 2006177841A JP 2004372756 A JP2004372756 A JP 2004372756A JP 2004372756 A JP2004372756 A JP 2004372756A JP 2006177841 A JP2006177841 A JP 2006177841A
Authority
JP
Japan
Prior art keywords
ray
inspection object
rays
inspection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372756A
Other languages
Japanese (ja)
Inventor
Ryoichi Suzuki
良一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004372756A priority Critical patent/JP2006177841A/en
Publication of JP2006177841A publication Critical patent/JP2006177841A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized nondestructive inspection device having high measurement accuracy. <P>SOLUTION: A pulsed electron beam 22 is allowed to enter a target 18 by an electron accelerator 16, to thereby generate a bremsstrahlung X-ray, and an inspection object 10 is irradiated therewith. The X-ray 28 transmitted through the inspection object 10 is received by a scintillator 30, and generated light is converted into a corresponding electric signal 34 by a photodetector 32. The electric signal 34 is integrated during a period T when the pulsed electron beam is generated, or during a period T' in consideration of a signal delay of the detector. The integration is repeated relative to a plurality of pulses. Thus, the transmission quantity of the X-ray through the inspection object 10 is measured from the integrated value, and a shape characteristic of the inspection object 10 can be inspected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工場プラントや建造物などの構造物の非破壊検査する装置および方法に関する。   The present invention relates to an apparatus and method for nondestructive inspection of structures such as factory plants and buildings.

工場プラント、発電所、建物、建造物などの構造物の非破壊検査する方法は一般に、X線などの放射線源を用いている。このような非破壊検査方法は、線源と検出器との間に検査対象物を配置し、検査対象物についての放射の透過率から対象物の厚みや形状などの特性を検査する。
検査対象物が小さい場合は、X線のエネルギーが低くても検査が可能である。しかし、検査対象物が大きいと、X線のエネルギーが低ければ、X線は対象物にほとんど吸収されてしまう。したがって、そのような場合、エネルギーの高い高透過性のX線源が使われる。とくに、厚み5 cm程度以上の金属や、20 cm程度以上の厚さのコンクリートでは、300 keV以上の高透過性のX線源が適している。
In general, a non-destructive inspection method for a structure such as a factory plant, a power plant, a building, or a building uses a radiation source such as an X-ray. In such a non-destructive inspection method, an inspection object is disposed between a radiation source and a detector, and characteristics such as the thickness and shape of the object are inspected from the radiation transmittance of the inspection object.
When the inspection object is small, the inspection is possible even when the energy of the X-ray is low. However, if the inspection object is large, if the energy of the X-ray is low, the X-ray is almost absorbed by the object. Therefore, in such a case, a high energy X-ray source with high energy is used. In particular, a highly transparent X-ray source of 300 keV or more is suitable for a metal having a thickness of about 5 cm or more and a concrete having a thickness of about 20 cm or more.

可搬型のX線あるいはγ線を用いた非破壊検査装置では、たとえば非特許文献1に開示のように、線源としては、放射性同位元素から放出されるγ線あるいは高エネルギー電子ビームをターゲットに入射させ、これによってターゲットから放出されるX線が使われる。このX線を検査対象物に照射し、それを透過したX線を検出器で検出し、あるいはX線に感度を有するフィルムにX線を露呈させることによって、検査対象物のX線透過率から対象物の厚さの等の形状特性を検査する。
特開2000−243599号公報 <http://hadron.kek.jp/KogataAcc2003/Body/Presentation/09_Ohnishi.pdf>
In a non-destructive inspection apparatus using portable X-rays or γ-rays, for example, as disclosed in Non-Patent Document 1, the target is a γ-ray or high-energy electron beam emitted from a radioisotope. X-rays that are incident and thereby emitted from the target are used. By irradiating the inspection object with this X-ray and detecting the X-ray transmitted therethrough with a detector, or exposing the X-ray to a film having sensitivity to X-rays, the X-ray transmittance of the inspection object is obtained. Inspect shape characteristics such as the thickness of the object.
Japanese Unexamined Patent Publication No. 2000-243599 <http://hadron.kek.jp/KogataAcc2003/Body/Presentation/09_Ohnishi.pdf>

放射性同位元素を使った非破壊検査装置は、放射性同位元素線源自体の体積が非常に小さくても、高透過性の300 keV以上のγ線を放射することができる。しかし放射性同位元素線源は、使用していないときでも常時、放射線を放射するため、放射線遮蔽材が必要であり、そのため装置全体の重量が増す。さらに、放射性同位元素は、厳しい管理が要求される。
高エネルギー電子ビームを使用するX線源による非破壊検査装置において、300 keV以上の高透過性X線を発生させるには、マイクロ波駆動の電子加速器やベータトロンなどの加速器が使われる。これらの加速器は、小型化とX線強度の大出力化との間でトレードオフが必要であり、たとえば、小型にするとX線強度は弱くなる。弱いX線強度の場合は、シンチレーション検出器などの高感度の放射線検出器を使わなければならない。しかし、このような高感度検出器は、バックグラウンド放射線の影響が大きく、これによって測定結果に誤差を生ずることがあった。このような問題点は、弱い放射線同位元素を使用した非破壊検査装置でも同様であった。
Non-destructive inspection equipment using radioisotopes can emit highly transparent γ-rays of 300 keV or higher even if the volume of the radioisotope source itself is very small. However, since the radioactive isotope radiation source always emits radiation even when it is not in use, a radiation shielding material is required, which increases the weight of the entire apparatus. Furthermore, strict management is required for radioisotopes.
In a nondestructive inspection system using an X-ray source that uses a high-energy electron beam, an accelerator such as a microwave-driven electron accelerator or a betatron is used to generate highly transparent X-rays of 300 keV or higher. These accelerators require a trade-off between downsizing and increasing the output of the X-ray intensity. For example, if the accelerator is downsized, the X-ray intensity becomes weak. In the case of weak X-ray intensity, a highly sensitive radiation detector such as a scintillation detector must be used. However, such a high-sensitivity detector is greatly affected by background radiation, which may cause an error in measurement results. Such a problem was also the same in the nondestructive inspection apparatus using weak radiation isotopes.

本発明はこのような従来技術の欠点を解消し、小型で測定精度の高い非破壊検査装置を提供することを目的とする。本発明はまた、このような非破壊検査装置を効果的に使用できる非破壊検査方法を提供することを目的とする。   An object of the present invention is to eliminate such drawbacks of the prior art and to provide a nondestructive inspection apparatus that is small and has high measurement accuracy. Another object of the present invention is to provide a nondestructive inspection method capable of effectively using such a nondestructive inspection apparatus.

本発明による非破壊検査装置は、上述の課題を解決するために、駆動信号に応動して制動放射X線を発生し検査対象物にX線を照射するX線源と、検査対象物を透過したX線を受け、このX線を対応する電気信号に変換するX線検出器と、駆動信号をパルス状に発生してこの駆動信号をX線源に供給するパルス信号発生回路と、パルス信号発生回路が駆動信号を発生している期間のみ電気信号を積算する積算回路とを含み、積算回路は、電気信号を前記期間において積算する。さらに、複数のパルスについて積算を行い、この積算値の総和を検査対象物におけるX線の透過量の計測、および検査対象物の特性の検査に供する。   In order to solve the above-described problems, a nondestructive inspection apparatus according to the present invention generates an bremsstrahlung X-ray in response to a drive signal and irradiates the inspection target with an X-ray, and transmits the inspection target. An X-ray detector that receives the generated X-ray and converts the X-ray into a corresponding electric signal, a pulse signal generation circuit that generates a drive signal in a pulse form and supplies the drive signal to the X-ray source, and a pulse signal An integration circuit that integrates the electrical signal only during a period in which the generation circuit generates the drive signal, and the integration circuit integrates the electrical signal in the period. Furthermore, integration is performed for a plurality of pulses, and the sum of the integrated values is used for measurement of the amount of X-ray transmission through the inspection object and inspection of the characteristics of the inspection object.

本発明によればまた、非破壊検査方法は、制動放射X線をパルス状に発生させ、X線を検査対象物に照射するX線照射工程と、検査対象物を透過したX線を対応する電気信号に変換する信号変換工程と、X線をパルス状に発生している期間のみ電気信号を積算する積算工程とを含み、これによって、電気信号を前記期間において積算する。さらに複数のパルスについてこの積算工程を行いこの積算値の総和から検査対象物におけるX線の透過量を計測し、検査対象物の特性を検査する。
より具体的には、たとえば300 keV以上の高エネルギー電子線パルスを発生する小型電子加速器と、この加速器から発生する電子ビームを入射させてパルス状の制動X線を発生するターゲットで構成されるパルスX線源と、シンチレータおよび光検出器で構成されるシンチレーション検出器と、信号積算装置と、パルス発生装置とを有し、検査対象物の両側にX線源と検出器を配置して、シンチレーション検出器のシンチレーション光の信号量をパルスX線の発生している時間に同期して積算し、その信号量を複数のパルスについて積算することにより、X線の透過量を計測し、対象物の厚みなどの形状を検査する。これによって、バックグラウンド放射線の影響を最小限にし、高エネルギーX線による小型で容易に可搬な非破壊検査装置を実現する。
According to the present invention, the nondestructive inspection method also corresponds to an X-ray irradiation process of generating bremsstrahlung X-rays in a pulsed manner and irradiating the inspection object with X-rays transmitted through the inspection object. It includes a signal conversion step for converting into an electric signal and an integration step for integrating the electric signal only during a period in which X-rays are generated in a pulse form, whereby the electric signal is integrated in the period. Further, this integration step is performed for a plurality of pulses, the amount of X-ray transmission through the inspection object is measured from the sum of the integrated values, and the characteristics of the inspection object are inspected.
More specifically, for example, a pulse composed of a small electron accelerator that generates a high-energy electron beam pulse of 300 keV or higher and a target that generates a pulsed braking X-ray by making an electron beam generated from this accelerator incident. A scintillation detector comprising an X-ray source, a scintillator and a photo detector, a signal integrating device, and a pulse generator, and the X-ray source and the detector are arranged on both sides of the object to be inspected. The amount of scintillation light from the detector is integrated in synchronization with the time at which the pulse X-ray is generated, and the amount of signal is integrated for a plurality of pulses, thereby measuring the amount of X-ray transmission. Inspect shape such as thickness. This realizes a small and easily portable nondestructive inspection apparatus using high energy X-rays while minimizing the influence of background radiation.

本発明によれば、X線パルスが発生していない時間は、信号を積算しないため、バックグラウンド放射線の影響を最小限にできる。また、高効率のシンチレーション検出器との組合せにより、発生するX線の総量を最小限にすることができる。
X線パルスの間隔を広げれば、単位時間当たりのX線量を低くすることができる。単位時間当たりのX線量を低下させれば、X線発生の電子加速器の冷却機構や漏洩X線の遮蔽材を簡略化でき、装置全体が小型化される。このような小型で単位時間当たりのX線量が少なくバックグラウンド放射線の影響のほとんどない非破壊検査装置は、可搬型装置としては勿論、プラントや発電所などで稼働中の構造物に設置する装置にも有利に適用される。後者の場合、それらの構造物の厚みの変化をモニタするモニタ装置としても利用できるなど、従来の非破壊検査装置より利用範囲が広がる。
According to the present invention, since the signals are not integrated during the time when no X-ray pulse is generated, the influence of background radiation can be minimized. In addition, the total amount of X-rays generated can be minimized by combination with a highly efficient scintillation detector.
If the interval between X-ray pulses is increased, the X-ray dose per unit time can be reduced. If the X-ray dose per unit time is reduced, the cooling mechanism of the electron accelerator for generating X-rays and the shielding material for leaked X-rays can be simplified, and the entire apparatus can be miniaturized. Such a small, non-destructive inspection device with little X-ray dose per unit time and almost no influence of background radiation can be used not only as a portable device but also as a device installed in a structure operating in a plant or power plant. Are also advantageously applied. In the latter case, it can be used as a monitor device that monitors changes in the thickness of these structures, and the range of use is broader than that of conventional nondestructive inspection devices.

次に添付図面を参照して、本発明による非破壊検査装置の実施例を詳細に説明する。図1を参照すると、本発明による非破壊検査装置の実施例は、検査対象物10の一方の側にパルスX線源12が配置され、他方の側にシンチレーション検出器14が配設されている。検査対象物10は、たとえば工場プラント、発電所、建物、建造物などの構造物であり、一般に、金属やコンクリートなどを含むことが多い。
パルスX線源12は、電子加速器16およびターゲット18を含み、X線20を発生して検査対象物10に照射する放射線源である。電子加速器16は、マイクロ波駆動で加速電子ビーム22を発生する小型電子加速器でよい。これには、たとえば特開2000-243599号公報(特許文献1)に記載の高電界小型定在波線形加速器が適用される。たとえば、電子ビーム22の平均電流が10マイクロアンペア以下であれば、500 keV以上の加速エネルギーでも、加速管の体積を200 cm3以下に設計することができ、装置が小型化される。ターゲット18は、たとえばタングステン、タンタルまたは鉛などの原子番号の大きな元素からなる標的板であり、電子加速器16から高エネルギーの加速電子ビーム22が入射されると、制動放射X線20を発生する。
Embodiments of a nondestructive inspection apparatus according to the present invention will now be described in detail with reference to the accompanying drawings. Referring to FIG. 1, in an embodiment of a nondestructive inspection apparatus according to the present invention, a pulse X-ray source 12 is disposed on one side of an inspection object 10, and a scintillation detector 14 is disposed on the other side. . The inspection object 10 is, for example, a structure such as a factory plant, a power plant, a building, or a building, and generally includes metal, concrete, or the like.
The pulse X-ray source 12 includes an electron accelerator 16 and a target 18, and is a radiation source that generates X-rays 20 and irradiates the inspection object 10. The electron accelerator 16 may be a small electron accelerator that generates an accelerating electron beam 22 by microwave driving. For this, for example, a high electric field small standing wave linear accelerator described in Japanese Patent Laid-Open No. 2000-243599 (Patent Document 1) is applied. For example, if the average current of the electron beam 22 is 10 microamperes or less, the acceleration tube volume can be designed to 200 cm 3 or less even with acceleration energy of 500 keV or more, and the apparatus can be miniaturized. The target 18 is a target plate made of an element having a large atomic number, such as tungsten, tantalum, or lead, and generates a bremsstrahlung X-ray 20 when a high-energy accelerated electron beam 22 is incident from the electron accelerator 16.

電子加速器16は駆動入力24を有し、これには、パルス信号発生器26の出力が接続されている。以下の説明において、信号は、その現れる接続線の参照符号で指定する。パルス信号発生器26は、これに設定されたパルス幅の駆動パルス24を発生するパルス信号発生回路である。駆動パルス24に応動して電子加速器16は、ターゲット18にパルス状に加速電子ビーム22を入射させ、これによってターゲット18からパルス状の制動放射X線20が発生する。   The electron accelerator 16 has a drive input 24, to which the output of a pulse signal generator 26 is connected. In the following description, a signal is designated by the reference number of the connecting line that appears. The pulse signal generator 26 is a pulse signal generation circuit that generates a drive pulse 24 having a pulse width set to this. In response to the drive pulse 24, the electron accelerator 16 causes the acceleration electron beam 22 to be incident on the target 18 in a pulsed manner, thereby generating a pulsed bremsstrahlung X-ray 20 from the target 18.

シンチレーション検出器14は、パルスX線源12から照射されたX線20のうち検査対象物10を透過したX線28を検出するX線検出器である。シンチレーション検出器14は、シンチレータ30および光検出器32を含む。シンチレータ30は、X線28が入射すると発光する無機物あるいは高分子の材料を含む感放射線発光体である。光検出器32は、たとえば光電子増幅管や高感度フォトダイオード等の光電変換装置であり、入射光に応じた電気信号をその出力34に発生する。検査対象物10とX線源12との間、および(または)検査対象物10とシンチレーション検出器14との問には、X線のコリメータ(図示せず)を挿入して、装置の位置分解能を向上させてもよい。   The scintillation detector 14 is an X-ray detector that detects X-rays 28 transmitted through the inspection object 10 out of the X-rays 20 irradiated from the pulse X-ray source 12. The scintillation detector 14 includes a scintillator 30 and a photodetector 32. The scintillator 30 is a radiation-sensitive luminescent material containing an inorganic material or a polymer material that emits light when X-rays 28 are incident thereon. The photodetector 32 is a photoelectric conversion device such as a photoelectron amplifier tube or a high-sensitivity photodiode, and generates an electric signal corresponding to incident light at its output 34. An X-ray collimator (not shown) is inserted between the inspection object 10 and the X-ray source 12 and / or between the inspection object 10 and the scintillation detector 14, and the position resolution of the apparatus May be improved.

シンチレーション検出器14の出力34は、信号積算装置36に接続されている。信号積算装置36は制御入力38も有し、制御入力38はパルス信号発生器26の他の出力に接続されている。パルス信号発生器26は、電子加速器16の駆動入力24にパルス信号を発生している期間T(図2)だけ制御出力28を有意にする。積算装置36は、その制御入力38が有意状態にある期間T’だけ、その入力34の信号を積算する積算回路(図示せず)を含む。T’は、シンチレータの発光減衰時間、光検出器の信号遅れ等があるため、Tより若干遅らせてもよい。積算装置36はまた、この積算値を人間が知覚し得る何らかの形(ソフトコピーまたはハードコピー)で出力する出力機能部(図示せず)も含んでいてよい。
この出力機能部は、たとえば、積算値を積分するアナログ積分回路と、これを対応するディジタル値に変換するアナログ・ディジタル変換器を含み、積算値を数値として表示、すなわち出力するように構成してよい。または、パルス信号24のパルス幅Tより十分に短い時間間隔で電気信号34をサンプリングする高速のアナログ・ディジタル変換器またはディジタルオシロスコープ(図示せず)を含み、シンチレーション検出器14の出力信号の強度をディジタル数値に変換し、そのサンプリング数値列の和をとって積分値を求めるように構成してもよい。
動作状態において、検査対象物10の一方の側にパルスX線源12を、他方の側にシンチレーション検出器14を配置する。パルス信号発生器26を操作して、パルスX線源12をパルス状に駆動すると、電子加速器16からパルス状にX線22がターゲット18に向けて放出される。これにより、ターゲット18からは、制動放射X線20が検査対象物10へ向けて放射される。
The output 34 of the scintillation detector 14 is connected to a signal integrating device 36. The signal integrator 36 also has a control input 38 that is connected to the other output of the pulse signal generator 26. The pulse signal generator 26 makes the control output 28 significant only during a period T (FIG. 2) during which a pulse signal is generated at the drive input 24 of the electron accelerator 16. The accumulator 36 includes an accumulator circuit (not shown) that accumulates the signal of the input 34 only during the period T ′ in which the control input 38 is in a significant state. T ′ may be slightly delayed from T because of the light emission decay time of the scintillator and the signal delay of the photodetector. The integrating device 36 may also include an output function unit (not shown) that outputs the integrated value in some form (soft copy or hard copy) that can be perceived by a human.
This output function unit includes, for example, an analog integration circuit that integrates an integrated value and an analog / digital converter that converts the integrated value into a corresponding digital value, and is configured to display, that is, output the integrated value as a numerical value. Good. Or a high-speed analog-to-digital converter or digital oscilloscope (not shown) that samples the electrical signal 34 at a time interval that is sufficiently shorter than the pulse width T of the pulse signal 24, and the intensity of the output signal of the scintillation detector 14 is The integrated value may be obtained by converting to a digital numerical value and taking the sum of the sampling numerical sequence.
In the operating state, the pulse X-ray source 12 is arranged on one side of the inspection object 10 and the scintillation detector 14 is arranged on the other side. When the pulse X-ray source 12 is driven in a pulse shape by operating the pulse signal generator 26, the X-ray 22 is emitted from the electron accelerator 16 toward the target 18 in a pulse shape. As a result, the bremsstrahlung X-ray 20 is radiated from the target 18 toward the inspection object 10.

検査対象物10では、X線20の一部28が透過され、透過したX線28は、シンチレーション検出器14に入射する。シンチレーション検出器14では、光検出器30がこの入射X線28を光に変換し、この光は、光検出器32で対応する電気信号34に変換される。この電気信号34は、積算装置36で積算され、上述のようなディジタル値の積算値として表示、印刷、送信などの出力に供される。
電子加速器16は、パルス信号発生器からの駆動パルス24により駆動されるが、その駆動波形は一般に、図2に示すような単純な矩形波である。したがって、放射されるX線20もこれに対応した持続時間Tをとる。このようなX線20が検査対象物10に照射され、これを透過したX線28がシンチレーション検出器14で検出されて出力される電気信号34は、本来であれば、たとえば図3に参照符号50で示すような波形を呈する。この波形は、シンチレータの発光減衰時間や光検出器の信号遅れ等により、Tより若干遅れる場合がある。実際には、シンチレーション検出器14からの出力信号34には、同図に参照符号52で示すようにパンクグラウンド信号も混入している。
In the inspection object 10, a part 28 of the X-ray 20 is transmitted, and the transmitted X-ray 28 enters the scintillation detector 14. In the scintillation detector 14, the photodetector 30 converts this incident X-ray 28 into light, and this light is converted into a corresponding electrical signal 34 by the photodetector 32. The electrical signal 34 is integrated by the integrating device 36 and used for output such as display, printing, and transmission as an integrated value of the digital value as described above.
The electron accelerator 16 is driven by a drive pulse 24 from a pulse signal generator, and the drive waveform is generally a simple rectangular wave as shown in FIG. Therefore, the emitted X-ray 20 also has a duration T corresponding to this. Such an X-ray 20 is irradiated on the inspection object 10, and the X-ray 28 that has passed through the X-ray 20 is detected by the scintillation detector 14 and outputted. A waveform as shown by 50 is exhibited. This waveform may be slightly delayed from T due to the light emission decay time of the scintillator or the signal delay of the photodetector. Actually, the output signal 34 from the scintillation detector 14 is also mixed with a puncture signal as indicated by reference numeral 52 in FIG.

そこで、本実施例では、積算装置36は、制御信号38が有意状態にある期間T’において、積算動作をする。パルス信号発生器26のパルス信号38は信号遅れが無視できる程度のパルス幅であればパルス信号24と同じ時間構造の信号で良いが、信号遅れが無視できない場合は、その遅れを考慮した持続時間T’をとる。つまり、積算装置36は、パルス信号発生器26のパルス信号24が有意状態(ON)になっている期間、つまりX線20が発生している時間Tあるいは信号の遅れを考慮した時間T’のみ、積算動作を行なう。それ以外の期間は、積算動作を行なわない。
X線源12を小型化すると発生するX線強度が弱く、駆動信号24が1パルスだけでは、積算装置36における積算値について十分なX線透過率の精度が得られない。そこで、パルス信号発生器26を操作して、駆動パルス信号24を複数回、発生させ、その間に、シンチレーション検出器14で検出されたX線28による電気信号34を積算し、合計することによって、透過率の精度を向上させる。
Therefore, in this embodiment, the integrating device 36 performs an integrating operation during the period T ′ in which the control signal 38 is in a significant state. The pulse signal 38 of the pulse signal generator 26 may be a signal having the same time structure as the pulse signal 24 as long as the signal delay is negligible, but if the signal delay cannot be ignored, the duration considering the delay. Take T '. That is, the accumulator 36 is only in the period when the pulse signal 24 of the pulse signal generator 26 is in a significant state (ON), that is, the time T ′ in which the X-ray 20 is generated or the time T ′ in consideration of the signal delay. The integration operation is performed. During other periods, the integration operation is not performed.
When the size of the X-ray source 12 is reduced, the generated X-ray intensity is weak, and if the drive signal 24 is only one pulse, the accuracy of the X-ray transmittance sufficient for the integrated value in the integrating device 36 cannot be obtained. Therefore, by operating the pulse signal generator 26 to generate the drive pulse signal 24 a plurality of times, the electric signal 34 by the X-rays 28 detected by the scintillation detector 14 is integrated and summed up, Improve transmission accuracy.

このようにして得られた積算値からX線の透過率を求め、レファレンス試料の計測またはシミュレーションなどで求めた透過率と比較し、検査対象物10の厚さを算出することができる。あらかじめ、積算値と厚さの関係が既知である場合は、積算値から直接、厚さを求めることができる。
さらに、X線源12およびシンチレーション検出器14の検査対象物10に対する位置を変えて、同様の測定を行なえば、検査対象物10の厚さの分布や全体の形状を把握することができる。
The X-ray transmittance can be obtained from the integrated value thus obtained, and compared with the transmittance obtained by measurement or simulation of the reference sample, and the thickness of the inspection object 10 can be calculated. If the relationship between the integrated value and the thickness is known in advance, the thickness can be obtained directly from the integrated value.
Furthermore, if the same measurement is performed by changing the positions of the X-ray source 12 and the scintillation detector 14 with respect to the inspection object 10, the thickness distribution and the overall shape of the inspection object 10 can be grasped.

本発明による非破壊検査装置の実施例を示す機能ブロック図である。It is a functional block diagram which shows the Example of the nondestructive inspection apparatus by this invention. 図1に示す実施例の一部に現れる信号波形を示す図である。It is a figure which shows the signal waveform which appears in a part of Example shown in FIG. 同実施例の一部に現れる信号波形を示す、図2と同様の波形図である。FIG. 3 is a waveform diagram similar to FIG. 2, showing signal waveforms appearing in a part of the embodiment.

符号の説明Explanation of symbols

12 パルスX線源
14 シンチレーション検出器
16 小型電子加速器
18 ターゲット
26 パルス信号発生器
30 シンチレータ
32 光検出器
36 信号積算装置
12 Pulse X-ray source
14 Scintillation detector
16 Small electron accelerator
18 Target
26 Pulse signal generator
30 Scintillator
32 photodetectors
36 Signal integrator

Claims (7)

駆動信号に応動して制動放射X線を発生し、検査対象物に該X線を照射するX線源と、
該検査対象物を透過したX線を受け、該X線を対応する電気信号に変換するX線検出器と、
前記駆動信号をパルス状に発生して該駆動信号を前記X線源に供給するパルス信号発生回路と、
該パルス信号発生回路が前記駆動信号を発生している期間のみ前記電気信号を積算する積算回路とを含み、
該積算回路は、前記電気信号を前記期間において積算し、さらに前記パルス信号発生回路は、前記駆動信号をパルス状に複数の期間にわたって発生し、前記積算回路は、該複数の期間について前記電気信号を積算し、
こうして得られた積算値を前記検査対象物におけるX線の透過量の計測、および該検査対象物の特性の検査に供することを特徴とする非破壊検査装置。
An X-ray source that generates bremsstrahlung X-rays in response to a drive signal and irradiates the inspection target with the X-rays;
An X-ray detector that receives X-rays transmitted through the inspection object and converts the X-rays into corresponding electrical signals;
A pulse signal generation circuit for generating the drive signal in a pulse form and supplying the drive signal to the X-ray source;
An integration circuit that integrates the electrical signal only during a period in which the pulse signal generation circuit generates the drive signal,
The integration circuit integrates the electrical signal in the period, and the pulse signal generation circuit generates the drive signal in a pulsed manner over a plurality of periods, and the integration circuit performs the electrical signal for the plurality of periods. Is accumulated,
A non-destructive inspection apparatus characterized in that the integrated value thus obtained is used for measurement of the amount of X-ray transmission in the inspection object and inspection of characteristics of the inspection object.
請求項1に記載の装置において、前記X線源は、
前記駆動信号に応動して電子線を発生する電子加速器と、
該電子線を受けて制動放射X線を発生して検査対象物に該X線を照射する標的体とを含むことを特徴とする非破壊検査装置。
The apparatus of claim 1, wherein the X-ray source is
An electron accelerator that generates an electron beam in response to the drive signal;
A nondestructive inspection apparatus comprising: a target body that receives the electron beam and generates bremsstrahlung X-rays to irradiate the inspection target with the X-rays.
請求項1に記載の装置において、前記X線検出器は、前記検査対象物を透過したX線を受けて該X線を光に変換するシンチレータと、該光を対応する電気信号に変換する光検出器とを含むシンチレーション検出器であることを特徴とする非破壊検査装置。   The apparatus according to claim 1, wherein the X-ray detector is a scintillator that receives X-rays transmitted through the inspection object and converts the X-rays into light, and light that converts the light into a corresponding electrical signal. A non-destructive inspection apparatus characterized by being a scintillation detector including a detector. 請求項2に記載の装置において、前記電子加速器は、300 keV以上の高エネルギー電子線を発生する小型電子加速器であることを特徴とする非破壊検査装置。   3. The nondestructive inspection apparatus according to claim 2, wherein the electron accelerator is a small electron accelerator that generates a high energy electron beam of 300 keV or more. 制動放射X線をパルス状に発生させ、該X線を検査対象物に照射するX線照射工程と、
該検査対象物を透過したX線を対応する電気信号に変換する信号変換工程と、
前記X線をパルス状に発生している期間のみ前記電気信号を積算する積算工程とを含み、
これによって、前記電気信号を前記期間において積算し、さらに前記パルス発生工程を複数回、繰り返し、この繰返しに対応して前記積算工程を複数の期間にわたって行ない、この積算値から前記検査対象物におけるX線の透過量を計測し、該検査対象物の特性を検査することを特徴とする非破壊検査方法。
An X-ray irradiation step of generating a bremsstrahlung X-ray in a pulse shape and irradiating the inspection object with the X-ray;
A signal conversion step of converting X-rays transmitted through the inspection object into corresponding electrical signals;
An integration step of integrating the electrical signal only during a period in which the X-rays are generated in a pulse form,
Accordingly, the electrical signal is integrated in the period, and the pulse generation process is repeated a plurality of times, and the integration process is performed over a plurality of periods in response to the repetition, and the X value in the inspection object is calculated from the integrated value. A non-destructive inspection method characterized by measuring a transmission amount of a line and inspecting a characteristic of the inspection object.
請求項5に記載の方法において、前記X線照射工程は、
電子加速器にて電子線をパルス状に発生する電子線発生工程と
該電子線を標的体で受け、該標的体で前記制動放射X線を発生して前記検査対象物に照射する工程とを含むことを特徴とする非破壊検査方法。
The method according to claim 5, wherein the X-ray irradiation step includes:
An electron beam generating step of generating an electron beam in a pulse form by an electron accelerator; and a step of receiving the electron beam by a target body, generating the bremsstrahlung X-ray by the target body and irradiating the inspection object A non-destructive inspection method characterized by that.
請求項5に記載の方法において、前記信号変換工程は、
前記検査対象物を透過したX線をシンチレータで受けて該X線を光に変換する工程と、
該光を対応する電気信号に変換する工程とを含むことを特徴とする非破壊検査方法。
6. The method of claim 5, wherein the signal conversion step comprises
Receiving X-rays transmitted through the inspection object with a scintillator and converting the X-rays into light;
And a step of converting the light into a corresponding electrical signal.
JP2004372756A 2004-12-24 2004-12-24 Nondestructive inspection device and method Pending JP2006177841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372756A JP2006177841A (en) 2004-12-24 2004-12-24 Nondestructive inspection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372756A JP2006177841A (en) 2004-12-24 2004-12-24 Nondestructive inspection device and method

Publications (1)

Publication Number Publication Date
JP2006177841A true JP2006177841A (en) 2006-07-06

Family

ID=36732082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372756A Pending JP2006177841A (en) 2004-12-24 2004-12-24 Nondestructive inspection device and method

Country Status (1)

Country Link
JP (1) JP2006177841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026653A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp X-ray generating device
JP2009506346A (en) * 2006-10-13 2009-02-12 ヌクテック カンパニー リミテッド System for imaging inspection of moving target and avoidance method
CN110095806A (en) * 2019-04-08 2019-08-06 西北核技术研究所 A kind of scintillator response upper limit measuring system and method based on electronic beam current

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189545A (en) * 1984-10-08 1986-05-07 Bridgestone Corp Apparatus for inspecting tire tube
JPS63240835A (en) * 1987-03-28 1988-10-06 株式会社東芝 Imaging apparatus
JPH01172808U (en) * 1988-05-25 1989-12-07
JPH03183907A (en) * 1989-12-13 1991-08-09 Fujitsu Ltd Device and method for body inspection
JPH03269299A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Object inspection device
JPH03269248A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Object inspecting apparatus
JPH0915172A (en) * 1995-04-24 1997-01-17 Yokohama Rubber Co Ltd:The Method and equipment for inspecting tire
JPH09248300A (en) * 1996-03-14 1997-09-22 Mitsubishi Heavy Ind Ltd High speed x-ray ct scanner device
JPH10197456A (en) * 1997-01-08 1998-07-31 Hitachi Ltd Non-destructive inspecting instrument
JP2000243599A (en) * 1999-02-19 2000-09-08 Aet Japan:Kk High electric field small standing wave linear accelerator
JP2001165873A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd X ray inspection device
JP2003047607A (en) * 2001-08-07 2003-02-18 Matsushita Electric Ind Co Ltd Radiograph

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189545A (en) * 1984-10-08 1986-05-07 Bridgestone Corp Apparatus for inspecting tire tube
JPS63240835A (en) * 1987-03-28 1988-10-06 株式会社東芝 Imaging apparatus
JPH01172808U (en) * 1988-05-25 1989-12-07
JPH03183907A (en) * 1989-12-13 1991-08-09 Fujitsu Ltd Device and method for body inspection
JPH03269299A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Object inspection device
JPH03269248A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Object inspecting apparatus
JPH0915172A (en) * 1995-04-24 1997-01-17 Yokohama Rubber Co Ltd:The Method and equipment for inspecting tire
JPH09248300A (en) * 1996-03-14 1997-09-22 Mitsubishi Heavy Ind Ltd High speed x-ray ct scanner device
JPH10197456A (en) * 1997-01-08 1998-07-31 Hitachi Ltd Non-destructive inspecting instrument
JP2000243599A (en) * 1999-02-19 2000-09-08 Aet Japan:Kk High electric field small standing wave linear accelerator
JP2001165873A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd X ray inspection device
JP2003047607A (en) * 2001-08-07 2003-02-18 Matsushita Electric Ind Co Ltd Radiograph

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506346A (en) * 2006-10-13 2009-02-12 ヌクテック カンパニー リミテッド System for imaging inspection of moving target and avoidance method
JP4851533B2 (en) * 2006-10-13 2012-01-11 ヌクテック カンパニー リミテッド Moving target image inspection system and method for avoiding parts to be protected when moving target image inspection is performed
JP2009026653A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp X-ray generating device
CN110095806A (en) * 2019-04-08 2019-08-06 西北核技术研究所 A kind of scintillator response upper limit measuring system and method based on electronic beam current

Similar Documents

Publication Publication Date Title
Ahmed Physics and engineering of radiation detection
WO2017158743A1 (en) Dose rate measurement device and radiotherapy device
JP2018536176A (en) Nuclear waste inspection
JP6108394B2 (en) Radiation energy distribution detection method and detection apparatus therefor
EP3348049B1 (en) Radiation detector and x-ray imaging system
JP2006177841A (en) Nondestructive inspection device and method
JP5414033B2 (en) Nuclear analysis method and nuclear analyzer
US10967201B2 (en) Radiation monitor and method of monitoring radiation
US10527743B2 (en) System and method of neutron radiation detection
Hwang et al. LLNL Laser-Compton X-ray characterization
JP2000258542A (en) X-ray sensor signal processing circuit and x-ray ct system using it
US5572559A (en) Radiography apparatus using gamma rays emitted by water activated by fusion neutrons
Rusakov et al. An electron magnetic spectrometer for experiments on a terawatt femtosecond laser
Howard Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides
Shimazu et al. Thermal Neutron Flux Measurement by Counting Conversion Electrons from 134m Cs Generated in a CsI Scintillator
Silva et al. An optocoupler-based method for dosimetry in low energy X-ray beams
RU2273844C1 (en) Microdose x-ray pulse diagnostics method
JPH0755946A (en) Quantum counting device
RU2383034C1 (en) Method of detecting characteristics of deceleration or gamma-radiation of powerful pulsed sources and device for realising said method
JP2022191692A (en) Nuclear material measurement system and nuclear material measurement method
Kapusta et al. The LSO/APD array as a possible detector for in-beam PET in hadron therapy
Kashine et al. Development and Characteristics of Pulsed Radiation Source Generated by Electron Beam Irradiation using Intense Pulsed Power Generator
Ericsson et al. Upgrade of the Magnetic Proton Recoil (MPRu) spectrometer for 1.5-18 MeV neutrons for JET and the next step
Lelièvre et al. A Comprehensive Characterization of the Neutron Fields Produced by the Apollon Petawatt Laser
Song et al. Spectrometer for ultrashort X-ray based on scintillator and optical fiber: proof of principle study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406