JP2006177525A - Cylindrical dynamic damper - Google Patents

Cylindrical dynamic damper Download PDF

Info

Publication number
JP2006177525A
JP2006177525A JP2004374229A JP2004374229A JP2006177525A JP 2006177525 A JP2006177525 A JP 2006177525A JP 2004374229 A JP2004374229 A JP 2004374229A JP 2004374229 A JP2004374229 A JP 2004374229A JP 2006177525 A JP2006177525 A JP 2006177525A
Authority
JP
Japan
Prior art keywords
cylindrical
dynamic damper
intermediate cylinder
rubber elastic
elastic support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004374229A
Other languages
Japanese (ja)
Inventor
Naohito Kuwayama
直仁 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004374229A priority Critical patent/JP2006177525A/en
Publication of JP2006177525A publication Critical patent/JP2006177525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical dynamic damper having two different resonant frequencies, capable of being tuned in a state of largely separating two resonant frequencies from each other. <P>SOLUTION: A rubber elastic supporting member 3 mounted between an intermediate cylindrical member 1 and a mass member 2 for elastically supporting the mass member 2, is constituted so that constants of spring in two directions (P-direction and Q-direction) orthogonal to each other on an axis L on a plane perpendicular to the axis L of the intermediate cylindrical member 1 are different from each other, and a pair of first bore holes 31, 31 for adjusting the constants of spring are formed in a state of being axially penetrated on positions axially symmetric to each other through the intermediate cylindrical member 1 in the P-direction of the rubber elastic supporting member 3. A pair of second bore holes 32, 32 for adjusting the constants of springs, smaller than the first bore holes 31, 31 and axially penetrated, are formed positions axially symmetric to each other through the intermediate cylindrical member 1 in the Q-direction of the rubber elastic supporting member 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば自動車のドライブシャフトやプロペラシャフト等の回転軸に取付けられて、その回転軸に生じる有害振動を抑制する筒型ダイナミックダンパに関する。   The present invention relates to a cylindrical dynamic damper that is attached to a rotating shaft such as a drive shaft or a propeller shaft of an automobile and suppresses harmful vibrations generated on the rotating shaft.

自動車に装備されるドライブシャフトやプロペラシャフト等の回転軸には、その回転に伴って生じる回転アンバランスによる曲げ振動や捩じり振動等の、本来発生しないのが望ましい有害振動が発生することから、その有害振動を抑制するために、例えば特許文献1〜5に開示されているような種々のダイナミックダンパが用いられている。このダイナミックダンパは、回転軸に励起される有害振動の卓越振動数にその共振周波数(固有振動数)を合わせることにより、回転軸の振動エネルギを共振によりダイナミックダンパの振動エネルギに変換して吸収することでその機能を果すものである。   Because the drive shafts and propeller shafts equipped in automobiles generate harmful vibrations that should not occur originally, such as bending vibrations and torsional vibrations due to rotational unbalance caused by the rotation. In order to suppress the harmful vibration, various dynamic dampers as disclosed in Patent Documents 1 to 5, for example, are used. This dynamic damper matches the resonance frequency (natural frequency) with the dominant frequency of harmful vibrations excited on the rotating shaft, thereby converting the vibration energy of the rotating shaft into the vibration energy of the dynamic damper by resonance and absorbing it. It fulfills its function.

このようなダイナミックダンパとして、例えば特許文献1及び2には、回転軸の外周側に嵌挿配置される円筒状の質量部材と、該質量部材の軸方向両端部を剪断方向に弾性支持するテーパ筒状の一対のゴム弾性支持部材とを備えた筒型ダイナミックダンパが開示されている。このダイナミックダンパのゴム弾性支持部材は、その肉厚や軸方向長さを変化させることによって形成された、剪断方向におけるばね定数が特定値よりも高く設定された高ばね部分と前記特定値よりも低く設定された低ばね部分とを有し、それら高ばね部分と低ばね部分が周方向において交互に配置されている。これにより、ダイナミックダンパの共振周波数を二つの異なる共振周波数にチューニングすることによって、回転軸やダイナミックダンパの共振周波数のばらつきによって生じる振動抑制効果の低減を最小限に抑えることが可能となる。なお、ダイナミックダンパの共振周波数は、質量部材の質量とゴム弾性支持部材の剪断方向のばね定数とによって基本的に決まる。   As such a dynamic damper, for example, in Patent Documents 1 and 2, a cylindrical mass member that is fitted and disposed on the outer peripheral side of a rotating shaft, and a taper that elastically supports both axial ends of the mass member in a shearing direction. A cylindrical dynamic damper having a pair of cylindrical elastic elastic support members is disclosed. The rubber elastic support member of the dynamic damper is formed by changing the thickness and the axial length thereof, and the high spring portion in which the spring constant in the shear direction is set higher than the specific value and the specific value. The low spring portions are set low, and the high spring portions and the low spring portions are alternately arranged in the circumferential direction. As a result, by tuning the resonance frequency of the dynamic damper to two different resonance frequencies, it is possible to minimize the reduction in the vibration suppression effect caused by variations in the resonance frequency of the rotating shaft and the dynamic damper. The resonance frequency of the dynamic damper is basically determined by the mass of the mass member and the spring constant in the shear direction of the rubber elastic support member.

ところで、自動車に装備されるドライブシャフト等の回転軸には、車輪のホイールを介して伝達される振動により有害振動が励起されることが知られている。よって、それら回転軸に装着されるダイナミックダンパの共振周波数をチューニングする場合には、ホイールの共振周波数(固有振動数)も考慮しなければならない。しかし、通常使用されるホイールは、鉄製のものとアルミ製のものとに大別されるが、鉄製ホイールの共振周波数とアルミ製ホイールの共振周波数は大きく離れており、アルミ製ホイールの共振周波数は鉄製ホイールの共振周波数の2〜3倍程度となる。   By the way, it is known that harmful vibrations are excited by a vibration transmitted through the wheel of a wheel on a rotating shaft such as a drive shaft installed in an automobile. Therefore, when tuning the resonance frequency of the dynamic damper attached to these rotating shafts, the resonance frequency (natural frequency) of the wheel must also be taken into consideration. However, normally used wheels are roughly divided into iron and aluminum, but the resonance frequency of the iron wheel and the resonance frequency of the aluminum wheel are far apart, and the resonance frequency of the aluminum wheel is It becomes about 2 to 3 times the resonance frequency of the iron wheel.

そのため、上記特許文献1及び2に開示されているタイプのダイナミックダンパにおいて、鉄製ホイール用とアルミ製ホイール用の二つの共振周波数をチューニングしようとしても、ゴム弾性支持部材の高ばね部分と低ばね部分が質量部材を剪断方向で弾性支持するように構成されていることから、それらの肉厚や自由長の調整を最大限に行っても、高周波側の共振周波数が低周波側の共振周波数の1.5倍程度となるようにチューニングするのが限界となる。
特開平9−89047号公報 特開2004−92674号公報 特開平9−229137号公報 実開平6−69487号公報 特開2002−266939号公報
For this reason, in the dynamic damper of the type disclosed in Patent Documents 1 and 2, the high and low spring portions of the rubber elastic support member are used to tune the two resonance frequencies for the iron wheel and the aluminum wheel. Is configured to elastically support the mass member in the shear direction, so that even if the thickness and free length thereof are adjusted to the maximum, the resonance frequency on the high frequency side is one of the resonance frequencies on the low frequency side. Tuning to about 5 times is the limit.
JP-A-9-89047 Japanese Patent Laid-Open No. 2004-92674 JP-A-9-229137 Japanese Utility Model Publication No. 6-69487 JP 2002-266939 A

本発明は上記実状に鑑みてなされたものであり、二つの異なる共振周波数をもち、且つその二つの共振周波数をより大きく離してチューニングすることが可能な筒型ダイナミックダンパを提供することを解決すべき課題とするものである。   The present invention has been made in view of the above circumstances, and solves the problem of providing a cylindrical dynamic damper that has two different resonance frequencies and can be tuned with a greater separation between the two resonance frequencies. It should be a challenge.

上記課題を解決する本発明は、内周面に固着された薄肉ゴムを有する円筒状の中間筒部材と、該中間筒部材の径方向外側に同軸状に配置される円筒状の質量部材と、前記中間筒部材と前記質量部材との間に介在して前記質量部材を弾性支持するゴム弾性支持部材と、を備え、回転軸の外周に圧入により嵌装される筒型ダイナミックダンパであって、前記ゴム弾性支持部材は、前記中間筒部材の軸と直角の平面上において前記軸上で直交する2方向のばね定数が異なるように構成されていることを特徴としている。   The present invention for solving the above problems is a cylindrical intermediate cylinder member having a thin rubber fixed to the inner peripheral surface, a cylindrical mass member disposed coaxially on the radially outer side of the intermediate cylinder member, A rubber-type elastic support member interposed between the intermediate cylinder member and the mass member to elastically support the mass member, and a cylindrical dynamic damper fitted into the outer periphery of the rotary shaft by press-fitting, The rubber elastic support member is configured so that spring constants in two directions orthogonal to each other on the axis are different on a plane perpendicular to the axis of the intermediate cylinder member.

本発明の筒型ダイナミックダンパは、ゴム弾性支持部材が、中間筒部材の軸と直角の平面上においてその軸上で直交する2方向のばね定数が異なるように構成されていることから、その2方向のばね定数に基づいて二つの異なる共振周波数を有するようにチューニングされる。本発明におけるゴム弾性支持部材は、径方向において圧縮が作用する状態で質量部材を弾性支持するように構成されていることから、質量部材を剪断方向で弾性支持する場合よりも2方向のばね比をより大きくすることができる。そのため、一方が他方の3倍程度となるように大きく離れた二つの共振周波数を有するようにチューニングすることが可能となる。   In the cylindrical dynamic damper of the present invention, the rubber elastic support member is configured so that the spring constants in two directions orthogonal to each other on a plane perpendicular to the axis of the intermediate cylinder member are different from each other. It is tuned to have two different resonant frequencies based on the directional spring constant. Since the rubber elastic support member in the present invention is configured to elastically support the mass member in a state where compression is applied in the radial direction, the spring ratio in two directions is more than that in the case of elastically supporting the mass member in the shear direction. Can be made larger. Therefore, it is possible to tune so that one has two resonance frequencies that are far apart so that one is about three times the other.

また、本発明におけるゴム弾性支持部材は、中間筒部材と質量部材との間に介在していることから、筒型ダイナミックダンパが回転軸の外周に圧入により嵌装された際に、回転軸の径寸法のばらつき等による影響が中間筒部材により確実に遮断される。そのため、ゴム弾性支持部材に圧縮成分が加わることがなく、組付け時におけるゴム弾性支持部材の特性ばらつきが確実に排除されるため、ばらつき公差の低減が可能となる。   Further, since the rubber elastic support member in the present invention is interposed between the intermediate cylinder member and the mass member, when the cylindrical dynamic damper is fitted on the outer periphery of the rotation shaft by press fitting, the rotation shaft The influence due to the variation in diameter and the like is surely blocked by the intermediate cylinder member. Therefore, a compression component is not added to the rubber elastic support member, and variation in characteristics of the rubber elastic support member at the time of assembly is surely eliminated, so that variation tolerance can be reduced.

本発明において、ゴム弾性支持部材を、中間筒部材の軸と直角の平面上においてその軸上で直交する2方向のばね定数が異なるように構成するには、2方向のうちの少なくとも1方向における中間筒部材を挟んで軸対称となる部位に、軸方向に貫通するばね定数調整用のすぐり孔を設けることにより達成することができる。この場合、1方向においてのみ一対又は複数対のすぐり孔を設けるようにしてもよく、2方向の両方にそれぞれ一対又は複数対のすぐり孔を設けるようにしてもよい。2方向の両方に設ける場合には、一方の方向と他方の方向とですぐり孔の大きさが異なるようにされ、これにより2方向のばね定数が異なるようにされる。すぐり孔の大きさは、中間筒部材の軸を中心とした円周方向におけるすぐり形成角度あるいは断面積により変えることができる。なお、ゴム弾性支持部材の2方向のばね定数は、筒型ダイナミックダンパの二つの共振周波数をチューニングする際に、質量部材の質量との関係において適宜設定される。   In the present invention, in order to configure the rubber elastic support member so that the spring constants in the two directions orthogonal to each other on the plane perpendicular to the axis of the intermediate cylinder member are different, at least one of the two directions. This can be achieved by providing a straight hole for adjusting the spring constant penetrating in the axial direction in a portion that is axially symmetric with respect to the intermediate cylinder member. In this case, a pair or a plurality of tickling holes may be provided only in one direction, or a pair or a plurality of tickling holes may be provided in both of the two directions. In the case of providing in both directions, the size of the tick hole is made different in one direction and the other direction, whereby the spring constants in the two directions are made different. The size of the straight hole can be changed by a straight angle or a cross-sectional area in the circumferential direction around the axis of the intermediate cylinder member. The two-way spring constant of the rubber elastic support member is appropriately set in relation to the mass of the mass member when tuning the two resonance frequencies of the cylindrical dynamic damper.

本発明におけるゴム弾性支持部材は、中間筒部材と質量部材との間に介在して質量部材を弾性支持するように配設されている。中間筒部材は、例えば鉄系やアルミニウム系金属等により円筒状に形成され、その内周面に固着された薄肉ゴムを有する。薄肉ゴムは、筒型ダイナミックダンパが回転軸に圧入により装着される際に、圧入代を吸収するために設けられている。この薄肉ゴムは、中間筒部材の内周面から径方向内方に突出して軸方向に延びる複数の突条部を有するように構成することにより、圧入代を調節したり、圧入作業を容易にすることができる。   The rubber elastic support member in the present invention is disposed so as to elastically support the mass member interposed between the intermediate cylinder member and the mass member. The intermediate cylinder member is formed in a cylindrical shape using, for example, iron-based or aluminum-based metal, and has a thin rubber fixed to the inner peripheral surface thereof. The thin rubber is provided to absorb the press-fitting allowance when the cylindrical dynamic damper is attached to the rotary shaft by press-fitting. This thin rubber is configured to have a plurality of ridges that protrude radially inward from the inner peripheral surface of the intermediate cylindrical member and extend in the axial direction, thereby adjusting the press-fitting allowance and facilitating the press-fitting operation. can do.

質量部材は、ゴム弾性支持部材の2方向の圧縮方向のばね定数との関係において、所定の質量を有するように円筒状に形成される。この質量部材は、周方向のバランスを均等に保つために、周方向において質量が均一になるように形成されていることが好ましい。質量部材の形成には、比重が大きい鉄系金属を好適に採用することができる。   The mass member is formed in a cylindrical shape so as to have a predetermined mass in relation to the spring constant in the two compression directions of the rubber elastic support member. This mass member is preferably formed so that the mass is uniform in the circumferential direction in order to keep the balance in the circumferential direction uniform. For the formation of the mass member, an iron-based metal having a large specific gravity can be suitably employed.

本発明の筒型ダイナミックダンパは、中間筒部材と質量部材との間に介在して質量部材を圧縮方向で弾性支持するゴム弾性支持部材が、中間筒部材の軸と直角の平面上においてその軸上で直交する2方向のばね定数が異なるように構成されていることから、2方向のばね比をより大きく設定することができるため、二つの異なる共振周波数を有するようにして、その二つの共振周波数をより大きく離してチューニングすることができる。   In the cylindrical dynamic damper of the present invention, a rubber elastic support member interposed between the intermediate cylinder member and the mass member and elastically supporting the mass member in the compression direction has an axis on a plane perpendicular to the axis of the intermediate cylinder member. Since the spring constants in the two directions orthogonal to each other are different, the spring ratio in the two directions can be set larger, so that the two resonance frequencies have two different resonance frequencies. The frequency can be tuned farther away.

また、本発明におけるゴム弾性支持部材は、中間筒部材と質量部材との間に介在していることから、回転軸の径寸法のばらつき等による影響を中間筒部材により確実に遮断することができるため、組付け時におけるゴム弾性支持部材の特性ばらつきを確実に排除することができ、ばらつき公差を低減することができる。   In addition, since the rubber elastic support member in the present invention is interposed between the intermediate cylinder member and the mass member, the intermediate cylinder member can reliably block the influence due to the variation in the diameter of the rotating shaft. Therefore, the characteristic variation of the rubber elastic support member at the time of assembly can be surely eliminated, and the variation tolerance can be reduced.

以下、本発明の実施形態を図面に基づいて説明する。
図1は本実施形態に係る筒型ダイナミックダンパの軸方向から見た正面図であり、図2はその筒型ダイナミックダンパの軸方向に沿う断面図であって図1のII−II線矢視断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of the cylindrical dynamic damper according to the present embodiment as viewed from the axial direction, and FIG. 2 is a cross-sectional view of the cylindrical dynamic damper along the axial direction, taken along line II-II in FIG. It is sectional drawing.

本実施形態の筒型ダイナミックダンパは、図1及び図2に示すように、内周面に固着された薄肉ゴム層11を有する円筒状の中間筒部材1と、中間筒部材1の径方向外側に同軸状に配置される円筒状の質量部材2と、中間筒部材1と質量部材2との間に介在して質量部材2を弾性支持するゴム弾性支持部材3と、から構成されている。   As shown in FIGS. 1 and 2, the cylindrical dynamic damper of the present embodiment includes a cylindrical intermediate cylinder member 1 having a thin rubber layer 11 fixed to an inner peripheral surface, and a radially outer side of the intermediate cylinder member 1. The cylindrical mass member 2 is arranged coaxially therewith, and the rubber elastic support member 3 is interposed between the intermediate cylinder member 1 and the mass member 2 to elastically support the mass member 2.

中間筒部材1は、鉄系金属により、略一定の肉厚で円筒状に形成されている。この中間筒部材1は、筒型ダイナミックダンパが装着される回転軸の外径よりも所定寸法大きい略一定の内径を有する。この中間筒部材1の内周面には、薄肉の略円筒状に形成された薄肉ゴム層11が内周面の全域を覆うように加硫接着により固着されている。この薄肉ゴム層11の内周面には、径方向内方に突出して軸方向に延びる複数の突条部12が周方向に所定距離を隔てて設けられている。また、中間筒部材1の内周面以外の表面には、防錆のために、加硫成形により薄肉ゴム層11と一体に形成された被覆ゴム層13が固着されている。   The intermediate cylinder member 1 is formed in a cylindrical shape with a substantially constant thickness from an iron-based metal. The intermediate cylinder member 1 has a substantially constant inner diameter that is a predetermined dimension larger than the outer diameter of the rotating shaft on which the cylindrical dynamic damper is mounted. A thin rubber layer 11 formed in a thin and substantially cylindrical shape is fixed to the inner peripheral surface of the intermediate cylinder member 1 by vulcanization adhesion so as to cover the entire inner peripheral surface. On the inner peripheral surface of the thin rubber layer 11, a plurality of protrusions 12 projecting radially inward and extending in the axial direction are provided at a predetermined distance in the circumferential direction. Further, a coated rubber layer 13 formed integrally with the thin rubber layer 11 by vulcanization molding is fixed to a surface other than the inner peripheral surface of the intermediate cylinder member 1 for rust prevention.

質量部材2は、鉄系金属により略一定の肉厚で略一定の径を有する円筒状に形成された質量体21と、質量体21の表面を被覆する被覆ゴム層22とからなり、所定の質量を有する。この質量部材2は、中間筒部材1の外径よりも所定寸法大きい内径を有し、中間筒部材1の約1.6倍の長さに形成されている。この質量部材2は、軸方向中央が中間筒部材1の軸方向中央と略一致する位置で、中間筒部材1の径方向外側に所定距離を隔てて同軸状に配置されている。   The mass member 2 includes a mass body 21 formed of a ferrous metal in a cylindrical shape having a substantially constant thickness and a substantially constant diameter, and a covering rubber layer 22 that covers the surface of the mass body 21. Have mass. The mass member 2 has an inner diameter that is larger than the outer diameter of the intermediate cylinder member 1 by a predetermined dimension, and is formed about 1.6 times as long as the intermediate cylinder member 1. The mass member 2 is coaxially disposed at a position where the center in the axial direction substantially coincides with the center in the axial direction of the intermediate cylinder member 1 and spaced radially outside the intermediate cylinder member 1 by a predetermined distance.

ゴム弾性支持部材3は、加硫成形型内に、中間筒部材1と質量部材2を上記のように同軸状に配置して、それら両部材とともにゴム材料を加硫成形することにより、中間筒部材1と質量部材2の間に介在するように略厚肉円筒状に形成されている。なお、ゴム弾性支持部材3の加硫成形時には、薄肉ゴム層11及び被覆ゴム層13、22もゴム弾性支持部材3と一体に連結された状態で同時に形成されている。また、加硫成形時には、加硫成形型内に配置された質量部材2が位置決め用の支持ピンで支持されるため、質量部材2の表面を被覆する被覆ゴム層22には、支持ピンによる凹部22aが複数箇所に形成される。   The rubber elastic support member 3 is formed by placing the intermediate cylinder member 1 and the mass member 2 coaxially in the vulcanization molding die as described above, and vulcanizing and molding the rubber material together with the two members. It is formed in a substantially thick cylindrical shape so as to be interposed between the member 1 and the mass member 2. When the rubber elastic support member 3 is vulcanized and molded, the thin rubber layer 11 and the covering rubber layers 13 and 22 are simultaneously formed integrally with the rubber elastic support member 3. Further, at the time of vulcanization molding, since the mass member 2 arranged in the vulcanization mold is supported by the positioning support pins, the covering rubber layer 22 that covers the surface of the mass member 2 is provided with a concave portion by the support pins. 22a is formed at a plurality of locations.

ゴム弾性支持部材3の内周面側は、被覆ゴム層13と一体に連結されて中間筒部材1の外周面に加硫接着されており、ゴム弾性支持部材3の外周面側は、被覆ゴム層22と一体に連結されて質量部材2の内周面に加硫接着されている。このゴム弾性支持部材3は、中間筒部材1よりも軸方向長さが短く、その軸方向中央が中間筒部材1の軸方向中央と略一致する位置に設けられている。これにより、ゴム弾性支持部材3は、径方向において圧縮が作用する状態で質量部材2を弾性支持するように設けられている。   The inner peripheral surface side of the rubber elastic support member 3 is integrally connected to the covering rubber layer 13 and is vulcanized and bonded to the outer peripheral surface of the intermediate cylinder member 1, and the outer peripheral surface side of the rubber elastic support member 3 is the covering rubber. It is integrally connected to the layer 22 and vulcanized and bonded to the inner peripheral surface of the mass member 2. The rubber elastic support member 3 has an axial length shorter than that of the intermediate cylinder member 1 and is provided at a position where the center in the axial direction substantially coincides with the center in the axial direction of the intermediate cylinder member 1. Thereby, the rubber elastic support member 3 is provided so as to elastically support the mass member 2 in a state where compression acts in the radial direction.

このゴム弾性支持部材3は、図1に示すように、中間筒部材1の軸Lと直角の平面上において軸L上で直交する2方向(P方向とQ方向)のばね定数が異なるように構成されている。即ち、P方向における中間筒部材1を挟んで軸対称となる部位には、軸方向に貫通し断面が円弧形状の一対の第1すぐり孔31、31が設けられているとともに、Q方向における中間筒部材1を挟んで軸対称となる部位には、軸方向に貫通し断面が円弧形状の一対の第2すぐり孔32、32が設けられている。   As shown in FIG. 1, the rubber elastic support member 3 has different spring constants in two directions (P direction and Q direction) perpendicular to the axis L on a plane perpendicular to the axis L of the intermediate cylindrical member 1. It is configured. That is, a pair of first straight holes 31, 31 penetrating in the axial direction and having an arc-shaped cross section are provided in a portion that is axially symmetric with respect to the intermediate cylindrical member 1 in the P direction, and an intermediate in the Q direction. A pair of second straight holes 32, 32 penetrating in the axial direction and having a circular cross section are provided in a portion that is axially symmetric with respect to the cylindrical member 1.

第1すぐり孔31、31と第2すぐり孔32、32は、径方向の幅が同じであるが、周方向に円弧状に延びる長さは、第1すぐり孔31、31の方が第2すぐり孔32、32よりも長くされている。即ち、第1すぐり孔31、31は、軸Lを中心とした円周方向におけるすぐり形成角度αが第2すぐり孔32、32のすぐり形成角度βよりも大きくされていることによって、第1すぐり孔31、31の方が第2すぐり孔32、32よりも断面積が大きくなるようにされている。これにより、第1すぐり孔31、31が設けられているP方向のばね定数は大きく低減するように調整され、第2すぐり孔32、32が設けられているQ方向のばね定数は小さく低減するように調整されている。   The first straight holes 31, 31 and the second straight holes 32, 32 have the same radial width, but the first straight holes 31, 31 have a second length extending in an arc shape in the circumferential direction. It is longer than the straight holes 32, 32. That is, the first straight holes 31 and 31 have the first straight holes 31 and 31 that are larger in the circumferential direction around the axis L than the second straight holes 32 and 32. The holes 31 and 31 have a larger cross-sectional area than the second straight holes 32 and 32. As a result, the spring constant in the P direction in which the first straight holes 31 and 31 are provided is adjusted to be greatly reduced, and the spring constant in the Q direction in which the second straight holes 32 and 32 are provided is reduced to a small value. Have been adjusted so that.

P方向のばね定数は、P方向の共振周波数f1を例えば鉄製ホイール用の低周波側の共振周波数としてチューニングする際に、質量部材2の質量との関係において適宜設定される。また、Q方向のばね定数は、Q方向の共振周波数f2を例えばアルミ製ホイール用の高周波側の共振周波数としてチューニングする際に、質量部材2の質量との関係において適宜設定される。このようにして、ゴム弾性支持部材3のP方向とQ方向の2方向のばね定数が異なるように構成されていることにより、筒型ダイナミックダンパが大きく離れた二つの異なる共振周波数f1、f2を有するように構成されている。なお、本実施形態では、共振周波数f1と共振周波数f2の比は1:2とされている。   The spring constant in the P direction is appropriately set in relation to the mass of the mass member 2 when tuning the resonance frequency f1 in the P direction as a resonance frequency on the low frequency side for an iron wheel, for example. The spring constant in the Q direction is appropriately set in relation to the mass of the mass member 2 when tuning the resonance frequency f2 in the Q direction as a resonance frequency on the high frequency side for an aluminum wheel, for example. In this way, the elastic elastic support member 3 is configured so that the spring constants in the two directions of the P direction and the Q direction are different, so that two different resonance frequencies f1 and f2 at which the cylindrical dynamic damper is greatly separated can be obtained. It is comprised so that it may have. In the present embodiment, the ratio between the resonance frequency f1 and the resonance frequency f2 is 1: 2.

以上のように構成された本実施形態の筒型ダイナミックダンパは、図3に示すように、自動車のドライブシャフト等の回転軸5の軸端から治具等を用いて圧入されて、回転軸5の外周面の所定部位(通常、軸方向中央部の腹となる部位)に、中間筒部材1の内周面に設けられた薄肉ゴム層11の突条部12が圧着した状態に装着される。なお、特許文献1及び2に開示されたタイプのダイナミックダンパでは、ドライブシャフト等の回転軸に固定するために、固定バンドやクランプ等の特別な固定手段が必要であったが、本実施形態の筒型ダイナミックダンパは、上記のような特別な固定手段を別途設けなくても、強固にドライブシャフト等の回転軸に固定することができる。   As shown in FIG. 3, the cylindrical dynamic damper of the present embodiment configured as described above is press-fitted using a jig or the like from the shaft end of the rotating shaft 5 such as a drive shaft of an automobile and the rotating shaft 5. The protruding portion 12 of the thin rubber layer 11 provided on the inner peripheral surface of the intermediate cylinder member 1 is attached to a predetermined portion of the outer peripheral surface (usually a portion that becomes the belly of the central portion in the axial direction). . In addition, in the dynamic damper of the type disclosed in Patent Documents 1 and 2, special fixing means such as a fixing band and a clamp are necessary for fixing to a rotating shaft such as a drive shaft. The cylindrical dynamic damper can be firmly fixed to a rotating shaft such as a drive shaft without separately providing special fixing means as described above.

そして、回転軸5の回転に伴って曲げ振動や捩じり振動等の有害振動が励起されて、筒型ダイナミックダンパにチューニングされた二つの共振周波数f1、f2に近い周波数の振動が発生すると、筒型ダイナミックダンパの質量部材2がゴム弾性支持部材3の主として径方向における圧縮変形あるいは引張変形を介して共振することにより、回転軸5の振動エネルギが吸収され、回転軸5に励起された有害振動は効果的に抑制される。   When harmful vibrations such as bending vibrations and torsional vibrations are excited as the rotating shaft 5 rotates, vibrations having frequencies close to the two resonance frequencies f1 and f2 tuned to the cylindrical dynamic damper are generated. The mass member 2 of the cylindrical dynamic damper resonates mainly through the compressive deformation or tensile deformation in the radial direction of the rubber elastic support member 3, so that the vibration energy of the rotating shaft 5 is absorbed and the harmfulness excited by the rotating shaft 5 Vibration is effectively suppressed.

このとき、自動車の車輪にアルミ製ホイールが使用されている場合には、アルミ製ホイール用として、ゴム弾性支持部材3のP方向のばね定数に基づいてチューニングされた共振周波数f1に近い周波数の振動が励起されるので、アルミ製ホイールを介して回転軸5に伝達される有害振動は筒型ダイナミックダンパにより効果的に抑制される。また、自動車の車輪に鉄製ホイールが使用されている場合には、鉄製ホイール用として、ゴム弾性支持部材3のQ方向のばね定数に基づいてチューニングされた共振周波数f2に近い周波数の振動が励起されるので、鉄製ホイールを介して回転軸5に伝達される有害振動も筒型ダイナミックダンパにより効果的に抑制される。   At this time, when an aluminum wheel is used for the wheel of the automobile, vibration having a frequency close to the resonance frequency f1 tuned based on the spring constant in the P direction of the rubber elastic support member 3 is used for the aluminum wheel. Is excited, harmful vibrations transmitted to the rotary shaft 5 through the aluminum wheel are effectively suppressed by the cylindrical dynamic damper. Further, when an iron wheel is used for an automobile wheel, a vibration having a frequency close to the resonance frequency f2 tuned based on the spring constant in the Q direction of the rubber elastic support member 3 is excited for the iron wheel. Therefore, the harmful vibration transmitted to the rotating shaft 5 through the iron wheel is also effectively suppressed by the cylindrical dynamic damper.

以上のように、本実施形態の筒型ダイナミックダンパは、中間筒部材1と質量部材2との間に介在して質量部材2を圧縮方向で弾性支持するゴム弾性支持部材3が、軸Lと直角の平面上において軸L上で直交するP方向とQ方向の2方向のばね定数が異なるように構成されていることから、P方向とQ方向のばね比をより大きく設定することができる。そのため、P方向とQ方向のばね定数に基づいて二つの異なる共振周波数f1、f2を有するようにチューニングすることができ、且つその二つの共振周波数f1、f2をより大きく離してチューニングすることができる。   As described above, the cylindrical dynamic damper according to the present embodiment includes the rubber elastic support member 3 interposed between the intermediate cylindrical member 1 and the mass member 2 and elastically supporting the mass member 2 in the compression direction. Since the spring constants in the two directions of the P direction and the Q direction orthogonal to each other on the axis L on the right-angle plane are different, the spring ratio in the P direction and the Q direction can be set larger. Therefore, it can be tuned to have two different resonance frequencies f1 and f2 based on the spring constants in the P direction and the Q direction, and the two resonance frequencies f1 and f2 can be tuned further apart. .

また、ゴム弾性支持部材3は、中間筒部材1と質量部材2との間に介在していることから、回転軸5の径寸法のばらつき等による影響を中間筒部材1により確実に遮断することができるため、組付け時におけるゴム弾性支持部材3の特性ばらつきを確実に排除することができ、ばらつき公差を低減することができる。   Further, since the rubber elastic support member 3 is interposed between the intermediate cylinder member 1 and the mass member 2, the intermediate cylinder member 1 can reliably block the influence due to variations in the diameter of the rotating shaft 5. Therefore, variation in characteristics of the rubber elastic support member 3 during assembly can be surely eliminated, and variation tolerance can be reduced.

また、本実施形態では、中間筒部材1の内周面に固着された薄肉ゴム層11の内周面に、軸方向に延びる複数の突条部12が設けられているため、筒型ダイナミックダンパを回転軸5の外周に圧入して装着する際に、突条部12が容易に弾性変形して圧入代が吸収されるので、圧入作業を容易に行うことができる。なお、本実施形態における突条部12は、薄肉ゴム層11の内周面に設けられているが、薄肉ゴム層11を設けることなく、突条部12のみを中間筒部材1の内周面に直接設けるようにしてもよい。   Moreover, in this embodiment, since the some protruding part 12 extended in an axial direction is provided in the internal peripheral surface of the thin rubber layer 11 fixed to the internal peripheral surface of the intermediate cylinder member 1, a cylindrical dynamic damper is provided. Since the protrusion 12 is easily elastically deformed and the press-fitting allowance is absorbed when the press-fitting is inserted into the outer periphery of the rotary shaft 5, the press-fitting operation can be easily performed. In addition, although the protrusion part 12 in this embodiment is provided in the inner peripheral surface of the thin rubber layer 11, only the protrusion part 12 is provided in the inner peripheral surface of the intermediate cylinder member 1, without providing the thin rubber layer 11. You may make it provide directly.

なお、上記実施形態においては、P方向とQ方向の2方向のそれぞれに一対づつ合計4個の第1及び第2すぐり孔31、31、32、32が設けられているが、2方向のばね定数が異なるようにするには、2方向のうちの少なくとも1方向に一対又は複数対のすぐり孔を設けるようにすればよく、種々の組み合わせを選択することができる。   In the above embodiment, a total of four first and second straight holes 31, 31, 32, 32 are provided in each of the two directions of the P direction and the Q direction. In order to make the constants different, it is only necessary to provide a pair or a plurality of pairs of straight holes in at least one of the two directions, and various combinations can be selected.

例えば図4に示す筒型ダイナミックダンパは、軸L上で直交する2方向(P方向とQ方向)のうちのP方向においては、中間筒部材1を挟んで軸対称となる部位に、上記実施形態と同様の一対の第1すぐり孔31a、31aが設けられている。しかし、Q方向においては、中間筒部材1を挟んで軸対称となる部位に、二対の第2すぐり孔32a、32a、32a、32aが設けられている。この第2すぐり孔32a、32a、32a、32aは、軸Lを中心とした円周方向のすぐり形成角度θが第1すぐり孔31a、31aのすぐり形成角度αの1/6程度に小さくされている。これにより、第1すぐり孔31a、31aが設けられているP方向のばね定数は大きく低減するように調整され、第2すぐり孔32a、32a、32a、32aが設けられているQ方向のばね定数は小さく低減するように調整されている。   For example, the cylindrical dynamic damper shown in FIG. 4 has the above-described implementation in the P direction of the two directions (P direction and Q direction) orthogonal to each other on the axis L at a portion that is axially symmetric with respect to the intermediate cylindrical member 1. A pair of first straight holes 31a, 31a similar to the form are provided. However, in the Q direction, two pairs of second straight holes 32a, 32a, 32a, and 32a are provided in portions that are axially symmetric with respect to the intermediate cylinder member 1. The second straight holes 32a, 32a, 32a, and 32a have a curb formation angle θ in the circumferential direction centered on the axis L that is reduced to about 1/6 of the straight formation angle α of the first straight holes 31a and 31a. Yes. Accordingly, the spring constant in the P direction in which the first straight holes 31a and 31a are provided is adjusted to be greatly reduced, and the spring constant in the Q direction in which the second straight holes 32a, 32a, 32a and 32a are provided. Has been adjusted to be reduced.

また、図5に示す筒型ダイナミックダンパは、軸L上で直交する2方向(P方向とQ方向)のうちのP方向においては、中間筒部材1を挟んで軸対称となる部位に、上記実施形態と同様の一対の第1すぐり孔31b、31bが設けられているが、Q方向においては、すぐり孔が全く設けられていない。この場合には、第1すぐり孔31b、31bが設けられているP方向のばね定数は大きく低減するように調整されているのに対して、Q方向のばね定数は低減されるように調整されていないので、P方向とQ方向のばね比をより大きく設定する場合に有利となる。   Further, the cylindrical dynamic damper shown in FIG. 5 has a portion that is axially symmetric with respect to the intermediate cylindrical member 1 in the P direction of two directions (P direction and Q direction) orthogonal to each other on the axis L. A pair of first straight holes 31b, 31b similar to those of the embodiment are provided, but no straight holes are provided in the Q direction. In this case, the spring constant in the P direction in which the first straight holes 31b and 31b are provided is adjusted to be greatly reduced, whereas the spring constant in the Q direction is adjusted to be reduced. This is advantageous when the spring ratio in the P direction and the Q direction is set larger.

本発明の実施形態に係る筒型ダイナミックダンパの軸方向から見た正面図である。It is the front view seen from the axial direction of the cylindrical dynamic damper concerning the embodiment of the present invention. 本発明の実施形態に係る筒型ダイナミックダンパの軸方向に沿う断面図であって図1のII−II線矢視断面図である。It is sectional drawing which follows the axial direction of the cylindrical dynamic damper which concerns on embodiment of this invention, Comprising: It is the II-II sectional view taken on the line of FIG. 本発明の実施形態に係る筒型ダイナミックダンパをドライブシャフトに取付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the cylindrical dynamic damper which concerns on embodiment of this invention to the drive shaft. 本発明の他の実施形態に係る筒型ダイナミックダンパの軸方向から見た正面図である。It is the front view seen from the axial direction of the cylindrical dynamic damper concerning other embodiments of the present invention. 本発明の更に他の実施形態に係る筒型ダイナミックダンパの軸方向から見た正面図である。It is the front view seen from the axial direction of the cylindrical dynamic damper concerning other embodiments of the present invention.

符号の説明Explanation of symbols

1…中間筒部材 2…質量部材 3…ゴム弾性支持部材 5…回転軸
11…薄肉ゴム層 12…突条部 13…被覆ゴム層 21…質量体
22…被覆ゴム層 22a…凹部 31、31a、31b…第1すぐり孔
32、32a…第2すぐり孔
DESCRIPTION OF SYMBOLS 1 ... Intermediate | middle cylinder member 2 ... Mass member 3 ... Rubber elastic support member 5 ... Rotating shaft 11 ... Thin rubber layer 12 ... Projection part 13 ... Cover rubber layer 21 ... Mass body 22 ... Cover rubber layer 22a ... Recess 31,31a, 31b ... 1st straight hole 32, 32a ... 2nd straight hole

Claims (4)

内周面に固着された薄肉ゴムを有する円筒状の中間筒部材と、該中間筒部材の径方向外側に同軸状に配置される円筒状の質量部材と、前記中間筒部材と前記質量部材との間に介在して前記質量部材を弾性支持するゴム弾性支持部材と、を備え、回転軸の外周に圧入により嵌装される筒型ダイナミックダンパであって、
前記ゴム弾性支持部材は、前記中間筒部材の軸と直角の平面上において前記軸上で直交する2方向のばね定数が異なるように構成されていることを特徴とする筒型ダイナミックダンパ。
A cylindrical intermediate cylinder member having a thin rubber fixed to the inner peripheral surface, a cylindrical mass member arranged coaxially on the radially outer side of the intermediate cylinder member, the intermediate cylinder member and the mass member, A rubber elastic support member that elastically supports the mass member interposed therebetween, and is a cylindrical dynamic damper that is fitted into the outer periphery of the rotating shaft by press fitting,
The cylindrical elastic damper is characterized in that the rubber elastic support member is configured to have different spring constants in two directions orthogonal to each other on a plane perpendicular to the axis of the intermediate cylinder member.
前記ゴム弾性支持部材は、前記2方向のうちの少なくとも1方向における前記中間筒部材を挟んで軸対称となる部位に、軸方向に貫通するばね定数調整用のすぐり孔が設けられている請求項1に記載の筒型ダイナミックダンパ。   The rubber elastic support member is provided with a straight hole for adjusting a spring constant penetrating in an axial direction at a portion that is axially symmetric with respect to the intermediate cylindrical member in at least one of the two directions. The cylindrical dynamic damper according to 1. 前記すぐり孔は、前記2方向のそれぞれに一対づつ設けられ、前記軸を中心とした円周方向におけるすぐり形成角度が前記2方向において異なるようにされている請求項2に記載の筒型ダイナミックダンパ。   3. The cylindrical dynamic damper according to claim 2, wherein a pair of the straight holes are provided in each of the two directions, and a straight forming angle in a circumferential direction around the axis is different in the two directions. . 前記薄肉ゴムは、前記中間筒部材の内周面から径方向内方に突出して軸方向に延びる複数の突条部を有する請求項1〜3に記載の筒型ダイナミックダンパ。   4. The cylindrical dynamic damper according to claim 1, wherein the thin rubber has a plurality of protrusions protruding radially inward from an inner peripheral surface of the intermediate cylindrical member and extending in an axial direction.
JP2004374229A 2004-12-24 2004-12-24 Cylindrical dynamic damper Pending JP2006177525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374229A JP2006177525A (en) 2004-12-24 2004-12-24 Cylindrical dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374229A JP2006177525A (en) 2004-12-24 2004-12-24 Cylindrical dynamic damper

Publications (1)

Publication Number Publication Date
JP2006177525A true JP2006177525A (en) 2006-07-06

Family

ID=36731801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374229A Pending JP2006177525A (en) 2004-12-24 2004-12-24 Cylindrical dynamic damper

Country Status (1)

Country Link
JP (1) JP2006177525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082542A (en) * 2006-08-30 2008-04-10 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2008082541A (en) * 2006-08-30 2008-04-10 Shimizu Corp Excitation reaction force reducing mechanism and its setting method
WO2016036844A1 (en) * 2014-09-02 2016-03-10 Dayco Ip Holdings, Llc Apparatus for a drive system having a cartridge housing one or more elastomer members

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082542A (en) * 2006-08-30 2008-04-10 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2008082541A (en) * 2006-08-30 2008-04-10 Shimizu Corp Excitation reaction force reducing mechanism and its setting method
WO2016036844A1 (en) * 2014-09-02 2016-03-10 Dayco Ip Holdings, Llc Apparatus for a drive system having a cartridge housing one or more elastomer members
US10190654B2 (en) 2014-09-02 2019-01-29 Dayco Ip Holdings, Llc Apparatus for a drive system having a cartridge housing one or more elastomer members

Similar Documents

Publication Publication Date Title
US7635118B2 (en) Cylindrical dynamic damper
JP2011220445A (en) Dynamic damper for hollow rotating shaft
JP2006177525A (en) Cylindrical dynamic damper
WO2019131511A1 (en) Vibration isolating device
JP4496488B2 (en) Cylindrical dynamic damper
JP3543674B2 (en) Anti-vibration bush
US7410035B2 (en) Damper and method for tuning a damper utilizing a surface contact reducing resilient member
JP3888581B2 (en) Dynamic damper
JP4833908B2 (en) Anti-vibration bush
JPH0645078Y2 (en) Dynamic damper
JP3392202B2 (en) Dynamic damper
JPH08128483A (en) Cylindrical vibration control mount
JP7411432B2 (en) torsional damper
JP2001248688A (en) Dynamic damper
KR101906008B1 (en) Dual mass dynamic damper
JP2009127823A (en) Cylindrical dynamic damper
WO2022113947A1 (en) Dynamic damper
JP3893979B2 (en) Cylindrical vibration isolator
JPH11101306A (en) Dynamic damper
JP2004176923A (en) Vibration absorbing device
JP7327723B2 (en) Vibration absorbing mechanism
JP2010031964A (en) Vehicular dynamic damper
JP7183024B2 (en) anti-vibration bush
JP2008002552A (en) Dynamic damper
JP2018048666A (en) Dynamic damper