JP2006176365A - Method of machining forming mold and forming mold - Google Patents

Method of machining forming mold and forming mold Download PDF

Info

Publication number
JP2006176365A
JP2006176365A JP2004371751A JP2004371751A JP2006176365A JP 2006176365 A JP2006176365 A JP 2006176365A JP 2004371751 A JP2004371751 A JP 2004371751A JP 2004371751 A JP2004371751 A JP 2004371751A JP 2006176365 A JP2006176365 A JP 2006176365A
Authority
JP
Japan
Prior art keywords
cutting
vibration
molding
glass
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004371751A
Other languages
Japanese (ja)
Inventor
Ji-Bin Yang
楊  積彬
Masato Otsuki
真人 大槻
Eiji Shamoto
英二 社本
Norikazu Suzuki
教和 鈴木
Kazuyoshi Ota
和義 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Nidec Material Corp
Original Assignee
New Industry Research Organization NIRO
Mitsubishi Materials CMI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO, Mitsubishi Materials CMI Corp filed Critical New Industry Research Organization NIRO
Priority to JP2004371751A priority Critical patent/JP2006176365A/en
Publication of JP2006176365A publication Critical patent/JP2006176365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of machining a forming mold by a single crystal diamond cutting tool by which a mirror finished surface is formed on a base mold composed essentially of tungsten while preventing wear of the tip of the diamond tool, the forming mold having the mirror finished surface and further the forming mold which has excellent mirror surface profile and shape precision and by which even an optical glass device having a non-spherical surface, a flyeye shape or groove shape is formed. <P>SOLUTION: In the method of machining the forming mold used for the manufacture of the glass optical device by hot forming using a glass mold method, the forming surface for the glass is formed by machining a base mold (2) composed essentially of tungsten by a vibration and cutting method such as an ellipse vibration cutting method and other vibration cutting method accompanying vibration in at least one direction using the single crystal diamond cutting tool as the cutting tool (1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高精度の光学ガラス素子をガラスモールド法で熱間成形するために用いる成形金型の加工方法およびそれにより加工された成形金型に関するものである。   The present invention relates to a processing method of a molding die used for hot forming a high-precision optical glass element by a glass molding method, and a molding die processed by the processing method.

光学ガラス素子をガラスモールド法で熱間成形する部材としては、例えば特許文献1に示すSiCやCoを含有しない超硬合金が知られていた。
ところが、SiCやCoを含有しない超硬合金は、成形金型として繰り返し熱間成形を行った場合には、高温でガラスとの反応性に富むために、被成形材料であるガラスが成形金型に付着するという問題があった。
また、SiCやCoを含有しない超硬合金は、切削加工することにより鏡面を得ることができなかった。さらに、硬度が高くなるため、非球面、フライアイ形状や溝形状等の所望の形状に切削加工することが非常に困難であった。
As a member for hot forming an optical glass element by a glass mold method, for example, a cemented carbide containing no SiC or Co shown in Patent Document 1 has been known.
However, a cemented carbide containing no SiC or Co is highly reactive with glass at high temperatures when it is repeatedly hot-formed as a molding die. There was a problem of sticking.
Further, a cemented carbide containing no SiC or Co could not obtain a mirror surface by cutting. Furthermore, since the hardness is high, it has been very difficult to cut into a desired shape such as an aspherical surface, a fly-eye shape, or a groove shape.

このため本発明者らは、前者の問題を解決すべく、特許文献2に示すように、タングステンを主成分とした基金型の材料を提案している。タングステンを主成分とした基金型は、高温においてもガラスとの反応性が極めて低いため、繰り返し熱間成形を行った場合にも、被成形材料であるガラスが付着することはない。さらに、ガラスを熱間成形する成形金型の表面において、成形金型に要求される粒成長しないとの要件も満たす。   For this reason, in order to solve the former problem, the inventors of the present invention have proposed a base mold material mainly composed of tungsten as shown in Patent Document 2. Since a base mold containing tungsten as a main component has extremely low reactivity with glass even at high temperatures, glass as a molding material does not adhere even when repeated hot forming is performed. Furthermore, it satisfies the requirement that the grain growth required for the molding die does not occur on the surface of the molding die for hot forming glass.

一方、後者の問題は、工具として、硬度が最も高く、輪郭精度の高い単結晶ダイヤモンドを用いることにより解決することが可能となる。   On the other hand, the latter problem can be solved by using single crystal diamond having the highest hardness and high contour accuracy as the tool.

ところが、単結晶ダイヤモンドは、タングステンに対して著しく反応性を有する。それ故、単結晶ダイヤモンドバイドによりタングステンを主成分とした基金型を切削加工した場合には、単結晶ダイヤモンドバイドの先端の摩耗が激しく、基金型を必要充分な鏡面に加工することが困難であるという問題があった。   However, single crystal diamond is extremely reactive to tungsten. Therefore, when a base die mainly composed of tungsten is cut with a single crystal diamond binder, the tip of the single crystal diamond bid is severely worn and it is difficult to process the base die into a necessary and sufficient mirror surface. There was a problem.

特開昭52−45613号公報JP 52-45613 A 特開2003−239034号公報JP 2003-239034 A

このため本発明は、単結晶ダイヤモンドバイドによりタングステンを主成分とした基金型を切削加工する場合に、ダイヤモンド工具の先端の摩耗を防ぎ、基金型に鏡面を形成することができる加工方法及び表面に鏡面を有する成形金型を提供することを目的とする。
さらに、非球面、フライアイ形状や溝形状の光学ガラス素子であっても成形することができる鏡面性状及び形状精度が優れた成形金型を提供することを目的とする。
For this reason, the present invention provides a machining method and a surface capable of preventing the tip of a diamond tool from being worn and forming a mirror surface on the die when a die made of tungsten as a main component is cut with a single crystal diamond bid. An object is to provide a molding die having a mirror surface.
It is another object of the present invention to provide a molding die excellent in specular properties and shape accuracy that can be molded even with an aspherical, fly-eye or groove-shaped optical glass element.

請求項1に記載の発明は、ガラスモールド法で熱間成形してガラス光学素子を製造するために用いる成形金型の加工方法であって、タングステンを主成分とする基金型を、工具として単結晶ダイヤモンドバイドを用いた楕円振動切削法その他の少なくとも1方向の振動を伴う振動切削法により、前記ガラス光学素子の成形面を形成することを特徴とする成形金型の加工方法である。   The invention according to claim 1 is a processing method of a molding die used for manufacturing a glass optical element by hot molding by a glass molding method, and a base die mainly composed of tungsten is used as a tool. According to another aspect of the present invention, there is provided a molding die processing method in which a molding surface of the glass optical element is formed by an elliptical vibration cutting method using a crystal diamond binder or other vibration cutting methods involving vibration in at least one direction.

請求項2に記載の発明は、ガラスモールド法で熱間成形してガラス光学素子を製造するために用いる成形金型であって、前記ガラス光学素子の成形面が、請求項1に記載の成形金型の加工方法により形成され、かつ、タングステンを主成分とする材料からなることを特徴とする成形金型である。   The invention according to claim 2 is a molding die used for manufacturing a glass optical element by hot molding by a glass mold method, wherein the molding surface of the glass optical element is the molding according to claim 1. A molding die formed by a die processing method and made of a material mainly composed of tungsten.

請求項3に記載の発明は、ガラスモールド法で熱間成形してガラス光学素子を製造するために用いる成形金型であって、前記ガラス光学素子の成形面が、タングステンを主成分とする材料からなり、かつ、最大表面粗さが50nm以下であることを特徴とする成形金型である。   The invention according to claim 3 is a molding die used for manufacturing a glass optical element by hot molding by a glass mold method, wherein the molding surface of the glass optical element is a material mainly composed of tungsten. And a molding die having a maximum surface roughness of 50 nm or less.

請求項4に記載の発明は、請求項3に記載の成形金型において、前記ガラス光学素子の成形面が、Niを0.2〜1.5質量%、Y23を0.1〜1質量%含有し、かつ、残部をWとする材料からなる。 The invention according to claim 4 is the molding die according to claim 3, wherein the molding surface of the glass optical element is 0.2 to 1.5% by mass of Ni and 0.1 to 2 of Y 2 O 3 . It is made of a material containing 1% by mass and the balance being W.

請求項5に記載の発明は、請求項3に記載の成形金型において、前記ガラス光学素子の成形面が、Niを0.2〜1.5質量%、Y23を0.1〜1質量%、Mo、Cr、Nb、Reの少なくとも1種(以下、「M」とする。)を0.5〜4質量%含有し、かつ、残部をWとする材料からなる。 Invention of claim 5, 0.1 in the molding die according to claim 3, the forming surface of the glass optical element, the Ni 0.2 to 1.5 mass%, the Y 2 O 3 It is made of a material containing 0.5 to 4% by mass of 1% by mass, at least one of Mo, Cr, Nb, and Re (hereinafter referred to as “M”) and the balance being W.

請求項6に記載の発明は、請求項4又は5に記載の成形金型において、前記ガラス光学素子の成形面が、さらにVCを0.05〜0.5質量%含有する材料からなる。   The invention according to claim 6 is the molding die according to claim 4 or 5, wherein the molding surface of the glass optical element is made of a material further containing 0.05 to 0.5 mass% of VC.

請求項7に記載の発明は、請求項4ないし請求項6のいずれか1項に記載の成形金型において、前記ガラス光学素子の成形面が、さらに少なくともCo及びFeのいずれか一方(以下、「Co/Fe」とする。)を0.01〜0.5質量%含有する材料からなる。   The invention according to claim 7 is the molding die according to any one of claims 4 to 6, wherein the molding surface of the glass optical element is further at least one of Co and Fe (hereinafter, “Co / Fe”)).

上述の請求項1に記載の発明によれば、楕円振動切削法その他の少なくとも1方向の振動を伴う振動切削法を用いている結果、タングステンを主成分とした基金型をダイヤモンド工具により加工すると、切削熱の低減、切り込みの微少化及び切削力の低下等の効果をもたらすことができる。このため切削熱を原因とするダイヤモンド工具先端の摩耗を防止でき、所望の鏡面及び形状精度を有する光学ガラス素子製造用の成形金型を得ることができる。   According to the first aspect of the present invention, as a result of using an elliptical vibration cutting method or other vibration cutting method involving vibration in at least one direction, when a base die mainly composed of tungsten is processed with a diamond tool, Effects such as reduction of cutting heat, miniaturization of cutting, and reduction of cutting force can be brought about. For this reason, abrasion of the diamond tool tip caused by cutting heat can be prevented, and a molding die for producing an optical glass element having a desired mirror surface and shape accuracy can be obtained.

また請求項2に記載の発明によれば、前記ガラスの成形面は、タングステンを主成分とするため、被成形材料であるガラスの構成酸化物が成形金型と反応し、付着することはない。また、請求項1に記載の成形金型の加工方法により形成されること、及びタングステンによる粒成長が生じないことの相乗効果により、繰り返し高精度の光学ガラス素子を成形することができる。   According to the second aspect of the present invention, since the molding surface of the glass is mainly composed of tungsten, the constituent oxide of the glass as the molding material does not react with the molding die and adhere to it. . In addition, a high-precision optical glass element can be repeatedly formed by the synergistic effect of being formed by the molding die processing method according to claim 1 and not causing grain growth by tungsten.

請求項3に記載の発明によれば、前記ガラスの成形面は、最大表面粗さが50nm以下であるため、その金型精度の転写により、高精度のガラス素子を成形することができる。また、タングステン合金の組成の安定性により粒成長が生じないこと及び最大表面粗さが50nm以下であることの相乗効果により、繰り返し超高精度のガラス素子を成形することができる。   According to invention of Claim 3, since the maximum surface roughness of the molding surface of the glass is 50 nm or less, a highly accurate glass element can be shape | molded by the transcription | transfer of the mold precision. In addition, due to the synergistic effect that the grain growth does not occur due to the stability of the composition of the tungsten alloy and the maximum surface roughness is 50 nm or less, it is possible to repeatedly form an ultrahigh precision glass element.

請求項4に記載の発明によれば、Niを0.2〜1.5質量%、Y23を0.1〜1質量%で含有し、かつ、残部をWとするため、ガラス成形面の硬度及び強度を向上させることができる。このため、成形金型が微粒組織及び耐久性を有し、成形される光学ガラス素子の形状精度を維持することができる。 According to the invention described in claim 4, since Ni is contained in an amount of 0.2 to 1.5% by mass, Y 2 O 3 is contained in an amount of 0.1 to 1% by mass, and the balance is W, glass forming is performed. The surface hardness and strength can be improved. For this reason, the molding die has a fine grain structure and durability, and the shape accuracy of the optical glass element to be molded can be maintained.

請求項5に記載の発明によれば、Mを0.5〜4質量%含有するため、Wに固溶されて、Wより硬度が高いW−M合金相の作用により、ガラスの成形面の耐摩耗性を向上させることができる。このため、成形金型により成形される光学ガラス素子の形状精度を維持することができる。   According to the fifth aspect of the present invention, since M is contained in an amount of 0.5 to 4% by mass, the formed surface of the glass is affected by the action of the WM alloy phase that is solid-dissolved in W and has a hardness higher than W. Abrasion resistance can be improved. For this reason, the shape accuracy of the optical glass element molded by the molding die can be maintained.

請求項6に記載の発明によれば、VCを0.05〜0.5質量%含有するため、焼結時にY23と共存すると、Ni相又はNiとCo/Feとの合金(以下、「Ni−Co/Fe」とする。)相に固溶して、W相またはW−M合金相の成長粗大化を抑制し、W相又はW−M合金層の最大粒径を抑制できる。このため、成形金型により成形される超高精度の光学ガラス素子の形状精度を維持することができる。 According to the invention described in claim 6, since VC is contained in an amount of 0.05 to 0.5% by mass, when it coexists with Y 2 O 3 during sintering, an Ni phase or an alloy of Ni and Co / Fe (hereinafter referred to as “Ni”). , "Ni-Co / Fe".) It can be dissolved in the phase to suppress the growth coarsening of the W phase or WM alloy phase, and to suppress the maximum particle size of the W phase or WM alloy layer. . For this reason, the shape accuracy of the ultra-high precision optical glass element molded by the molding die can be maintained.

請求項7に記載の発明によれば、Co/Feを0.01〜0.5質量%含有するため、Niと合金を形成して、W相またはW−M合金相の境界部の強度を向上させ、ガラスの成形面の強度向上に寄与する。このため、耐用期間の長い成形金型を提供することができる。   According to the seventh aspect of the invention, since Co / Fe is contained in an amount of 0.01 to 0.5% by mass, Ni and an alloy are formed, and the strength of the boundary portion of the W phase or the WM alloy phase is increased. It contributes to improving the strength of the glass molding surface. For this reason, a molding die having a long service life can be provided.

次に、本発明に係る成形金型の一実施形態を説明する。   Next, an embodiment of a molding die according to the present invention will be described.

本実施形態における成形金型は、少なくとも被成形材料であるガラス光学素子を成形する面(以下、「ガラス成形面」とする。)が、タングステンを主成分とする下記第1組成又は第2組成の焼結材料からなる基金型を後述の楕円振動切削法その他の少なくとも1方向の振動を伴う振動切削法により加工して得られるため、第1組成又は第2組成の材料からなる。   In the molding die in the present embodiment, at least a surface on which a glass optical element that is a material to be molded is molded (hereinafter referred to as a “glass molding surface”) has the following first composition or second composition whose main component is tungsten. Since the base mold made of the sintered material is processed by an elliptical vibration cutting method described later or other vibration cutting method with vibration in at least one direction, it is made of a material having the first composition or the second composition.

第1組成
・Ni:0.2〜1.5質量%
・Y23:0.1〜1質量%
・さらに必要に応じて(a)及び/又は(b)
(a)VC:0.05〜0.5質量%
(b)Co及びFeのうち少なくとも一方(以下、「Co/Fe」とする)
:0.01〜0.5質量%
・W:残部
1st composition and Ni: 0.2-1.5 mass%
· Y 2 O 3: 0.1~1 wt%
-Further (a) and / or (b) as required
(A) VC: 0.05 to 0.5% by mass
(B) At least one of Co and Fe (hereinafter referred to as “Co / Fe”)
: 0.01 to 0.5% by mass
・ W: balance

第2組成
・さらにMo、Cr、Nb及びReのうち少なくとも1種を0.5〜4質量%
配合すること以外は、第1組成と同様の組成とする。
Second composition: Furthermore, at least one of Mo, Cr, Nb and Re is 0.5 to 4% by mass.
The composition is the same as the first composition except for blending.

ガラス成形面は、好ましくは、最大表面粗さを50nm以下とする。最大表面粗さが50nm以下であれば、転写成形されたガラス素子が超高精度のガラス素子となるためである。なお、最大表面粗さの測定方法は、JIS B0601:601に準拠する。   The glass molding surface preferably has a maximum surface roughness of 50 nm or less. This is because if the maximum surface roughness is 50 nm or less, the transfer-molded glass element becomes an ultra-high precision glass element. In addition, the measuring method of the maximum surface roughness is based on JIS B0601: 601.

上記のように、ガラス成形面は、タングステンを主成分とする材料からなるため、ガラスモールド法において高温にて熱間成形する場合に、ガラスが成形金型と反応することによる付着は起き難く、離型性に富む。
さらに、タングステンを主成分とする金型は、高い高温強度及び硬度を有するため、繰り返し成形しても、破損する恐れがない。また、タングステンが粒成長しないため、成形金型の鏡面性状及び形状精度が維持される。このため、繰り返し成形されるガラス素子の形状精度が維持され、成形金型の耐用期間が長い。
As described above, since the glass molding surface is made of a material mainly composed of tungsten, when hot molding is performed at a high temperature in the glass molding method, adhesion due to the reaction of the glass with the molding die hardly occurs. Rich in releasability.
Furthermore, since a mold mainly composed of tungsten has high high-temperature strength and hardness, there is no risk of breakage even if it is repeatedly molded. Further, since the tungsten does not grow, the mirror surface property and shape accuracy of the molding die are maintained. For this reason, the shape accuracy of the repeatedly molded glass element is maintained, and the service life of the molding die is long.

さらにまた、W相(第2組成の場合には、W−M相)が相互に焼結結合し、ガラスレンズの成形温度において高いミクロ組織及び熱安定性を有して、微細なNi相又はNi−Co/Fe相と、Y23相とがW相(第2組成の場合には、W−M相)の境界部に分散分布する。これらの合金相がW相(第2組成の場合には、W−M相)の結合に寄与することにより、基金型の強度が向上する。 Furthermore, the W phase (in the case of the second composition, the WM phase) is sintered and bonded to each other, and has a high microstructure and thermal stability at the molding temperature of the glass lens, and a fine Ni phase or The Ni—Co / Fe phase and the Y 2 O 3 phase are distributed and distributed at the boundary of the W phase (in the case of the second composition, the WM phase). These alloy phases contribute to the bonding of the W phase (in the case of the second composition, the WM phase), whereby the strength of the base mold is improved.

Niは、W相またはW−M合金相の境界部に分散分布するNi相又はNi−Co/Fe相として存在し、強度を向上させる。
前述のように、Niを0.2〜1.5質量%とするのは、Niが0.2質量%未満の場合に、焼結性及びNi相又はNi−Co/Fe相の分布割合が不十分となると、基金型の強度が低下する傾向にある。逆にNiが1.5質量%を超えた場合には、基金型の硬度が低下するだけでなく、最大粒径が5μmを超えたNi相又はNi−Co/Fe相が分布し、ガラス成形面が摩耗する原因となるためである。
Ni exists as a Ni phase or a Ni—Co / Fe phase dispersed and distributed in the boundary portion of the W phase or the WM alloy phase, and improves the strength.
As described above, Ni is 0.2 to 1.5% by mass because when Ni is less than 0.2% by mass, the sinterability and the distribution ratio of Ni phase or Ni—Co / Fe phase are When it becomes insufficient, the strength of the mold tends to decrease. Conversely, when Ni exceeds 1.5% by mass, not only the hardness of the base mold is lowered, but also the Ni phase or Ni—Co / Fe phase having a maximum particle size exceeding 5 μm is distributed, and glass molding is performed. This is because the surface becomes worn.

23は、焼結時のW相またはW−M合金相の成長粗大化を抑制し、これらの最大粒径を30μm以下とする。これにより硬度及び強度を向上させる。
前述のように、Y23を0.1〜1質量%とするのは、Y23が0.1質量%未満の場合には上記作用が充分に得られず、逆に1質量%を超えた場合にはW相またはW−M合金相の境界部のY23が凝縮し易くなり、強度低下の原因となるためである。
Y 2 O 3 suppresses the growth and coarsening of the W phase or WM alloy phase during sintering, and the maximum particle size thereof is 30 μm or less. This improves hardness and strength.
As described above, Y 2 O 3 is set to 0.1 to 1% by mass when Y 2 O 3 is less than 0.1% by mass. This is because if it exceeds 50%, Y 2 O 3 at the boundary between the W phase and the WM alloy phase is likely to condense, causing a decrease in strength.

さらに、強度が著しく低下することを防ぐために、Y23の粉末の粒度を調整して、W相又はW−M合金相の境界に分散するY23相の最大粒径が5μmを超えないようにすることが好ましい。 Furthermore, in order to prevent the strength from significantly decreasing, the particle size of the Y 2 O 3 powder is adjusted so that the maximum particle size of the Y 2 O 3 phase dispersed at the boundary of the W phase or the WM alloy phase is 5 μm. It is preferable not to exceed.

さらにまた、第2組成の場合には、Mを0.5〜4質量%配合して、Wに固溶させ、Wより硬度が高いW−M合金相の作用により、基金型の耐摩耗性を向上させる。
ここでMの配合割合を0.5〜4質量%としたのは、0.5質量%未満の場合には上述の硬度向上作用を得ることができず、逆に4質量%を超える場合にはMが遊離M相としてW−M合金相の粒界に析出し、強度低下を招くためである。
Furthermore, in the case of the second composition, 0.5 to 4% by mass of M is mixed and dissolved in W, and the wear resistance of the base mold is caused by the action of the WM alloy phase having a hardness higher than W. To improve.
Here, the mixing ratio of M is set to 0.5 to 4% by mass when the above-described hardness improving action cannot be obtained when it is less than 0.5% by mass, and conversely when it exceeds 4% by mass. This is because M precipitates as a free M phase at the grain boundary of the WM alloy phase, causing a decrease in strength.

必要に応じてVCを配合するのは、焼結時にNi相又はNi−Co/Fe相に固溶して、W相またはW−M合金相の成長粗大化を抑制し、W相の最大粒径を30μm、W−M合金層の最大粒径を15μm以下とするためである。
前述のようにVCを0.05〜0.5質量%とするのは、VCが0.05質量%未満の場合に上記作用が充分に得られず、逆に0.5質量%を超えた場合にはW相またはW−M合金相の境界部に分散分布して強度低下の原因となるためである。
If necessary, VC is compounded by solid solution in the Ni phase or Ni—Co / Fe phase at the time of sintering, suppressing the growth coarsening of the W phase or WM alloy phase, and the largest grain of the W phase. This is because the diameter is 30 μm and the maximum particle size of the WM alloy layer is 15 μm or less.
As described above, the VC is set to 0.05 to 0.5% by mass because when the VC is less than 0.05% by mass, the above-described effect cannot be obtained sufficiently, and conversely, the content exceeds 0.5% by mass. In some cases, it is distributed and distributed at the boundary between the W phase and the WM alloy phase, causing a decrease in strength.

必要に応じてCo/Feを配合するのは、Niと合金を形成して、Ni−Co/Fe相となり、W相またはW−M合金相の境界部の強度を向上させ、基金型の材料の強度向上に寄与するためである。
前述のように、Co/Feを(Co及びFeを配合する場合には、合計して)0.01〜0.5質量%とするのは、Co/Feが0.01質量%未満の場合には上記作用が充分に得られず、逆に0.5質量%を超えた場合にはガラス成形面が摩耗する原因となるためである。
Co / Fe is blended as needed to form an alloy with Ni to form a Ni—Co / Fe phase, improving the strength of the boundary portion of the W phase or the WM alloy phase, and the material of the base mold This contributes to improving the strength of the steel.
As described above, Co / Fe is 0.01 to 0.5% by mass (when Co and Fe are blended), when Co / Fe is less than 0.01% by mass. This is because the above-mentioned effect cannot be obtained sufficiently, and conversely if it exceeds 0.5% by mass, the glass molding surface is worn.

以上のように、タングステンを主成分とする基金型を後述の振動切削法により加工して、鏡面を有する成形金型としたため、繰り返し高精度のガラス素子を成形することができる。また、タングステンを主成分とする材料からなり、最大表面粗さが50nm以下である成形金型としたため、繰り返し超高精度のガラス素子を成形することができる。   As described above, since the base mold mainly composed of tungsten is processed by the vibration cutting method described later to obtain a molding mold having a mirror surface, a highly accurate glass element can be repeatedly formed. In addition, since the molding die is made of a material containing tungsten as a main component and has a maximum surface roughness of 50 nm or less, it is possible to repeatedly mold an ultra-high precision glass element.

以下、本発明に係る楕円振動切削法その他の少なくとも1方向の振動を伴う振動切削法を用いた成形金型の加工方法の一実施形態を説明する。   Hereinafter, an embodiment of a processing method of a molding die using an elliptical vibration cutting method according to the present invention and other vibration cutting methods with vibration in at least one direction will be described.

[楕円振動切削法]
先ず、楕円振動切削法を用いた成型金型の加工方法の一実施形態について、図1及び図2を用いて説明する。
楕円振動切削法では、図1に示すように、工具1を切削方向(x方向)と切り込み方向(z方向)とに単振動させ、これらを合成させてxz面内で発生する楕円振動により、上述の基金型2の切削加工を行う。
[Oval vibration cutting method]
First, an embodiment of a molding die processing method using an elliptical vibration cutting method will be described with reference to FIGS. 1 and 2.
In the elliptical vibration cutting method, as shown in FIG. 1, the tool 1 is simply vibrated in the cutting direction (x direction) and the cutting direction (z direction), and these are combined to generate elliptical vibration generated in the xz plane. The above-described foundation mold 2 is cut.

さらにy方向への振動を加え、x方向及びy方向に各々任意の振幅と位相差とを与えた振動を発生させることにより、xyz空間内において楕円振動切削を行ってもよい。
または、z軸をx軸を中心にy軸矢印側(図1中手前側)にΘだけ傾けた軸(a軸とする)とx軸とを通る平面(xa面とする)内で、同様に傾斜型の楕円振動を行ってもよい。これにより、工具1を、xz面、xa面及びxyz空間内において楕円振動させ、前述の基金型2の切削により、鏡面を有する成形金型を加工する。
Further, elliptical vibration cutting may be performed in the xyz space by applying a vibration in the y direction and generating a vibration having an arbitrary amplitude and phase difference in the x direction and the y direction, respectively.
Or, in the plane (referred to as the xa plane) passing through the axis (referred to as the a-axis) and the x-axis inclined by Θ to the y-axis arrow side (front side in FIG. 1) around the x-axis. Alternatively, inclined elliptical vibration may be performed. Thus, the tool 1 is caused to elliptically vibrate in the xz plane, the xa plane, and the xyz space, and a molding die having a mirror surface is machined by cutting the base die 2 described above.

この楕円振動切削法を、上述のタングステンを主成分とする基金型に対して単結晶ダイヤモンドバイトにより切削加工する方法に適用することにより、基金型に対する単結晶ダイヤモンドバイトの接触時間、接触面積が減少すると同時に切り込みの微少化と切削抵抗の低減を図る。これによりダイヤモンド工具刃先の摩耗や基金型の脆性破壊、塑性変形及び加工変質が防止され、工具1により成形金型として所望の鏡面性状及び形状精度を有する成形金型を形成する。   By applying this elliptical vibration cutting method to the above-described base mold mainly composed of tungsten with a single crystal diamond cutting tool, the contact time and the contact area of the single crystal diamond cutting tool with respect to the base mold are reduced. At the same time, the cutting depth is reduced and cutting resistance is reduced. As a result, wear of the diamond tool blade edge, brittle fracture of the die, plastic deformation and work alteration are prevented, and the tool 1 forms a molding die having desired mirror surface properties and shape accuracy as a molding die.

工具1は、図2に示すように、その先端部分に単結晶ダイヤモンドによる刃11を備える。この単結晶ダイヤモンドの刃11の刃先は、その開き角が5°以上であれば、楕円振動切削法において工具刃先の転写性が飛躍的に向上したため加工形状に合わせて任意の形状のものが用いられる。この開き角が5°未満となる工具を用いた場合には、主切れ刃の底面の幅がその上部の幅と同程度となり、振動方向と工具の形状とにずれが生じた際、工具刃先が楕円振動において上昇する瞬間に、そのすくい面以外の面と基金型とが干渉するため、摩耗または損耗しやすくなる。   As shown in FIG. 2, the tool 1 includes a blade 11 made of single crystal diamond at a tip portion thereof. As long as the opening angle of the single crystal diamond blade 11 is 5 ° or more, the transferability of the tool blade edge is dramatically improved in the elliptical vibration cutting method, so that the blade edge of an arbitrary shape is used according to the machining shape. It is done. If a tool with an opening angle of less than 5 ° is used, the width of the bottom surface of the main cutting edge will be approximately the same as the width of the upper part of the tool, and when there is a deviation between the vibration direction and the shape of the tool, Since the surface of the dies other than the rake face interferes with the base mold at the moment of rising in elliptical vibration, wear or wear is likely to occur.

また工具1は、すくい角が、好ましくは−30°〜20°(0°を含む)となるように、基金型2に接触させる。すくい角が−30°未満となる場合には、せん断角が極小となって切削抵抗が増加することにより鏡面性状及び形状精度が悪化しやすくなる。また、すくい角が20°を超えた場合には、工具刃先の強度が低下しチッピングを発生しやすくなる。   The tool 1 is brought into contact with the base mold 2 so that the rake angle is preferably -30 ° to 20 ° (including 0 °). When the rake angle is less than −30 °, the shear angle is minimized and the cutting resistance increases, so that the mirror surface properties and the shape accuracy are likely to deteriorate. In addition, when the rake angle exceeds 20 °, the strength of the tool edge decreases and chipping is likely to occur.

さらに工具1は、逃げ角が、好ましくは5.0°以上とし、さらに好ましくは14.0°〜16.0°となるように基金型2に接触させる。
逃げ角が5.0°未満の場合には、工具刃先の基金型への進入角度が逃げ角よりも大きくなりやすく、振動の一周期ごとに工具刃先を基金型に対して切り込む際、その逃げ面が基金型と接触して、工具刃先の摩耗及び損耗が発生しやすくなる。この工具刃先の摩耗及び損耗の発生を防止すべく、進入角度を小さくするために切削速度を遅くすると、加工能率が低下する。例えば切削方向と切り込み方向との振動振幅を6μmp-pとして20kHzの真円による楕円振動切削を行う場合、切削速度を0.67m/min以上の条件とすると、工具刃先の進入角度が5.0°以上となる。これは通常の研削やダイヤモンド旋削などと比較すると大幅に加工能率が悪い。
Further, the tool 1 is brought into contact with the base mold 2 so that the clearance angle is preferably 5.0 ° or more, and more preferably 14.0 ° to 16.0 °.
When the clearance angle is less than 5.0 °, the angle of entry of the tool edge into the base mold is likely to be larger than the clearance angle, and when the tool edge is cut into the base mold every vibration cycle, the clearance The surface comes into contact with the base mold, and the tool edge is likely to be worn and worn. If the cutting speed is slowed down to reduce the approach angle in order to prevent the tool edge from being worn and worn, the machining efficiency is lowered. For example, when performing elliptical vibration cutting with a 20 kHz perfect circle with a vibration amplitude of 6 μm pp between the cutting direction and the cutting direction, if the cutting speed is 0.67 m / min or more, the tool blade tip entry angle is 5.0 °. That's it. This is much less efficient than ordinary grinding or diamond turning.

さらに、逃げ角を14.0°以上とすると、切削速度の上限が2m/min程度まであがり、加工能率が高い。
逆に、逃げ角が16.0°を超えた場合には、工具刃先の強度が劣化しチッピングを発生しやすくなる。
Furthermore, when the clearance angle is 14.0 ° or more, the upper limit of the cutting speed is increased to about 2 m / min, and the machining efficiency is high.
On the contrary, when the clearance angle exceeds 16.0 °, the strength of the tool edge is deteriorated and chipping is likely to occur.

xz面内で楕円振動して切削加工を行う場合には、x軸及びz軸を主軸とする楕円軌道に沿って工具1の刃先が動くが、xa面内で楕円振動して切削加工を行う場合には、xz面をx軸を中心にy軸矢印側(図1中手前側)にΘだけ傾けた平面内において、任意の楕円軌道で工具1の刃先が動く。   When cutting is performed with elliptical vibration in the xz plane, the cutting edge of the tool 1 moves along an elliptical trajectory with the x-axis and z-axis as the main axes, but cutting is performed with elliptical vibration in the xa plane. In this case, the cutting edge of the tool 1 moves along an arbitrary elliptical trajectory in a plane tilted by Θ about the xz plane about the x-axis toward the y-axis arrow side (front side in FIG. 1).

xa面内で切削加工を行う場合には、振動軌跡がy軸側に傾斜することにより、z軸方向すなわち切り込み方向の振動振幅が小さくなるため楕円振動によって基金型加工面に形成される振動マークが小さくなり、xz平面内で楕円振動する切削より鏡面性状及び形状精度が得られる。   When cutting in the xa plane, the vibration trajectory is inclined to the y-axis side, so that the vibration amplitude in the z-axis direction, that is, the cutting direction is reduced. , And the mirror surface property and the shape accuracy can be obtained from the cutting that elliptically vibrates in the xz plane.

その反面、工具1の刃先が、z軸方向のみならず切削方向と水平であるx軸やy軸方向に移動するため、若干切削抵抗が減少する効果はあるものの、切りくずを引き上げる効果が小さくなるため、基金型に対する切削抵抗は大きくなる。このため、工具1の刃先の摩耗の抑制効果についても若干低下する。   On the other hand, since the cutting edge of the tool 1 moves not only in the z-axis direction but also in the x-axis and y-axis directions that are parallel to the cutting direction, the cutting resistance is slightly reduced, but the effect of raising chips is small. Therefore, the cutting resistance with respect to the mold is increased. For this reason, the effect of suppressing the wear of the cutting edge of the tool 1 is also slightly reduced.

さらに傾斜角Θを90°としてxy面内において楕円振動切削した場合には、工具1の刃先は常に被削材と接触することになり工具刃先の摩耗が大きくなるため、望ましくない。   Further, when elliptical vibration cutting is performed in the xy plane with an inclination angle Θ of 90 °, the cutting edge of the tool 1 is always in contact with the work material and wear of the cutting edge of the tool is increased, which is not desirable.

この切削方向(x方向)及びその垂直方向(a方向)のうち、垂直方向(a方向)の振幅が、鏡面性状及び形状精度に寄与する。この垂直方向(a方向)への振幅は、好ましくは0.1μm〜20μm、さらに好ましくは0.1μm〜10μmとする。0.1μm未満の場合には切削抵抗などの外乱要素の影響でその振動振幅が変動した際に、工具刃先が逆回転しやすくなる。この工具刃先の逆回転が発生すると、ダイヤモンドがへき開して大規模なチッピングを生じやすくなる。また、20μmを超えた場合には、運動軌跡の転写により形成される振動マークが大きくなり、最大粗さ50nm以下の良好な鏡面性状及び形状精度が得にくくなるためである。   Of the cutting direction (x direction) and its vertical direction (a direction), the amplitude in the vertical direction (a direction) contributes to specular properties and shape accuracy. The amplitude in the vertical direction (direction a) is preferably 0.1 μm to 20 μm, more preferably 0.1 μm to 10 μm. When the vibration amplitude is less than 0.1 μm, the tool edge easily rotates backward when the vibration amplitude fluctuates due to the influence of disturbance factors such as cutting resistance. When this reverse rotation of the tool edge occurs, the diamond is cleaved and large-scale chipping is likely to occur. In addition, when the thickness exceeds 20 μm, the vibration mark formed by the transfer of the motion trajectory becomes large, and it becomes difficult to obtain good specular properties and shape accuracy with a maximum roughness of 50 nm or less.

一方、切削方向への振幅は、好ましくは0.5μm〜100μm、さらに好ましくは1μm〜40μmとする。0.5μm未満の場合には、その振動速度を大きくとることが困難であるため、良好な楕円振動切削を行うためには切削速度を小さくしなければならなくなり、加工能率が著しく低下してしまう。また、100μmを超えた場合には、工具刃先の基金型との接触時間が大きくなり工具刃先の拡散摩耗が発生しやすくなるためである。   On the other hand, the amplitude in the cutting direction is preferably 0.5 μm to 100 μm, more preferably 1 μm to 40 μm. If it is less than 0.5 μm, it is difficult to increase the vibration speed. Therefore, in order to perform good elliptical vibration cutting, the cutting speed has to be reduced, and the processing efficiency is significantly reduced. . Moreover, when it exceeds 100 micrometers, it is because the contact time with the base metal mold | die of a tool blade edge becomes long, and it becomes easy to generate | occur | produce the diffuse wear of a tool blade edge.

さらに、切削方向(x方向)への移動速度である切削速度は、好ましくは30mm/min〜5000mm/min、さらに好ましくは50mm/min〜2000mm/minとする。
切削速度が30mm/min未満の場合には、加工の進行が遅くなり、能率が悪い。さらに工具刃先の熱変形など外乱要素の悪影響も顕著に基金型加工面の鏡面性状及び形状精度に現れやすくなる。一方、5000mm/minを超えた場合には、前述の工具刃先の進入角度が大きくなりやすく、かつ基金型加工面に形成される振動マークが大きくなり良好な鏡面性状及び形状精度が得にくくなるためである。
Furthermore, the cutting speed, which is the moving speed in the cutting direction (x direction), is preferably 30 mm / min to 5000 mm / min, and more preferably 50 mm / min to 2000 mm / min.
When the cutting speed is less than 30 mm / min, the progress of the processing is slow and the efficiency is poor. Further, the adverse effect of disturbance elements such as thermal deformation of the tool edge tends to appear remarkably in the mirror surface properties and the shape accuracy of the die mold working surface. On the other hand, if it exceeds 5000 mm / min, the above-mentioned tool blade tip entry angle tends to be large, and the vibration mark formed on the surface of the die mold becomes large, making it difficult to obtain good mirror surface properties and shape accuracy. It is.

さらにまた、速度比(振動速度/切削速度)は、好ましくは10.0以上、さらに好ましくは25〜100とする。速度比が10.0未満の場合には振動速度に対して切削速度が早いため、前述のように工具刃先の進入角度が大きくなりやすく、かつ基金型加工面に形成される振動マークが大きくなり良好な鏡面や形状精度が得にくくなる。特に速度比が25以上の場合には、基金型加工面に形成される振動マークの高さを50nm以下、すなわち最大表面粗さを50nm以下にし易い。他方、速度比が100を超えると加工の進行が遅くなるため望ましくない。   Furthermore, the speed ratio (vibration speed / cutting speed) is preferably 10.0 or more, and more preferably 25-100. When the speed ratio is less than 10.0, the cutting speed is faster than the vibration speed, so that the tool blade tip entry angle is likely to be large as described above, and the vibration mark formed on the base die machining surface is large. Good mirror surface and shape accuracy are difficult to obtain. In particular, when the speed ratio is 25 or more, the height of the vibration mark formed on the processed surface of the base mold is easily set to 50 nm or less, that is, the maximum surface roughness is easily set to 50 nm or less. On the other hand, if the speed ratio exceeds 100, the progress of the processing becomes slow, which is not desirable.

このように工具1を切削方向及び切り込み方向に作動させた後に、切削方向及び切り込み方向と反対方向へ後退させるにより、楕円振動が実現され、これにより基金型2が切削される。そして、切削油が切削により形成された隙間に入ることで、工具1の先端11を冷却する。これにより、ダイヤモンド工具1の先端の摩耗が防止される。   Thus, after operating the tool 1 in the cutting direction and the cutting direction, the tool 1 is moved back in the direction opposite to the cutting direction and the cutting direction, whereby elliptical vibration is realized, whereby the base die 2 is cut. And the front-end | tip 11 of the tool 1 is cooled because cutting oil enters into the clearance gap formed by cutting. Thereby, abrasion of the front-end | tip of the diamond tool 1 is prevented.

このような切削方向及び切り込み方向やその反対方向への動きを、一周期ごとに位相差を設けて繰り返すことにより、基金型2を切削して、鏡面を有する成形金型を成形する。
このときの位相差は、70°〜110°であることが好ましい。位相差が70°未満の場合には、前述の工具の進入角度が大きくなりやすく、位相差が110°を超える場合には、切りくずを引き上げている時間が短くなり切削抵抗が大きくなりやすい。また、位相差が90°からずれるとともに基金型加工面に形成される振動マークが大きくなりやすく鏡面性状及び形状精度を得にくくなるため望ましくない。
By repeating such a cutting direction and a movement in the cutting direction and the opposite direction with a phase difference provided every cycle, the base mold 2 is cut to form a molding mold having a mirror surface.
The phase difference at this time is preferably 70 ° to 110 °. When the phase difference is less than 70 °, the above-mentioned tool entry angle tends to increase, and when the phase difference exceeds 110 °, the chip pulling time is shortened and the cutting resistance tends to increase. Further, it is not desirable because the phase difference is deviated from 90 ° and the vibration mark formed on the surface of the die mold is likely to be large, and it becomes difficult to obtain mirror surface properties and shape accuracy.

また振動周波数は、18KHz以上であることが好ましい。振動周波数が18KHz未満の場合には、振動速度を大きくすることができないために、加工能率が劣化する。また工具と基金型との接触時間が大きくなり、工具摩耗が生じやすくなる。   The vibration frequency is preferably 18 KHz or higher. When the vibration frequency is less than 18 KHz, the vibration speed cannot be increased, so that the machining efficiency is deteriorated. In addition, the contact time between the tool and the mold increases, and tool wear tends to occur.

[少なくとも1方向の振動を伴う振動切削法]
本発明の成形金型の加工方法においては、上述の楕円振動切削方法以外であっても、工具刃先をxyz3次元空間内の任意の方向に振動させながら切削を行う少なくとも1方向の振動を伴う振動切削法であれば足りる。一般的には切削方向すなわちx軸方向に振動を行う切削方向振動切削、送り方向すなわちy軸方向に振動を行う送り方向振動切削および、切り込み方向すなわちz軸方向に振動を行う切り込み方向振動切削の3つの方法があり、これらの振動切削法を用いて工具1を任意の直線方向に振動させて加工を行う。
[Vibrating cutting method with vibration in at least one direction]
In the machining method of the molding die according to the present invention, even if the cutting method is other than the above-described elliptical vibration cutting method, the vibration accompanied by vibration in at least one direction in which cutting is performed while the tool edge is vibrated in an arbitrary direction in the xyz three-dimensional space. A cutting method is sufficient. Generally, the cutting direction vibration cutting that vibrates in the cutting direction, that is, the x-axis direction, the feed direction vibration cutting that vibrates in the feeding direction, that is, the y-axis direction, and the cutting direction vibration cutting that vibrates in the cutting direction, that is, the z-axis direction. There are three methods, and machining is performed by vibrating the tool 1 in an arbitrary linear direction using these vibration cutting methods.

このうち送り方向および切り込み方向の振動切削は、基金型加工面の表面粗さが大きくなりやすく、工具摩耗やチッピングが発生しやすいため成形金型として所望の鏡面性状及び形状精度が得にくくなるため望ましくない。   Of these, vibration cutting in the feed direction and the cutting direction tends to increase the surface roughness of the base mold processing surface, and tool wear and chipping are likely to occur, making it difficult to obtain desired mirror surface properties and shape accuracy as a molding die. Not desirable.

他方、切削方向の振動切削においては、振動方向がx軸に対して0.1°〜8°程度切り込み方向(z軸マイナス方向)に傾斜することが望ましい。0.1°未満の場合には、工具1の刃先が切削していない瞬間にも基金型に接触しやすく、たとえば完全に切削方向と振動方向が一致する場合には常時工具刃先が基金型と接触することになる。次いで、振動切削が終了し、工具を切削方向と逆の方向に移動させる際に、工具の刃先にせん断力が働き、へき開破壊を生じやすくなる。逆に、8°を超えると、基金型加工面に形成される振動マークにより鏡面性状及び形状精度が得にくくなるため望ましくない。   On the other hand, in vibration cutting in the cutting direction, it is desirable that the vibration direction be inclined in the cutting direction (z-axis minus direction) by about 0.1 ° to 8 ° with respect to the x-axis. When the angle is less than 0.1 °, the tool tip easily contacts the base mold even at the moment when the cutting edge of the tool 1 is not cut. For example, when the cutting direction and the vibration direction completely coincide, Will be in contact. Next, when the vibration cutting is completed and the tool is moved in the direction opposite to the cutting direction, a shearing force acts on the cutting edge of the tool, and cleavage cleavage is likely to occur. Conversely, if it exceeds 8 °, it is not desirable because it is difficult to obtain mirror surface properties and shape accuracy due to vibration marks formed on the surface of the die mold.

以上のように、上述の切削法を用いて、前述のタングステンを主成分とした基金型材料を単結晶ダイヤモンドバイドによって切削加工することにより、ガラス光学素子用の成形金型として所望の鏡面及び形状を形成することができる。
特に上述の数値範囲の条件うち切削速度及び速度比が鏡面性状及び形状精度に与える影響が大きい。このため、これらの条件を満たすことにより、厚みが薄く、形状精度を保ち形成し難い非球面の光学ガラス素子を成形するための金型であっても、容易に加工することができる。
As described above, the above-described cutting method is used to cut the above-described base mold material mainly composed of tungsten with a single crystal diamond binder, thereby obtaining a desired mirror surface and shape as a molding die for glass optical elements. Can be formed.
In particular, among the conditions in the above numerical range, the cutting speed and the speed ratio have a great influence on the mirror surface properties and the shape accuracy. For this reason, by satisfying these conditions, even a mold for molding an aspherical optical glass element that is thin and is difficult to form while maintaining shape accuracy can be easily processed.

このように、前述の第1組成または第2組成の焼結材料を有する基金型を、上述の切削法により切削加工することの相乗効果によって、成形金型の鏡面性状、形状精度を著しく向上させ、繰り返し超高精度の光学ガラス素子を成形することができる。   Thus, the mirror surface property and shape accuracy of the molding die are remarkably improved by the synergistic effect of cutting the base die having the sintered material of the first composition or the second composition by the above-described cutting method. It is possible to repeatedly form an ultra-high precision optical glass element.

タングステンを主成分とする基金型を以下のようにして得た。   A base mold mainly composed of tungsten was obtained as follows.

Ni源として、純度99.6%のNi(NO326H2O粉末をNi換算で0.5質量%、Co源として、純度99.6%の硝酸コバルト水和物粉末をCo換算で0.2質量%、Fe源として、純度99.6%の硝酸鉄水和物粉末をFe換算で0.1質量%配合し、混合原料粉末とした。 As Ni source, Ni (NO 3 ) 2 6H 2 O powder having a purity of 99.6% is 0.5% by mass in terms of Ni, and Co source is cobalt nitrate hydrate powder having a purity of 99.6% in terms of Co. As a Fe source, 0.2 mass%, iron nitrate hydrate powder having a purity of 99.6% was blended in an amount of 0.1 mass% in terms of Fe to obtain a mixed raw material powder.

この混合原料粉末を、アセトンや純水等の溶媒中に完全に溶解させた後、平均粒径2.5μmのW粉末に配合して、スラリーを得た。   The mixed raw material powder was completely dissolved in a solvent such as acetone or pure water, and then mixed with W powder having an average particle size of 2.5 μm to obtain a slurry.

このスラリーを混合機で混練させた後、乾燥させて、混合原料粉末で表面が被覆されたW粉末を得た。その後、水素雰囲気中において温度800°にし、1時間加熱処理することにより、表面の混合原料粉末が熱分解した。これにより、表面がNiとCo/Feとにより被覆された被覆W粉末を得た。   This slurry was kneaded with a mixer and then dried to obtain W powder whose surface was coated with the mixed raw material powder. Thereafter, the mixed raw material powder on the surface was thermally decomposed by heating at a temperature of 800 ° in a hydrogen atmosphere for 1 hour. Thus, a coated W powder whose surface was coated with Ni and Co / Fe was obtained.

この被覆W粉末に、5μm以上の粒径が存在しないように、篩い分けた平均粒径1μmのY23を0.5質量%、平均粒径1μmのVC粉末を0.2質量%配合した。 In this coating W powder, 0.5% by mass of Y 2 O 3 having an average particle diameter of 1 μm and 0.2% by mass of VC powder having an average particle diameter of 1 μm are blended so that there is no particle diameter of 5 μm or more. did.

次いで、通常の条件で湿式混合し、乾燥し、150MPaの静水圧でプレス成形して直径50mm×高さ40mmの圧粉体とした。この圧粉体を、予備焼結として、水素雰囲気中において焼結温度900°で5時間焼結させた後、本焼結として、水素雰囲気中において焼結温度1,470°で2時間焼結させ、基金型を得た。   Next, the mixture was wet-mixed under normal conditions, dried, and press-molded at a hydrostatic pressure of 150 MPa to obtain a green compact having a diameter of 50 mm and a height of 40 mm. This green compact was sintered as a preliminary sintering in a hydrogen atmosphere at a sintering temperature of 900 ° for 5 hours, and then as a main sintering in a hydrogen atmosphere at a sintering temperature of 1,470 ° for 2 hours. And a mold was obtained.

この基金型を以下の条件でヘール加工による溝又は平面切削加工を行い、工具の摩耗量、基金型加工面の表面状態及び表面粗さを調べた。なお、工具には、刃先の円形状が半径0.98mm、開き角が55°(ただしウィンドアングルは90°)、すくいが角0°、逃げ角が15°である単結晶ダイヤモンドを用い、切削の切り込みは5μm、平面切削における送りは10μm、切削油は白灯油とした。   This base mold was subjected to groove or plane cutting by hail processing under the following conditions, and the amount of tool wear, the surface state of the base mold processing surface and the surface roughness were examined. The tool used was a single crystal diamond having a circular cutting edge with a radius of 0.98 mm, an opening angle of 55 ° (however, a window angle of 90 °), a rake angle of 0 °, and a relief angle of 15 °. The incision was 5 μm, the feed in plane cutting was 10 μm, and the cutting oil was white kerosene.

[実施例]
実施例1〜10は、表1に示す条件で上述の楕円振動切削法により溝加工を行い、実施例11〜14は、表1に示す条件で上述の切削方向振動切削により溝加工を行った。また、実施例15〜18は、表1に示す条件で楕円振動切削法又は切削方向振動切削法により平面加工を行った。
振動条件としては、楕円振動切削法における傾斜角Θを40°、位相差を90°とし、また切削方向振動切削法においては振動方向がx軸に対して0.1°〜8°の範囲で切り込み方向(z軸マイナス方向)に傾くように、切り込み方向の振動成分を付与した。振動周波数は、楕円振動切削法及び切削方向振動切削法とも、20kHzとした。
なお、表1中の垂直方向とは、楕円振動切削法においてはa軸方向に対する振動振幅(μm)を意味し、切削方向振動切削法においては切り込み方向(z軸マイナス方向)に対する振動振幅(μm)を意味する。
[Example]
Examples 1-10 performed grooving by the above-mentioned elliptical vibration cutting method under the conditions shown in Table 1, and Examples 11-14 performed grooving by the above-described cutting direction vibration cutting under the conditions shown in Table 1. . In Examples 15 to 18, planar machining was performed by the elliptical vibration cutting method or the cutting direction vibration cutting method under the conditions shown in Table 1.
As vibration conditions, the inclination angle Θ in the elliptical vibration cutting method is 40 ° and the phase difference is 90 °, and in the cutting direction vibration cutting method, the vibration direction is in the range of 0.1 ° to 8 ° with respect to the x-axis. A vibration component in the cutting direction was applied so as to incline in the cutting direction (minus z-axis direction). The vibration frequency was 20 kHz for both the elliptical vibration cutting method and the cutting direction vibration cutting method.
The vertical direction in Table 1 means the vibration amplitude (μm) with respect to the a-axis direction in the elliptical vibration cutting method, and the vibration amplitude (μm) with respect to the cutting direction (z-axis minus direction) in the cutting direction vibration cutting method. ).

[比較例]
比較例1〜5は、表1に示す条件で工具刃先に振動を伴わない通常の溝加工および平面加工を行った。
[Comparative example]
In Comparative Examples 1 to 5, normal grooving and plane machining without vibrations were performed on the tool edge under the conditions shown in Table 1.

実施例1〜18及び比較例1〜5の加工後における表面を、SEM写真で撮影し、表面状態を調べて、表2に記した。なお、表2における◎は、基金型加工面に脆性破壊や塑性変形による顕著な欠陥が無い状態、○は、前述の欠陥が若干混じるものの良好な形状精度及び鏡面性状が得られている状態、×は、脆性破壊や塑性変形が激しい状態を意味する。また、倍率を3000倍として、実施例4のSEM写真を図3に、比較例2のSEM写真を図4に示した。
さらに、実施例15〜18及び比較例5の切削加工面における平均表面粗さRa及び最大表面粗さRyを、JISB0601:01に従い計測して、表2に記した。
さらにまた、実施例1〜17及び比較例1〜3において工具として用いたダイヤモンドの刃先の摩耗量(μm)を計測し、表2に記した。
The surfaces of Examples 1 to 18 and Comparative Examples 1 to 5 after processing were photographed with SEM photographs, the surface states were examined, and are shown in Table 2. In Table 2, ◎ indicates a state in which there is no remarkable defect due to brittle fracture or plastic deformation on the surface of the die mold, ○ indicates a state in which good shape accuracy and mirror surface properties are obtained although the above-mentioned defects are mixed slightly, X means a state where brittle fracture or plastic deformation is severe. The SEM photograph of Example 4 is shown in FIG. 3 and the SEM photograph of Comparative Example 2 is shown in FIG.
Furthermore, the average surface roughness Ra and the maximum surface roughness Ry on the cut surfaces of Examples 15 to 18 and Comparative Example 5 were measured according to JIS B0601: 01 and are shown in Table 2.
Furthermore, the abrasion amount (μm) of the diamond blade edge used as a tool in Examples 1 to 17 and Comparative Examples 1 to 3 was measured and shown in Table 2.

[評価]
表2からわかるように、実施例1〜14の溝加工においては、ダイヤモンドバイド刃先の摩耗が観察されず、切削加工面がSEM写真による評価から鏡面を有することがわかる。また、実施例15〜18の平面加工においては、ダイヤモンドバイド刃先の摩耗量が0.2μm以下と少なく、切削加工面の平均粗さが9nmRa以下、最大表面粗さが60nmRy以下であり、凹凸が少ないことがわかる。特に、楕円振動切削によるものは、平均表面粗さが7nmRa以下、最大表面粗さが50nmRy以下であり、SEM写真による評価から非常に優れた鏡面性状を有することがわかる。
[Evaluation]
As can be seen from Table 2, in the grooving of Examples 1 to 14, the wear of the diamond blade edge is not observed, and it can be seen that the cut surface has a mirror surface from the evaluation by the SEM photograph. Further, in the planar processing of Examples 15 to 18, the wear amount of the diamond-blade cutting edge is as small as 0.2 μm or less, the average roughness of the machined surface is 9 nmRa or less, the maximum surface roughness is 60 nmRy or less, and unevenness is present. I understand that there are few. In particular, those obtained by elliptical vibration cutting have an average surface roughness of 7 nmRa or less and a maximum surface roughness of 50 nmRy or less, and it is understood from the evaluation by SEM photographs that they have very excellent mirror surface properties.

これに対して比較例1〜4の溝加工においては、ワーク材がダイヤモンドバイト刃先に擬着しており、切削加工面がSEM写真による評価から凹凸及びむしれを有することがわかる。また、実施例5の平面加工面においては、ダイヤモンドバイド刃先の摩耗量が17μmと多く、切削加工面の表面粗さが29nmRa、最大表面粗さが192nmRyと非常に粗く、高精度のガラス素子を成形するのに適さないことがわかる。   On the other hand, in the grooving of Comparative Examples 1 to 4, it can be seen that the work material is pseudo-attached to the diamond cutting edge, and the cut surface has unevenness and peeling from the evaluation by the SEM photograph. In addition, in the flat processed surface of Example 5, the wear amount of the diamond blade edge is as large as 17 μm, the surface roughness of the processed surface is 29 nmRa, the maximum surface roughness is very rough as 192 nmRy, and a highly accurate glass element is obtained. It turns out that it is not suitable for shaping.

実施例19では、上記基金型を表3に示す条件で楕円振動法による切削加工を行い、球面レンズ成形型を作製し、基金型加工面の鏡面性状及び形状精度を調べた。その結果、得られた加工面は、平均面粗度が7.9nmRa、最大面粗度が45nmRyであった。また、PV値による形状精度が0.27μmであり、いずれも光学成形金型として充分良好な鏡面性状と形状精度であった。   In Example 19, the above-mentioned base mold was cut by the elliptical vibration method under the conditions shown in Table 3, a spherical lens mold was manufactured, and the specular properties and shape accuracy of the base mold processing surface were examined. As a result, the obtained processed surface had an average surface roughness of 7.9 nmRa and a maximum surface roughness of 45 nmRy. Further, the shape accuracy based on the PV value was 0.27 μm, and both had sufficiently good mirror surface properties and shape accuracy as an optical molding die.

本発明の一実施形態として示した切削加工方法の断面模式図である。It is a cross-sectional schematic diagram of the cutting method shown as one Embodiment of this invention. 図1における工具1の全体説明図である。It is a whole explanatory view of the tool 1 in FIG. 楕円振動切削法により溝加工を行った実施例4の基金型加工面のSEM写真である。It is a SEM photograph of the base metal mold processing surface of Example 4 which performed groove processing by the elliptical vibration cutting method. 通常の切削により溝加工を行った比較例2の基金型加工面のSEM写真である。It is a SEM photograph of the base metal mold processing surface of comparative example 2 which performed groove processing by normal cutting.

符号の説明Explanation of symbols

1・・・工具
2・・・基金型
11・・・刃
DESCRIPTION OF SYMBOLS 1 ... Tool 2 ... Base mold 11 ... Blade

Claims (7)

ガラスモールド法で熱間成形してガラス光学素子を製造するために用いる成形金型の加工方法であって、タングステンを主成分とする基金型を、工具として単結晶ダイヤモンドバイドを用いた楕円振動切削法その他の少なくとも1方向の振動を伴う振動切削法により、前記ガラス光学素子の成形面を形成することを特徴とする成形金型の加工方法。   A processing method of a molding die used for manufacturing a glass optical element by hot molding by a glass mold method, and a base die having tungsten as a main component is subjected to elliptical vibration cutting using a single crystal diamond binder as a tool. A molding die processing method, wherein the molding surface of the glass optical element is formed by a vibration cutting method involving vibration in at least one direction. ガラスモールド法で熱間成形してガラス光学素子を製造するために用いる成形金型であって、前記ガラス光学素子の成形面は、請求項1に記載の成形金型の加工方法により形成され、かつ、タングステンを主成分とする材料からなることを特徴とする成形金型。   A molding die used for producing a glass optical element by hot molding by a glass mold method, wherein the molding surface of the glass optical element is formed by the molding die processing method according to claim 1, A molding die comprising a material mainly composed of tungsten. ガラスモールド法で熱間成形してガラス光学素子を製造するために用いる成形金型であって、前記ガラス光学素子の成形面は、タングステンを主成分とする材料からなり、かつ、最大表面粗さが50nm以下であることを特徴とする成形金型。   A molding die used for manufacturing a glass optical element by hot molding by a glass mold method, wherein the molding surface of the glass optical element is made of a material mainly containing tungsten and has a maximum surface roughness. Is a molding die characterized by being 50 nm or less. 前記ガラス光学素子の成形面は、Niを0.2〜1.5質量%、Y23を0.1〜1質量%含有し、かつ、残部をWとする材料からなることを特徴とする請求項3に記載の成形金型。 The molding surface of the glass optical element is made of a material containing 0.2 to 1.5% by mass of Ni, 0.1 to 1% by mass of Y 2 O 3 , and the balance being W. The molding die according to claim 3. 前記ガラス光学素子の成形面は、Niを0.2〜1.5質量%、Y23を0.1〜1質量%、Mo、Cr、Nb、Reの少なくとも1種を0.5〜4質量%含有し、かつ、残部をWとする材料からなることを特徴とする請求項3に記載の成形金型。 As for the molding surface of the glass optical element, Ni is 0.2 to 1.5% by mass, Y 2 O 3 is 0.1 to 1% by mass, and at least one of Mo, Cr, Nb, and Re is 0.5 to 0.5%. The molding die according to claim 3, wherein the molding die is made of a material containing 4% by mass and the balance being W. 前記ガラス光学素子の成形面は、さらにVCを0.05〜0.5質量%含有する材料からなることを特徴とする請求項4又は5に記載の成形金型。   6. The molding die according to claim 4, wherein the molding surface of the glass optical element is made of a material further containing 0.05 to 0.5 mass% of VC. 前記ガラス光学素子の成形面は、さらに少なくともCo及びFeのいずれか一方を0.01〜0.5質量%含有する材料からなることを特徴とする請求項4ないし請求項6のいずれか1項に記載の成形金型。   The molding surface of the glass optical element is made of a material further containing at least one of Co and Fe in an amount of 0.01 to 0.5% by mass. Mold as described in 1.
JP2004371751A 2004-12-22 2004-12-22 Method of machining forming mold and forming mold Pending JP2006176365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371751A JP2006176365A (en) 2004-12-22 2004-12-22 Method of machining forming mold and forming mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371751A JP2006176365A (en) 2004-12-22 2004-12-22 Method of machining forming mold and forming mold

Publications (1)

Publication Number Publication Date
JP2006176365A true JP2006176365A (en) 2006-07-06

Family

ID=36730830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371751A Pending JP2006176365A (en) 2004-12-22 2004-12-22 Method of machining forming mold and forming mold

Country Status (1)

Country Link
JP (1) JP2006176365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851670B1 (en) * 2014-10-28 2016-02-03 三菱電機株式会社 Numerical controller
JPWO2021145165A1 (en) * 2020-01-17 2021-07-22

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164831A (en) * 1990-10-26 1992-06-10 Olympus Optical Co Ltd Mold for forming optical element
JPH0768401A (en) * 1993-09-01 1995-03-14 Eiji Shamoto Vibrational cutting work method and vibrational cutting work device
JP2000052101A (en) * 1998-08-12 2000-02-22 Towa Corp Elliptical vibration cutting method and its device
JP2002292501A (en) * 2001-03-30 2002-10-08 New Industry Research Organization Elliptic vibration cutting method
JP2003239034A (en) * 2002-02-15 2003-08-27 Mitsubishi Material Cmi Kk Die made of w based sintered alloy for hot press molding of high precision optical glass lens having excellent glass corrosion resistance
JP2004083968A (en) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk Tungsten based sintered alloy die suitably used for hot press molding for high precision optical glass lens
JP2005298961A (en) * 2004-03-17 2005-10-27 Mitsubishi Material Cmi Kk Tungsten based sintered material having high strength and high hardness suitable for use as mold for hot press molding of optical glass lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164831A (en) * 1990-10-26 1992-06-10 Olympus Optical Co Ltd Mold for forming optical element
JPH0768401A (en) * 1993-09-01 1995-03-14 Eiji Shamoto Vibrational cutting work method and vibrational cutting work device
JP2000052101A (en) * 1998-08-12 2000-02-22 Towa Corp Elliptical vibration cutting method and its device
JP2002292501A (en) * 2001-03-30 2002-10-08 New Industry Research Organization Elliptic vibration cutting method
JP2003239034A (en) * 2002-02-15 2003-08-27 Mitsubishi Material Cmi Kk Die made of w based sintered alloy for hot press molding of high precision optical glass lens having excellent glass corrosion resistance
JP2004083968A (en) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk Tungsten based sintered alloy die suitably used for hot press molding for high precision optical glass lens
JP2005298961A (en) * 2004-03-17 2005-10-27 Mitsubishi Material Cmi Kk Tungsten based sintered material having high strength and high hardness suitable for use as mold for hot press molding of optical glass lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851670B1 (en) * 2014-10-28 2016-02-03 三菱電機株式会社 Numerical controller
WO2016067372A1 (en) * 2014-10-28 2016-05-06 三菱電機株式会社 Numerical control device
US10625355B2 (en) 2014-10-28 2020-04-21 Mitsubishi Electric Corporation Numerical control device
JPWO2021145165A1 (en) * 2020-01-17 2021-07-22
JP7106010B2 (en) 2020-01-17 2022-07-25 株式会社アライドマテリアル single crystal diamond cutting tools

Similar Documents

Publication Publication Date Title
KR101867104B1 (en) Sintered cubic boron nitride tool
JP5426319B2 (en) Diamond cutting tool and manufacturing method thereof
TWI405639B (en) Multifunction abrasive tool with hybrid bond
Neo et al. Performance evaluation of pure CBN tools for machining of steel
KR101729804B1 (en) Cutting tool
KR101456395B1 (en) Cubic boron nitride sintered body tool
CN1310069A (en) Ball end milling cutter
JP6291995B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
EP2612719A1 (en) Cubic boron nitride sintered compact tool
JP2015227278A (en) Diamond polycrystal body, cutting tool, wear-resistant tool, grinding tool and production method of diamond polycrystal body
CN102438781A (en) Method to attach or improve the attachment of articles
KR101891189B1 (en) Polishing tool and manufacturing method thereof and manufacturing method of polished article
Li et al. Ultrathin diamond blades for dicing single crystal SiC developed using a novel bonding method
JP2006176365A (en) Method of machining forming mold and forming mold
JP2003019542A (en) Method for producing mold for casting
JP2021530372A (en) Diamond cutting tool for machining hard and brittle difficult-to-cut materials
Shimada et al. Sumidia binderless ball-nose endmills ‘NPDB’for direct milling of cemented carbide
JP5240623B2 (en) Blade-tip-exchangeable tip and method for manufacturing the same
JP2971203B2 (en) Sintered materials for tools
JP2004268202A (en) Small diameter end mill
JP2006035362A (en) Grinding wheel and grinding method using the same
KR20030051700A (en) Abrasive and wear resistant material
Zhang et al. Recent advances and future perspectives in grinding wheel structures
JP5234359B2 (en) CBN sintered compact tool for high precision cutting
JP2012254486A (en) Extra-high pressure sintered rotary cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720