JP2006176034A - Air-conditioning method of automobile and air-conditioner for automobile - Google Patents

Air-conditioning method of automobile and air-conditioner for automobile Download PDF

Info

Publication number
JP2006176034A
JP2006176034A JP2004372673A JP2004372673A JP2006176034A JP 2006176034 A JP2006176034 A JP 2006176034A JP 2004372673 A JP2004372673 A JP 2004372673A JP 2004372673 A JP2004372673 A JP 2004372673A JP 2006176034 A JP2006176034 A JP 2006176034A
Authority
JP
Japan
Prior art keywords
vehicle
pmv
window glass
air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004372673A
Other languages
Japanese (ja)
Inventor
Hisashi Takayanagi
恒 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004372673A priority Critical patent/JP2006176034A/en
Publication of JP2006176034A publication Critical patent/JP2006176034A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning method of an automobile and an air conditioner for an automobile capable of making left and right senses of comfort of an occupant same even if the occupant receives cold radiation or warm radiation passing through a window glass. <P>SOLUTION: An in-vehicle window glass side PMV<SB>A</SB>and an in-vehicle central side PMV<SB>B</SB>are determined by PMV operation based on an in-vehicle temperature T<SB>in</SB>; an air speed V<SB>A</SB>of air-conditioned air blown out from a side face blowing port and an air speed V<SB>B</SB>of air-conditioned air blown out from from a center face blowing port; an in-vehicle window glass side radiation temperature T<SB>EA</SB>and an in-vehicle central side radiation temperature T<SB>EB</SB>received by the occupant; an in-vehicle humidity; a wearing clothing amount of the occupant; and an action amount of the occupant. A ratio of the air speed of air-conditioned air blown out from the side face blowing port and the air speed of air-conditioned air blown out from the center face blowing port is adjusted by an air amount adjustment damper 43 based on the in-vehicle window glass side PMV<SB>A</SB>and the in-vehicle central side PMV<SB>B</SB>such that the in-vehicle window glass side PMV<SB>A</SB>and the in-vehicle central side PMV<SB>B</SB>are made equal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は自動車の空気調和方法及び自動車用空気調和装置に関する。   The present invention relates to an automobile air conditioning method and an automobile air conditioning apparatus.

従来、自動車用空気調和装置のオートエアコン制御では、各センサによって検出した外気温度(車外温度)、車内温度、日射量などの温熱データを温調演算式で計算することにより、吹き出しモード、各吹き出し口の風速、風量を決定して、空調制御を行っている。   Conventionally, in an auto air conditioner control of an air conditioner for an automobile, the temperature data such as the outside temperature (outside temperature), the temperature inside the vehicle, and the amount of solar radiation detected by each sensor is calculated by a temperature adjustment calculation formula, and the blowing mode and each blowing mode. Air conditioning is controlled by determining the wind speed and volume of the mouth.

例えば下記の[特許文献1]では、自動車の窓ガラスからの輻射量を推測して空気調和機の制御を行う。また、下記の[特許文献2]では、自動車の窓ガラスの温度を検出し、このガラス温度検出値と、外気温度の検出値とを比較することで目標吹き出し温度を制御している。   For example, in the following [Patent Document 1], the amount of radiation from the window glass of an automobile is estimated to control the air conditioner. In [Patent Document 2] below, the temperature of the window glass of an automobile is detected, and the target blowing temperature is controlled by comparing the detected value of the glass temperature with the detected value of the outside air temperature.

特許第2651657号公報Japanese Patent No. 2651657 特開平05−278439号公報JP 05-278439 A

しかしながら、上記[特許文献1]に記載の空気調和装置では、車内の温熱環境の不均一性による乗員の不快感を取り除けないという問題点があった。例えば外気温度が非常に低い場合、乗員の左右の窓ガラスからの冷輻射によって乗員の左右の快適感が異なるといった問題があった。窓ガラスは輻射に対して透過性を持つため、窓ガラスを暖めたり、冷やしたりしても、乗員への窓ガラスからの冷輻射や温輻射の影響は残る。   However, the air conditioner described in the above [Patent Document 1] has a problem that it is not possible to remove the discomfort of the passenger due to the non-uniformity of the thermal environment in the vehicle. For example, when the outside air temperature is very low, there is a problem that the left and right comfort feelings of the occupant differ depending on the cold radiation from the left and right window glasses of the occupant. Since the window glass is transparent to radiation, even if the window glass is warmed or cooled, the effect of cold radiation or thermal radiation from the window glass on the occupant remains.

また、上記[特許文献2]の空気調和装置でも、例えば外気温度が低い場合、外気温度より窓ガラス面の温度が低くなければ目標吹き出し温度の制御をしない。そのため、窓ガラスを透過した輻射の影響を取り除くことができない。   In the air conditioner of [Patent Document 2], for example, when the outside air temperature is low, the target blowing temperature is not controlled unless the temperature of the window glass surface is lower than the outside air temperature. For this reason, the influence of radiation transmitted through the window glass cannot be removed.

従って本発明は上記の事情に鑑み、自動車の窓ガラスを透過した冷輻射や温輻射を乗員が受けても、当該乗員の左右の快適感を同じすることができる自動車の空気調和方法及び自動車用空気調和装置を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention provides a vehicle air-conditioning method and a vehicle that can make the passenger's right and left comfort feeling the same even when the passenger receives cold radiation or warm radiation transmitted through the window glass of the vehicle. It is an object to provide an air conditioner.

上記課題を解決する第1発明の自動車の空気調和方法は、車内温度と、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速及び車内中央側のフェイス吹き出し口から吹き出す空調空気の風速と、前記窓ガラスを透過して乗員が受ける輻射などの車内窓ガラス側輻射温度及び車内中央側輻射温度と、車内湿度と、前記乗員の着衣量と、前記乗員の活動量とに基づいて、PMV演算を行うことにより、前記乗員の上半身の車内窓ガラス側部のPMV値である車内窓ガラス側PMVAと、前記乗員の上半身の車内中央側部のPMV値である車内中央側PMVBとを求め、この車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなるように、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整することを特徴とする。 The air conditioning method for an automobile of the first invention that solves the above-described problems includes the vehicle interior temperature, the wind speed of the conditioned air blown from the face outlet on the vehicle window glass side, and the wind speed of the conditioned air blown from the face outlet on the center side in the vehicle, PMV calculation based on the vehicle window glass side radiation temperature and the vehicle center side radiation temperature such as radiation that is transmitted to the passenger through the window glass, the vehicle interior humidity, the amount of clothing of the passenger, and the amount of activity of the passenger To obtain the vehicle interior window glass side PMV A which is the PMV value of the vehicle interior window glass side portion of the occupant's upper body and the vehicle interior side PMV B which is the PMV value of the vehicle interior center portion of the occupant's upper body. , based on the the vehicle window glass side PMV a and the interior central side PMV B, so that the interior window glass side PMV a and the interior central side PMV B are equal, the vehicle window glass side of the face And adjusting the velocity of the conditioned air blown from the come out mouth, the ratio of the velocity of the conditioned air blown from the interior center of the face outlet.

また、第2発明の自動車用空気調和装置は、車内温度を設定する車内温度設定手段と、空調空気の風速を設定する風速設定手段と、窓ガラスを透過して乗員が受ける車内窓ガラス側輻射温度及び車内中央側輻射温度を設定する輻射温度設定手段と、車内湿度を設定する湿度設定手段と、前記乗員の着衣量を設定する着衣量設定手段と、前記乗員の活動量を設定する活動量設定手段と、前記車内温度設定手段によって設定された前記車内温度と、前記風速設定手段によって設定された車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速及び車内中央側のフェイス吹き出し口から吹き出す空調空気の風速と、前記輻射温度設定手段によって設定された前記乗員の受ける輻射などの車内窓ガラス側輻射温度及び車内中央側輻射温度と、前記湿度設定手段によって設定された車内湿度と、前記着衣量設定手段によって設定された前記乗員の着衣量と、前記活動量設定手段によって設定された前記乗員の活動量とに基づいて、PMV演算を行うことにより、前記乗員の上半身の車内窓ガラス側部のPMV値である車内窓ガラス側PMVAと、前記乗員の上半身の車内中央側部のPMV値である車内中央側PMVBとを求めるPMV演算手段と、このPMV演算手段によって求められた車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBが等しくなるように、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整する風量調整手段とを有することを特徴とする。 The vehicle air conditioner according to the second aspect of the present invention includes vehicle interior temperature setting means for setting the vehicle interior temperature, wind speed setting means for setting the wind speed of the conditioned air, and vehicle interior window glass side radiation received by the passenger through the window glass. Radiation temperature setting means for setting temperature and in-car central side radiation temperature, humidity setting means for setting in-car humidity, clothing amount setting means for setting the occupant's clothing amount, and activity amount for setting the occupant's activity amount The vehicle temperature set by the setting means, the vehicle interior temperature setting means, the wind speed of the conditioned air blown out from the face window outlet on the vehicle window glass side set by the wind speed setting means, and the air blown out from the face outlet on the center side in the vehicle The wind speed of the conditioned air, the vehicle window glass side radiation temperature such as the radiation received by the occupant set by the radiation temperature setting means, and the vehicle center side radiation temperature, Based on the in-vehicle humidity set by the humidity setting means, the occupant's clothing amount set by the clothing amount setting means, and the occupant's activity amount set by the activity amount setting means, PMV calculation is performed. By doing this, the vehicle window glass side PMV A which is the PMV value of the vehicle interior window glass side portion of the occupant's upper body and the vehicle interior side PMV B which is the PMV value of the vehicle interior center portion of the occupant's upper body are obtained. Based on the calculation means and the interior window glass side PMV A and the interior center side PMV B obtained by the PMV operation means, the interior window glass side PMV A and the interior center side PMV B are equalized. The air volume adjustment that adjusts the ratio of the air speed of the conditioned air blown out from the side face outlet and the air speed of the conditioned air blown out from the face outlet in the center of the vehicle And having a means.

また、第3発明の自動車用空気調和装置は、第2発明の自動車用空気調和装置において、前記風量調整手段は、前記車内窓ガラス側のフェイス吹き出し口に通じる第1ダクトの入口と、前記車内中央側のフェイス吹き出し口に通じる第2ダクトの入口との間に設けられて、前記第1ダクトの入口側と前記第2ダクトの入口側とに回動可動な風量調整ダンパと、前記PMV演算手段によって求められた車内窓ガラス側PMVAと車内中央側PMVBとの差に基づいて求めた目標制御量に基づき、前記風量調整ダンパの開度を調整するダンパ開度調整手段とを有してなるものであることを特徴とする。 Moreover, the automotive air conditioner of the third invention is the automotive air conditioner of the second invention, wherein the air volume adjusting means includes an inlet of a first duct that communicates with a face outlet on the interior window glass side, and the interior of the vehicle. An air volume adjustment damper provided between the inlet of the second duct that communicates with the face outlet on the center side, and capable of rotating between the inlet side of the first duct and the inlet side of the second duct; and the PMV calculation Damper opening adjusting means for adjusting the opening of the air volume adjusting damper based on the target control amount obtained based on the difference between the vehicle interior window side PMV A and the vehicle center side PMV B obtained by the means. It is characterized by the above.

また、第4発明の自動車用空気調和装置は、第2発明の自動車用空気調和装置において、前記車内温度設定手段としての車内温度センサと、日射量センサと、外気温度センサとを有し、前記輻射温度設定手段は、前記車内温度センサによって検出した車内温度と、前記日射量センサによって検出した日射量と、前記外気温度センサによって検出した外気温度と、前記乗員の上半身の車内窓ガラス側部に対する窓ガラス面の表面積比及び前記乗員の上半身の車内中央側部に対する前記窓ガラス面の表面積比とに基づき、ステファン・ボルツマンの式により、前記車内窓ガラス側輻射温度と前記車内中央側輻射温度とを求める構成であることを特徴とする。   An automotive air conditioner according to a fourth aspect of the present invention is the automotive air conditioner according to the second aspect of the present invention, comprising an in-vehicle temperature sensor as the in-vehicle temperature setting means, a solar radiation amount sensor, and an outside air temperature sensor, A radiation temperature setting means is provided for the vehicle interior temperature detected by the vehicle interior temperature sensor, the solar radiation amount detected by the solar radiation amount sensor, the outdoor air temperature detected by the outdoor air temperature sensor, and the interior window glass side portion of the upper body of the occupant. Based on the surface area ratio of the window glass surface and the surface area ratio of the window glass surface with respect to the vehicle central side of the upper body of the occupant, the window glass side radiation temperature and the vehicle interior central side radiation temperature are calculated according to the Stefan-Boltzmann equation. It is the structure which calculates | requires.

また、第5発明の自動車用空気調和装置は、第2発明の自動車用空気調和装置において、外気温度センサを有し、前記湿度設定手段は、前記外気温度センサによって検出した外気温度に基づいて季節を判定し、この判定した季節に対応する車内湿度を決定する構成であることを特徴とする。   An automotive air conditioner according to a fifth aspect of the present invention is the automotive air conditioner according to the second aspect of the present invention, further comprising an outside air temperature sensor, wherein the humidity setting means is based on the outside air temperature detected by the outside air temperature sensor. The vehicle interior humidity corresponding to the determined season is determined.

また、第6発明の自動車用空気調和装置は、第2発明の自動車用空気調和装置において、外気温度センサを有し、前記着衣量設定手段は、前記外気温度センサによって検出した外気温度に基づいて季節を判定し、この判定した季節に対応する着衣量を決定する構成であることを特徴とする。   An automotive air conditioner according to a sixth aspect of the present invention is the automotive air conditioner according to the second aspect, further comprising an outside air temperature sensor, wherein the clothing amount setting means is based on the outside air temperature detected by the outside air temperature sensor. The present invention is characterized in that the season is determined and the amount of clothing corresponding to the determined season is determined.

また、第7発明の自動車用空気調和装置は、第3発明の自動車用空気調和装置において、前記風速設定手段は、空調空気を送給するブロアの電圧と、吹き出しモードと、ブロア電圧と吹き出しモードと予想風速との関係を表す予想風速データとに基づいて、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気と前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速を予想し、この予想風速と、前記目標制御量とに基づき、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速とを求める構成であることを特徴とする。   Moreover, the automotive air conditioner of the seventh invention is the automotive air conditioner of the third invention, wherein the wind speed setting means includes a blower voltage for supplying conditioned air, a blow mode, a blower voltage, and a blow mode. And the predicted wind speed data representing the relationship between the predicted wind speed and the wind speed of the conditioned air blown out from the face blowout port on the side of the vehicle window and the conditioned air blown out from the face blowout port on the center side in the vehicle. Based on the wind speed and the target control amount, the wind speed of the conditioned air blown out from the face blowout port on the interior window glass side and the wind speed of the conditioned air blown out from the face blowout port on the center side in the vehicle are determined. Features.

第1発明の自動車の空気調和方法によれば、車内温度と、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速及び車内中央側のフェイス吹き出し口から吹き出す空調空気の風速と、窓ガラスを透過して乗員が受ける車内窓ガラス側輻射温度及び車内中央側輻射温度と、車内湿度と、乗員の着衣量と、乗員の活動量とに基づいて、PMV演算を行うことにより、乗員の上半身の車内窓ガラス側部のPMV値である車内窓ガラス側PMVAと、乗員の上半身の車内中央側部のPMV値である車内中央側PMVBとを求め、この車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなるように、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整するため、窓ガラスを透過する冷輻射や温輻射の影響を確実に取り除いて、乗員の快適感を向上させることができる。 According to the automobile air conditioning method of the first invention, the vehicle interior temperature, the wind speed of the conditioned air blown from the face blowout port on the vehicle window glass side, the wind speed of the conditioned air blown from the face blowout port on the vehicle interior side, and the window glass By performing PMV calculation based on the vehicle window glass side radiation temperature and the vehicle interior center side radiation temperature, the vehicle interior humidity, the amount of occupant clothing, and the amount of activity of the occupant, The interior window glass side PMV A which is the PMV value of the interior window glass side and the interior center side PMV B which is the PMV value of the interior center part of the passenger's upper body are obtained, and the interior window glass side PMV A and the interior center of the interior window are obtained. based on the side PMV B, so that the interior window glass side PMV a and the interior central side PMV B are equal, and the wind speed of the conditioned air blown from the interior window glass side of the face outlet, car in To adjust the ratio of the velocity of the conditioned air blown from the side of the face outlet, remove reliably the effect of cold radiation and temperature radiation passing through the window glass, it is possible to improve the comfort of the passenger.

第2発明の自動車用空気調和装置によれば、車内温度設定手段によって設定された車内温度と、風速設定手段によって設定された車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速及び車内中央側のフェイス吹き出し口から吹き出す空調空気の風速と、輻射温度設定手段によって設定された乗員の受ける車内窓ガラス側輻射温度及び車内中央側輻射温度と、湿度設定手段によって設定された車内湿度と、着衣量設定手段によって設定された乗員の着衣量と、活動量設定手段によって設定された乗員の活動量とに基づいて、PMV演算を行うことにより、乗員の上半身の車内窓ガラス側部のPMV値である車内窓ガラス側PMVAと、乗員の上半身の車内中央側部のPMV値である車内中央側PMVBとを求めるPMV演算手段と、このPMV演算手段によって求められた車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBが等しくなるように、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整する風量調整手段とを有するため、窓ガラスを透過する冷輻射や温輻射の影響を確実に取り除いて、乗員の快適感を向上させることができる。 According to the automotive air conditioner of the second invention, the vehicle interior temperature set by the vehicle interior temperature setting means, the wind speed of the conditioned air blown out from the face outlet on the vehicle interior window glass set by the wind speed setting means, and the vehicle interior center side The air speed of the air-conditioning air blown out from the face outlet, the vehicle window glass side radiation temperature and vehicle interior side radiation temperature set by the radiation temperature setting means, the vehicle interior humidity set by the humidity setting means, and the amount of clothing Based on the occupant's clothing amount set by the setting means and the occupant's activity amount set by the activity amount setting means, it is the PMV value of the passenger's upper body window glass side by performing PMV calculation PMV calculation means for determining the interior window glass side PMV A and the interior center side PMV B which is the PMV value of the interior center part of the passenger's upper body The PMV based on the vehicle window glass side PMV A obtained by the calculation means and the interior central side PMV B, so that the interior window glass side PMV A and the interior central side PMV B equal, the interior window glass side face blowout Airflow adjustment means that adjusts the ratio between the air speed of the conditioned air blown out from the mouth and the air speed of the conditioned air blown out from the face outlet on the center side of the car, ensuring the influence of cold radiation and temperature radiation that penetrates the window glass It is possible to improve the passenger comfort.

第3発明の自動車用空気調和装置によれば、風量調整手段は、車内窓ガラス側のフェイス吹き出し口に通じる第1ダクトの入口と、車内中央側のフェイス吹き出し口に通じる第2ダクトの入口との間に設けられて、第1ダクトの入口側と前記第2ダクトの入口側とに回動可動な風量調整ダンパと、PMV演算手段によって求められた車内窓ガラス側PMVAと車内中央側PMVBとの差に基づいて求めた目標制御量に基づき、風量調整ダンパの開度を調整するダンパ開度調整手段とを有してなるものであるため、簡易な構成で確実に車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整することができる。 According to the automotive air conditioner of the third aspect of the invention, the air volume adjusting means includes an inlet of the first duct that communicates with the face outlet on the vehicle window glass side, and an inlet of the second duct that communicates with the face outlet on the center side of the vehicle. Between the inlet side of the first duct and the inlet side of the second duct, and an air volume adjusting damper which is movable between the inlet side of the first duct and the interior window glass side PMV A and the interior center side PMV obtained by the PMV calculating means. Since it has a damper opening adjustment means for adjusting the opening of the air volume adjustment damper based on the target control amount obtained based on the difference from B , the vehicle interior window glass side can be surely secured with a simple configuration. The ratio of the wind speed of the conditioned air blown out from the face blowout port and the wind speed of the conditioned air blown out from the face blowout port on the center side in the vehicle can be adjusted.

第4発明の自動車用空気調和装置によれば、輻射温度設定手段は、車内温度センサによって検出した車内温度と、日射量センサによって検出した日射量と、外気温度センサによって検出した外気温度と、乗員の上半身の車内窓ガラス側部に対する窓ガラス面の表面積比及び乗員の上半身の車内中央側部に対する窓ガラス面の表面積比とに基づき、ステファン・ボルツマンの式により、車内窓ガラス側輻射温度と車内中央側輻射温度とを求める構成であるため、簡易な構成で確実に輻射温度を求めることができる。   According to the automotive air conditioner of the fourth aspect of the invention, the radiation temperature setting means includes the vehicle interior temperature detected by the vehicle interior temperature sensor, the solar radiation amount detected by the solar radiation amount sensor, the outdoor air temperature detected by the outdoor air temperature sensor, and the occupant Based on the ratio of the surface area of the window glass surface to the side of the vehicle interior window glass of the upper body and the surface area ratio of the window glass surface to the center side of the vehicle interior of the passenger's upper body, the Stefan-Boltzmann equation Since it is the structure which calculates | requires the center side radiation temperature, a radiation temperature can be calculated | required reliably with a simple structure.

第5発明の自動車用空気調和装置によれば、湿度設定手段は、外気温度センサによって検出した外気温度に基づいて季節を判定し、この判定した季節に対応する車内湿度を決定する構成であるため、簡易な構成で確実に車内湿度を決定することができる。   According to the automotive air conditioner of the fifth aspect of the invention, the humidity setting means is configured to determine the season based on the outside temperature detected by the outside temperature sensor and determine the inside humidity corresponding to the determined season. The humidity inside the vehicle can be reliably determined with a simple configuration.

第6発明の自動車用空気調和装置によれば、着衣量設定手段は、外気温度センサによって検出した外気温度に基づいて季節を判定し、この判定した季節に対応する着衣量を決定する構成であるため、簡易な構成で確実に着衣量を決定することができる。   According to the automotive air conditioner of the sixth aspect of the invention, the clothing amount setting means determines the season based on the outside air temperature detected by the outside air temperature sensor, and determines the clothing amount corresponding to the determined season. Therefore, the amount of clothes can be determined reliably with a simple configuration.

第7発明の自動車用空気調和装置によれば、風速設定手段は、空調空気を送給するブロアの電圧と、吹き出しモードと、ブロア電圧と吹き出しモードと予想風速との関係を表す予想風速データとに基づいて、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気と車内中央側のフェイス吹き出し口から吹き出す空調空気の風速を予想し、この予想風速と、目標制御量とに基づき、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、車内中央側のフェイス吹き出し口から吹き出す空調空気の風速とを求める構成であるため、簡易な構成で確実に風速を求めることができる。   According to the automotive air conditioner of the seventh aspect of the invention, the wind speed setting means includes the blower voltage for supplying the conditioned air, the blowout mode, and the expected wind speed data representing the relationship between the blower voltage, the blowout mode, and the expected wind speed. Based on this, the wind speed of the conditioned air blown out from the face blowout port on the interior window glass side and the conditioned air blown out from the face blowout port on the center side inside the vehicle is predicted, and based on the predicted wind speed and the target control amount, Since the air velocity of the conditioned air blown out from the face blowout port and the air velocity of the conditioned air blown out from the face blowout port on the center side in the vehicle are obtained, the wind velocity can be reliably obtained with a simple configuration.

以下、本発明の実施の形態例を図面に基づき詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は本発明の実施の形態例に係る自動車用空気調和装置が適用された自動車の車室内の様子を示す平面図、図2は前記自動車用空気調和装置の構成図、図3は前記自動車用空気調和装置のコントローラの処理手順を示すフローチャートである。また、図4(a)は乗員の上半身の車内窓ガラス側部に対する自動車の窓ガラス面の表面積比を示す説明図、図4(b)は乗員の上半身の車内中央側部に対する前記窓ガラス面の表面積比を示す説明図、図5は前記自動車用空気調和装置におけるブロア電圧と吹き出しモードと予想風速との関係を表すデータをグラフで示した図、図6は前記自動車用空気調和装置における風量調整ダンパの開度に応じた車内窓ガラス側の吹き出し風量と車内中央側の吹き出し風量との関係を示すグラフである。   FIG. 1 is a plan view showing the interior of an automobile to which an automobile air conditioner according to an embodiment of the present invention is applied, FIG. 2 is a configuration diagram of the automobile air conditioner, and FIG. 3 is the automobile. It is a flowchart which shows the process sequence of the controller of the air conditioner for a vehicle. FIG. 4A is an explanatory view showing the surface area ratio of the window glass surface of the automobile with respect to the vehicle interior window glass side portion of the passenger's upper body, and FIG. 4B is the window glass surface with respect to the vehicle interior center side portion of the passenger's upper body. FIG. 5 is a graph showing data representing the relationship between the blower voltage, the blowing mode and the expected wind speed in the automotive air conditioner, and FIG. 6 is the air volume in the automotive air conditioner. It is a graph which shows the relationship between the blowing air volume by the side of a vehicle window glass according to the opening degree of an adjustment damper, and the blowing air volume by the vehicle center side.

図1に示すように、自動車1は車室2の前部の左右両側に窓ガラス3A,3Bがそれぞれ設けられ、車室2の後部の左右両側にも窓ガラス4A,4Bがそれぞれ設けられている。車室2内には前部右側の座席である運転席5と、前部左側の座席である助手席6と、後部座席7とが設けられており、図示例では、自動車1の乗員として、運転席5に座り且つハンドル8を操作して自動車1の運転をしているドライバー9と、助手席6に座っている同乗者10とが乗車している。   As shown in FIG. 1, the automobile 1 is provided with window glasses 3A and 3B on the left and right sides of the front part of the passenger compartment 2, respectively, and the window glasses 4A and 4B are also provided on the left and right sides of the rear part of the passenger compartment 2, respectively. Yes. In the passenger compartment 2, a driver's seat 5 that is a front right seat, a passenger seat 6 that is a front left seat, and a rear seat 7 are provided. A driver 9 sitting in the driver's seat 5 and operating the handle 8 to drive the automobile 1 and a passenger 10 sitting in the passenger's seat 6 are on board.

車室2内の前端部に設けられたダッシュボード11には、右の窓ガラス3A側(運転席用)のフェイス(FACE)吹き出し口であるサイドフェイス吹き出し口12Aと、左の窓ガラス3B側(助手席用)のフェイス吹き出し口であるサイドフェイス吹き出し口12Bと、車内中央側で且つ右寄り(運転席用)のフェイス吹き出し口であるセンターフェイス吹き出し口13Aと、車内中央側で且つ左寄り(助手席用)のフェイス吹き出し口であるセンターフェイス吹き出し口13Bとが設けられている。即ち、これらの吹き出し口12A,13A及び吹き出し口12B,13Bは、乗員(ドライバー9、同乗者10)の左右両側の前方にそれぞれ位置している。また、ダッシュボード11の下方には、運転席側のフット(FOOT)吹き出し口14Aと、助手席側のフット吹き出し口14Bとが設けられている。   The dashboard 11 provided at the front end in the passenger compartment 2 includes a side face outlet 12A which is a face (FACE) outlet on the right window glass 3A side (for a driver's seat), and a left window glass 3B side. Side face outlet 12B which is a face outlet for (passenger seat), center face outlet 13A which is a face outlet on the center side and right side (for the driver's seat), and left side (assistant) A center face outlet 13B which is a face outlet for a seat) is provided. That is, these air outlets 12A, 13A and air outlets 12B, 13B are respectively positioned in front of the left and right sides of the occupant (driver 9, passenger 10). Further, below the dashboard 11, there are provided a foot (FOOT) outlet 14 </ b> A on the driver's seat side and a foot outlet 14 </ b> B on the passenger seat side.

従って、サイドフェイス吹き出し口12Aからは、運転席5に座っているドライバー9の上半身の車内窓ガラス側部9A(右肩9a、右腕9b、顔の右側9cなど)に向かって空調空気が吹き出され、センターフェイス吹き出し口13Aからは、運転席5に座っているドライバー9の上半身の車内中央側部9B(左肩9d、右腕9e、顔の右側9fなど)に向かって空調空気が吹き出される。また、サイドフェイス吹き出し口12Bからは、助手席6に座っている同乗者10の上半身の窓ガラス3B側部分10A(左肩10a、左腕10b、顔の左側10cなど)に向かって空調空気が吹き出され、センターフェイス吹き出し口13Bからは、助手席6に座っている乗員10の上半身の車内中央側部10B(右肩10d、右腕10e、顔の右側10fなど)に向かって空調空気が吹き出される。また、フット吹き出し口14Aからは、運転席5に座っているドライバー9の下半身(足ともなど)に向かって空調空気が吹き出され、フット吹き出し口14Bからは、助手席6に座っている乗員10の下半身(足ともなど)に向かって空調空気が吹き出される。   Accordingly, the conditioned air is blown out from the side face outlet 12A toward the inner window glass side 9A (right shoulder 9a, right arm 9b, right side 9c of the face, etc.) of the upper body of the driver 9 sitting in the driver's seat 5. From the center face outlet 13A, conditioned air is blown out toward the center 9B (left shoulder 9d, right arm 9e, right side 9f of the face, etc.) of the upper body of the driver 9 sitting in the driver's seat 5. Air-conditioned air is blown out from the side face outlet 12B toward the window glass 3B side portion 10A (left shoulder 10a, left arm 10b, left side 10c of the face, etc.) of the upper body of the passenger 10 sitting in the passenger seat 6. From the center face outlet 13B, air-conditioned air is blown out toward the center side 10B (the right shoulder 10d, the right arm 10e, the right side 10f of the face, etc.) of the upper body of the occupant 10 sitting in the passenger seat 6. Air-conditioned air is blown out from the foot outlet 14A toward the lower body (such as both feet) of the driver 9 sitting in the driver's seat 5, and the occupant 10 sitting in the passenger seat 6 is out of the foot outlet 14B. Air-conditioned air is blown out toward the lower body (such as feet).

続いて、図2〜図6に基づき、本実施の形態例の自動車用空気調和装置の構成について詳述する。   Next, the configuration of the automobile air conditioner according to the present embodiment will be described in detail with reference to FIGS.

図2に示すように、主ダクト20内には、空調空気の流れ方向(矢印A方向)に沿って上流側から順にブロア21、エバポレータ22、ヒーターコア23、及び、エアミックスダンパ24が配設されている。   As shown in FIG. 2, a blower 21, an evaporator 22, a heater core 23, and an air mix damper 24 are arranged in the main duct 20 in order from the upstream side along the flow direction of the conditioned air (arrow A direction). Has been.

また、主ダクト20の下流側では、フェイス側ダクト31と、フット側ダクト32とに分岐されている。そして、フェイス側ダクト31は、第1ダクトとしてのサイド側ダクト33と、第2ダクトとしてのセンター側ダクト34とに分岐されており、サイド側ダクト33から更に分岐された右側ダクト35と左側ダクト36とが、それぞれサイドフェイス吹き出し口12Aとサイドフェイス吹き出し口12Bとに通じており、且つ、センター側ダクト34から更に分岐された右側ダクト37と左側ダクト38とが、それぞれセンターフェイス吹き出し口13Aとセンターフェイス吹き出し口13Bとに通じている。また、フット側ダクト32は更に運転席側ダクト39と助手席側ダクト40とに分岐され、これらのダクト39,40が、それぞれフット吹き出し口14Aとフット吹き出し口14Bとに通じている。なお、図示は省略するが、デフ吹き出し口に通じるダクトなどもある。   Further, on the downstream side of the main duct 20, it is branched into a face side duct 31 and a foot side duct 32. The face-side duct 31 is branched into a side-side duct 33 as a first duct and a center-side duct 34 as a second duct. The right-side duct 35 and the left-side duct further branched from the side-side duct 33. 36 are connected to the side face outlet 12A and the side face outlet 12B, respectively, and the right duct 37 and the left duct 38 further branched from the center side duct 34 are respectively connected to the center face outlet 13A. It leads to the center face outlet 13B. Further, the foot side duct 32 is further branched into a driver seat side duct 39 and a passenger seat side duct 40, and these ducts 39 and 40 communicate with the foot outlet 14A and the foot outlet 14B, respectively. In addition, although illustration is abbreviate | omitted, there also exist a duct etc. which lead to a differential outlet.

フェイス側ダクト31の入口には、矢印Cのように回動して前記入口の開度を調整することができるモードダンパ41が設けられ、フット側ダクト32の入口には、矢印Dのように回動して前記入口の開度を調整することができるモードダンパ42が設けられている。モードダンパ41,42の開度は、各吹き出しモードの設定に応じて調整される。吹き出しモードとしては、フェイスモード、バイレベル(Bi−LEVEL)モード及びフットモードがあり、更にはデフ・フットモードやデフモードなどもある。   A mode damper 41 is provided at the entrance of the face side duct 31 and can be rotated as indicated by an arrow C to adjust the opening of the entrance, and the entrance of the foot side duct 32 is provided as indicated by an arrow D. A mode damper 42 that can be rotated to adjust the opening of the inlet is provided. The opening degree of the mode dampers 41 and 42 is adjusted according to the setting of each blowing mode. The balloon mode includes a face mode, a bi-level (Bi-LEVEL) mode, and a foot mode, and further includes a differential foot mode and a differential mode.

フェイスモードでは、モードダンパ41を例えばa位置まで回動させてフェイス側ダクト31の入口を大きく開け、且つ、モードダンパ42を例えばd位置まで回動させてフット側ダクト32の入口の開度を非常に小さくすることにより、空調空気の大半を、サイドフェイス吹き出し口12A,12Bやセンターフェイス吹き出し口13A,13Bから吹き出す。バイレベルモードでは、モードダンパ41を例えばb位置まで回動させてフェイス側ダクト31の入口を中間の開度とし、且つ、モードダンパ42も例えばe位置まで回動させてフット側ダクト32の入口を中間の開度とすることにより、空調空気をサイドフェイス吹き出し口12A,12Bやセンターフェイス吹き出し口13A,13Bと、フット吹き出し口14A,14Bとから吹き出す。フットモードでは、モードダンパ42を例えばf位置まで回動させてフット側ダクト32の入口を大きく開け、モードダンパ41を例えばc位置まで回動させてフェイス側ダクト31の入口の開度を非常に小さくすることにより、空調空気の大半を、フット吹き出し口14A,14Bから吹き出す。   In the face mode, the mode damper 41 is rotated to the position a, for example, so that the entrance of the face side duct 31 is opened widely, and the mode damper 42 is rotated, for example, to the position d, so that the opening degree of the foot side duct 32 is increased. By making it very small, most of the conditioned air is blown out from the side face outlets 12A and 12B and the center face outlets 13A and 13B. In the bi-level mode, the mode damper 41 is rotated to the b position, for example, so that the entrance of the face side duct 31 has an intermediate opening, and the mode damper 42 is also rotated, for example, to the e position to enter the foot side duct 32. Is set to an intermediate opening, and the conditioned air is blown out from the side face outlets 12A and 12B, the center face outlets 13A and 13B, and the foot outlets 14A and 14B. In the foot mode, the mode damper 42 is rotated to, for example, the f position to greatly open the inlet of the foot side duct 32, and the mode damper 41 is rotated to, for example, the c position to greatly increase the opening of the face side duct 31. By making it smaller, most of the conditioned air is blown out from the foot outlets 14A and 14B.

そして、サイドフェイス吹き出し口12A、12Bに通じるサイド側ダクト33の入口と、センターフェイス吹き出し口13A、13Bに通じるセンター側ダクト34の入口との間には、風量調整ダンパ43が設けられている。風量調整ダンパ43は、矢印Eのようにサイド側ダクト33の入口側への回動と、センター側ダクト34の入口側への回動が可動であり、その回動位置(開度)によってサイド側ダクト33内に流入する空調空気量と、センター側ダクト34内に流入する空調空気量との比率、即ち、サイドフェイス吹き出し口12A,12Bから車室2内に吹き出される空調空気の風量(風速)と、センターフェイス吹き出し口13A,13Bから車室2内に吹き出される空調空気の風量(風速)との比率を調整することができる。風量調整ダンパ43の開度調整はコントローラ51によって行われるが、その詳細については後述する。   An air volume adjusting damper 43 is provided between the inlet of the side duct 33 that communicates with the side face outlets 12A and 12B and the inlet of the center duct 34 that communicates with the center face outlets 13A and 13B. As shown by arrow E, the air volume adjusting damper 43 is movable to the inlet side of the side-side duct 33 and to the inlet side of the center-side duct 34. The ratio of the amount of conditioned air flowing into the side duct 33 and the amount of conditioned air flowing into the center side duct 34, that is, the amount of conditioned air blown into the vehicle compartment 2 from the side face outlets 12A, 12B ( The ratio between the wind speed) and the air volume (wind speed) of the conditioned air blown into the passenger compartment 2 from the center face outlets 13A and 13B can be adjusted. The opening adjustment of the air volume adjustment damper 43 is performed by the controller 51, and details thereof will be described later.

一方、エバポレータ22と、自動車1の走行用エンジンによって回転駆動される圧縮機25と、コンデンサ26と、膨張弁27と、これらをつなぐ冷媒配管28は、冷凍サイクルの冷媒循環回路を構成している。従って、圧縮機25により高温・高圧のガスとなった冷媒は、コンデンサ26において、ファン29から供給される空気との熱交換により冷却されて液冷媒となる。この液冷媒は、膨張弁27で断熱膨張して減圧された後、エバポレータ22において、ブロア21から供給される空調空気との熱交換により蒸発し、再びガス冷媒となって圧縮機25へ戻る。このとき、エバポレータ22では空調空気が、冷媒との熱交換により冷却及び除湿されることになる。なお、圧縮機25及びファン29は前記走行用エンジンによって回転駆動される。   On the other hand, the evaporator 22, the compressor 25 that is rotationally driven by the traveling engine of the automobile 1, the condenser 26, the expansion valve 27, and the refrigerant pipe 28 that connects them constitute a refrigerant circulation circuit of the refrigeration cycle. . Therefore, the refrigerant that has become high-temperature and high-pressure gas by the compressor 25 is cooled by the heat exchange with the air supplied from the fan 29 in the condenser 26 to become a liquid refrigerant. The liquid refrigerant is adiabatically expanded and decompressed by the expansion valve 27, and then is evaporated by heat exchange with the conditioned air supplied from the blower 21 in the evaporator 22, and again becomes a gas refrigerant and returns to the compressor 25. At this time, in the evaporator 22, the conditioned air is cooled and dehumidified by heat exchange with the refrigerant. The compressor 25 and the fan 29 are rotationally driven by the traveling engine.

ヒーターコア23には、前記走行用エンジンを冷却して高温となった冷却水が、前記走行用エンジンによって回転駆動されるウォーターポンプ30によって供給される。従って、ヒーターコア23では、ヒーターコア23を通過する空調空気が、前記冷却水によって加熱される。   The heater core 23 is supplied with cooling water that has been cooled to a high temperature by cooling the traveling engine by a water pump 30 that is rotationally driven by the traveling engine. Therefore, in the heater core 23, the conditioned air passing through the heater core 23 is heated by the cooling water.

従って、ブロア21が作動すると、図示しない外気導入と内気循環の切り替えダンパの開閉状態に応じて外気又は内気が、空調空気として主ダクト20に導入され、主ダクト20内を矢印A方向に流れる。このとき、空調空気はエバポレータ22において冷却・除湿された後、矢印Bのように回動するエアミックスダンパ24により、ヒーターコア23を通過する空調空気と、ヒーターコア23を迂回してヒーターコアバイパス通路20aを通過する空調空気とに振り分けられる。ヒーターコア23を通過して加熱された空調空気と、ヒーターコア23を迂回した空調空気は、エアミックスダンパ24の下流側で合流して混合された後、各吹き出しモードの設定に応じて、ダクト31,33,34,35,36,37やダクト32,39,40を介し、サイド又はセンターのフェイス吹き出し口12A,12B,13A,13Bやフット吹き出し口14Aなどから吹き出される。   Therefore, when the blower 21 is operated, outside air or inside air is introduced into the main duct 20 as conditioned air in accordance with the open / close state of the outside air introduction and inside air circulation damper (not shown), and flows in the main duct 20 in the direction of arrow A. At this time, after the conditioned air is cooled and dehumidified in the evaporator 22, the conditioned air that passes through the heater core 23 and the heater core bypass bypass the heater core 23 by the air mix damper 24 that rotates as indicated by the arrow B. The air is distributed to the conditioned air passing through the passage 20a. The conditioned air heated by passing through the heater core 23 and the conditioned air bypassing the heater core 23 are mixed and mixed on the downstream side of the air mix damper 24, and then the duct is set in accordance with the setting of each blowing mode. The air is blown out from the side or center face blowout ports 12A, 12B, 13A, 13B, the foot blowout port 14A, etc. via the 31, 33, 34, 35, 36, 37 and the ducts 32, 39, 40.

コントローラ51では、吹き出しモードの選択操作、空調空気の風量の選択操作、目標空調温度の選択操作などを行う空調操作部55からの各操作信号などに基づき、選択された各吹き出しモードに応じたモードダンパ41,42の開度調整(モードダンパ41,42のモータ駆動)、選択された空調空気の風量に応じたブロア21(ブロア21のモータ)の電圧調整による風量調整、選択された目標空調温度に応じたエアミックスダンパ24の開度調整(エアミックスダンパ24のモータ駆動)などを行う。   In the controller 51, a mode corresponding to each selected blowing mode based on each operation signal from the air-conditioning operation unit 55 that performs a selection operation of the blowing mode, an air volume selection operation of the conditioned air, a selection operation of the target air-conditioning temperature, and the like. Opening adjustment of the dampers 41 and 42 (motor drive of the mode dampers 41 and 42), air volume adjustment by adjusting the voltage of the blower 21 (blower 21 motor) according to the air volume of the selected air-conditioning air, the selected target air-conditioning temperature The opening adjustment of the air mix damper 24 according to the control (motor drive of the air mix damper 24) is performed.

そして更にコントローラ51は風量調整手段(ダンパ開度調整手段)として機能し、詳細は後述するが、自動車1に設置されている車内温度センサ52によって検出された車室2内の温度である車内温度Tin(℃)と、自動車1に設置されている日射量センサ53によって検出された日射量Rd(W/m2)と、自動車1に設置されている外気温度センサ54によって検出された車室2の外の温度である外気温度Tout(℃)とに基づき、乗員であるドライバー9及び同乗者10の上半身の車内窓ガラス側部9A,10AのPMV値である車内窓ガラス側PMVAと、前記上半身の車内中央側部9B,10BのPMV値である車内中央側PMVBとを求め、これらの車内窓ガラス側PMVAと車内中央側PMVBとが等しくなるように、風量調整ダンパ43の開度を調整して、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気の風速(風量)と、センターフェイス吹き出し口13A,13Bから吹き出す空調空気の風速(風量)との比率を調整する。 Further, the controller 51 functions as an air volume adjusting means (damper opening adjusting means), which will be described in detail later, but the vehicle interior temperature that is the temperature in the passenger compartment 2 detected by the vehicle interior temperature sensor 52 installed in the automobile 1. T in (° C.), the solar radiation amount Rd (W / m 2 ) detected by the solar radiation sensor 53 installed in the automobile 1, and the passenger compartment detected by the outside air temperature sensor 54 installed in the automobile 1 The vehicle window glass side PMV A which is the PMV value of the vehicle interior window side portions 9A, 10A of the upper body of the driver 9 and the passenger 10 as passengers based on the outside air temperature T out (° C.) which is the temperature outside the upper body of the vehicle center side 9B, 10B obtains the vehicle center side PMV B is a PMV value, as with these interior window glass side PMV a and the interior central side PMV B are equal, Kazeryoucho The opening degree of the damper 43 is adjusted to adjust the ratio between the air speed (air volume) of the conditioned air blown from the side face outlets 12A and 12B and the air speed (air quantity) of the conditioned air blown from the center face outlets 13A and 13B. .

PMV(Predict Mean Vote:予測平均温冷感申告)は、1970年にFanger博士により考案された快適性評価指標であり、PMV=0をNaturalとして、±3の範囲で人間の温冷感を評価できる。例えば、PMVと温冷感は下記の[表1]のようになる。PMVの特徴として、温冷感の温熱4要素(気温、風速、湿度、輻射)から直接評価できる点が挙げられる。PMV=0は、80%以上の人が中立の温冷感を示す。PMVは前記4要素と人間の着衣量及び活動量とから計算することができる。   PMV (Predict Mean Vote) is a comfort evaluation index devised by Dr. Fanger in 1970 and evaluates human thermal sensation within a range of ± 3 with PMV = 0 as Natural. it can. For example, PMV and thermal sensation are as shown in [Table 1] below. A characteristic of PMV is that it can be directly evaluated from the four thermal elements (air temperature, wind speed, humidity, and radiation) of the thermal sensation. When PMV = 0, 80% or more of people show a neutral thermal sensation. The PMV can be calculated from the above four elements and the amount of human clothes and activity.

Figure 2006176034
Figure 2006176034

ここで、図3〜図6に基づき、コントローラ51による風量調整ダンパ43の制御について詳述する。なお、コントローラ51はCPUやメモリなどを有してなるものであり、メモリに記憶されたコンピュータプログラムをCPUで実行することによって、上記のようなブロア2や各ダンパ24,41,42などの制御や、図3に示すような処理を行う。   Here, based on FIGS. 3-6, control of the air volume adjustment damper 43 by the controller 51 is explained in full detail. The controller 51 includes a CPU, a memory, and the like. The CPU 51 executes a computer program stored in the memory to control the blower 2 and the dampers 24, 41, 42 as described above. Alternatively, processing as shown in FIG. 3 is performed.

図3に示すように、車内温度設定手段としての車内温度センサ52では、検出した車内温度Tinを、PMV演算部66と輻射温度演算部61とに出力する。日射量センサ53では、検出した日射量Rdを、輻射温度演算部66に出力する。外気温度センサ54では、検出した外気温度Toutを、輻射温度演算部61と第1季節判定部62と第2季節判定部64とに出力する。 As shown in FIG. 3, the interior temperature sensor 52 as a vehicle temperature setter, the inside temperature T in which the detected output to a PMV calculating unit 66 and the radiation temperature calculation unit 61. The solar radiation amount sensor 53 outputs the detected solar radiation amount Rd to the radiation temperature calculator 66. The outside air temperature sensor 54 outputs the detected outside air temperature T out to the radiation temperature calculation unit 61, the first season determination unit 62, and the second season determination unit 64.

輻射温度演算部66では、各センサ52,53,54から入力した車内温度Tin、日射量Rd、外気温度Toutなどに基づき、次のステファン・ボルツマンの式(1),(2)により、自動車1の窓ガラス3A,3Bを透過して乗員が受ける輻射などの車内窓ガラス側輻射温度TEA及び車内中央側輻射温度TEBを計算する。即ち、車内窓ガラス側輻射温度TEAと車内中央側輻射温度TEBは、運転席5に座っているドライバー9の場合には、右の窓ガラス3Aを透過する輻射など、ドライバー9の車内窓ガラス側部9Aと車内中央側部9Bとに受ける平均輻射温度(k)であり、助手席6に座っている同乗者10の場合には、左の窓ガラス3Bを透過する輻射など、同乗者10の車内窓ガラス側部10Aと車内中央側部10Bとに受ける平均輻射温度(k)である。 In the radiation temperature calculation unit 66, based on the vehicle interior temperature T in , the solar radiation amount Rd, the outside air temperature T out and the like input from each sensor 52, 53, 54, the following Stefan-Boltzmann equations (1), (2) The vehicle interior window glass side radiation temperature T EA and the vehicle interior center side radiation temperature T EB such as the radiation received by the occupant through the window glasses 3A and 3B of the automobile 1 are calculated. That is, the in-vehicle window glass side radiation temperature T EA and the in-vehicle center side radiation temperature T EB are, for the driver 9 sitting in the driver's seat 5, for example, the radiation that passes through the right window glass 3 A. The average radiation temperature (k) received by the glass side portion 9A and the in-car central side portion 9B, and in the case of the passenger 10 sitting in the passenger seat 6, the passenger, such as the radiation transmitted through the left window glass 3B 10 is the average radiation temperature (k) received by the in-car window glass side part 10A and the in-car central side part 10B.

σ・TEA 4=a・(σ・Tout 4+Rd)・β+b・σ・Tin 4 ・・・(1)
σ・TEB 4=a・(σ・Tout 4+Rd)・β+b・σ・Tin 4 ・・・(2)
σ · T EA 4 = a · (σ · T out 4 + Rd) · β + b · σ · T in 4 (1)
σ · T EB 4 = a · (σ · T out 4 + Rd) · β + b · σ · T in 4 (2)

上式(1),(2)において、σはステファン・ボルツマン係数である。βは窓ガラス3A,3Bの輻射の透過率であり、一般に0.5である。a,bは窓ガラス3A,3Bにおける窓ガラス面の表面積比である。即ち、a,bは外部の空気などから窓ガラスを透過して乗員に伝わる輻射量と、車内の空気などから乗員に伝わる輻射量の比率を表している。   In the above equations (1) and (2), σ is a Stefan-Boltzmann coefficient. β is the radiation transmittance of the window glasses 3A and 3B, and is generally 0.5. a and b are the surface area ratios of the window glass surfaces in the window glasses 3A and 3B. That is, a and b represent the ratio of the amount of radiation transmitted to the occupant through the window glass from outside air or the like and the amount of radiation transmitted to the occupant from the air in the vehicle or the like.

つまり、ドライバー9の場合、式(1)に用いる表面積比a,bは、図4(a)に示すように車内窓ガラス側部9Aの第1所定位置P1と窓ガラス3Aの前端部3A−1及び後端部3A−2とを結ぶ第1直線L1,第2直線L2の成す第1角度θ1と、窓ガラス3Aに平行な第3直線L3と前記第1直線L1とが成す第2角度θ2と前記第3直線L3と前記第2直線L2とが成す第3角度θ3との和(θ2+θ3)である第4角度θ4との比である。即ち、第1角度θ1の比率が(1)式に用いる表面積比aとなり、第4角度θ4の比率が(1)式に用いる表面積比bとなる。この場合、例えば表面積比aは0.8、表面積比bは0.2とする。また、式(2)に用いる表面積比a,bは、図4(b)に示すように車内中央側部9Bの第2所定位置P2と窓ガラス3Aの前端部3A−1及び後端部3A−2とを結ぶ第4直線L4,第5直線L5の成す第5角度θ5と、窓ガラス3Aに平行な第6直線L6と前記第4直線L4とが成す第6角度θ6と前記第6直線L6と前記第5直線L5とが成す第7角度θ7との和(θ6+θ7)である第8角度θ8との比である。即ち、第5角度θ5の比率が(2)式に用いる表面積比aとなり、第8角度θ8の比率が(2)式に用いる表面積比bとなる。この場合、例えば表面積比aは0.3、表面積比bは0.7とする。 That is, when the driver 9, the surface area ratio is used in Equation (1) a, b is a front end portion 3A of the first predetermined position P 1 and the window glass 3A of the interior window glass side 9A as shown in FIG. 4 (a) -1 and the rear end 3A-2, the first angle θ 1 formed by the first straight line L 1 and the second straight line L 2 , the third straight line L 3 parallel to the window glass 3A, and the first straight line L 1. And a fourth angle θ 4 which is the sum (θ 2 + θ 3 ) of the second angle θ 2 formed by and the third angle θ 3 formed by the third straight line L 3 and the second straight line L 2. is there. That is, the ratio of the first angle θ 1 is the surface area ratio a used in the equation (1), and the ratio of the fourth angle θ 4 is the surface area ratio b used in the equation (1). In this case, for example, the surface area ratio a is 0.8 and the surface area ratio b is 0.2. Further, the surface area ratio a, b used in the formula (2) is the front end 3A-1 and the rear end portion of the second predetermined position P 2 and the window glass 3A of the interior side center 9B as shown in FIG. 4 (b) the fourth straight line L 4 connecting the 3A-2, the sixth angle formed between the fifth angle theta 5 formed by the fifth straight L 5, a sixth straight line L 6 parallel to the window pane 3A and the fourth straight line L 4 is the ratio of the eighth angle theta 8 is the sum (theta 6 + theta 7) of the seventh angle theta 7 formed between the fifth straight line L 5 and theta 6 and the sixth straight line L 6 is. That is, the ratio of the fifth angle θ 5 is the surface area ratio a used in the expression (2), and the ratio of the eighth angle θ 8 is the surface area ratio b used in the expression (2). In this case, for example, the surface area ratio a is 0.3 and the surface area ratio b is 0.7.

同様に、同乗者10の場合には、図示は省略するが、式(1)に用いる表面積比a,bは、車内窓ガラス側部10Aの第1所定位置と窓ガラス3Bの前端及び後端とを結ぶ第1直線,第2直線の成す第1角度と、窓ガラス3Bに平行な第3直線と前記第1直線とが成す第2角度と前記第3直線と前記第2直線とが成す第3角度との和である第4角度との比であって、第1角度の比率が(1)式に用いる表面積比a(例えば0.8)となり、第4角度の比率が(1)式に用いる表面積比b(例えば0.2)となる。また、式(2)に用いる表面積比a,bは、車内中央側部10Bの第2所定位置と窓ガラス3Bの前端及び後端とを結ぶ第4直線,第5直線の成す第5角度と、窓ガラス3Bに平行な第6直線と前記第4直線とが成す第6角度と前記第6直線と前記第5直線とが成す第7角度との和である第8角度との比であって、第5角度の比率が(2)式に用いる表面積比a(例えば0.3)となり、第8角度の比率が(2)式に用いる表面積比b(例えば0.7)となる。   Similarly, in the case of the passenger 10, although not shown, the surface area ratios a and b used in the expression (1) are the first predetermined position of the vehicle window side 10 </ b> A and the front and rear ends of the window glass 3 </ b> B. The first angle formed by the first straight line and the second straight line connecting the second straight line, the second angle formed by the third straight line parallel to the window glass 3B and the first straight line, the third straight line, and the second straight line are formed. The ratio of the first angle to the fourth angle which is the sum of the third angle and the ratio of the first angle is the surface area ratio a (e.g., 0.8) used in the equation (1), and the ratio of the fourth angle is (1). The surface area ratio b used in the equation (for example, 0.2). Further, the surface area ratios a and b used in the expression (2) are the fifth angle formed by the fourth straight line and the fifth straight line connecting the second predetermined position of the vehicle interior side portion 10B and the front and rear ends of the window glass 3B. The ratio of the sixth angle formed by the sixth straight line parallel to the window glass 3B and the fourth straight line and the eighth angle which is the sum of the seventh angle formed by the sixth straight line and the fifth straight line. Thus, the ratio of the fifth angle is the surface area ratio a (for example, 0.3) used in the expression (2), and the ratio of the eighth angle is the surface area ratio b (for example, 0.7) used in the expression (2).

図3に示すように、輻射温度演算部61で求められた車内窓ガラス側輻射温度TEAと車内中央側輻射温度TEBは、PMV演算部66へ出力される。車内温度センサ52と日射量センサ53と輻射温度演算部61は、輻射温度設定手段を構成している。 As shown in FIG. 3, the interior window glass side radiation temperature T EA and the interior center side radiation temperature T EB obtained by the radiation temperature calculation unit 61 are output to the PMV calculation unit 66. The in-vehicle temperature sensor 52, the solar radiation amount sensor 53, and the radiation temperature calculation unit 61 constitute radiation temperature setting means.

第1季節判定部62では、第1設定温度として例えば30℃が設定され、且つ、第1設定温度よりも低い第2設定温度として例えば15℃が設定されており、これらの設定温度と外気温度Toutとを比較して、外気温度Tout>第1設定温度(30℃)のときには「夏」であると判定し、第2設定温度(15℃)≦外気温度Tout≦第1設定温度(30℃)のときには「春秋」であると判定し、外気温度Tout<第2設定温度(15℃)のときには、「冬」であると判定して、この判定結果を湿度決定部63へ出力する。 In the first season determination unit 62, for example, 30 ° C. is set as the first set temperature, and for example, 15 ° C. is set as the second set temperature lower than the first set temperature. Compared with T out , when the outside air temperature T out > the first set temperature (30 ° C.), it is determined that it is “summer”, and the second set temperature (15 ° C.) ≦ the outside air temperature T out ≦ the first set temperature When it is (30 ° C.), it is determined that it is “spring / autumn”, and when the outside air temperature T out <the second set temperature (15 ° C.), it is determined that it is “winter”, and this determination result is sent to the humidity determining unit 63. Output.

湿度決定部63では、第1季節判定部62の判定結果と、予め設定されている季節ごとの車内湿度の値とに基づき、車内湿度を、「夏」であれば高湿度(例えば60%RH)、「春秋」であれば中間湿度(例えば30%RH)、「冬」であれば低湿度(例えば10%)と決定し、これらの結果をPMV演算部66へ出力する。外気温度センサ54と第1季節判定部62と湿度決定部63とは、湿度設定手段を構成している。ここで決定される車内湿度は自動車用空気調和装置によって車内の空調を行っていることを前提として予想される湿度である。   In the humidity determination unit 63, if the vehicle interior humidity is “summer” based on the determination result of the first season determination unit 62 and the preset value of the vehicle interior humidity for each season, high humidity (for example, 60% RH) ), If it is “spring and autumn”, it is determined to be intermediate humidity (for example, 30% RH), and if it is “winter”, it is determined to be low humidity (for example, 10%). The outside air temperature sensor 54, the first season determination unit 62, and the humidity determination unit 63 constitute a humidity setting unit. The in-vehicle humidity determined here is a humidity that is expected on the assumption that the air-conditioning of the vehicle is performed by the automobile air conditioner.

第2季節判定部64では、第1季節判定部62と同様、第1設定温度として例えば30℃が設定され、且つ、第1設定温度よりも低い第2設定温度として例えば15℃が設定されており、これらの設定温度と外気温度Toutとを比較して、外気温度Tout>第1設定温度(30℃)のときには「夏」であると判定し、第2設定温度(15℃)≦外気温度Tout≦第1設定温度(30℃)のときには「春秋」であると判定し、外気温度Tout<第2設定温度(15℃)のときには、「冬」であると判定して、この判定結果を着衣量決定部65へ出力する。 In the second season determination unit 64, as in the first season determination unit 62, for example, 30 ° C. is set as the first set temperature, and for example, 15 ° C. is set as the second set temperature lower than the first set temperature. The set temperature and the outside air temperature T out are compared, and when the outside air temperature T out > the first set temperature (30 ° C.), it is determined that “summer” and the second set temperature (15 ° C.) ≦ When the outside air temperature T out ≦ first set temperature (30 ° C.), it is determined that “spring and autumn”, and when the outside air temperature T out <second set temperature (15 ° C.), it is determined that “winter”. The determination result is output to the clothing amount determination unit 65.

着衣量決定部65では、第2季節判定部64の判定結果と、予め設定されている季節ごとの着衣量の値とに基づき、「夏」であれば小量(例えば0.1clo)、「春秋」であれば中間量(例えば0.3clo)、「冬」であれば大量(例えば1.4clo)と決定し、これらの結果をPMV演算部66へ出力する。外気温度センサ54と第2季節判定部64と着衣量決定部65は、着衣量設定手段を構成している。なお、第1季節判定部62と第2季節判定部64を1つの季節判定部に統合し、この統合した季節判定部の判定結果を湿度決定部63と着衣量決定部65に出力するようにしてもよい。   Based on the determination result of the second season determination unit 64 and the preset value of the clothing amount for each season, the clothing amount determination unit 65 sets a small amount (for example, 0.1 clo) for “summer”, “ If it is “spring / autumn”, it is determined as an intermediate amount (for example, 0.3 clo), and if it is “winter”, it is determined as a large amount (for example, 1.4 clo), and these results are output to the PMV calculation unit 66. The outside air temperature sensor 54, the second season determination unit 64, and the clothing amount determination unit 65 constitute a clothing amount setting unit. The first season determination unit 62 and the second season determination unit 64 are integrated into one season determination unit, and the determination result of the integrated season determination unit is output to the humidity determination unit 63 and the clothing amount determination unit 65. May be.

活動量設定手段としての活動量設定部67では、予め設定された座席別活動量である運転席側活動量と助手席側活動量とを、PMV演算部66へ出力する。運転席側活動量は運転席5に座っているドライバー9の活動量の予測値である。ドライバー9は運転をして体を動かしているために比較的活動量が大きいと予測されるため、運転席側活動量は例えば70kcal/hと設定する。助手席側活動量は助手席6に座っている同乗者10の活動量の予測値である。同乗者10はあまり体を動かすことがないために比較的活動量が小さいと予測されるため、助手席側活動量は例えば58kcal/hとする。   The activity amount setting unit 67 serving as the activity amount setting means outputs the driver-side activity amount and the passenger-side activity amount, which are preset seat-specific activity amounts, to the PMV calculation unit 66. The driver's seat side activity amount is a predicted value of the activity amount of the driver 9 sitting in the driver's seat 5. Since the driver 9 is driving and moving his / her body, the activity amount is predicted to be relatively large, so the driver's seat side activity amount is set to 70 kcal / h, for example. The passenger seat side activity amount is a predicted value of the activity amount of the passenger 10 sitting in the passenger seat 6. Since the passenger 10 does not move much, the activity amount is predicted to be relatively small, so the passenger side activity amount is set to 58 kcal / h, for example.

風速設定手段としての風速判定部68には、図5のような特性グラフで表すことができるブロア電圧と吹き出しモードと予想風速との関係を表す予想風速データが予め設定されている。この予想風速データは実験によって決定したものである。そして、風速判定部68では、前記予想風速データに基づき、次のような処理を行う。   In the wind speed determination unit 68 serving as the wind speed setting means, expected wind speed data representing the relationship between the blower voltage, the blowing mode, and the expected wind speed that can be represented by a characteristic graph as shown in FIG. 5 is set in advance. This expected wind speed data was determined by experiment. The wind speed determination unit 68 performs the following processing based on the predicted wind speed data.

まず、空調操作部55の操作などに基づきコントローラ51で設定される吹き出しモード69と、空調操作部55の操作などに基づきコントローラ51で調整されるブロア21の電圧70と、前記予想風速データとに基づいて、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気と、センターフェイス吹き出し口13A、13Bから吹き出す空調空気の風速を予想する。即ち、ドライバー9や同乗者10の車内窓ガラス側部9A,10A(左側の肩・腕部など)や車内中央側部9B,10B(右の肩・腕部など)での風速を予想する。例えば、図5に例示するようにブロア電圧70がV1で吹き出しモード69がフェイスモードのとき、予想風速はv1となる。 First, the blowing mode 69 set by the controller 51 based on the operation of the air conditioning operation unit 55, the voltage 70 of the blower 21 adjusted by the controller 51 based on the operation of the air conditioning operation unit 55, etc. Based on this, the air speeds of the conditioned air blown from the side face outlets 12A and 12B and the conditioned air blown from the center face outlets 13A and 13B are predicted. That is, the wind speed at the side windows 9A and 10A (the left shoulder and arm) of the driver 9 and the passenger 10 and the central sides 9B and 10B (the right shoulder and arm) of the vehicle is predicted. For example, as illustrated in FIG. 5, when the blower voltage 70 is V 1 and the blowing mode 69 is the face mode, the expected wind speed is v 1 .

また、目標制御量演算部71(詳細後述)からは目標制御量αを入力する。目標制御量αは、風量調整ダンパ43の開度調整量の目標値である。図1に示すように、風量調整ダンパ43はサイド側ダクト33の入口側への回動と、センター側ダクト34の入口側への回動とが可能である。ここでは、風量調整ダンパ43の開度を、風量調整ダンパ43がサイド側ダクト33の入口側に回動して同入口を塞いだとき(g位置の状態のとき)が0%、風量調整ダンパ43がセンター側ダクト34の入口側に回動して同入口を塞いだとき(h位置の状態のとき)が100%、風量調整ダンパ43がサイド側ダクト33の入口側にもセンター側ダクト34の入口側にも回動していない(傾いていない)i位置の状態のときが50%とする。   A target control amount α is input from a target control amount calculation unit 71 (details will be described later). The target control amount α is a target value of the opening adjustment amount of the air volume adjustment damper 43. As shown in FIG. 1, the air volume adjustment damper 43 can rotate to the inlet side of the side duct 33 and to the inlet side of the center duct 34. Here, the opening degree of the air volume adjusting damper 43 is 0% when the air volume adjusting damper 43 rotates to the inlet side of the side duct 33 and closes the inlet (in the state of the g position), and the air volume adjusting damper. When 43 turns to the entrance side of the center side duct 34 and closes the entrance (in the state of the h position), the air volume adjusting damper 43 is also on the entrance side of the side duct 33 and the center side duct 34. It is assumed that the state of the i position that is not rotated (not tilted) at the entrance side is 50%.

予想風速データは、風量調整ダンパ43が初期開度(例えば50%)のときの風速を予測するものである。そして、図3に示すように、風速判定部68では、この予想風速データと吹き出しモード69及びブロア電圧70とに基づいて予想された予想風速と、目標制御量αとに基づき、ドライバー9や同乗者10の車内窓ガラス側部9A,10A(左側の肩・腕部など)における風速vAと、車内中央側部9B,10B(右の肩・腕部など)での風速vBとを求めて、これらの風速vA,vBをPMV演算部66へ出力する。 The predicted wind speed data is for predicting the wind speed when the air volume adjusting damper 43 is at the initial opening (for example, 50%). As shown in FIG. 3, the wind speed determination unit 68 uses the predicted wind speed data, the predicted wind speed predicted based on the blowing mode 69 and the blower voltage 70, and the target control amount α to determine whether the driver 9 who asked 10 of the interior window glass side 9A, and wind velocity v a of 10A (such as the left shoulder-arm unit), interior side center 9B, a wind velocity v B at 10B (such as the right shoulder-arm portion) Then, these wind speeds v A and v B are output to the PMV calculation unit 66.

具体例を挙げると、目標制御量αが例えば3%、風量調整ダンパ43の初期開度(風量調整ダンパ43の制御開始時の開度)が例えば50%であるとすると、風量調整ダンパ43は初期開度50%の状態から更に3%分だけ開いて53%の開度となる。即ち、サイド側ダクト33の入口側の開度の割合は53%、センター側ダクト34の入口側の開度の割合は47%となる。その結果、サイド側ダクト33の入口側のダンパ開度は3%分だけ大きくなるため、サイドフェイス吹き出し口12A,12Bからドライバー9や同乗者10に吹き出される空調空気の風速(風量)は3%分だけ大きくなる一方、センター側ダクト34の入口側のダンパ開度は3%分だけ小さくなるため、センターフェイス吹き出し口13A,13Bからドライバー9や同乗者10に吹き出される空調空気の風速(風量)は、3%分だけ小さくなる。従って、この場合、風速判定部68では、予想風速データなどに基づいて求めた予想風速を3%分だけ大きくして(53/50倍して)、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気の風速vAとする一方、予想風速データなどに基づいて求めた予想風速を3%分だけ小さくして(47/50倍して)、センターフェイス吹き出し口13A,13Bから吹き出す空調空気の風速vBとする。 As a specific example, if the target control amount α is 3%, for example, and the initial opening degree of the air volume adjustment damper 43 (opening degree when the air volume adjustment damper 43 starts control) is 50%, for example, the air volume adjustment damper 43 is The opening degree is further increased by 3% from the state of the initial opening degree of 50%, and the opening degree becomes 53%. That is, the ratio of the opening on the inlet side of the side duct 33 is 53%, and the ratio of the opening on the inlet side of the center duct 34 is 47%. As a result, the damper opening on the inlet side of the side duct 33 is increased by 3%, so the air speed (air volume) of the conditioned air blown to the driver 9 and the passenger 10 from the side face outlets 12A and 12B is 3. On the other hand, the damper opening on the inlet side of the center side duct 34 is reduced by 3%, so that the air speed of the conditioned air blown to the driver 9 and the passenger 10 from the center face outlets 13A and 13B ( The air volume is reduced by 3%. Therefore, in this case, the wind speed determination unit 68 increases the predicted wind speed obtained based on the predicted wind speed data by 3% (multiplied by 53/50) and conditioned air blown out from the side face outlets 12A and 12B. wind speed v while the a, the expected wind speed data such as as small as 3% fraction of the expected wind speed obtained based (47/50 multiplied by), the conditioned air blown center face outlet 13A, the 13B wind velocity v B.

なお、目標制御量αの初期値は0とし、風速vA,vBの初期値は予想風速データなどに基づいて求めた予想風速とする。 Note that the initial value of the target control amount α is 0, and the initial values of the wind speeds v A and v B are the expected wind speeds obtained based on the expected wind speed data.

PMV演算部66では、車内温度センサ52から入力した車内温度Tinと、輻射温度演算部66から入力した車内窓ガラス側輻射温度TEA及び車内中央側輻射温度TEBと、湿度決定部63から入力した車内湿度と、着衣量決定部65から入力した着衣量と、活動量設定部67から入力した活動量と、風速判定部68から入力した風速vA,vBとに基づいて、PMV演算を行うことにより、ドライバー9や同乗者10の車内窓ガラス側部9A,10A(肩・腕部など)のPMV値である車内窓ガラス側PMVAと、ドライバー9や同乗者10の車内中央側部9B,10B(肩・腕部など)のPMV値である車内中央側PMVBとを求めて、これらの車内窓ガラス側PMVA及び車内中央側PMVBを目標制御量演算部71へ出力する In the PMV calculation unit 66, the vehicle interior temperature T in input from the vehicle interior temperature sensor 52, the vehicle interior window glass side radiation temperature T EA and the vehicle interior center side radiation temperature T EB input from the radiation temperature computation unit 66, and the humidity determination unit 63 PMV calculation based on the input vehicle humidity, the amount of clothes input from the amount-of-clothing determination unit 65, the amount of activity input from the activity amount setting unit 67, and the wind speeds v A and v B input from the wind speed determination unit 68 The vehicle window glass side PMV A which is the PMV value of the driver's 9 and passenger's 10 interior window glass side portions 9A and 10A (shoulders, arms, etc.), and the driver 9 and passenger's 10 interior side of the vehicle The vehicle center side PMV B which is the PMV value of the parts 9B, 10B (shoulders, arms, etc.) is obtained, and the vehicle window glass side PMV A and the vehicle center side PMV B are output to the target control amount calculation unit 71.

具体的には、車内窓ガラス側PMVAは、車内温度Tinと、車内窓ガラス側輻射温度TEAと、車内湿度と、着衣量と、活動量と、風速vAとに基づいて、PMV演算により求める。車内中央側PMVBは、車内温度Tinと、車内中央側輻射温度TEBと、車内湿度と、着衣量と、活動量と、風速vBとに基づいて、PMV演算により求める。 Specifically, the interior window glass side PMV A, and the interior temperature T in, and the interior window glass side radiation temperature T EA, and inside humidity, and amount of clothing, and activity amount, based on the wind velocity v A, PMV Obtained by calculation. The in-vehicle center side PMV B is obtained by PMV calculation based on the in- vehicle temperature T in , the in-vehicle central side radiation temperature T EB , the in-vehicle humidity, the amount of clothes, the amount of activity, and the wind speed v B.

目標制御量演算部71では、PMV演算部66から入力した車内窓ガラス側PMVA及び車内中央側PMVBに基づき、次の式(3)により目標制御量αを求めて、風量調整ダンパ駆動部72と風速判定部68とにそれぞれ出力する。なお、前述のように目標制御量αの初期値は0とする。 The target control amount calculation unit 71 obtains the target control amount α by the following equation (3) based on the in-car window glass side PMV A and the in-car center side PMV B input from the PMV calculation unit 66, and the air volume adjustment damper driving unit. 72 and the wind speed determination unit 68 respectively. As described above, the initial value of the target control amount α is 0.

α=m|PMVA−PMVB| ・・・(3) α = m | PMV A −PMV B | (3)

式(3)において、mは定数である。目標制御量αは、式(3)のように車内窓ガラス側PMVAと車内中央側PMVBとの差(PMVA−PMVB)の絶対値に定数mをかけることによって求められる。定数mは、このときの目標制御量αが、車内窓ガラス側PMVAと車内中央側PMVBとを等しくするのに適した値となるように実験などによって適宜決定すればよい。 In Formula (3), m is a constant. The target control amount α is obtained by multiplying the absolute value of the difference (PMV A −PMV B ) between the interior window glass side PMV A and the interior center side PMV B by a constant m as shown in Expression (3). The constant m may be appropriately determined by experiments or the like so that the target control amount α at this time becomes a value suitable for equalizing the vehicle interior window glass side PMV A and the vehicle interior center side PMV B.

風量調整ダンパ駆動部72では、目標制御量演算部71から入力した目標制御量αに基づいて風量調整ダンパ43を回動させるためのアクチュエータであるモータの駆動制御を行うことより、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなるように風量調整ダンパ43の開度調整を行う。前述のように目標制御量αは風量調整ダンパ43の開度調整量の目標値であり、風量調整ダンパ43の初期開度(例えば50%)からの相対値であるため、例えば目標制御量αが3%であるとすると風量調整ダンパ43は53%の開度に調整されることになる。 The air volume adjustment damper drive unit 72 performs drive control of a motor that is an actuator for rotating the air volume adjustment damper 43 based on the target control amount α input from the target control amount calculation unit 71, so that the interior window glass side The opening adjustment of the air volume adjustment damper 43 is performed so that PMV A and the in-vehicle center side PMV B become equal. As described above, the target control amount α is a target value of the opening adjustment amount of the air volume adjustment damper 43, and is a relative value from the initial opening (for example, 50%) of the air volume adjustment damper 43. Is 3%, the air volume adjustment damper 43 is adjusted to an opening of 53%.

図6には風量調整ダンパ43の開度に応じた車内窓ガラス側の吹き出し風量と車両中央側の吹き出し風量の比率の変化、即ち、サイドフェイス吹き出し口12A,12Bからの吹き出し風量(風速)とセンターフェイス吹き出し口13A,13Bからの吹き出し風量(風速)の比率の変化を示している。図6に示すように、風量調整ダンパ43の開度が大きくなるにしたがって車内窓ガラス側の吹き出し風量の比率が増加する一方、車両中央側の吹き出し風量の比率は低下し、風量調整ダンパ43の開度が50%のときには車内窓ガラス側の吹き出し風量の比率と車両中央側の吹き出し風量の比率が等しくなる。そして、風量調整ダンパ43の開度が50%よりも増加すると、車内窓ガラス側の吹き出し風量の比率のほうが車両中央側の吹き出し風量の比率よりも大きくなる。   FIG. 6 shows the change in the ratio of the blown air volume on the vehicle window side and the blown air volume on the center side of the vehicle according to the opening of the air volume adjusting damper 43, that is, the blown air volume (wind speed) from the side face air outlets 12A and 12B. The change of the ratio of the blowing air volume (wind speed) from the center face outlets 13A and 13B is shown. As shown in FIG. 6, the ratio of the blown air volume on the in-car window side increases as the opening of the air volume adjusting damper 43 increases, while the ratio of the blown air volume on the vehicle center side decreases, and the air volume adjusting damper 43 When the opening degree is 50%, the ratio of the blown air volume on the vehicle interior window glass side is equal to the ratio of the blown air volume on the vehicle center side. And if the opening degree of the air volume adjustment damper 43 increases more than 50%, the ratio of the blown air volume on the vehicle interior window glass side becomes larger than the ratio of the blown air volume on the vehicle center side.

従って、風量調整ダンパ43の開度が例えば50%から53%に増加すると、サイドフェイス吹き出し口12A,12Bから吹き出される空調空気の風速(風量)とセンターフェイス吹き出し口13A,13Bから吹き出される空調空気の風速(風量)との比率が図6のように調整されて、サイドフェイス吹き出し口12A,12Bから吹き出される空調空気の風速(風量)のほうがセンターフェイス吹き出し口13A,13Bから吹き出される空調空気の風速(風量)よりも大きくなる。   Therefore, when the opening degree of the air volume adjustment damper 43 is increased from 50% to 53%, for example, the air speed (air volume) of the conditioned air blown out from the side face blowout ports 12A and 12B and the air blown out from the center face blowout ports 13A and 13B. The ratio of the air speed (air volume) of the conditioned air is adjusted as shown in FIG. 6, and the air speed (air volume) of the conditioned air blown out from the side face outlets 12A and 12B is blown out from the center face outlets 13A and 13B. It becomes larger than the wind speed (air volume) of the conditioned air.

このため、冬場であれば、暖房運転の際にサイドフェイス吹き出し口12A,12Bから吹き出される温風の風速(風量)のほうがセンターフェイス吹き出し口13A,13Bから吹き出される温風の風速(風量)よりも大きくなるため、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなる。また、夏場であれば、冷房運転の際にサイドフェイス吹き出し口12A,12Bから吹き出される冷風の風速(風量)のほうがセンターフェイス吹き出し口13A,13Bから吹き出される冷風の風速(風量)よりも大きくなるため、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなる。 For this reason, in the winter season, the warm air velocity (air volume) blown from the side face outlets 12A and 12B during the heating operation is higher than the warm air velocity (air quantity) blown from the center face outlets 13A and 13B. Therefore, the interior window glass side PMV A and the interior center side PMV B are equal. In summer, the air velocity (air volume) blown from the side face air outlets 12A and 12B during the cooling operation is higher than the air speed (air volume) blown from the center face air outlets 13A and 13B. Therefore, the interior window glass side PMV A and the interior center side PMV B become equal.

以上のように、本実施の形態例の自動車用空気調和装置によれば、車内温度Tinと、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気の風速vA及びセンターフェイス吹き出し口13A、13Bから吹き出す空調空気の風速vBと、窓ガラス3A,3Bを透過して乗員(ドライバー9、同乗者10)が受ける輻射などの車内窓ガラス側輻射温度TEA及び車内中央側輻射温度TEBと、車内湿度と、乗員の着衣量と、乗員の活動量とに基づいて、PMV演算を行うことにより、乗員の上半身の車内窓ガラス側部9A,10AのPMV値である車内窓ガラス側PMVAと、乗員の上半身の車内中央側部9B,10BのPMV値である車内中央側PMVBとを求め、この車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなるように、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気の風速と、センターフェイス吹き出し口13A,13Bから吹き出す空調空気の風速との比率を調整するため、窓ガラス3A,3Bを透過する冷輻射や温輻射の影響を確実に取り除いて、乗員の快適感を向上させることができる。 As described above, according to the air-conditioner for vehicle of the embodiment, and the interior temperature T in, the side face outlet 12A, the wind speed v A and the center face outlet 13A of the conditioned air blown from 12B, from 13B The wind speed v B of the conditioned air to be blown out, the vehicle window glass side radiation temperature T EA and the vehicle interior center side radiation temperature T EB such as radiation that is transmitted to the passengers (driver 9 and passenger 10) through the window glasses 3A and 3B, By performing PMV calculation based on the interior humidity, the amount of occupant's clothing, and the amount of activity of the occupant, the interior window glass side PMV A that is the PMV value of the interior window side portions 9A, 10A of the passenger's upper body , the upper body of the occupant of the vehicle center side 9B, 10B obtains the vehicle center side PMV B is a PMV value, based on the the vehicle window glass side PMV a and the interior central side PMV B, vehicle thyris usitata Scan side PMV so that the A and the interior central side PMV B equal, adjusting the side face outlet 12A, and the wind speed of the conditioned air blown from 12B, the center face outlet 13A, the ratio of the wind speed of the conditioned air blown from 13B Therefore, it is possible to improve the occupant's comfort by reliably removing the influence of the cold radiation and the thermal radiation transmitted through the window glasses 3A and 3B.

また、風量(風速)を調整する手段は、サイドフェイス吹き出し口12A,12Bに通じるサイド側ダクト33の入口と、センターフェイス吹き出し口13A,13Bに通じるセンター側ダクト34の入口との間に設けられて、サイド側ダクト33の入口側とセンター側ダクト34の入口側とに回動可動な風量調整ダンパ43と、PMV演算部66によって求められた車内窓ガラス側PMVAと車内中央側PMVBとの差に基づいて求めた目標制御量αに基づき、風量調整ダンパ43の開度を調整するコントローラ51とを有してなるものであるため、簡易な構成で確実にサイドフェイス吹き出し口12A,12Bから吹き出す空調空気の風速と、センターフェイス吹き出し口13A,13Bから吹き出す空調空気の風速との比率を調整することができる。 The means for adjusting the air volume (wind speed) is provided between the inlet of the side duct 33 leading to the side face outlets 12A and 12B and the inlet of the center side duct 34 leading to the center face outlets 13A and 13B. The air volume adjustment damper 43 that is movable to the entrance side of the side duct 33 and the entrance side of the center duct 34, the vehicle window glass side PMV A and the vehicle interior center side PMV B determined by the PMV calculation unit 66, And the controller 51 for adjusting the opening degree of the air volume adjusting damper 43 based on the target control amount α obtained based on the difference between the side face outlets 12A and 12B. Adjusting the ratio of the air speed of the conditioned air blown from the center face and the air speed of the conditioned air blown from the center face outlets 13A and 13B. Can.

また、輻射温度を設定する手段は、車内温度センサ52によって検出した車内温度Tinと、日射量センサ53によって検出した日射量Rdと、外気温度センサ54によって検出した外気温度Toutと、乗員の上半身の車内窓ガラス側部9A,10Aに対する窓ガラス面の表面積比a,b及び乗員の上半身の車内中央側部9B,10Bに対する窓ガラス面の表面積比a,bとに基づき、ステファン・ボルツマンの式により、車内窓ガラス側輻射温度TEAと車内中央側輻射温度TEBとを求める構成であるため、簡易な構成で確実に輻射温度TEA,TEBを求めることができる。 In addition, the means for setting the radiation temperature includes the vehicle interior temperature T in detected by the vehicle interior temperature sensor 52, the solar radiation amount Rd detected by the solar radiation amount sensor 53, the outside air temperature T out detected by the outside air temperature sensor 54, and the occupant's temperature. Stefan Boltzmann's surface area ratios a and b of the window glass surface with respect to the interior window glass side portions 9A and 10A of the upper body and the surface area ratios a and b of the window glass surface with respect to the vehicle interior side portions 9B and 10B of the passenger's upper body Since the vehicle window glass side radiation temperature T EA and the vehicle center side radiation temperature T EB are obtained by the equation, the radiation temperatures T EA and T EB can be reliably obtained with a simple configuration.

また、湿度を設定する手段は、外気温度センサ54によって検出した外気温度Toutに基づいて季節を判定し、この判定した季節に対応する車内湿度を決定する構成であるため、簡易な構成で確実に車内湿度を決定することができる。 Also, means for setting the humidity, for determining the season on the basis of the outside air temperature T out detected by the outside air temperature sensor 54, a configuration that determines the inside humidity corresponding to this determination seasons, reliable with a simple configuration The humidity inside the vehicle can be determined.

また、着衣量を設定する手段は、外気温度センサ54によって検出した外気温度Toutに基づいて季節を判定し、この判定した季節に対応する着衣量を決定する構成であるため、簡易な構成で確実に着衣量を決定することができる。 Also, means for setting the amount of clothing in order to determine the season on the basis of the outside air temperature T out detected by the outside air temperature sensor 54, is configured to determine a clothing amount corresponding to the determined season, with a simple structure The amount of clothes can be determined reliably.

また、風速を設定する手段は、ブロア電圧と、吹き出しモードと、ブロア電圧と吹き出しモードと予想風速との関係を表す予想風速データとに基づいて、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気とセンターフェイス吹き出し口13A,13Bから吹き出す空調空気の風速を予想し、この予想風速と、目標制御量αとに基づき、サイドフェイス吹き出し口12A,12Bから吹き出す空調空気の風速vAと、センターフェイス吹き出し口13A,13Bから吹き出す空調空気の風速vBとを求める構成であるため、簡易な構成で確実に風速vA,vBを求めることができる。 Further, the means for setting the wind speed includes air blown from the side face outlets 12A and 12B based on the blower voltage, the blowout mode, and the expected wind speed data representing the relationship between the blower voltage, the blowout mode, and the expected wind speed. The wind speed of the conditioned air blown out from the center face outlets 13A and 13B is predicted, and the air speed v A of the conditioned air blown out from the side face outlets 12A and 12B and the center face blowout based on the predicted wind speed and the target control amount α. because the mouth 13A, is configured to determine a wind velocity v B of the conditioned air blown from 13B, it can be obtained reliably wind velocity v a, v B with a simple configuration.

本発明は自動車の空気調和方法及び自動車用空気調和装置に関するものであり、特に窓ガラスを透過する冷輻射や温輻射の影響を取り除く場合に適用して有用なものである。   The present invention relates to an automotive air conditioning method and an automotive air conditioning apparatus, and is particularly useful when applied to remove the influence of cold radiation and thermal radiation that permeate through a window glass.

本発明の実施の形態例に係る自動車用空気調和装置が適用された自動車の車室内の様子を示す平面図である。It is a top view which shows the mode of the vehicle interior of the motor vehicle to which the air conditioning apparatus for motor vehicles based on the embodiment of this invention was applied. 前記自動車用空気調和装置の構成図である。It is a block diagram of the said air conditioning apparatus for motor vehicles. 前記自動車用空気調和装置のコントローラの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the controller of the said air conditioning apparatus for motor vehicles. (a)は乗員の上半身の車内窓ガラス側部に対する自動車の窓ガラス面の表面積比を示す説明図、(b)は乗員の上半身の車内中央側部に対する前記窓ガラス面の表面積比を示す説明図である。(A) is explanatory drawing which shows the surface area ratio of the window glass surface of the motor vehicle with respect to the vehicle interior window glass side part of a passenger | crew's upper body, (b) is description which shows the surface area ratio of the said window glass surface with respect to the vehicle interior center side part of a passenger | crew's upper body. FIG. 前記自動車用空気調和装置におけるブロア電圧と吹き出しモードと予想風速との関係を表すデータをグラフで示した図である。It is the figure which showed the data showing the relationship between the blower voltage in the said air conditioning apparatus for motor vehicles, the blowing mode, and the estimated wind speed with the graph. 前記自動車用空気調和装置における風量調整ダンパの開度に応じた車内窓ガラス側の吹き出し風量と車内中央側の吹き出し風量との関係を示すグラフである。It is a graph which shows the relationship between the amount of blowing air by the side of a vehicle window glass according to the opening degree of the air volume adjustment damper in the said air conditioning apparatus for motor vehicles, and the amount of blowing air by the side of a vehicle center.

符号の説明Explanation of symbols

1 自動車
2 車室
3A,3B 窓ガラス
3A−1 前端
3A−2 後端
4A,4B 窓ガラス
5 運転席
6 助手席
7 後部座席
8 ハンドル
9 ドライバー
9A 車内窓ガラス側部
9B 車両中央側部
9a 右肩
9b 右腕
9c 顔の右側
9d 左肩
9e 左腕
9f 顔の左側
10 同乗者
10A 車内窓ガラス側部
10B 車両中央側部
10a 左肩
10b 左腕
10c 顔の左側
10d 右肩
10e 右腕
10f 顔の右側
11 ダッシュボード
12A,12B サイドフェイス吹き出し口
13A,13B センターフェイス吹き出し口
14A,14B フット吹き出し口
20 主ダクト
20a ヒーターコアバイパス通路
21 ブロア
22 エバポレータ
23 ヒーターコア
24 エアミックスダンパ
25 圧縮機
26 コンデンサ
27 膨張弁
28 冷媒配管
29 ファン
30 ウォーターポンプ
31 フェイス側ダクト
32 フット側ダクト
33 サイド側ダクト
34 センター側ダクト
35 右側ダクト
36 左側ダクト
37 右側ダクト
38 左側ダクト
39 運転席側ダクト
40 助手席側ダクト
41,42 モードダンパ
43 風量調整ダンパ
51 コントローラ
52 車内温度センサ
53 日射量センサ
54 外気温度センサ
55 空調操作部
61 輻射温度演算部
62 第1季節判定部
63 湿度決定部
64 第2季節判定部
65 着衣量決定部
66 PMV演算部
67 活動量設定部
68 風速判定部
69 吹き出しモード
70 ブロア電圧
71 目標制御量演算部
72 風量調整ダンパ駆動部
DESCRIPTION OF SYMBOLS 1 Car 2 Car interior 3A, 3B Window glass 3A-1 Front end 3A-2 Rear end 4A, 4B Window glass 5 Driver's seat 6 Passenger seat 7 Rear seat 8 Handle 9 Driver 9A Car window glass side 9B Vehicle center side 9a Right Shoulder 9b Right arm 9c Right side of face 9d Left shoulder 9e Left arm 9f Left side of face 10 Passenger 10A Car window side 10B Vehicle center side 10a Left shoulder 10b Left arm 10c Left side 10d Right shoulder 10e Right arm 10f Right side 11 Dashboard 12 , 12B Side face outlet 13A, 13B Center face outlet 14A, 14B Foot outlet 20 Main duct 20a Heater core bypass passage 21 Blower 22 Evaporator 23 Heater core 24 Air mix damper 25 Compressor 26 Condenser 27 Expansion valve 28 Refrigerant piping 9 Fan 30 Water pump 31 Face side duct 32 Foot side duct 33 Side side duct 34 Center side duct 35 Right side duct 36 Left side duct 37 Right side duct 38 Left side duct 39 Driver side duct 40 Front passenger side duct 41, 42 Mode damper 43 Air volume Adjustment damper 51 Controller 52 Car interior temperature sensor 53 Solar radiation sensor 54 Outside air temperature sensor 55 Air-conditioning operation unit 61 Radiation temperature calculation unit 62 First season determination unit 63 Humidity determination unit 64 Second season determination unit 65 Clothing amount determination unit 66 PMV calculation unit 67 Activity amount setting unit 68 Wind speed determination unit 69 Blowout mode 70 Blower voltage 71 Target control amount calculation unit 72 Air volume adjustment damper drive unit

Claims (7)

車内温度と、車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速及び車内中央側のフェイス吹き出し口から吹き出す空調空気の風速と、前記窓ガラスを透過して乗員が受ける輻射などの車内窓ガラス側輻射温度及び車内中央側輻射温度と、車内湿度と、前記乗員の着衣量と、前記乗員の活動量とに基づいて、PMV演算を行うことにより、前記乗員の上半身の車内窓ガラス側部のPMV値である車内窓ガラス側PMVAと、前記乗員の上半身の車内中央側部のPMV値である車内中央側PMVBとを求め、
この車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBとが等しくなるように、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整することを特徴とする自動車の空気調和方法。
Vehicle interior window glass, such as the temperature inside the vehicle, the wind speed of the conditioned air blown out from the face blowout port on the side of the vehicle window glass, and the air velocity of the conditioned air blown out from the face blowout port on the center side in the vehicle, and radiation received by the passenger through the window glass By performing PMV calculation on the basis of the side radiation temperature, the center side radiation temperature, the interior humidity, the amount of clothing of the occupant, and the amount of activity of the occupant, the side window of the interior window glass of the occupant's upper body is obtained. The vehicle window glass side PMV A that is the PMV value and the vehicle center side PMV B that is the PMV value of the vehicle interior center side portion of the upper body of the occupant are obtained,
Based on the the vehicle window glass side PMV A and the interior central side PMV B, so that the interior window glass side PMV A and the interior central side PMV B are equal, the conditioned air blown from the interior window glass side of the face outlet An air conditioning method for an automobile, comprising adjusting a ratio between a wind speed and a wind speed of conditioned air blown out from the face outlet at the center in the vehicle.
車内温度を設定する車内温度設定手段と、
空調空気の風速を設定する風速設定手段と、
窓ガラスを透過して乗員が受ける車内窓ガラス側輻射温度及び車内中央側輻射温度を設定する輻射温度設定手段と、
車内湿度を設定する湿度設定手段と、
前記乗員の着衣量を設定する着衣量設定手段と、
前記乗員の活動量を設定する活動量設定手段と、
前記車内温度設定手段によって設定された前記車内温度と、前記風速設定手段によって設定された車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速及び車内中央側のフェイス吹き出し口から吹き出す空調空気の風速と、前記輻射温度設定手段によって設定された前記乗員の受ける輻射などの車内窓ガラス側輻射温度及び車内中央側輻射温度と、前記湿度設定手段によって設定された車内湿度と、前記着衣量設定手段によって設定された前記乗員の着衣量と、前記活動量設定手段によって設定された前記乗員の活動量とに基づいて、PMV演算を行うことにより、前記乗員の上半身の車内窓ガラス側部のPMV値である車内窓ガラス側PMVAと、前記乗員の上半身の車内中央側部のPMV値である車内中央側PMVBとを求めるPMV演算手段と、
このPMV演算手段によって求められた車内窓ガラス側PMVAと車内中央側PMVBとに基づき、車内窓ガラス側PMVAと車内中央側PMVBが等しくなるように、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速との比率を調整する風量調整手段とを有することを特徴とする自動車用空気調和装置。
In-vehicle temperature setting means for setting the in-vehicle temperature,
Wind speed setting means for setting the wind speed of the conditioned air;
Radiation temperature setting means for setting the vehicle window glass side radiation temperature and the vehicle center side radiation temperature received by the passenger through the window glass,
Humidity setting means for setting the inside humidity of the vehicle;
Clothing amount setting means for setting the amount of clothing of the occupant;
Activity amount setting means for setting the amount of activity of the occupant;
The in-vehicle temperature set by the in-vehicle temperature setting means, the wind speed of the conditioned air blown out from the face blowout port on the in-car window glass side set by the wind speed setting means, and the wind speed of the conditioned air blown out from the face blowout port in the center inside the vehicle And the vehicle window glass side radiation temperature and the vehicle center side radiation temperature such as radiation received by the occupant set by the radiation temperature setting means, the vehicle interior humidity set by the humidity setting means, and the clothing amount setting means By performing PMV calculation based on the set amount of occupant's clothing and the amount of activity of the occupant set by the activity amount setting means, the PMV value of the passenger's upper body window glass side of the occupant is obtained. An in-car window glass side PMV A and an in-car center side PMV B which is the PMV value of the occupant's upper body in the car center side part are obtained. PMV calculation means
Based on the vehicle window glass side PMV A obtained and the interior central side PMV B by the PMV calculating means, so that the interior window glass side PMV A and the interior central side PMV B equal, balloon face of the vehicle window glass side An air conditioner for an automobile, comprising air volume adjusting means for adjusting a ratio between a wind speed of the conditioned air blown from the mouth and a wind speed of the conditioned air blown from the face outlet on the center side in the vehicle.
請求項2に記載の自動車用空気調和装置において、
前記風量調整手段は、
前記車内窓ガラス側のフェイス吹き出し口に通じる第1ダクトの入口と、前記車内中央側のフェイス吹き出し口に通じる第2ダクトの入口との間に設けられて、前記第1ダクトの入口側と前記第2ダクトの入口側とに回動可動な風量調整ダンパと、
前記PMV演算手段によって求められた車内窓ガラス側PMVAと車内中央側PMVBとの差に基づいて求めた目標制御量に基づき、前記風量調整ダンパの開度を調整するダンパ開度調整手段とを有してなるものであることを特徴とする自動車用空気調和装置。
The automobile air conditioner according to claim 2,
The air volume adjusting means is
Provided between the inlet of the first duct leading to the face outlet on the vehicle window glass side and the inlet of the second duct leading to the face outlet on the center side of the vehicle, the inlet side of the first duct and the An air volume adjustment damper that is rotatable to the inlet side of the second duct;
Damper opening adjusting means for adjusting the opening of the air volume adjusting damper based on the target control amount obtained based on the difference between the vehicle interior window glass side PMV A and the vehicle central side PMV B obtained by the PMV calculating means; An air conditioner for automobiles, characterized by comprising:
請求項2に記載の自動車用空気調和装置において、
前記車内温度設定手段としての車内温度センサと、
日射量センサと、
外気温度センサとを有し、
前記輻射温度設定手段は、前記車内温度センサによって検出した車内温度と、前記日射量センサによって検出した日射量と、前記外気温度センサによって検出した外気温度と、前記乗員の上半身の車内窓ガラス側部に対する窓ガラス面の表面積比及び前記乗員の上半身の車内中央側部に対する前記窓ガラス面の表面積比とに基づき、ステファン・ボルツマンの式により、前記車内窓ガラス側輻射温度と前記車内中央側輻射温度とを求める構成であることを特徴とする自動車用空気調和装置。
The automobile air conditioner according to claim 2,
An in-vehicle temperature sensor as the in-vehicle temperature setting means;
A solar radiation sensor;
An outside temperature sensor,
The radiation temperature setting means includes a vehicle interior temperature detected by the vehicle interior temperature sensor, a solar radiation amount detected by the solar radiation amount sensor, an outdoor air temperature detected by the outdoor air temperature sensor, and an interior window glass side portion of the upper body of the occupant. The window glass side radiation temperature and the vehicle center side radiation temperature are calculated based on the Stefan-Boltzmann equation based on the surface area ratio of the window glass surface to the passenger compartment and the surface area ratio of the window glass surface to the vehicle interior center side of the upper body of the occupant. An air conditioner for automobiles, characterized in that
請求項2に記載の自動車用空気調和装置において、
外気温度センサを有し、
前記湿度設定手段は、前記外気温度センサによって検出した外気温度に基づいて季節を判定し、この判定した季節に対応する車内湿度を決定する構成であることを特徴とする自動車用空気調和装置。
The automobile air conditioner according to claim 2,
An outside temperature sensor,
The automotive air conditioner is characterized in that the humidity setting means is configured to determine a season based on an outside air temperature detected by the outside air temperature sensor, and to determine an in-vehicle humidity corresponding to the determined season.
請求項2に記載の自動車用空気調和装置において、
外気温度センサを有し、
前記着衣量設定手段は、前記外気温度センサによって検出した外気温度に基づいて季節を判定し、この判定した季節に対応する着衣量を決定する構成であることを特徴とする自動車用空気調和装置。
The automobile air conditioner according to claim 2,
An outside temperature sensor,
The automotive air conditioner is characterized in that the clothing amount setting means is configured to determine a season based on an outside air temperature detected by the outside air temperature sensor and determine a clothing amount corresponding to the determined season.
請求項3に記載の自動車用空気調和装置において、
前記風速設定手段は、
空調空気を送給するブロアの電圧と、吹き出しモードと、ブロア電圧と吹き出しモードと予想風速との関係を表す予想風速データとに基づいて、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気と前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速を予想し、
この予想風速と、前記目標制御量とに基づき、前記車内窓ガラス側のフェイス吹き出し口から吹き出す空調空気の風速と、前記車内中央側のフェイス吹き出し口から吹き出す空調空気の風速とを求める構成であることを特徴とする自動車用空気調和装置。
The automotive air conditioner according to claim 3,
The wind speed setting means includes
Based on the voltage of the blower that supplies the conditioned air, the blowing mode, and the predicted wind speed data that represents the relationship between the blower voltage, the blowing mode, and the expected wind speed, Predicting the wind speed of the conditioned air blown from the face outlet on the center side in the vehicle,
Based on the predicted wind speed and the target control amount, the wind speed of the conditioned air blown out from the face blowout port on the interior window glass side and the wind speed of the conditioned air blown out from the face blowout port on the center side inside the vehicle are obtained. An automotive air conditioner characterized by the above.
JP2004372673A 2004-12-24 2004-12-24 Air-conditioning method of automobile and air-conditioner for automobile Withdrawn JP2006176034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372673A JP2006176034A (en) 2004-12-24 2004-12-24 Air-conditioning method of automobile and air-conditioner for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372673A JP2006176034A (en) 2004-12-24 2004-12-24 Air-conditioning method of automobile and air-conditioner for automobile

Publications (1)

Publication Number Publication Date
JP2006176034A true JP2006176034A (en) 2006-07-06

Family

ID=36730547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372673A Withdrawn JP2006176034A (en) 2004-12-24 2004-12-24 Air-conditioning method of automobile and air-conditioner for automobile

Country Status (1)

Country Link
JP (1) JP2006176034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242560A (en) * 2015-11-05 2016-01-13 重庆电子工程职业学院 Human comfort control method and device based on Android intelligent terminal
CN109109887A (en) * 2018-09-04 2019-01-01 上海科泰运输制冷设备有限公司 A kind of vehicle air conditioning temprature control method and system
CN114407605A (en) * 2021-12-31 2022-04-29 重庆德力达新能源科技有限公司 Vehicle passenger thermal environment parameter algorithm and vehicle passenger thermal environment monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242560A (en) * 2015-11-05 2016-01-13 重庆电子工程职业学院 Human comfort control method and device based on Android intelligent terminal
CN109109887A (en) * 2018-09-04 2019-01-01 上海科泰运输制冷设备有限公司 A kind of vehicle air conditioning temprature control method and system
CN109109887B (en) * 2018-09-04 2019-12-10 上海科泰运输制冷设备有限公司 vehicle air conditioner temperature control method and system
CN114407605A (en) * 2021-12-31 2022-04-29 重庆德力达新能源科技有限公司 Vehicle passenger thermal environment parameter algorithm and vehicle passenger thermal environment monitoring method
CN114407605B (en) * 2021-12-31 2023-07-21 重庆德力达新能源科技有限公司 Vehicle occupant thermal environment parameter algorithm and vehicle occupant thermal environment monitoring method

Similar Documents

Publication Publication Date Title
JP5445514B2 (en) Air conditioner for vehicles
WO2013088727A1 (en) Vehicle air-conditioning device
JP2006001310A (en) Vehicular inside/outside air change control device
WO2016098331A1 (en) Vehicular air-conditioning device
JP2010030435A (en) Air conditioner for vehicle
JP6453574B2 (en) Air conditioner for vehicles
JP5848900B2 (en) Vehicle control device
JP2005335527A (en) Air conditioner for vehicle
JP4812416B2 (en) Air conditioner for vehicles
JP2006176034A (en) Air-conditioning method of automobile and air-conditioner for automobile
JP5649122B2 (en) Vehicle control device
JP7315429B2 (en) Temperature control device controller for convertible vehicle
JP4066508B2 (en) Air conditioner for vehicles
JP3918546B2 (en) Air conditioner for vehicles
JP2014172479A (en) Air-conditioning system for vehicle
JP4458908B2 (en) Air conditioner for vehicles
JPH06143975A (en) Automobile air conditioner
JP5763945B2 (en) Vehicle control device
JP3627580B2 (en) Air conditioner for vehicles
JP4613942B2 (en) Air conditioner for vehicles
JP2002012020A (en) Air conditioner for open car
JP6449582B2 (en) Air conditioner for vehicles
JP2008143406A (en) Automatic air conditioner control device of automobile
JP2006335117A (en) Air conditioner for vehicle
JP3772432B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304