JP2006175787A - Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet - Google Patents

Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet Download PDF

Info

Publication number
JP2006175787A
JP2006175787A JP2004373068A JP2004373068A JP2006175787A JP 2006175787 A JP2006175787 A JP 2006175787A JP 2004373068 A JP2004373068 A JP 2004373068A JP 2004373068 A JP2004373068 A JP 2004373068A JP 2006175787 A JP2006175787 A JP 2006175787A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber bundle
pellet
reinforcing fiber
long fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373068A
Other languages
Japanese (ja)
Inventor
Seiichiro Eto
誠一郎 江藤
Toshihiro Hatsu
敏博 発
Hideaki Tanisugi
英昭 谷杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004373068A priority Critical patent/JP2006175787A/en
Publication of JP2006175787A publication Critical patent/JP2006175787A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining a core-shell type continuous-fiber pellet which has little fuzz and which is excellent in handleability, and the core-shell type continuous-fiber pellet which has little fuzz and which is excellent in handleability. <P>SOLUTION: This manufacturing method is used for manufacturing the core-shell type continuous fiber-reinforced thermoplastic resin pellet wherein a reinforced fiber bundle [A] or a thermoplastic polymer-impregnated reinforced fiber bundle [A<SB>C</SB>] is coated with a thermoplastic resin [B]. In the fiber bundle [A<SB>C</SB>], the fiber bundle [A] is impregnated with a thermoplastic polymer [C] wherein a melt viscosity based on the JIS K7199 standard [melting temperature: softening temperature (or melting point) +30°C, and shear rate: 10<SP>3</SP><SB>s</SB><SP>-1</SP>] is in the range of 0.1-10 Pa s. Characteristically, the molten thermoplastic resin [B] is imparted to the fiber bundle [A] or [A<SB>C</SB>]; the fiber bundle [A] or [A<SB>C</SB>] is coated with the resin [B]; and the fiber bundle [A] or [A<SB>C</SB>] is cut to a length of 3-20 mm after heat is removed on condition of 5-50 kJ/(kg s). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、種々の機械特性や成形品外観に優れるだけでなく、芯−鞘型の長繊維ペレットの鞘部分に割れが非常に少ないため、強化繊維の毛羽発生量がごく僅かである長繊維強化熱可塑性樹脂ペレットの製造方法、および成形品表面への繊維毛羽の発生がなく、成形の際に成形機のホッパー部で毛羽がブリッジングを起こすことのない、取り扱い性に優れた長繊維強化熱可塑性樹脂ペレットに関する。   The present invention is not only excellent in various mechanical properties and appearance of the molded product, but also has very few cracks in the sheath portion of the core-sheath type long fiber pellet, and therefore the long fiber in which the fluff generation amount of the reinforcing fiber is very small Production method of reinforced thermoplastic resin pellets and long fiber reinforcement with excellent handleability, without generation of fiber fluff on the surface of the molded product, and without causing bridging of the fluff in the hopper of the molding machine during molding It relates to thermoplastic resin pellets.

熱可塑性樹脂の機械特性を向上させる目的でガラス繊維や炭素繊維等の強化繊維を複合化させる技術が知られている。機械特性の向上には成形品中での強化繊維の繊維長が大きく寄与する。成形品中での繊維長を長くするために、ペレット中の強化繊維を長くした、いわゆる長繊維ペレットが求められている。   A technique for combining reinforced fibers such as glass fibers and carbon fibers for the purpose of improving the mechanical properties of thermoplastic resins is known. The fiber length of the reinforcing fiber in the molded product greatly contributes to the improvement of the mechanical properties. In order to lengthen the fiber length in a molded article, what is called a long fiber pellet which lengthened the reinforcing fiber in a pellet is calculated | required.

長繊維ペレットには、プルトルージョン技術を利用して強化繊維の束に樹脂を含浸させた樹脂含浸型ペレットと、ワイヤーコーティングの技術を利用して強化繊維の束を熱可塑性樹脂で被覆した芯−鞘型ペレットに大別され、芯−鞘型の長繊維ペレットは生産性に優れるという利点がある。また、芯−鞘型長繊維ペレットを成形した場合、成形品中での強化繊維の分散が悪いという課題があったが、強化繊維束に低粘度の熱可塑性重合体塗布・含浸することで、強化繊維の成形品への分散が優れ、成形品の機械特性および外観に優れる技術があった。(特許文献1参照)
特開平10−138379号公報
The long fiber pellets include a resin impregnated pellet obtained by impregnating a reinforcing fiber bundle with resin using a pultrusion technique, and a core obtained by coating a reinforcing fiber bundle with a thermoplastic resin using a wire coating technique. The core-sheath type long fiber pellet is roughly divided into sheath-type pellets, and has an advantage of excellent productivity. Moreover, when the core-sheath type long fiber pellet was molded, there was a problem that the dispersion of the reinforcing fiber in the molded product was bad, but by applying and impregnating the low-viscosity thermoplastic polymer to the reinforcing fiber bundle, There has been a technique in which the reinforcing fibers are excellently dispersed in the molded product, and the mechanical properties and appearance of the molded product are excellent. (See Patent Document 1)
Japanese Patent Laid-Open No. 10-138379

芯−鞘型の長繊維ペレットは、通常のペレットより毛羽が多く、取扱い性が劣っているという問題がある。従って本発明の目的は、毛羽が少なく取扱い性に優れた芯−鞘型の長繊維ペレットを得る方法および毛羽が少なく取扱い性に優れた芯−鞘型の長繊維ペレットを提供することにある。   Core-sheath type long fiber pellets have a problem that they have more fuzz than ordinary pellets and are inferior in handleability. Accordingly, an object of the present invention is to provide a method for obtaining a core-sheath type long fiber pellet with less fluff and excellent handleability, and a core-sheath type long fiber pellet with less fuzz and excellent handleability.

本発明者らは、従来法による芯−鞘型の長繊維ペレットに毛羽が多い原因について、鞘が損傷しているためであろうとの考えの下に原因を検討したところ、鞘の損傷は主として製造工程中の冷却工程に原因があることを見出すとともに、冷却条件を特定の条件としたところ、従来法と比較して鞘の損傷が少なく毛羽が格段に少ない製造方法を提供できることを見出した。すなわち、本発明で用いる製造方法は、
(1)強化繊維束[A]、または、該強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を含浸した熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]が被覆されてなる芯−鞘型の長繊維ペレットの製造方法であって、[A]、または、[A]に溶融した熱可塑性樹脂[B]を付与、被覆し、5〜50kJ/(kg・s)の条件で除熱した後、3〜20mmの範囲の長さに切断することを特徴とする長繊維強化熱可塑性樹脂ペレットの製造方法。
The present inventors examined the cause of the core-sheath-type long fiber pellet according to the conventional method with a lot of fluff, based on the idea that the sheath was damaged. As a result of finding that there is a cause in the cooling process during the manufacturing process and setting the cooling condition to a specific condition, it has been found that a manufacturing method can be provided with less damage to the sheath and less fuzz as compared with the conventional method. That is, the manufacturing method used in the present invention is:
(1) The reinforcing fiber bundle [A] or the reinforcing fiber bundle [A] has a melt viscosity based on JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: 10 3 s −1 ]. A core-sheath type in which a thermoplastic resin [B] is coated on a thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] impregnated with a thermoplastic polymer [C] in the range of 0.1 to 10 Pa · s. A method for producing long fiber pellets, in which [A] or [A C ] is coated with a molten thermoplastic resin [B], coated, and heat is removed under conditions of 5 to 50 kJ / (kg · s). Then, it cut | disconnects to the length of the range of 3-20 mm, The manufacturing method of the long fiber reinforced thermoplastic resin pellet characterized by the above-mentioned.

(2)切断時の熱可塑性樹脂[B]の表面温度が、該熱可塑性樹脂[B]の荷重たわみ温度(JIS K 7191規格、荷重:1.80MPa)より0〜100℃高い(1)に記載の長繊維強化熱可塑性樹脂ペレットの製造方法。   (2) The surface temperature of the thermoplastic resin [B] at the time of cutting is 0 to 100 ° C. higher than the deflection temperature under load of the thermoplastic resin [B] (JIS K 7191 standard, load: 1.80 MPa) (1) The manufacturing method of the long fiber reinforced thermoplastic resin pellet of description.

(3)ペレットの断面において、熱可塑性樹脂[B]による被覆部分の平均厚みが平均直径の15〜40%の範囲とするよう熱可塑性樹脂[B]の付与量を設定する(1)〜(2)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。   (3) In the cross section of the pellet, the application amount of the thermoplastic resin [B] is set so that the average thickness of the coated portion with the thermoplastic resin [B] is in the range of 15 to 40% of the average diameter (1) to ( The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of 2).

(4)強化繊維束[A]が炭素繊維であることを特徴とする(1)〜(3)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。   (4) The method for producing a long fiber reinforced thermoplastic resin pellet according to any one of (1) to (3), wherein the reinforcing fiber bundle [A] is a carbon fiber.

(5)強化繊維束[A]に熱可塑性樹脂[B]を被覆するに当たり、強化繊維束[A]の単位長さ当たりの重量に対し、付与する熱可塑性樹脂[B]の重量が単位長さ当たり1.5〜19倍量である(1)〜(4)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。   (5) When the reinforcing fiber bundle [A] is coated with the thermoplastic resin [B], the weight of the thermoplastic resin [B] to be applied is unit length with respect to the weight per unit length of the reinforcing fiber bundle [A]. The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of (1)-(4) which is 1.5-19 times amount per thickness.

(6)熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]を被覆するに当たり、熱可塑性重合体含浸強化繊維束[A]中の強化繊維束[A]の単位長さ当たりの重量に対し、熱可塑性樹脂[B]と熱可塑性重合体[C]の合計重量が単位長さ当たりの重量で1.5〜19倍量となるように熱可塑性樹脂[B]の付与量を設定する(1)〜(4)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 (6) When the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] is coated with the thermoplastic resin [B], the unit length of the reinforcing fiber bundle [A] in the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] Of the thermoplastic resin [B] so that the total weight of the thermoplastic resin [B] and the thermoplastic polymer [C] is 1.5 to 19 times the unit length with respect to the weight per unit thickness. The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of (1)-(4) which sets the provision amount.

(7)熱可塑性重合体[C]が、フェノールもしくはフェノールの置換基誘導体と脂肪族炭化水素との縮合によって得られ、かつ重量平均分子量が300〜1000の範囲の熱可塑性重合体である(1)〜(4)、または(6)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。   (7) The thermoplastic polymer [C] is a thermoplastic polymer obtained by condensation of phenol or a substituent derivative of phenol with an aliphatic hydrocarbon and having a weight average molecular weight in the range of 300 to 1,000 (1 ) To (4) or a method for producing a long fiber reinforced thermoplastic resin pellet according to any one of (6).

(8)強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の熱可塑性樹脂[B]による被覆体(ガット)の冷却工程において、前記被覆体(ガット)を冷媒を通した箱体の上面に接触させて冷却する(1)〜(7)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 (8) In the step of cooling the covering (gut) with the thermoplastic resin [B] of the reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ], the covering (gut) is used as a refrigerant. The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of (1)-(7) which is made to contact and cools the upper surface of the box passed through.

(9)強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の熱可塑性樹脂[B]による被覆体(ガット)の冷却工程において、前記被覆体(ガット)を冷風により冷却する(1)〜(7)のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 (9) In the step of cooling the covering (gut) with the thermoplastic resin [B] of the reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ], the covering (gut) is cooled with cold air The method for producing a long fiber reinforced thermoplastic resin pellet according to any one of (1) to (7), wherein the pellet is cooled by heating.

(10)強化繊維束[A]、または、該強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を含浸した熱可塑性重合体含浸強化繊維束[A]の周囲を熱可塑性樹脂[B]で被覆した形態の芯−鞘型の3〜20mmの範囲の長さの長繊維ペレットであって、毛羽の含有率がペレット全体に対し0〜50ppmである長繊維強化熱可塑性樹脂ペレット。 (10) The reinforcing fiber bundle [A] or the reinforcing fiber bundle [A] has a melt viscosity based on JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: 10 3 s −1 ]. A core-sheath in which the periphery of a thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] impregnated with a thermoplastic polymer [C] in the range of 0.1 to 10 Pa · s is coated with a thermoplastic resin [B] A long fiber pellet having a length in the range of 3 to 20 mm of the mold, wherein the fluff content is 0 to 50 ppm with respect to the whole pellet.

(11)強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の周囲を熱可塑性樹脂[B]で被覆した形態の芯−鞘型の3〜20mmの範囲の長さの長繊維ペレットであって、ペレットの鞘部分に割れのあるペレットの含有率が、0〜1%である長繊維強化熱可塑性樹脂ペレット。 (11) A length in the range of 3 to 20 mm of the core-sheath type in which the periphery of the reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] is covered with the thermoplastic resin [B]. A long fiber reinforced thermoplastic resin pellet having a content of 0 to 1% of a pellet having a crack in the sheath portion of the pellet.

(12)熱可塑性樹脂[B]の荷重たわみ温度(JIS K 7191規格、荷重:1.80MPa)が、25℃〜300℃の範囲である(10)または(11)のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。   (12) Deflection temperature (JIS K 7191 standard, load: 1.80 MPa) of the thermoplastic resin [B] is in the range of 25 ° C. to 300 ° C. (10) or (11) Fiber reinforced thermoplastic resin pellets.

(13)ペレットの断面において、熱可塑性樹脂[B]による被覆部分の平均厚みが平均直径の5〜40%の範囲である(10)〜(12)のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。   (13) The long fiber reinforced thermoplasticity according to any one of (10) to (12), wherein the average thickness of the coated portion of the thermoplastic resin [B] is in the range of 5 to 40% of the average diameter in the cross section of the pellet. Resin pellets.

(14)強化繊維束[A]が炭素繊維であることを特徴とする(10)〜(13)のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。   (14) The long fiber reinforced thermoplastic resin pellet according to any one of (10) to (13), wherein the reinforcing fiber bundle [A] is a carbon fiber.

(15)強化繊維の含有率が5〜40重量%である(10)〜(13)のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。   (15) The long fiber reinforced thermoplastic resin pellet according to any one of (10) to (13), wherein the content of the reinforcing fiber is 5 to 40% by weight.

(16)熱可塑性重合体[C]が、フェノールもしくはフェノールの置換基誘導体と脂肪族炭化水素との縮合によって得られ、かつ重量平均分子量が300〜1000の範囲である熱可塑性重合体である(10)〜(15)のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。   (16) The thermoplastic polymer [C] is a thermoplastic polymer obtained by condensation of phenol or a substituent derivative of phenol with an aliphatic hydrocarbon and having a weight average molecular weight of 300 to 1,000 ( The long fiber reinforced thermoplastic resin pellet according to any one of 10) to (15).

本発明によれば、強化繊維の毛羽の発生が非常に少ない芯−鞘型の長繊維ペレットを得ることができ、その結果、成形時のトラブルが無く、外観良好で機械特性に優れた成形品を得ることができる。   According to the present invention, it is possible to obtain a core-sheath-type long fiber pellet with very little occurrence of fluff of reinforcing fibers, and as a result, there is no trouble at the time of molding, and a molded product having good appearance and excellent mechanical properties. Can be obtained.

以下、本発明についてさらに詳しく述べる。本発明の芯−鞘型長繊維ペレットの製造方法は、強化繊維束[A]、または、該強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を含浸した熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]が被覆されてなる芯−鞘型の長繊維ペレットの製造方法であって、[A]、または、[A]に溶融した熱可塑性樹脂[B]を付与、被覆し、5〜50kJ/(kg・s)の条件で除熱した後、3〜20mmの範囲の長さに切断することを特徴とする長繊維強化熱可塑性樹脂ペレットの製造方法である。 The present invention will be described in further detail below. The production method of the core-sheath type long fiber pellet of the present invention includes the reinforcing fiber bundle [A] or the reinforcing fiber bundle [A] according to JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate] : Thermoplastic resin impregnated reinforcing fiber bundle [A C ] impregnated with thermoplastic polymer [C] having a melt viscosity in the range of 0.1 to 10 Pa · s based on 10 3 s −1 ]. B] is a method for producing core-sheath type long fiber pellets coated with [A] or [A C ] and coated with a molten thermoplastic resin [B], and coated with 5 to 50 kJ After the heat removal under the condition of / (kg · s), it is cut to a length in the range of 3 to 20 mm.

ここで使用する強化繊維束[A]としては、炭素繊維、ガラス繊維、金属繊維、炭素繊維やガラス繊維にニッケルや銅などの金属を被覆した金属被覆繊維等のロービング、ヤーン等の連続繊維が使用できるが、必ずしもこれに限定されるものではない。また、これらの繊維は、公知の表面処理剤(集束剤)で処理されていても良い。好ましい強化繊維としては、成形品の機械特性と軽量性のバランスから炭素繊維が好ましい。   The reinforcing fiber bundle [A] used here includes carbon fiber, glass fiber, metal fiber, roving such as metal-coated fiber obtained by coating carbon fiber or glass fiber with a metal such as nickel or copper, and continuous fiber such as yarn. Although it can be used, it is not necessarily limited to this. In addition, these fibers may be treated with a known surface treatment agent (bundling agent). As a preferable reinforcing fiber, carbon fiber is preferable from the balance of mechanical properties and lightness of the molded product.

また、強化繊維束[A]に代えて熱可塑性重合体含浸強化繊維束[A]を用いることも可能である。熱可塑性重合体含浸強化繊維束[A]は、強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を、含浸して作成する。強化繊維束[A]に熱可塑性重合体[C]を含浸するのは、同一ライン中で熱可塑性樹脂[B]を被覆する工程の前に設定しても良いし、別の装置で予め強化繊維束[A]に熱可塑性重合体[C]を含浸し巻き上げたものを作成しこれを用いても良い。 It is also possible to use a thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] instead of the reinforcing fiber bundle [A]. The thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] has a melt viscosity based on the reinforcing fiber bundle [A] based on JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: 10 3 s −1 ]. Is produced by impregnating a thermoplastic polymer [C] having a viscosity of 0.1 to 10 Pa · s. The impregnation of the reinforcing fiber bundle [A] with the thermoplastic polymer [C] may be set before the step of coating the thermoplastic resin [B] in the same line or may be reinforced in advance by another apparatus. A fiber bundle [A] impregnated with a thermoplastic polymer [C] may be prepared and used.

熱可塑性樹脂[B]は、ポリアミド樹脂、ポリエステル樹脂、液晶性ポリエステル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ABS樹脂等の熱可塑性樹脂から選ぶことができるが、必ずしもこれに限定されるものではない。好ましい樹脂としては、成形品の強度および、成形性の点から、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ABS樹脂等が挙げられる。   The thermoplastic resin [B] can be selected from thermoplastic resins such as polyamide resin, polyester resin, liquid crystalline polyester resin, polycarbonate resin, polyolefin resin, polyphenylene sulfide resin, polyphenylene ether resin, and ABS resin. It is not limited. Preferred resins include polyamide resin, polyester resin, polycarbonate resin, ABS resin and the like from the viewpoint of the strength of the molded product and moldability.

このような強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]を被覆して芯−鞘型の長繊維ペレットとする製造方法において、熱可塑性樹脂[B]の被覆方法は、特に限定はされないが、押出機の先端に取り付けた電線被覆用のコーティングダイの中に連続した強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]を通し、熱可塑性樹脂[B]を押出被覆することが好ましい。以降、前記熱可塑性樹脂[B]を被覆した後、切断前の電線状の熱可塑性樹脂による被覆体を、「ガット」と記載する。 In such a production method of a reinforcing fiber bundle [A] or a thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] coated with a thermoplastic resin [B] to form a core-sheath type long fiber pellet, The method of coating the plastic resin [B] is not particularly limited, but the reinforcing fiber bundle [A] continuous in the coating die for coating the electric wire attached to the tip of the extruder, or the thermoplastic polymer-impregnated reinforcing fiber It is preferable to extrusion coat the thermoplastic resin [B] through the bundle [A C ]. Hereinafter, a covering made of a wire-shaped thermoplastic resin after being coated with the thermoplastic resin [B] and before cutting is referred to as “gut”.

上記の強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]に熱硬化性樹脂[B]を被覆して得たガットは、後述の如く除熱した後、3〜20mmの長さに切断し、ペレットとする。切断方法は特に限定されず、例えば、ストランドカッターで切断することができる。 The gut obtained by coating the above-mentioned reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] with the thermosetting resin [B] Cut to a length of 20 mm to form pellets. The cutting method is not particularly limited, and for example, it can be cut with a strand cutter.

本発明の長繊維強化熱可塑性樹脂ペレットの製造方法では、熱可塑性樹脂[B]を付与、被覆後の冷却条件が、5〜50kJ/(kg・s)である必要がある。除熱条件が5kJ/(kg・s)未満であると、被覆樹脂が高温のまま切断されることになるために、ガットを切断する際、高温の樹脂で切断後のペレットがカッターの刃に付着しペレットの2度切りが生じる。2度切りが生じると、毛羽発生の原因となる。また、除熱条件が50kJ/(kg・s)より高くなると、被覆樹脂が冷えすぎて固くなり、ガットを切断する際に被覆部分が割れて毛羽が発生する。   In the method for producing a long fiber reinforced thermoplastic resin pellet of the present invention, the cooling condition after applying the thermoplastic resin [B] and coating needs to be 5 to 50 kJ / (kg · s). When the heat removal condition is less than 5 kJ / (kg · s), the coating resin is cut at a high temperature. Therefore, when cutting the gut, the pellets after cutting with the high-temperature resin are put on the cutter blade. It adheres and the pellet is cut twice. If the cutting occurs twice, fluffing may occur. On the other hand, when the heat removal condition is higher than 50 kJ / (kg · s), the coating resin becomes too cold and hard, and when the gut is cut, the coated portion is broken and fluff is generated.

切断時のガットの被覆樹脂の表面温度は、JIS K 7191規格(荷重:1.80MPa)に規定の方法で測定された、該熱可塑性樹脂の荷重たわみ温度より、0〜100℃高いことが好ましい。この温度領域で切断することで、ガットを切断する際被覆部分が割れて毛羽が発生したり、ガットを切断する際にペレットがカッターに付着したペレットの2度切りが起こったりすることをより効果的に防止することができるためである。   The surface temperature of the covering resin of the gut at the time of cutting is preferably 0 to 100 ° C. higher than the deflection temperature under load of the thermoplastic resin measured by the method defined in JIS K 7191 standard (load: 1.80 MPa). . By cutting in this temperature range, it is more effective that the coated part breaks and fluff is generated when cutting the gut, or that the pellet attached to the cutter is cut twice when the gut is cut. This is because it can be prevented.

ガットを冷却する方法は、特に限定されるものでなく、いかなる技術を用いても良いが、好ましくは、冷媒を通した箱体の上面にガットを接触させて冷却する方法、冷風をガットに吹き付けて冷却する方法、およびこれらを組み合わせた方法が挙げられる。これらの冷却方法は、除熱条件の制御が容易である上に、乾燥したペレットが得られるという利点がある。   The method for cooling the gut is not particularly limited, and any technique may be used. Preferably, the gut is brought into contact with the upper surface of the box through which the refrigerant is passed, and the gut is blown on the gut. And a cooling method and a combination thereof. These cooling methods are advantageous in that control of heat removal conditions is easy and dry pellets can be obtained.

また、本発明の芯−鞘型長繊維ペレットは、強化繊維束[A]、または、該強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を含浸した熱可塑性重合体含浸強化繊維束[A]の周囲を熱可塑性樹脂[B]で被覆した形態の芯−鞘型の3〜20mmの範囲の長さの長繊維ペレットであって、毛羽の含有率がペレット全体に対し0〜50ppmであることを特徴とする。毛羽の含有率がペレット全体に対し50ppmを超えて存在しないことにより、成形時に、成形機のホッパー部で毛羽のブリッジングを起こすことがなく、成形時の取り扱い性に優れるとともに、成形品表面に繊維毛羽の発生することが無く外観が良好な成形品が得られる。また、本発明の芯−鞘型長繊維ペレットは、強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の周囲を熱可塑性樹脂[B]で被覆した形態の芯−鞘型の3〜20mmの範囲の長さの長繊維ペレットであって、ペレットの鞘部分に割れのあるペレットの含有率が、0〜1%であることを特徴とする。ペレットの鞘部分に割れのあるペレットの含有率が、0〜1%であることにより、運搬時等の振動や外力により鞘が破損し、毛羽の発生が防止されることから、初期の毛羽が少ない利点が、輸送等により低下することが防げるという他にはない特長がある。これらの特長は本発明の製法を用いることにより得られる。 Further, the core-sheath type long fiber pellet of the present invention is a reinforcing fiber bundle [A] or JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: The thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] impregnated with the thermoplastic polymer [C] having a melt viscosity in the range of 0.1 to 10 Pa · s based on 10 3 s −1 ] is surrounded by a thermoplastic resin. A core-sheath type long fiber pellet with a length in the range of 3 to 20 mm coated with [B], wherein the fluff content is 0 to 50 ppm based on the whole pellet. Since the fluff content does not exceed 50 ppm with respect to the whole pellet, bridging of the fluff does not occur in the hopper part of the molding machine at the time of molding, and the handleability at the time of molding is excellent. A molded product with good appearance without fiber fluff is obtained. Further, the core-sheath type long fiber pellet of the present invention is a core having a form in which the periphery of the reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] is covered with the thermoplastic resin [B]. -It is a long fiber pellet of the length of the range of 3-20 mm of a sheath type, Comprising: The content rate of the pellet which has a crack in the sheath part of a pellet is 0 to 1%, It is characterized by the above-mentioned. Since the content rate of the pellet having a crack in the sheath portion of the pellet is 0 to 1%, the sheath is damaged by vibration or external force during transportation and the occurrence of fluff is prevented. There is a unique advantage that the small advantage can be prevented from being lowered by transportation or the like. These features can be obtained by using the manufacturing method of the present invention.

また、得られるペレットの断面において、熱可塑性樹脂[B]で被覆した部分の平均厚みが平均直径の15〜40%の範囲であることが好ましく、該範囲となるように熱可塑性樹脂[B]の付着量を設定することが好ましい。付着量は、熱可塑性樹脂[B]の供給量とライン速度により調節する。一般に被覆樹脂の平均厚みを、厚くするということは強化繊維量が相対的に低下することにつながるため、得られる成形品の機械特性向上の効果が小さくなる方向である。一方、被覆樹脂の平均厚みを、薄くすると得られる成形品の機械特性向上の効果上がるがガット切断時にペレットが割れ易い方向となる。かかる観点から、上記範囲となるように熱可塑性樹脂[B]の付着量を設定、調節することが好ましい。   Moreover, in the cross section of the pellet obtained, it is preferable that the average thickness of the portion coated with the thermoplastic resin [B] is in the range of 15 to 40% of the average diameter, and the thermoplastic resin [B] is within this range. It is preferable to set the adhesion amount of. The amount of adhesion is adjusted by the amount of thermoplastic resin [B] supplied and the line speed. In general, increasing the average thickness of the coating resin leads to a relative decrease in the amount of reinforcing fibers, and therefore the effect of improving the mechanical properties of the obtained molded product tends to be reduced. On the other hand, if the average thickness of the coating resin is reduced, the effect of improving the mechanical properties of the molded product obtained is improved, but the pellets are easily broken during gut cutting. From this viewpoint, it is preferable to set and adjust the adhesion amount of the thermoplastic resin [B] so as to be in the above range.

強化繊維の含有率は特に限定されるものでないが、得られる成形品の機械特性が高く、成形時の条件設定の自由度が高いことから強化繊維の含有率は、5〜40重量%が好ましい。   The content of the reinforcing fiber is not particularly limited, but the content of the reinforcing fiber is preferably 5 to 40% by weight because the obtained molded article has high mechanical properties and a high degree of freedom in setting conditions during molding. .

かかる繊維含有率のペレットを得るために、強化繊維束[A]に熱可塑性樹脂[B]を被覆する場合には、強化繊維束[A]の単位長さ当たりの重量に対し、付与する熱可塑性樹脂[B]の重量を単位長さ当たり1.5〜19倍量に設定し、付与量を調節すればよい。また、熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]を被覆する場合には、熱可塑性重合体含浸強化繊維束[A]中の強化繊維束[A]の単位長さ当たりの重量に対し、熱可塑性樹脂[B]と熱可塑性重合体[C]の合計重量が単位長さ当たりの重量で1.5〜19倍量となるように熱可塑性樹脂[B]の付与量を設定し調節すればよい。 In order to obtain pellets having such a fiber content, when the reinforcing fiber bundle [A] is coated with the thermoplastic resin [B], the heat applied to the weight per unit length of the reinforcing fiber bundle [A]. The weight of the plastic resin [B] may be set to 1.5 to 19 times the unit length, and the applied amount may be adjusted. When the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] is coated with the thermoplastic resin [B], the unit of the reinforcing fiber bundle [A] in the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ]. The thermoplastic resin [B] so that the total weight of the thermoplastic resin [B] and the thermoplastic polymer [C] is 1.5 to 19 times the weight per unit with respect to the weight per length. What is necessary is just to set and adjust the provision amount.

次に、本発明に用いられる樹脂系材料、すなわち、熱可塑性樹脂[B]、および熱可塑性重合体[C]について詳細に説明する。   Next, the resin material used in the present invention, that is, the thermoplastic resin [B] and the thermoplastic polymer [C] will be described in detail.

熱可塑性樹脂[B]は、前述の通り、ポリアミド樹脂、ポリエステル樹脂、液晶性ポリエステル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ABS樹脂等の熱可塑性樹脂から選ぶことができるが、必ずしもこれに限定されるものではない。好ましい樹脂としては、成形品の強度および、成形性の点から、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ABS樹脂等が挙げられる。   As described above, the thermoplastic resin [B] can be selected from thermoplastic resins such as polyamide resin, polyester resin, liquid crystalline polyester resin, polycarbonate resin, polyolefin resin, polyphenylene sulfide resin, polyphenylene ether resin, and ABS resin. However, the present invention is not necessarily limited to this. Preferred resins include polyamide resin, polyester resin, polycarbonate resin, ABS resin and the like from the viewpoint of the strength of the molded product and moldability.

これらの熱可塑性樹脂は単独でも、混合物でも、共重合体であってもよい。また、混合物の場合は相溶化剤を併用してもよい。さらにまた難燃剤として臭素系難燃剤、シリコン系難燃剤、赤リン等を加えてもよい。さらに、リン酸エステルやカーボンブラックを配合してもよい。   These thermoplastic resins may be used alone, as a mixture, or as a copolymer. In the case of a mixture, a compatibilizer may be used in combination. Further, brominated flame retardants, silicon-based flame retardants, red phosphorus and the like may be added as flame retardants. Furthermore, you may mix | blend phosphate ester and carbon black.

さらに、良好な成形品特性、機械特性を得ることを目的として、種々の添加剤を加える場合もある。添加剤としては、炭酸カルシウム、シリカ、カオリン、クレー、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化アルミニウム、アルミナ、水酸化マグネシウムのような無定形フィラー、タルク、マイカ、あるいはガラスフレークなどの板状フィラー、ワラステナイト、チタン酸カリウム、塩基性硫酸マグネシウム、セピオライト、ゾノトライト、あるいはホウ酸アルミニウムなどの針状フィラー、金属粉、金属フレーク、カーボンブラックなどの導電性フィラーなどが用いられる。これら添加剤は単体もしくは複数の組み合わせで使用してもよいし、その表面に炭素被覆またはシランカップリング処理等を施したものを単体もしくは複数の組み合わせとして使用してもよい。   Furthermore, various additives may be added for the purpose of obtaining good molded article characteristics and mechanical characteristics. Additives include calcium carbonate, silica, kaolin, clay, titanium oxide, barium sulfate, zinc oxide, amorphous fillers such as aluminum hydroxide, alumina, magnesium hydroxide, plate shapes such as talc, mica, or glass flakes Filler, wollastonite, potassium titanate, basic magnesium sulfate, sepiolite, zonotlite, acicular filler such as aluminum borate, conductive filler such as metal powder, metal flake, and carbon black are used. These additives may be used singly or in combination, or may be used as a single or a combination of those whose surfaces are subjected to carbon coating or silane coupling treatment.

また、前述のように強化繊維束[A]に代えて熱可塑性重合体含浸強化繊維束[A]を用いることも成形性の良い材料が得られることから好ましい。、熱可塑性重合体含浸強化繊維束[A]は、強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を、含浸して得られる。 Further, as described above, it is preferable to use the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] instead of the reinforcing fiber bundle [A] because a material with good moldability can be obtained. The thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] is melted on the reinforcing fiber bundle [A] based on JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: 10 3 s −1 ]. It is obtained by impregnating a thermoplastic polymer [C] having a viscosity of 0.1 to 10 Pa · s.

これを熱可塑性樹脂[B]で被覆し得られたペレットでは、熱可塑性重合体[C]が強化繊維束[A]の繊維間に存在することで、成形の際に熱可塑性樹脂中への強化繊維の分散がよくなり、機械特性及び外観に優れた成形品が得られる。   In the pellet obtained by coating this with the thermoplastic resin [B], the thermoplastic polymer [C] is present between the fibers of the reinforcing fiber bundle [A], so that the thermoplastic resin [C] is introduced into the thermoplastic resin during molding. The dispersion of the reinforcing fibers is improved, and a molded product having excellent mechanical properties and appearance can be obtained.

好ましい熱可塑性重合体[C]としては、フェノールもしくはフェノールの置換基誘導体と、脂肪族炭化水素との縮合によって得られる熱可塑性重合体が挙げられる。縮合反応は、強酸もしくはルイス酸の存在化に行うことができる。フェノールの置換基誘導体としては、フェノールのベンゼン核上に、アルキル基、ハロゲン原子、水酸基より選ばれる置換基を1〜3個有するものが好ましく用いられる。その具体例としては、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、t−ブチルフェノール、ノニルフェノール、3,4,5−トリメチルフェノール、クロロフェノール、ブロモフェノール、クロロクレゾール、ヒドロキノン、レゾルシノール、オルシノール等が挙げられる。特に好ましくはフェノールおよびクレゾールが挙げられる。脂肪族炭化水素は二重結合を2個有する脂肪族炭化水素であり、環状構造を有してもよい。環状構造を持たない例としては、ブタジエン、イソプレン、ペンタジエン、ヘキサジエンなどが挙げられる。環状構造を有する例としては、単環性の化合物としては、シクロヘキサジエン、ビニルシクロヘキセン、シクロヘプタジエン、シクロオクタジエン、C10H16の分子式で表される単環式モノテルペン(ジペンテン、リモネン、テルピノレン、テルピネン、フェランドレン)など、二環性の化合物としては、2,5−ノルボルナジエン、テトラヒドロインデン、C15H24の分子式で表される二環式セスキテルペン(カジネン、セリネン、カリオフィレンなど)など、三環性の化合物としてジシクロペンタジエンなどが挙げられる。これらの中で特に好ましいのは、C10H16の分子式で表される単環式モノテルペンが挙げられる。より好ましい熱可塑性重合体[C]としては、フェノールもしくはフェノールの置換基誘導体と、C10H16の分子式で表される単環式モノテルペンとの縮合物で、かつ重量平均分子量が300〜1000の範囲の熱可塑性重合体である。   Preferable thermoplastic polymer [C] includes a thermoplastic polymer obtained by condensation of phenol or a substituent derivative of phenol with an aliphatic hydrocarbon. The condensation reaction can be carried out in the presence of a strong acid or Lewis acid. As the substituent derivative of phenol, one having 1 to 3 substituents selected from an alkyl group, a halogen atom, and a hydroxyl group on the benzene nucleus of phenol is preferably used. Specific examples thereof include cresol, xylenol, ethylphenol, butylphenol, t-butylphenol, nonylphenol, 3,4,5-trimethylphenol, chlorophenol, bromophenol, chlorocresol, hydroquinone, resorcinol, orcinol and the like. Particularly preferred are phenol and cresol. The aliphatic hydrocarbon is an aliphatic hydrocarbon having two double bonds and may have a cyclic structure. Examples that do not have a cyclic structure include butadiene, isoprene, pentadiene, hexadiene, and the like. Examples having a cyclic structure include monocyclic compounds such as cyclohexadiene, vinylcyclohexene, cycloheptadiene, cyclooctadiene, and monocyclic monoterpenes represented by the molecular formula of C10H16 (dipentene, limonene, terpinolene, terpinene). And bicyclic compounds such as 2,5-norbornadiene, tetrahydroindene, and bicyclic sesquiterpenes represented by the molecular formula of C15H24 (such as kadinene, serene, and caryophyllene). And dicyclopentadiene. Among these, a monocyclic monoterpene represented by a molecular formula of C10H16 is particularly preferable. More preferable thermoplastic polymer [C] is a condensate of phenol or a substituent derivative of phenol with a monocyclic monoterpene represented by the molecular formula of C10H16, and has a weight average molecular weight in the range of 300 to 1,000. It is a thermoplastic polymer.

また、本発明の製造方法によって得られる長繊維強化熱可塑性樹脂ペレットは、各種の熱可塑性樹脂、例えば、ポリアミド樹脂、ポリエステル樹脂、液晶性ポリエステル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ABS樹脂等の熱可塑性樹脂、あるいはそれらの変性物やエラストマー類を配合することにより、成形用樹脂ペレットとして性能をさらに改良することができる。   In addition, the long fiber reinforced thermoplastic resin pellets obtained by the production method of the present invention include various thermoplastic resins such as polyamide resin, polyester resin, liquid crystalline polyester resin, polycarbonate resin, polyolefin resin, polyphenylene sulfide resin, polyphenylene ether. By blending a resin, a thermoplastic resin such as an ABS resin, or a modified product or elastomer thereof, the performance as a molding resin pellet can be further improved.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to this.

実施例、比較例に使用した熱可塑性樹脂と熱可塑性重合体の評価項目、およびその方法、および実施例、比較例で得られた長繊維強化熱可塑性樹脂ペレットの評価項目およびその方法を以下に示す。   Evaluation items of thermoplastic resins and thermoplastic polymers used in Examples and Comparative Examples, and methods thereof, and evaluation items and methods of long fiber reinforced thermoplastic resin pellets obtained in Examples and Comparative Examples are as follows. Show.

(a)熱可塑性樹脂の荷重たわみ温度
荷重たわみ温度試験片の作成条件
射出成形機:(株)名機製作所製 M50AII−SJ
金型:テストピース セット取り金型
シリンダ温度:250℃
金型温度:80℃
スクリュー背圧:5kgf/cm
スクリュー回転数:100rpm
上記の条件で長さ80mm、幅10mm、厚さ4mmの試験片を作成し測定に供した。荷重たわみ温度の測定はJIS K 7191規格に準拠し荷重:1.80MPa、昇温速度2℃/minの条件で測定を行い、試験片のたわみ量が0.34mmになるときの温度を荷重たわみ温度とした。
(A) Deflection temperature under load of thermoplastic resin Conditions under which a load deflection temperature test piece was prepared Injection molding machine: M50AII-SJ manufactured by Meiki Seisakusho Co., Ltd.
Mold: Test piece Set mold Cylinder temperature: 250 ℃
Mold temperature: 80 ℃
Screw back pressure: 5kgf / cm 2 G
Screw rotation speed: 100rpm
Under the above conditions, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was prepared and subjected to measurement. The deflection temperature under load is measured in accordance with JIS K 7191 standard under the conditions of load: 1.80 MPa and rate of temperature increase of 2 ° C./min, and the temperature at which the deflection of the test piece becomes 0.34 mm is deflection under load. It was temperature.

(b)熱可塑性重合体の溶融粘度
JIS K 7199規格に準拠した測定方法にて評価した。キャピラリーレオメータ (キャピラリーノズル径0.5mm)に、粉砕した熱可塑性重合体をシリンダーに入れ、180℃(軟化温度+30℃の温度)で5分間予熱した後、剪断速度10−1で溶融粘度を測定した。
(B) Melt viscosity of thermoplastic polymer It evaluated by the measuring method based on JISK7199 specification. A pulverized thermoplastic polymer is placed in a cylinder in a capillary rheometer (capillary nozzle diameter 0.5 mm), preheated at 180 ° C. (softening temperature + 30 ° C.) for 5 minutes, and then melt viscosity at a shear rate of 10 3 s −1. Was measured.

(c)冷却工程での除熱率の測定
押出機のノズルから出た直後のガット表面温度T1[℃]と、冷却工程を通過してストランドカッターに入る直前のガット表面温度T2[℃]とを測定し、下式より除熱率を算出した。
(C) Measurement of heat removal rate in cooling process Gut surface temperature T1 [° C] immediately after exiting the nozzle of the extruder, and Gut surface temperature T2 [° C] immediately before passing through the cooling process and entering the strand cutter The heat removal rate was calculated from the following formula.

除熱率[kJ/(kg・s)]=Cp×(T1−T2)/t
ここで、Cpおよびtは以下の通りである。
Heat removal rate [kJ / (kg · s)] = Cp × (T1-T2) / t
Here, Cp and t are as follows.

Cp:被覆樹脂の比熱容量[kJ/(kg・℃)]
t:ガットが押出機のノズルを出てからストランドカッターに入るまでに要する時間[s](=ノズル出口〜カッター入口間距離/ガット引取速度)
(d)ペレット中の毛羽含有率、および割れのあるペレット含有率の測定
1時間毎に5回、ペレット約200gを採取し正確な重量を測定した。その後、採取したペレット中に含まれていた毛羽量、および割れのあるペレットの重量を測定し、それぞれを全体の重量で除して含有率とした。
Cp: specific heat capacity of coating resin [kJ / (kg · ° C.)]
t: Time required for gut to leave the extruder nozzle and enter the strand cutter [s] (= distance between nozzle outlet and cutter inlet / gut take-up speed)
(D) Measurement of fluff content in pellets and cracked pellet content About 200 g of pellets were sampled 5 times every hour, and the exact weight was measured. Thereafter, the amount of fluff contained in the collected pellets and the weight of the cracked pellets were measured, and each was divided by the total weight to obtain the content.

次に、実施例・比較例で使用した原料を以下に示す。   Next, the raw materials used in Examples and Comparative Examples are shown below.

強化繊維:東レ(株)製 “トレカ”T700SC−12K−50C、
単繊維径7μm
熱可塑性樹脂I :非強化ポリアミド6樹脂
荷重たわみ温度:65℃、比熱:1.9
熱可塑性樹脂II:フィラー強化ポリアミド6樹脂(ワラステナイト15%含有)、
荷重たわみ温度:101℃、比熱:1.7
熱可塑性重合体 :ヤスハラケミカル(株)製 テルペンフェノール樹脂 K140
軟化温度 150℃、重量平均分子量 790
溶融粘度 3.5Pa・s(180℃、剪断速度10−1
実施例、比較例に用いた長繊維ペレット製造装置の概略を図1に示す。
Reinforcing fiber: "Torayca" T700SC-12K-50C manufactured by Toray Industries, Inc.
Single fiber diameter 7μm
Thermoplastic resin I: Non-reinforced polyamide 6 resin
Deflection temperature under load: 65 ° C., specific heat: 1.9
Thermoplastic resin II: Filler reinforced polyamide 6 resin (containing 15% wollastonite),
Deflection temperature under load: 101 ° C., specific heat: 1.7
Thermoplastic polymer: Terpene phenol resin K140 manufactured by Yasuhara Chemical Co., Ltd.
Softening temperature 150 ° C, weight average molecular weight 790
Melt viscosity 3.5 Pa · s (180 ° C., shear rate 10 3 s −1 )
The outline of the long fiber pellet manufacturing apparatus used for the Example and the comparative example is shown in FIG.

[実施例1]
200℃に加熱されたロール上にテルペンフェノール樹脂(K140)を加熱溶融し、一定した厚みの液体被膜を形成させた。このロール上を連続した炭素繊維束を接触させながら15m/分の速度で通過させて、炭素繊維束の単位長さあたりに一定量のテルペンフェノール樹脂を付着させた。
[Example 1]
A terpene phenol resin (K140) was heated and melted on a roll heated to 200 ° C. to form a liquid film having a constant thickness. A continuous carbon fiber bundle was passed over the roll at a speed of 15 m / min while being in contact therewith, and a certain amount of terpene phenol resin was adhered per unit length of the carbon fiber bundle.

テルペンフェノール樹脂を付着させた炭素繊維束を、210℃に加熱されベアリングで自由に回転する一直線上に配置された10本のロールの上下を交互に通過させ、テルペンフェノール樹脂を炭素繊維束の内部にまで含浸させ、炭素繊維とテルペンフェノール樹脂よりなる連続した複合体を形成した。   The carbon fiber bundle to which the terpene phenol resin is adhered is alternately passed through the top and bottom of 10 rolls arranged on a straight line that is heated to 210 ° C. and freely rotated by a bearing, and the terpene phenol resin is passed through the carbon fiber bundle. And a continuous composite made of carbon fiber and terpene phenol resin was formed.

この連続した複合体を、直径50mmの単軸押出機の先端に設置された電線被覆法用のコーティングダイ中に通し、押出機からダイ中に240℃で溶融させた非強化ポリアミド6樹脂(熱可塑性樹脂I)を吐出させて、炭素繊維の含有率が30重量%になるように複合体の周囲を被覆して電線状のガットにした。このガットを、冷却水を循環させた箱形の冷却装置の上部に接触させながら冷却した後、ストランドカッターで7mmの長さにカットし、芯−鞘型の長繊維ペレットを得た。   This continuous composite was passed through a coating die for electric wire coating installed at the tip of a single screw extruder having a diameter of 50 mm, and unreinforced polyamide 6 resin (heated) melted at 240 ° C. from the extruder into the die. The plastic resin I) was discharged, and the periphery of the composite was coated so that the carbon fiber content was 30% by weight to form a wire-like gut. The gut was cooled while being brought into contact with the top of a box-shaped cooling device in which cooling water was circulated, and then cut into a length of 7 mm with a strand cutter to obtain a core-sheath type long fiber pellet.

冷却工程の除熱率は10.7kJ/(kg・s)であり、切断時のガットの表面温度は125℃であった。   The heat removal rate in the cooling step was 10.7 kJ / (kg · s), and the surface temperature of the gut at the time of cutting was 125 ° C.

[実施例2]
ガットの引取速度を27m/分に変更した以外は、実施例1と同様に行った。
[Example 2]
The same procedure as in Example 1 was conducted except that the gut take-up speed was changed to 27 m / min.

冷却工程の除熱率は17.4kJ/(kg・s)であり、切断時のガットの表面温度は136℃であった。   The heat removal rate in the cooling step was 17.4 kJ / (kg · s), and the surface temperature of the gut at the time of cutting was 136 ° C.

[実施例3]
ガットの冷却装置を、冷風を吹き付けて冷却させる装置に変更した以外は実施例1と同様に行った。冷却工程の除熱率は8.3kJ/(kg・s)であり、切断時のガットの表面温度は150℃であった。
[Example 3]
The same procedure as in Example 1 was performed except that the gut cooling device was changed to a device that cooled by blowing cold air. The heat removal rate in the cooling step was 8.3 kJ / (kg · s), and the surface temperature of the gut at the time of cutting was 150 ° C.

[実施例4]
熱可塑性樹脂はフィラー強化ポリアミド6樹脂(熱可塑性樹脂II)を使用し、250℃で溶融させて、炭素繊維含有率が25重量%になるように樹脂を被覆させた以外は、実施例1と同様に行った。冷却工程の除熱率は9.9kJ/(kg・s)であり、切断時のガットの表面温度は128℃であった。
[Example 4]
The thermoplastic resin used was a filler reinforced polyamide 6 resin (thermoplastic resin II), melted at 250 ° C., and coated with the resin so that the carbon fiber content was 25% by weight. The same was done. The heat removal rate in the cooling step was 9.9 kJ / (kg · s), and the surface temperature of the gut at the time of cutting was 128 ° C.

[比較例1]
ガットの冷却装置を、ガットを水槽中で冷却水に直接接触させて冷却する装置に変更し、ガットの引取速度を27m/分に変更した以外は、実施例1と同様に行った。
[Comparative Example 1]
The gut cooling device was changed to a device that cools the gut in direct contact with cooling water in the water tank, and the same procedure as in Example 1 was performed except that the gut take-up speed was changed to 27 m / min.

冷却工程の除熱率は61.2kJ/(kg・s)であり、切断時のガットの表面温度は56℃であった。   The heat removal rate in the cooling step was 61.2 kJ / (kg · s), and the surface temperature of the gut at the time of cutting was 56 ° C.

[比較例2]
ガットの冷却装置を全て除外し、ガットを強制的に冷却しないようにした以外は、実施例1と同様に行った。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that all the gut cooling devices were excluded and the gut was not forcibly cooled.

冷却工程の除熱率は4.0kJ/(kg・s)であり、切断時のガットの表面温度は195℃であった。   The heat removal rate in the cooling step was 4.0 kJ / (kg · s), and the surface temperature of the gut at the time of cutting was 195 ° C.

Figure 2006175787
Figure 2006175787

表1のより、本発明の長繊維強化熱可塑性樹脂ペレットの製造法により製造した長繊維強化熱可塑性樹脂ペレット(実施例1〜4)は、いずれも毛羽および鞘部分の割れたペレットの含有率が0のペレットが得られた(総合評価:○)。   From Table 1, the long fiber reinforced thermoplastic resin pellets (Examples 1 to 4) produced by the method for producing the long fiber reinforced thermoplastic resin pellets of the present invention are all contained in the fluff and sheath part of the broken pellet. 0 pellets were obtained (overall evaluation: ◯).

これに対し、除熱率が高いもの(比較例1)、および除熱率が低いもの(比較例2)では毛羽および鞘部分の割れたペレットの含有率が多くなる。(総合評価:×)。   On the other hand, a high heat removal rate (Comparative Example 1) and a low heat removal rate (Comparative Example 2) increase the content of pellets with cracked fluff and sheath portions. (Overall evaluation: x).

本発明の長繊維強化熱可塑性樹脂ペレットの製造法を用いれば、強化繊維の毛羽の発生が非常に少ない芯−鞘型の長繊維ペレットを得ることができ、その結果、成形時のトラブルが無く、外観良好で機械特性に優れた成形品を得られ、パソコン、OA機器、AV機器、家電製品、玩具用品などの電気・電子機器の部品や筐体に広く利用することができるが、その応用範囲は、これらに限られるものではない。   By using the method for producing a long fiber reinforced thermoplastic resin pellet of the present invention, it is possible to obtain a core-sheath type long fiber pellet with very little generation of reinforcing fiber fluff, and as a result, there is no trouble during molding. , Molded products with good appearance and excellent mechanical properties can be obtained, and can be widely used in parts and casings of electrical and electronic equipment such as personal computers, OA equipment, AV equipment, home appliances, toy products, etc. The range is not limited to these.

芯−鞘型長繊維ペレット製造装置の概略図である。It is the schematic of a core-sheath type | mold long fiber pellet manufacturing apparatus. 実施例1に使用した冷却装置の概略図である。1 is a schematic view of a cooling device used in Example 1. FIG. 比較例1に使用した冷却装置の概略図である。2 is a schematic view of a cooling device used in Comparative Example 1. FIG.

符号の説明Explanation of symbols

1:強化繊維束(実施例、比較例では炭素繊維束を使用)
2:熱可塑性重合体の含浸部
3:熱可塑性重合体が含浸された強化繊維束
4:押出機
5:樹脂被覆用のコーティングダイ
6:ガット
7:冷却装置
8:ストランドカッター(ガット引取装置含む)
9:芯−鞘型長繊維ペレット
10:ローラーガイド
1: Reinforcing fiber bundle (carbon fiber bundle is used in Examples and Comparative Examples)
2: Impregnated portion of thermoplastic polymer 3: Reinforcing fiber bundle impregnated with thermoplastic polymer 4: Extruder 5: Coating die for resin coating 6: Gut 7: Cooling device 8: Strand cutter (including gut take-up device) )
9: Core-sheath type long fiber pellet 10: Roller guide

Claims (16)

強化繊維束[A]、または、該強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を含浸した熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]が被覆されてなる芯−鞘型の長繊維ペレットの製造方法であって、[A]、または、[A]に溶融した熱可塑性樹脂[B]を付与、被覆し、5〜50kJ/(kg・s)の条件で除熱した後、3〜20mmの範囲の長さに切断することを特徴とする長繊維強化熱可塑性樹脂ペレットの製造方法。 The melt viscosity based on JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: 10 3 s −1 ] is 0.1 on the reinforcing fiber bundle [A] or the reinforcing fiber bundle [A]. A core-sheath type long fiber pellet formed by coating a thermoplastic resin-impregnated reinforcing fiber bundle [A C ] impregnated with a thermoplastic polymer [C] in the range of 10 to 10 Pa · s with a thermoplastic resin [B]. The melted thermoplastic resin [B] is applied to and coated on [A] or [A C ], and the heat is removed under conditions of 5 to 50 kJ / (kg · s). A method for producing a long fiber reinforced thermoplastic resin pellet, characterized by cutting to a length in the range of -20 mm. 切断時の熱可塑性樹脂[B]の表面温度が、該熱可塑性樹脂[B]の荷重たわみ温度(JIS K 7191規格、荷重:1.80MPa)より0〜100℃高い請求項1に記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 The surface temperature of the thermoplastic resin [B] at the time of cutting is 0 to 100 ° C higher than the deflection temperature under load (JIS K 7191 standard, load: 1.80 MPa) of the thermoplastic resin [B]. A method for producing fiber-reinforced thermoplastic resin pellets. ペレットの断面において、熱可塑性樹脂[B]による被覆部分の平均厚みが平均直径の15〜40%の範囲とするよう熱可塑性樹脂[B]の付与量を設定する請求項1〜2のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 The amount of the thermoplastic resin [B] applied is set so that the average thickness of the portion covered with the thermoplastic resin [B] is in the range of 15 to 40% of the average diameter in the cross section of the pellet. The manufacturing method of the long fiber reinforced thermoplastic resin pellet of description. 強化繊維束[A]が炭素繊維であることを特徴とする請求項1〜3のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 Reinforcing fiber bundle [A] is carbon fiber, The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of Claims 1-3 characterized by the above-mentioned. 強化繊維束[A]に熱可塑性樹脂[B]を被覆するに当たり、強化繊維束[A]の単位長さ当たりの重量に対し、付与する熱可塑性樹脂[B]の重量が単位長さ当たり1.5〜19倍量である請求項1〜4のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 In coating the reinforcing fiber bundle [A] with the thermoplastic resin [B], the weight of the thermoplastic resin [B] to be applied is 1 per unit length with respect to the weight per unit length of the reinforcing fiber bundle [A]. The method for producing a long fiber reinforced thermoplastic resin pellet according to any one of claims 1 to 4, wherein the amount is 5 to 19 times. 熱可塑性重合体含浸強化繊維束[A]に熱可塑性樹脂[B]を被覆するに当たり、熱可塑性重合体含浸強化繊維束[A]中の強化繊維束[A]の単位長さ当たりの重量に対し、熱可塑性樹脂[B]と熱可塑性重合体[C]の合計重量が単位長さ当たりの重量で1.5〜19倍量となるように熱可塑性樹脂[B]の付与量を設定する請求項1〜4のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 In coating the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] with the thermoplastic resin [B], the unit length of the reinforcing fiber bundle [A] in the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] The applied amount of the thermoplastic resin [B] is adjusted so that the total weight of the thermoplastic resin [B] and the thermoplastic polymer [C] is 1.5 to 19 times the weight per unit length with respect to the weight. The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of Claims 1-4 set. 熱可塑性重合体[C]が、フェノールもしくはフェノールの置換基誘導体と脂肪族炭化水素との縮合によって得られ、かつ重量平均分子量が300〜1000の範囲の熱可塑性重合体である請求項1〜4、または6のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 The thermoplastic polymer [C] is a thermoplastic polymer obtained by condensation of phenol or a phenol derivative and an aliphatic hydrocarbon, and having a weight average molecular weight in the range of 300 to 1,000. Or a method for producing a long fiber reinforced thermoplastic resin pellet according to any one of 6 and 6. 強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の熱可塑性樹脂[B]による被覆体(ガット)の冷却工程において、前記被覆体(ガット)を冷媒を通した箱体の上面に接触させて冷却する請求項1〜7のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 In the cooling step of the covering (gut) of the reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] with the thermoplastic resin [B], the covering (gut) was passed through a refrigerant. The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of Claims 1-7 which are made to contact the upper surface of a box and it cools. 強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の熱可塑性樹脂[B]による被覆体(ガット)の冷却工程において、前記被覆体(ガット)を冷風により冷却する請求項1〜7のいずれかに記載の長繊維強化熱可塑性樹脂ペレットの製造方法。 In the step of cooling the covering (gut) with the thermoplastic resin [B] of the reinforcing fiber bundle [A] or the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ], the covering (gut) is cooled by cold air. The manufacturing method of the long fiber reinforced thermoplastic resin pellet in any one of Claims 1-7. 強化繊維束[A]、または、該強化繊維束[A]にJIS K7199規格〔溶融温度:軟化温度(または融点)+30℃、剪断速度:10−1〕に基づく溶融粘度が0.1〜10Pa・sの範囲である熱可塑性重合体[C]を含浸した熱可塑性重合体含浸強化繊維束[A]の周囲を熱可塑性樹脂[B]で被覆した形態の芯−鞘型の3〜20mmの範囲の長さの長繊維ペレットであって、毛羽の含有率がペレット全体に対し0〜50ppmである長繊維強化熱可塑性樹脂ペレット。 The melt viscosity based on JIS K7199 standard [melting temperature: softening temperature (or melting point) + 30 ° C., shear rate: 10 3 s −1 ] is 0.1 on the reinforcing fiber bundle [A] or the reinforcing fiber bundle [A]. A core-sheath type 3 in which the periphery of a thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] impregnated with a thermoplastic polymer [C] in the range of 10 Pa · s to 10 Pa · s is coated with a thermoplastic resin [B]. Long fiber pellets having a length in the range of ˜20 mm, and the fluff content is 0 to 50 ppm with respect to the whole pellets. 強化繊維束[A]、または、熱可塑性重合体含浸強化繊維束[A]の周囲を熱可塑性樹脂[B]で被覆した形態の芯−鞘型の3〜20mmの範囲の長さの長繊維ペレットであって、ペレットの鞘部分に割れのあるペレットの含有率が、0〜1%である長繊維強化熱可塑性樹脂ペレット。 The length of the reinforcing fiber bundle [A] or the length of the core-sheath type in the range of 3 to 20 mm in which the periphery of the thermoplastic polymer-impregnated reinforcing fiber bundle [A C ] is covered with the thermoplastic resin [B]. A long fiber reinforced thermoplastic resin pellet, which is a fiber pellet, and the content of the pellet having a crack in the sheath portion of the pellet is 0 to 1%. 熱可塑性樹脂[B]の荷重たわみ温度(JIS K 7191規格、荷重:1.80MPa)が、25℃〜300℃の範囲である請求項10または11のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。 The long fiber reinforced thermoplastic resin according to any one of claims 10 and 11, wherein the deflection temperature under load (JIS K 7191 standard, load: 1.80 MPa) of the thermoplastic resin [B] is in the range of 25 ° C to 300 ° C. pellet. ペレットの断面において、熱可塑性樹脂[B]による被覆部分の平均厚みが平均直径の5〜40%の範囲である請求項10〜12のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。 The long fiber reinforced thermoplastic resin pellet according to any one of claims 10 to 12, wherein in the cross section of the pellet, the average thickness of the portion covered with the thermoplastic resin [B] is in the range of 5 to 40% of the average diameter. 強化繊維束[A]が炭素繊維であることを特徴とする請求項10〜13のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。 The reinforcing fiber bundle [A] is a carbon fiber, and the long fiber reinforced thermoplastic resin pellet according to any one of claims 10 to 13. 強化繊維の含有率が5〜40重量%である請求項10〜13のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。 The long fiber reinforced thermoplastic resin pellet according to any one of claims 10 to 13, wherein the reinforcing fiber content is 5 to 40 wt%. 熱可塑性重合体[C]が、フェノールもしくはフェノールの置換基誘導体と脂肪族炭化水素との縮合によって得られ、かつ重量平均分子量が300〜1000の範囲である熱可塑性重合体である請求項10〜15のいずれかに記載の長繊維強化熱可塑性樹脂ペレット。 The thermoplastic polymer [C] is a thermoplastic polymer obtained by condensation of phenol or a phenol derivative and an aliphatic hydrocarbon, and having a weight average molecular weight in the range of 300 to 1,000. The long fiber reinforced thermoplastic resin pellet according to any one of 15.
JP2004373068A 2004-12-24 2004-12-24 Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet Pending JP2006175787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373068A JP2006175787A (en) 2004-12-24 2004-12-24 Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373068A JP2006175787A (en) 2004-12-24 2004-12-24 Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet

Publications (1)

Publication Number Publication Date
JP2006175787A true JP2006175787A (en) 2006-07-06

Family

ID=36730339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373068A Pending JP2006175787A (en) 2004-12-24 2004-12-24 Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet

Country Status (1)

Country Link
JP (1) JP2006175787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165798A (en) * 2015-03-09 2016-09-15 昌和合成株式会社 Resin pelletization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165798A (en) * 2015-03-09 2016-09-15 昌和合成株式会社 Resin pelletization device

Similar Documents

Publication Publication Date Title
Ralph et al. Mechanical properties of short basalt fibre reinforced polypropylene and the effect of fibre sizing on adhesion
KR101981837B1 (en) Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
TWI795516B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molded material
CN108137829B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
EP2134783B1 (en) Electrically conducting polymeric compositions, methods of manufacture thereof and articles comprising the same
CN108350192B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JPH10138379A (en) Molding material and its manufacture
JP6957859B2 (en) Fiber-reinforced thermoplastic resin molded products and fiber-reinforced thermoplastic resin molded materials
WO2018218647A1 (en) Thermoplastic composite, method of making thermoplastic composite, and injection-molded product
Chiang et al. Processing conditions for electromagnetic interference shielding effectiveness and mechanical properties of acrylonitrile‐butadiene‐styrene based composites
JP4160138B2 (en) Thermoplastic resin molded product, material for molded product, and method for producing molded product
JPH083396A (en) Filament-reinforced columnar material composed of filament-reinforced crystalline propylene resin composition and propeller type fan produced therefrom
JP5648359B2 (en) Resin composition
JP2000309060A (en) Long fiber reinforced molding material, and molded article thereof
JP2001067933A (en) Conductive resin composition and mold thereof
JP2006175787A (en) Manufacturing method for continuous fiber-reinforced thermoplastic resin pellet, and continuous fiber-reinforced thermoplastic resin pellet
JP4956974B2 (en) Conductive thermoplastic resin composition and molded article
JP2007224209A (en) Conductive thermoplastic resin molded article
JP2001129826A (en) Conductive fiber-reinforced molding material and manufacturing method therefor
JP2008183793A (en) Manufacturing method of long fiber-reinforced thermoplastic resin pellet
JPH11329078A (en) Conductive resin composition and its molding
CN114667310A (en) Fiber-reinforced thermoplastic resin molded article
JPH03227458A (en) Carbon fiber roving material and polyamide resin composition
WO2023074305A1 (en) Fiber-reinforced thermoplastic resin molded article
JPH0449583B2 (en)