JP2006175505A - Method and device for producing remelted raw material - Google Patents

Method and device for producing remelted raw material Download PDF

Info

Publication number
JP2006175505A
JP2006175505A JP2004373545A JP2004373545A JP2006175505A JP 2006175505 A JP2006175505 A JP 2006175505A JP 2004373545 A JP2004373545 A JP 2004373545A JP 2004373545 A JP2004373545 A JP 2004373545A JP 2006175505 A JP2006175505 A JP 2006175505A
Authority
JP
Japan
Prior art keywords
raw material
mold
remelted
producing
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373545A
Other languages
Japanese (ja)
Inventor
Kazumi Yamamoto
和巳 山本
Tetsuo Akiyoshi
哲男 秋吉
Takao Yuto
隆夫 湯藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004373545A priority Critical patent/JP2006175505A/en
Publication of JP2006175505A publication Critical patent/JP2006175505A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for producing a remelted raw material where fine crushed matters suitable for remelting can be made, thus troublesome cutting operation is not required, further, neither reduction of a yield nor rise of cost due to cutting operation is caused, and, even in the case they include a high melting point material or a high vapor pressure material, among the obtained crushed matters, the ones having a nearly uniform composition can be obtained. <P>SOLUTION: When a remelted raw material is produced by vacuum-sucking molten metal floated and melted in a cold crucible furnace into a mold and solidifying the same, the molten metal is vacuum-sucked into the mold at which a plurality of mutually communicating small chambers are formed at the inside, and is solidified. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は再溶解原料の製造方法及び装置に関する。比較的大型の合金インゴットを製造する場合、先ず一次原料に相当する所定組成の金属原料から二次原料に相当する再溶解原料を製造し、次にこの再溶解原料から比較的大型の合金インゴットを製造することが行なわれる。本発明はかかる再溶解原料の製造方法及び装置の改良に関する。   The present invention relates to a method and apparatus for producing a remelted raw material. When producing a relatively large alloy ingot, first, a remelted raw material corresponding to a secondary raw material is produced from a metal raw material having a predetermined composition corresponding to the primary raw material, and then a relatively large alloy ingot is produced from this remelted raw material. Manufacturing is performed. The present invention relates to an improvement in the method and apparatus for producing such a remelted raw material.

従来、前記のような再溶解原料の製造方法として、コールドクルーシブル炉及びこれに接続された減圧吸引鋳造装置を用い、所定組成の金属原料を該コールドクルーシブル炉で浮揚溶解し、浮揚溶解した金属溶湯を該減圧吸引鋳造装置の鋳型内へ減圧吸引して凝固させることにより再溶解原料を鋳造することが行なわれている(例えば特許文献1及び2参照)。かかる従来法では、製造した再溶解原料を細かく切断し、その切断物をコールドクルーシブル炉、真空アーク炉、プラズマアーク炉等の溶解手段で再溶解して、再溶解した金属溶湯を所定形状の鋳型へ鋳込むことにより比較的大型の合金インゴットを製造している。   Conventionally, as a method for producing a remelting raw material as described above, a metal melt having a predetermined composition is levitated and melted in the cold crucible furnace using a cold crucible furnace and a vacuum suction casting apparatus connected to the cold crucible furnace. The remelted raw material is casted by vacuum suction into a mold of the vacuum suction casting apparatus and solidifying (see, for example, Patent Documents 1 and 2). In such a conventional method, the remelted raw material produced is finely cut, and the cut product is remelted by a melting means such as a cold crucible furnace, a vacuum arc furnace, a plasma arc furnace, etc., and the remelted molten metal is formed into a mold having a predetermined shape. A relatively large alloy ingot is manufactured by casting into

しかし、前記の従来法には、製造した再溶解原料から比較的大型の合金インゴットを製造するとき、該再溶解原料をその再溶解に備えて細かく切断しなければならないため、単にその作業が厄介というだけでなく、これにより歩留まりが低下し、コストもかかるという問題がある。また前記の従来法には、一次原料に相当する所定組成の金属原料がNb、Ta、Zr等の高融点材を含んでいたり、Mn、Mg等の高蒸気圧材を含んでいる場合、高融点材の偏析や高蒸気圧材の蒸発によって、部位により組成の異なる再溶解原料が鋳造されるため、かかる再溶解原料を細かく切断すると、切断物によっては所期の組成から外れたものになってしまうという問題もある。
特開平7−16725号公報 特開平9−10916号公報
However, in the conventional method, when a relatively large alloy ingot is produced from the produced remelted raw material, the remelted raw material must be finely cut in preparation for the remelting. In addition to this, there is a problem that this reduces the yield and costs. In the conventional method, when the metal raw material having a predetermined composition corresponding to the primary raw material contains a high melting point material such as Nb, Ta, or Zr, or contains a high vapor pressure material such as Mn or Mg, Remelting raw materials with different compositions are cast depending on the site due to segregation of melting point materials and evaporation of high vapor pressure materials, so if these remelting raw materials are cut finely, some of the cut products may deviate from their intended compositions. There is also a problem that it ends up.
Japanese Unexamined Patent Publication No. 7-16725 Japanese Patent Laid-Open No. 9-10916

本発明が解決しようとする課題は、簡単に再溶解に好適な細かい破砕物とすることができ、したがって厄介な切断作業は必要でなく、切断作業に起因する歩留まりの低下やコストの高騰もなく、またそれが高融点材や高蒸気圧材を含んでいる場合であっても得られる破砕物間でほぼ均一組成の破砕物となる再溶解原料の製造方法及び装置を提供する処にある。   The problem to be solved by the present invention can be easily made into fine crushed materials suitable for remelting, and therefore, troublesome cutting work is not necessary, and there is no decrease in yield and cost increase due to the cutting work. In addition, the present invention provides a method and an apparatus for producing a remelted raw material which becomes a crushed material having a substantially uniform composition among crushed materials obtained even when it contains a high melting point material or a high vapor pressure material.

前記の課題を解決する本発明は、コールドクルーシブル炉で浮揚溶解した金属溶湯を鋳型内へ減圧吸引して凝固させることにより再溶解原料を製造する方法において、金属溶湯を内部に相互に連通する複数の小室を形成した鋳型内へ減圧吸引して凝固させることを特徴とする再溶解原料の製造方法に係る。また本発明は、コールドクルーシブル炉と、これに接続された減圧吸引鋳造装置とを備え、該コールドクルーシブル炉で浮揚溶解した金属溶湯を該減圧吸引鋳造装置の鋳型内へ減圧吸引して凝固させるようにした再溶解原料の製造装置において、鋳型が全体として筒形に形成されており、該鋳型の内部に分画部材が収容されていて、該分画部材により該鋳型の内部に相互に連通する複数の小室が形成されるようにして成ることを特徴とする再溶解原料の製造装置に係る。   The present invention for solving the above-mentioned problems is a method for producing a remelted raw material by sucking and solidifying a molten metal levitated and melted in a cold crucible furnace into a mold under reduced pressure. The present invention relates to a method for producing a remelted raw material characterized by solidifying by vacuum suction into a mold in which a small chamber is formed. The present invention also includes a cold crucible furnace and a vacuum suction casting apparatus connected to the cold crucible furnace, so that the molten metal floated and melted in the cold crucible furnace is solidified by vacuum suction into the mold of the vacuum suction casting apparatus. In the remelted raw material manufacturing apparatus, the mold is formed in a cylindrical shape as a whole, and a fractionation member is accommodated in the mold, and communicates with the interior of the mold by the fractionation member. The present invention relates to a remelting raw material manufacturing apparatus characterized in that a plurality of small chambers are formed.

先ず、本発明に係る再溶解原料の製造方法(以下単に本発明の製造方法という)について説明する。本発明の製造方法でも、前記した従来法と同様、コールドクルーシブル炉で浮揚溶解した金属溶湯を鋳型内へ減圧吸引して凝固させることにより再溶解原料を製造する。本発明の製造方法では、かかる再溶解原料の製造において、金属溶湯を内部に相互に連通する複数の小室を形成した鋳型内へ減圧吸引して凝固させる。かかる複数の小室は、詳しくは後述するように、鋳型の内部に分画部材を収容することにより形成できる。   First, a method for producing a remelted raw material according to the present invention (hereinafter simply referred to as a production method of the present invention) will be described. Also in the manufacturing method of the present invention, the remelted raw material is manufactured by sucking and solidifying the molten metal levitated and melted in a cold crucible furnace into the mold in the same manner as the conventional method described above. In the production method of the present invention, in the production of such a remelted raw material, the molten metal is solidified by suction under reduced pressure into a mold in which a plurality of chambers communicating with each other are formed. As will be described in detail later, the plurality of small chambers can be formed by accommodating a fractionation member inside a mold.

次に、本発明に係る再溶解原料の製造装置(以下単に本発明の製造装置という)について説明する。本発明の製造装置でも、前記した従来装置と同様、コールドクルーシブル炉と、これに接続された減圧吸引鋳造装置とを備え、該コールドクルーシブル炉で浮揚溶解した金属溶湯を該減圧吸引鋳造装置の鋳型内へ減圧吸引して凝固させるようになっている。本発明の製造装置では、かかる再溶解原料の製造装置において、鋳型が全体として筒形に形成されており、該鋳型の内部に分画部材が収容されていて、該分画部材により該鋳型の内部に相互に連通する複数の小室が形成されるようになっている。   Next, the remelting raw material manufacturing apparatus (hereinafter simply referred to as the manufacturing apparatus of the present invention) according to the present invention will be described. The manufacturing apparatus of the present invention also includes a cold crucible furnace and a vacuum suction casting apparatus connected to the cold crucible furnace as in the conventional apparatus described above, and a molten metal floated and melted in the cold crucible furnace is a mold of the vacuum suction casting apparatus. It is designed to be solidified by suction under pressure. In the production apparatus of the present invention, in the remelting raw material production apparatus, the mold is formed in a cylindrical shape as a whole, and a fractionation member is accommodated in the mold, and the fractionation member is used to form the mold. A plurality of chambers communicating with each other are formed inside.

分画部材は、これにより鋳型の内部に相互に連通する複数の小室が形成されるものであれば、特にその構造や形状が制限されるというものではないが、基板とこれに所定間隔で支持された複数段の棚板とを備えるものが好ましい。例えば、鋳型を円筒形に形成し、該鋳型内に収容する分画部材を、長手方向に沿う端面で十字形に結合した4枚の矩形片からなる基板と、該矩形片の隣接する相互間に装架した複数段の棚板とを備えるものとすることができ、また鋳型を円筒形に形成し、該鋳型内に収容する分画部材を、1枚の矩形片からなる基板と、該矩形片の両側に取付けた複数段の棚板とを備えるものとすることもできるのである。   The separation member is not particularly limited in structure or shape as long as a plurality of small chambers communicating with each other can be formed inside the mold, but the substrate and the substrate are supported at predetermined intervals. It is preferable to include a plurality of shelf boards. For example, a mold is formed in a cylindrical shape, and a separation member accommodated in the mold is formed by a substrate composed of four rectangular pieces joined in a cross shape at the end face along the longitudinal direction, and between adjacent rectangular pieces. A plurality of stages of shelves, and a mold is formed in a cylindrical shape, and a separating member accommodated in the mold is formed of a single rectangular piece of substrate, It can also be provided with a plurality of shelves attached to both sides of the rectangular piece.

前記のような鋳型内にて分画部材により形成される複数の小室は、該鋳型内の内周面と該分画部材の各段の棚板との間に形成された隙間や、該分画部材の基板及び各段の棚板の中央部に形成された孔等を介して連通されており、金属溶湯はこのような連通部を通って該鋳型内の各小室に減圧吸引される。かくして金属溶湯を鋳型内の各小室に減圧吸引して凝固させると、各小室に比べて連通部の方がはるかに狭小であるため、凝固時の応力歪がかかる連通部に集中し、連通部に相当する部分が脆い鋳造物となる。製造直後は一体的な鋳造物として得られる再溶解原料であっても、これに弱い衝撃を加えるだけで、簡単に各小室単位に相当する細かい破砕物にすることができる。本発明の製造方法及び装置によると、得られる再溶解原料を、わざわざ切断しなくても、簡単に再溶解に好適な細かい破砕物にすることができるのである。   The plurality of small chambers formed by the fractionation member in the mold as described above include gaps formed between the inner peripheral surface of the mold and the shelf plate of each step of the fractionation member, The molten metal is communicated through a hole formed in the central portion of the substrate of the drawing member and the shelf plate of each stage, and the molten metal is sucked into each small chamber in the mold through such a communicating portion under reduced pressure. Thus, when the molten metal is vacuumed and sucked into each chamber in the mold and solidified, the communicating portion is much narrower than each chamber, so the stress strain during solidification is concentrated on the communicating portion, and the communicating portion The part corresponding to is a brittle casting. Even if it is a remelted raw material obtained as an integral casting immediately after production, it can be easily made into fine crushed material corresponding to each chamber unit by simply applying a weak impact thereto. According to the production method and apparatus of the present invention, the obtained remelting raw material can be easily made into fine crushed material suitable for remelting without intentionally cutting.

本発明の製造方法及び装置では、所定組成の金属原料をコールドクルーシブル炉で浮揚溶解し、浮揚溶解した金属溶湯を鋳型内に形成された複数の小室へ減圧吸引して、複数の小室毎で凝固させる。本発明の製造方法及び装置は、その性質上、得られる再溶解原料の受ける汚染が少ないため、Tiのような活性金属を基材とする合金組成の再溶解原料を製造するのに適しており、また各小室毎に減圧吸引した金属溶湯の凝固が速いため、該金属溶湯がNb、Ta、Zr等の高融点材を含んでいる場合であってもそれらの偏析を防止し、更には該金属溶湯がMn、Mg等の高蒸気圧材を含んでいる場合であってもそれらの蒸発を防止することができる。   In the production method and apparatus of the present invention, a metal raw material having a predetermined composition is floated and melted in a cold crucible furnace, and the melted and melted metal melt is sucked into a plurality of small chambers formed in a mold and solidified in each of the plurality of small chambers. Let The production method and apparatus of the present invention are suitable for producing a remelted raw material having an alloy composition based on an active metal such as Ti because the resulting remelted raw material is less contaminated by its properties. Moreover, since the solidification of the molten metal sucked under reduced pressure in each small chamber is fast, even when the molten metal contains a high melting point material such as Nb, Ta, Zr, the segregation thereof is prevented. Even when the molten metal contains a high vapor pressure material such as Mn and Mg, their evaporation can be prevented.

本発明の製造方法及び装置によると、簡単に再溶解に好適な細かい破砕物とすることができ、したがって厄介な切断作業は必要でなく、切断作業に起因する歩留まりの低下やコストの高騰もなく、またそれが高融点材や高蒸気圧材を含んでいる場合であっても得られる破砕物間でほぼ均一組成の破砕物となる再溶解原料を製造できるという効果がある。   According to the production method and apparatus of the present invention, a fine crushed material suitable for remelting can be easily obtained. Therefore, a troublesome cutting operation is not required, and there is no decrease in yield and increase in cost due to the cutting operation. Moreover, even if it contains a high melting point material or a high vapor pressure material, there is an effect that it is possible to produce a remelted raw material that becomes a crushed material having a substantially uniform composition among the obtained crushed materials.

図1は本発明の製造装置を略示する縦断面図、図2は図1の製造装置において鋳型内に収容された分画部材を示す拡大斜視図である。図1の製造装置は、コールドクルーシブル炉11と、これに接続された減圧吸引鋳造装置21とを備えている。コールドクルーシブル炉11は、相互に絶縁されて円筒状に立設された複数の水冷銅製セグメント12,12と炉床13とからなる炉本体14と、炉本体14の外周回りに配置されたコイル15とを備えている。コールドクルーシブル炉11は、炉本体14内へ装入した所定組成の金属原料を、コイル15へ高周波電流を流すことにより誘導加熱し、この際に発生するローレンツ斥力により浮揚溶解するようになっている。図1は所定組成の金属原料を浮揚溶解している状態を示しており、炉本体14内には、ほぼ中央部に金属溶湯Aが浮揚溶解していて、炉床部13に凝固シェルBが形成されている。   FIG. 1 is a longitudinal sectional view schematically showing the production apparatus of the present invention, and FIG. 2 is an enlarged perspective view showing a fraction member housed in a mold in the production apparatus of FIG. The manufacturing apparatus shown in FIG. 1 includes a cold crucible furnace 11 and a vacuum suction casting apparatus 21 connected thereto. The cold crucible furnace 11 includes a furnace body 14 composed of a plurality of water-cooled copper segments 12 and 12 and a hearth 13 that are insulated from each other and arranged in a cylindrical shape, and a coil 15 disposed around the outer periphery of the furnace body 14. And. In the cold crucible furnace 11, a metal material having a predetermined composition charged into the furnace body 14 is induction-heated by flowing a high-frequency current through the coil 15, and is levitated and melted by the Lorentz repulsive force generated at this time. . FIG. 1 shows a state in which a metal raw material having a predetermined composition is levitated and melted. In the furnace main body 14, the molten metal A is levitated and melted substantially at the center, and the solidified shell B is located in the hearth 13. Is formed.

減圧吸引鋳造装置21は、チャンバ22と、チャンバ22の排気口23に接続された図示しない真空ポンプと、チャンバ22内に支持された円筒形の鋳型24と、鋳型24から延設されたスノート25と、鋳型24内に収容された分画部材31とを備えており、チャンバ22が炉本体14上に載置されている。減圧吸引鋳造装置21は、図示しない真空ポンプを作動させて、鋳型24内を減圧雰囲気にすると、浮揚溶解状態の金属溶湯A中へ挿入したスノート25を介して、金属溶湯Aを鋳型24内へ減圧吸引するようになっている。   The vacuum suction casting apparatus 21 includes a chamber 22, a vacuum pump (not shown) connected to the exhaust port 23 of the chamber 22, a cylindrical mold 24 supported in the chamber 22, and a snout 25 extending from the mold 24. And a fractionation member 31 accommodated in the mold 24, and the chamber 22 is placed on the furnace body 14. The vacuum suction casting apparatus 21 operates a vacuum pump (not shown) to bring the inside of the mold 24 into a reduced-pressure atmosphere, and the molten metal A is fed into the mold 24 via the snout 25 inserted into the molten metal A in a floating and melted state. It is designed to perform vacuum suction.

分画部材31は、長手方向に沿う内側端面で十字形に結合された4枚の矩形片32〜35からなる基板36と、4枚の矩形片32〜35の隣接する相互間に所定間隔で装架された10段の棚板37〜40(但し、棚板39,40は図示しない、以下同じ)とを備えている。分画部材31は、これを鋳型24内へ収容したとき、4枚の矩形片32〜35の長手方向に沿う外側端面が鋳型24の内周面に摺接し、また各棚板37〜40の先端面と鋳型24の内周面との間に隙間が形成されるようになっている。分画部材31を鋳型24内へ収容すると、鋳型24内には、スノート25と直結する最下段に相当する部分を除き、前記のような隙間を介して相互に連通する合計40室の小室が形成されるようになっているのである。   The fractionation member 31 has a predetermined interval between a substrate 36 composed of four rectangular pieces 32 to 35 joined in a cross shape on the inner end face along the longitudinal direction, and adjacent four rectangular pieces 32 to 35. 10-tiered shelf boards 37 to 40 (however, the shelf boards 39 and 40 are not shown, and the same applies hereinafter) are provided. When the fraction member 31 is accommodated in the mold 24, the outer end surfaces along the longitudinal direction of the four rectangular pieces 32 to 35 are in sliding contact with the inner peripheral surface of the mold 24, and each of the shelf plates 37 to 40 is A gap is formed between the front end surface and the inner peripheral surface of the mold 24. When the fractionation member 31 is accommodated in the mold 24, a total of 40 small chambers communicating with each other through the gap as described above except for a portion corresponding to the lowermost stage directly connected to the snout 25. It is designed to be formed.

図3は本発明の製造装置に使用され得る他の分画部材を示す拡大斜視図である。図3の分画部材41は、1枚の矩形片42からなる基板43と、矩形片42の長手方向に沿う両面に所定間隔で取付けられた10段の棚板44,45とを備えている。分画部材41は、これを分画部材31に代えて鋳型24内へ収容したとき、矩形片42の長手方向に沿う両端面が鋳型24の内周面に摺接し、また各棚板44,45の先端面と鋳型24の内周面との間に隙間が形成されるようになっている。分画部材41を分画部材31に代えて鋳型24内へ収容すると、鋳型24内には、スノート25と直結する最下段に相当する部分を除き、前記のような隙間を介して相互に連通する合計20室の小室が形成されるようになっているのである。   FIG. 3 is an enlarged perspective view showing another fraction member that can be used in the production apparatus of the present invention. 3 includes a substrate 43 formed of a single rectangular piece 42 and ten steps of shelf plates 44 and 45 attached to both sides along the longitudinal direction of the rectangular piece 42 at a predetermined interval. . When the fraction member 41 is housed in the mold 24 instead of the fraction member 31, both end surfaces along the longitudinal direction of the rectangular piece 42 are in sliding contact with the inner peripheral surface of the mold 24, and each shelf plate 44, A gap is formed between the front end surface of 45 and the inner peripheral surface of the mold 24. When the fraction member 41 is housed in the mold 24 instead of the fraction member 31, the mold 24 communicates with each other through the gap as described above, except for the portion corresponding to the lowest stage directly connected to the snout 25. Thus, a total of 20 small chambers are formed.

図4は本発明の製造装置に使用され得る更に他の分画部材を示す拡大斜視図である。図4の分画部材46は、長手方向に沿う内側端面の相互間に隙間を残して十字形に配置された4枚の矩形片47〜50からなる基板51と、4枚の矩形片47〜50の隣接する相互間に所定間隔で装架された10段の棚板52〜55(但し、棚板54,55は図示しない、以下同じ)とを備えている。分画部材46は、これを分画部材31に代えて鋳型24内へ収容したとき、4枚の矩形片47〜50の長手方向に沿う外側端面及び各棚板52〜55の外側端面が鋳型24の内周面に摺接し、また4枚の矩形片47〜50及び棚板52〜55の各内側端面に隙間が形成されるようになっている。分画部材46を分画部材31に代えて鋳型24内へ収容すると、鋳型24内には、スノート25と直結する最下段に相当する部分を除き、前記のような隙間を介して相互に連通する合計40室の小室が形成されるようになっているのである。   FIG. 4 is an enlarged perspective view showing still another fraction member that can be used in the production apparatus of the present invention. 4 includes a substrate 51 composed of four rectangular pieces 47 to 50 arranged in a cross shape with a gap between inner end faces along the longitudinal direction, and four rectangular pieces 47 to 10 adjacent shelf plates 52 to 55 mounted at a predetermined interval between 50 adjacent ones (however, the shelf plates 54 and 55 are not shown, and the same applies hereinafter). When the fraction member 46 is housed in the mold 24 instead of the fraction member 31, the outer end faces along the longitudinal direction of the four rectangular pieces 47 to 50 and the outer end faces of the respective shelf plates 52 to 55 are the mold. 24 are slidably contacted with the inner peripheral surface, and gaps are formed on the inner end surfaces of the four rectangular pieces 47 to 50 and the shelf plates 52 to 55. When the fraction member 46 is accommodated in the mold 24 instead of the fraction member 31, the mold 24 communicates with each other through the gap as described above except for the portion corresponding to the lowermost stage directly connected to the snout 25. A total of 40 small chambers are formed.

本発明の製造装置を図面に基づいて説明したが、本発明の製造装置が図示した例に限定されるというものではない。例えば、分画部材が備える棚板の段数や分画部材により鋳型内に形成される小室の数は、得られる再溶解原料をわざわざ切断しなくても簡単に再溶解に好適な細かい破砕物とすることができる限り、任意なのである。   Although the manufacturing apparatus of the present invention has been described with reference to the drawings, the manufacturing apparatus of the present invention is not limited to the illustrated example. For example, the number of shelves provided in the fractionation member and the number of chambers formed in the mold by the fractionation member are fine crushed materials that can be easily remelted without having to bother cutting the resulting remelting raw material. It is optional as long as you can.

実施例1〜3及び比較例1
実施例1〜3では図1〜4について前記した本発明の製造装置及び炭素鋼製の分画部材を用いて再溶解原料を製造し、これに衝撃を加えて破砕物とした。比較例1では分画部材を用いずに再溶解原料を製造し、これを長手方向に10段、各段で4分割して、合計40個の切断物とした。ここでは各例でいずれも、金属原料として偏析し易いTaを含むTi−30Taの合金組成物を用い、また鋳型として直径25mm×高さ300mmの炭素鋼製のパイプを用いた。各例で得られた破砕物又は切断物の1個毎にTa含有量を測定し、その平均値及び標準偏差を求めた。結果を表1にまとめて示した。
Examples 1 to 3 and Comparative Example 1
In Examples 1 to 3, a remelted raw material was produced using the production apparatus of the present invention described above with reference to FIGS. 1 to 4 and a carbon steel fraction member, and an impact was applied thereto to obtain a crushed material. In Comparative Example 1, a remelted raw material was produced without using a fractionation member, and this was divided into 10 stages in the longitudinal direction and divided into 4 parts at each stage to obtain a total of 40 cut products. Here, in each example, a Ti-30Ta alloy composition containing Ta that easily segregates was used as a metal raw material, and a carbon steel pipe having a diameter of 25 mm and a height of 300 mm was used as a mold. The Ta content was measured for each of the crushed material or the cut material obtained in each example, and the average value and the standard deviation were obtained. The results are summarized in Table 1.

Figure 2006175505
Figure 2006175505

実施例4〜6及び比較例2
実施例4〜6では図1〜4について前記した本発明の製造装置及び炭素鋼製の分画部材を用いて再溶解原料を製造し、これに衝撃を加えて破砕物とした。比較例2では分画部材を用いずに再溶解原料を製造し、これを長手方向に10段、各段で4分割して、合計40個の切断物とした。ここでは各例でいずれも、金属原料として蒸発し易いMnを含むTi−10Mnの合金組成物を用い、また鋳型として直径25mm×高さ300mmの炭素鋼製のパイプを用いた。各例で得られた破砕物又は切断物の1個毎にMn含有量を測定し、その平均値及び標準偏差を求めた。結果を表2にまとめて示した。
Examples 4 to 6 and Comparative Example 2
In Examples 4-6, the remelting raw material was manufactured using the manufacturing apparatus of this invention mentioned above about FIGS. 1-4, and the fraction member made from carbon steel, and it applied to this and it was set as the crushed material. In Comparative Example 2, a remelted raw material was produced without using a fractionation member, and this was divided into 10 steps in the longitudinal direction and 4 steps in each step to obtain a total of 40 cut pieces. Here, in each example, a Ti-10Mn alloy composition containing Mn that easily evaporates was used as a metal raw material, and a carbon steel pipe having a diameter of 25 mm and a height of 300 mm was used as a mold. The Mn content was measured for each of the crushed material or the cut material obtained in each example, and the average value and the standard deviation were obtained. The results are summarized in Table 2.

Figure 2006175505
Figure 2006175505

表1及び2の結果からも明らかなように、金属原料が偏析し易いTaのような高融点材を含む場合であっても、また蒸発し易いMnのような高蒸気圧材を含む場合であっても、本発明の製造方法及び装置によると、所期の通りの均一組成の破砕物が得られる再溶解原料を製造できる。   As is clear from the results of Tables 1 and 2, even when the metal raw material contains a high melting point material such as Ta that easily segregates, or when it contains a high vapor pressure material such as Mn that easily evaporates. Even if it exists, according to the manufacturing method and apparatus of this invention, the remelting raw material from which the crushed material of the uniform composition as expected can be obtained can be manufactured.

本発明の製造装置を略示する縦断面図。The longitudinal cross-sectional view which shows the manufacturing apparatus of this invention schematically. 図1の製造装置において鋳型内に収容された分画部材を示す拡大斜視図。The enlarged perspective view which shows the fraction member accommodated in the casting_mold | template in the manufacturing apparatus of FIG. 本発明の製造装置に使用され得る他の分画部材を示す拡大斜視図。The expansion perspective view which shows the other fraction member which can be used for the manufacturing apparatus of this invention. 本発明の製造装置に使用され得る更に他の分画部材を示す拡大斜視図。The expansion perspective view which shows the other fraction member which can be used for the manufacturing apparatus of this invention.

符号の説明Explanation of symbols

11 コールドクルーシブル炉
12 水冷銅製セグメント
14 炉本体
15 コイル
21 減圧吸引鋳造装置
22 チャンバ
24 鋳型
31,41,46 分画部材
36,43,51 基板
37,38,44,45,52,53 棚板
DESCRIPTION OF SYMBOLS 11 Cold crucible furnace 12 Water-cooled copper segment 14 Furnace main body 15 Coil 21 Vacuum suction casting apparatus 22 Chamber 24 Mold 31, 41, 46 Separation member 36, 43, 51 Substrate 37, 38, 44, 45, 52, 53 Shelf

Claims (5)

コールドクルーシブル炉で浮揚溶解した金属溶湯を鋳型内へ減圧吸引して凝固させることにより再溶解原料を製造する方法において、金属溶湯を内部に相互に連通する複数の小室を形成した鋳型内へ減圧吸引して凝固させることを特徴とする再溶解原料の製造方法。   In a method of manufacturing a remelted raw material by vacuum suction and solidification of molten metal levitated and melted in a cold crucible furnace, the molten metal is vacuum sucked into a mold in which a plurality of chambers communicating with each other are formed. A method for producing a re-dissolved raw material characterized in that it is solidified. 再溶解原料が高融点材及び/又は高蒸気圧材を含有するTi合金である請求項1記載の再溶解原料の製造方法。   The method for producing a remelted raw material according to claim 1, wherein the remelted raw material is a Ti alloy containing a high melting point material and / or a high vapor pressure material. コールドクルーシブル炉と、これに接続された減圧吸引鋳造装置とを備え、該コールドクルーシブル炉で浮揚溶解した金属溶湯を該減圧吸引鋳造装置の鋳型内へ減圧吸引して凝固させるようにした再溶解原料の製造装置において、鋳型が全体として筒形に形成されており、該鋳型の内部に分画部材が収容されていて、該分画部材により該鋳型の内部に相互に連通する複数の小室が形成されるようにして成ることを特徴とする再溶解原料の製造装置。   A remelted raw material comprising a cold crucible furnace and a vacuum suction casting apparatus connected to the cold crucible furnace, wherein the molten metal floated and melted in the cold crucible furnace is sucked into a mold of the vacuum suction casting apparatus and solidified by vacuum suction In the manufacturing apparatus, the mold is formed in a cylindrical shape as a whole, and a fractionation member is accommodated inside the mold, and the fractionation member forms a plurality of small chambers communicating with each other inside the mold. An apparatus for producing a remelted raw material, characterized in that it is configured as described above. 分画部材が基板とこれに所定間隔で支持された複数段の棚板とを備えるものである請求項3記載の再溶解原料の製造装置。   The apparatus for producing a remelted raw material according to claim 3, wherein the fractionation member comprises a substrate and a plurality of shelves supported by the substrate at predetermined intervals. 再溶解原料が高融点材及び/又は高蒸気圧材を含有するTi合金である請求項3又は4記載の再溶解原料の製造装置。
The apparatus for producing a remelted raw material according to claim 3 or 4, wherein the remelted raw material is a Ti alloy containing a high melting point material and / or a high vapor pressure material.
JP2004373545A 2004-12-24 2004-12-24 Method and device for producing remelted raw material Pending JP2006175505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373545A JP2006175505A (en) 2004-12-24 2004-12-24 Method and device for producing remelted raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373545A JP2006175505A (en) 2004-12-24 2004-12-24 Method and device for producing remelted raw material

Publications (1)

Publication Number Publication Date
JP2006175505A true JP2006175505A (en) 2006-07-06

Family

ID=36730092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373545A Pending JP2006175505A (en) 2004-12-24 2004-12-24 Method and device for producing remelted raw material

Country Status (1)

Country Link
JP (1) JP2006175505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113060A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
JP2009113060A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY

Similar Documents

Publication Publication Date Title
US7682472B2 (en) Method for casting polycrystalline silicon
WO2002101103A3 (en) Centrifugal casting of nickel base superalloys in isotropic graphite molds under vacuum
US20070280328A1 (en) Melting method using graphite melting vessel
JP2001240949A (en) Method of manufacturing for worked billet of high- purity copper having fine crystal grain
NO20054942L (en) Fine-grained niobark obtained by block metallurgy
WO2018066410A1 (en) Hot extruded material for cylindrical sputtering target and method for manufacturing cylindrical sputtering target
JP2010116581A (en) Method for producing titanium ingot using vacuum arc melting furnace
US6273179B1 (en) Method and apparatus for metal electrode or ingot casting
JP5033246B2 (en) Metal slab manufacturing apparatus using electron beam and metal slab manufacturing method using the same
JP2006175505A (en) Method and device for producing remelted raw material
JP2003522028A5 (en)
US8454920B2 (en) Silicon purification method
US2899294A (en) Purification melting process for metal-
JP2004169167A (en) Spheroidal graphite cast iron having excellent low temperature toughness, and production method therefor
JP2006341280A (en) Method for producing ingot
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
JP2021088743A (en) Metal thin plate material and method for manufacturing metal thin plate
RU2247162C1 (en) Method of production of blanks from copper or its alloys
JP2004300492A (en) Production method of aluminum mother alloy
JP2004300491A (en) METHOD FOR REFINING Al BASE ALLOY
JPH05154641A (en) Method for casting titanium-aluminum alloy cast product
JP2018145518A (en) Cu-Ni alloy sputtering target
JP2010172934A (en) Melting and processing method of long ingot
JP2002195756A (en) Floating melting/casting apparatus
US3297430A (en) Method for producing ledeburitic steel showing a globular solidified structure