JP2006173265A - Semiconductor laser and its manufacturing method - Google Patents

Semiconductor laser and its manufacturing method Download PDF

Info

Publication number
JP2006173265A
JP2006173265A JP2004361731A JP2004361731A JP2006173265A JP 2006173265 A JP2006173265 A JP 2006173265A JP 2004361731 A JP2004361731 A JP 2004361731A JP 2004361731 A JP2004361731 A JP 2004361731A JP 2006173265 A JP2006173265 A JP 2006173265A
Authority
JP
Japan
Prior art keywords
semiconductor laser
insulating film
ridge
shaped waveguide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004361731A
Other languages
Japanese (ja)
Inventor
Takashi Washino
隆 鷲野
Masaru Mukaikubo
優 向久保
Yasushi Sakuma
康 佐久間
Katsuya Motoda
勝也 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2004361731A priority Critical patent/JP2006173265A/en
Publication of JP2006173265A publication Critical patent/JP2006173265A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor laser efficiently dissipating a heat generated in a ridgy waveguide to the outside, increasing an upper-limit temperature capable of ensuring the basic characteristics and reliability of an element, and enabling a stable operation under a high-temperature state in an insulating film coating the surface of the semiconductor laser such as the ridgy waveguide and a manufacturing method for the semiconductor laser. <P>SOLUTION: In the semiconductor laser, insulating films containing Al and having excellent heat-dissipating properties are used as the insulating films 103 coating a surface and the side faces of the ridgy waveguides, and the insulating films 103 are further formed in surface shapes having irregularities vertically or in parallel or in a latticed shape to the ridgy waveguides. The ridgy waveguides are formed, and the surface of the semiconductor laser is coated with the insulating films using Al having a thermal conductivity higher than Si as a main material. A surface area is further increased in a groove shape and the latticed shape by working the surfaces of the insulating films using formed Al as the main material, and heat-dissipating properties are improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体レーザの製造技術に関し、特に、放熱性に優れた光通信用半導体レーザとその製造方法に適用して有効な技術に関する。   The present invention relates to a semiconductor laser manufacturing technique, and more particularly to a technique effective when applied to an optical communication semiconductor laser excellent in heat dissipation and a manufacturing method thereof.

半導体レーザは高速な情報交換を可能とするデバイスであり、加えて、低価格化と長寿命が共に要求される光通信用光源である。半導体レーザは低電流動作を可能にすることと、レーザ光の横モード抑制を目的に、リッジ状の導波路構造を形成する必要がある。リッジ状の導波路構造の素子は、リッジ状の導波路を形成後、その両脇を電気伝導率の異なる半導体で埋め込み形成する方法がある。しかし、本構造の場合、結晶成長を二度実施するため製造コストが高くなる。そこで、リッジ状の導波路を半導体で埋め込まず、材料費、工程数低減により製造コスト削減を可能とする構造がある。その構造の場合、動作電流を減少させる目的で形成される絶縁膜は、リッジ状導波路などの半導体レーザ表面を皮膜し、その上に電極が形成される。   A semiconductor laser is a device that enables high-speed information exchange. In addition, it is a light source for optical communication that requires both low cost and long life. A semiconductor laser needs to have a ridge-shaped waveguide structure for the purpose of enabling a low current operation and suppressing a transverse mode of laser light. An element having a ridge-shaped waveguide structure is formed by embedding and forming both sides of a ridge-shaped waveguide with semiconductors having different electrical conductivities. However, in the case of this structure, since the crystal growth is performed twice, the manufacturing cost becomes high. Therefore, there is a structure in which the manufacturing cost can be reduced by reducing the material cost and the number of processes without embedding the ridge-shaped waveguide with a semiconductor. In the case of the structure, an insulating film formed for the purpose of reducing the operating current coats the surface of a semiconductor laser such as a ridge waveguide, and an electrode is formed thereon.

ところで、半導体レーザの要求仕様の一つに高温状態下における安定動作があり、レーザ発振により発生する素子内部、特にリッジ状導波路内の熱を効率良く外部に放出する構造が必要とされている。半導体レーザ素子表面に形成される絶縁膜がSiなどの熱伝導率の低い材料で形成される場合、リッジ状導波路内で発した熱が外部へ放出されにくく、素子の基本特性、および信頼性を保証できる上限温度が制限されるといった問題を抱えていた。   By the way, one of the required specifications of a semiconductor laser is a stable operation under a high temperature condition, and there is a need for a structure that efficiently releases the heat inside the element generated by laser oscillation, particularly in the ridge-shaped waveguide. . When the insulating film formed on the surface of the semiconductor laser device is made of a material with low thermal conductivity such as Si, the heat generated in the ridge-shaped waveguide is not easily released to the outside, and the basic characteristics and reliability of the device There is a problem that the upper limit temperature that can guarantee this is limited.

そこで、本発明は、前記課題を解決し、その目的は、リッジ状導波路などの半導体レーザ表面を皮膜する絶縁膜において、リッジ状導波路内で発した熱を外部に効率良く放出し、素子の基本特性および信頼性を保証できる上限温度を引き上げ、高温状態下における安定動作を可能とする半導体レーザとその製造方法を提供することにある。   Therefore, the present invention solves the above-mentioned problems, and an object of the present invention is to efficiently release heat generated in the ridge-shaped waveguide to the outside in an insulating film that coats the surface of the semiconductor laser such as the ridge-shaped waveguide. It is an object of the present invention to provide a semiconductor laser and a method of manufacturing the same that increase the upper limit temperature that can guarantee the basic characteristics and reliability of the semiconductor laser and enable stable operation under high temperature conditions.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

本発明は、前記目的を達成するため、表面およびリッジ状導波路の側面を皮膜する絶縁膜をAlを含む放熱性に優れた絶縁膜とし、加えて、この絶縁膜をリッジ状導波路に対して垂直または平行または格子状に凹凸のある表面形状の半導体レーザとするものである。   In order to achieve the above object, the present invention uses an insulating film that coats the surface and the side surface of the ridge-shaped waveguide as an insulating film that has excellent heat dissipation including Al, and in addition, this insulating film is applied to the ridge-shaped waveguide. Thus, a semiconductor laser having a surface shape with irregularities in a vertical, parallel or lattice shape is obtained.

この半導体レーザの製造方法においては、リッジ状の導波路を形成した後に、Siと比較して熱伝導率が高いAlを主材料とした絶縁膜で半導体レーザ表面を皮膜する。加えて、形成したAlを主材料とした絶縁膜の表面を加工することで、溝形状や格子形状として表面積を増やし、さらに放熱性を向上させる。また、Alを主材料とした絶縁膜の形成には、簡易的に形成可能なCVD法、または真空状態で不純物が介在せず、リッジ状導波路の表面と側面への皮膜性が良い蒸着法を用いる。もしくは、密着性が良く、密度の高い良質な絶縁膜が形成可能なスパッタ法を用いる。   In this semiconductor laser manufacturing method, after forming a ridge-shaped waveguide, the surface of the semiconductor laser is coated with an insulating film mainly made of Al, which has a higher thermal conductivity than Si. In addition, by processing the surface of the formed insulating film mainly made of Al, the surface area is increased as a groove shape or a lattice shape, and the heat dissipation is further improved. In addition, for the formation of an insulating film containing Al as a main material, a CVD method that can be easily formed, or a vapor deposition method that has good film properties on the surface and side surfaces of a ridge-shaped waveguide without impurities in a vacuum state. Is used. Alternatively, a sputtering method that can form a high-quality insulating film with good adhesion and high density is used.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

本発明によれば、放熱性の高いAlを主材料とした絶縁膜で、リッジ状導波路などの半導体レーザ表面を皮膜することで、リッジ状導波路内で発した熱を外部に効率良く放出し、素子の基本特性および信頼性を保証できる上限温度を引き上げ、高温状態下における安定動作を可能とすることができる。   According to the present invention, the surface of a semiconductor laser such as a ridge-shaped waveguide is coated with an insulating film mainly made of Al with high heat dissipation, so that heat generated in the ridge-shaped waveguide is efficiently released to the outside. In addition, the upper limit temperature at which the basic characteristics and reliability of the element can be guaranteed can be increased, and stable operation under high temperature conditions can be achieved.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

(実施の形態1)
図1に、本発明の実施の形態1であるリッジ状導波路型半導体レーザの素子構造を示す。
(Embodiment 1)
FIG. 1 shows an element structure of a ridge-shaped waveguide type semiconductor laser according to Embodiment 1 of the present invention.

本実施の形態であるリッジ状導波路型半導体レーザは、半導体基板101、レーザ多層構造102、絶縁膜103、表面電極104、裏面電極105から構成され、その製造方法は以下の手順で行われる。   The ridge-waveguide semiconductor laser according to the present embodiment includes a semiconductor substrate 101, a laser multilayer structure 102, an insulating film 103, a front electrode 104, and a back electrode 105, and the manufacturing method thereof is performed according to the following procedure.

まず、下地となる半導体基板101上に有機金属気層成長法を用いて、レーザ多層構造102を結晶成長させる。その後、熱CVD法、およびホトリソグラフィ法、エッチングを行いリッジ状導波路を形成する。次に、動作電流を減少させる目的でAlを主材料とした絶縁膜103をリッジ状導波路などの半導体レーザ表面を皮膜し、その上に電子ビーム蒸着法などで表面電極104を形成する。同様に、半導体レーザ裏面にも裏面電極105を形成する。   First, the laser multilayer structure 102 is crystal-grown on the underlying semiconductor substrate 101 by using an organic metal gas layer growth method. Thereafter, a thermal CVD method, a photolithography method, and etching are performed to form a ridge-shaped waveguide. Next, for the purpose of reducing the operating current, a surface of a semiconductor laser such as a ridge-shaped waveguide is coated with an insulating film 103 containing Al as a main material, and a surface electrode 104 is formed thereon by an electron beam evaporation method or the like. Similarly, a back electrode 105 is formed on the back surface of the semiconductor laser.

本実施の形態では、絶縁膜103の主材料を従来のSiに代わりAlとしている。AlはSiと比較し、5〜10倍程度の熱伝導性を示すため、半導体レーザのリッジ状導波路内で発生した熱を外部、または絶縁膜103上に形成した表面電極104へ放出しやすくする。Alを主材料とした絶縁膜103は、主に酸化膜であるが、絶縁膜として物性上仕様を満足すれば窒化膜でも問題ない。   In this embodiment, the main material of the insulating film 103 is Al instead of conventional Si. Since Al exhibits a thermal conductivity of about 5 to 10 times that of Si, heat generated in the ridge-shaped waveguide of the semiconductor laser can be easily released to the surface electrode 104 formed on the insulating film 103 or outside. To do. The insulating film 103 containing Al as a main material is mainly an oxide film, but a nitride film is not a problem as long as the insulating film satisfies the specifications in terms of physical properties.

また、それら絶縁膜103の形成方法としては、たとえば一例として、トリイソチルAlなどの反応性ガスを用いたCVD法があり、常圧中で皮膜性の高い絶縁膜を簡易的に形成することが可能である。リッジ状導波路構造を有する半導体レーザ基板(すなわちレーザ多層構造102の形成後の半導体基板101)を高温のステージ上に配置し、その表面に絶縁膜103を形成する。その際、リッジ状導波路構造を有する半導体レーザ基板を配置したステージを回転させると、リッジ状導波路側面への皮膜性はより向上する。   As a method for forming the insulating film 103, for example, there is a CVD method using a reactive gas such as triisotyl Al, and it is possible to easily form an insulating film having a high film property under normal pressure. It is. A semiconductor laser substrate having a ridge-shaped waveguide structure (that is, the semiconductor substrate 101 after the formation of the laser multilayer structure 102) is placed on a high-temperature stage, and an insulating film 103 is formed on the surface thereof. At that time, when the stage on which the semiconductor laser substrate having the ridge-shaped waveguide structure is arranged is rotated, the film property on the side surface of the ridge-shaped waveguide is further improved.

その他、絶縁膜103の形成方法としては、スパッタ法を用いる。スパッタ法は、不純物となる反応性ガスを必要とせず、真空中で密着性の高い良質な絶縁膜を得ることが可能である。また、低損傷型であるECRスパッタ法を用いることで、スパッタ法による成膜中の半導体レーザへのダメージを低減させることが可能で、加えて、結晶状態に近い緻密な絶縁膜を得ることが可能である。また、皮膜性の低いリッジ状導波路側面への絶縁膜形成には、スパッタ原料に対し、たとえば一例として、30〜60°程度に斜度を形成したステージを用い、リッジ状導波路両側面より交互に形成することで表面、側面共に均一な厚さである絶縁膜を得ることが可能となる。   In addition, as a method for forming the insulating film 103, a sputtering method is used. The sputtering method does not require a reactive gas as an impurity, and it is possible to obtain a high-quality insulating film with high adhesion in a vacuum. Further, by using the low damage type ECR sputtering method, damage to the semiconductor laser during film formation by the sputtering method can be reduced, and in addition, a dense insulating film close to a crystalline state can be obtained. Is possible. In addition, for forming an insulating film on the side surface of the ridge-shaped waveguide having a low film property, for example, a stage having an inclination of about 30 to 60 ° is used with respect to the sputtering raw material. By forming them alternately, it is possible to obtain an insulating film having a uniform thickness on both the surface and the side surface.

また、真空状態でリッジ状導波路側面への皮膜性の高い絶縁膜を得る方法としては、たとえば一例として、30〜60°程度に斜度を形成したステージを用いた電子ビーム蒸着法を用いても問題ない。   In addition, as a method for obtaining an insulating film having a high film property on the side surface of the ridge-shaped waveguide in a vacuum state, for example, an electron beam evaporation method using a stage having an inclination of about 30 to 60 ° is used. There is no problem.

よって、本実施の形態によれば、Alを主材料とした絶縁膜103をリッジ状導波路構造を有する半導体レーザに適用することで、素子の基本特性および信頼性を保証できる上限温度を引き上げることが可能となる。本発明者による実用例では、上限温度を15℃以上引き上げることが可能となった。   Therefore, according to the present embodiment, by applying the insulating film 103 made mainly of Al to a semiconductor laser having a ridge-shaped waveguide structure, the upper limit temperature at which the basic characteristics and reliability of the element can be guaranteed is raised. Is possible. In the practical example by the present inventor, the upper limit temperature can be raised by 15 ° C. or more.

(実施の形態2)
図2に、本発明の実施の形態2であるリッジ状導波路型半導体レーザの素子構造を示す。
(Embodiment 2)
FIG. 2 shows an element structure of a ridge-shaped waveguide type semiconductor laser according to the second embodiment of the present invention.

本実施の形態であるリッジ状導波路型半導体レーザは、前記実施の形態1で示したAlを主材料とした絶縁膜103を形成した後、ホトリソグラフィ法、エッチングを行いリッジ状の導波路に対し垂直、または平行、格子状に凹凸のある表面形状として、凹凸加工を施した凹凸形状の絶縁膜106とする。これにより、表面積を増やし放熱性をより向上させることが可能となる。   In the ridge-shaped waveguide type semiconductor laser according to the present embodiment, after forming the insulating film 103 made of Al as the main material shown in the first embodiment, a photolithography method and etching are performed to form a ridge-shaped waveguide. On the other hand, a concavo-convex-shaped insulating film 106 subjected to concavo-convex processing is formed as a surface shape having concavo-convex in a vertical, parallel, or lattice shape. Thereby, it becomes possible to increase a surface area and to further improve heat dissipation.

以上、前記実施の形態1および2による本発明では、レーザ発振により発生する半導体レーザ素子内部の熱を外部に効率良く放出することで、更なる高温状態下における安定動作が可能となる。   As described above, in the present invention according to the first and second embodiments, the heat inside the semiconductor laser element generated by the laser oscillation is efficiently released to the outside, so that the stable operation can be performed under a further high temperature state.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

本発明は、放熱性に優れた光通信用半導体レーザとその製造方法に適用して有効である。特に、素子の基本特性および信頼性を保証できる上限温度を大幅に引き上げることが可能となり、今後の半導体レーザには必要不可欠な基本技術として利用可能である。   INDUSTRIAL APPLICABILITY The present invention is effective when applied to a semiconductor laser for optical communication excellent in heat dissipation and a manufacturing method thereof. In particular, the upper limit temperature at which the basic characteristics and reliability of the element can be guaranteed can be greatly increased, and it can be used as a basic technology indispensable for future semiconductor lasers.

本発明の実施の形態1であるリッジ状導波路型半導体レーザの素子構造を示す図である。It is a figure which shows the element structure of the ridge-shaped waveguide type semiconductor laser which is Embodiment 1 of this invention. 本発明の実施の形態2であるリッジ状導波路型半導体レーザの素子構造を示す図である。It is a figure which shows the element structure of the ridge-shaped waveguide type semiconductor laser which is Embodiment 2 of this invention.

符号の説明Explanation of symbols

101…半導体基板、102…レーザ多層構造、103…絶縁膜、104…表面電極、105…裏面電極、106…凹凸形状の絶縁膜。   DESCRIPTION OF SYMBOLS 101 ... Semiconductor substrate, 102 ... Laser multilayer structure, 103 ... Insulating film, 104 ... Front surface electrode, 105 ... Back surface electrode, 106 ... Insulating film of uneven | corrugated shape.

Claims (5)

リッジ状の導波路構造を備えた半導体レーザであって、
前記半導体レーザの表面および前記リッジ状の導波路の側面を皮膜する絶縁膜を有し、
前記絶縁膜は、Alを含む絶縁膜であることを特徴とする半導体レーザ。
A semiconductor laser having a ridge-shaped waveguide structure,
An insulating film that coats the surface of the semiconductor laser and the side surface of the ridge-shaped waveguide;
2. The semiconductor laser according to claim 1, wherein the insulating film is an insulating film containing Al.
請求項1記載の半導体レーザにおいて、
前記絶縁膜は、前記リッジ状の導波路に対して垂直または平行または格子状に凹凸のある形状であることを特徴とする半導体レーザ。
The semiconductor laser according to claim 1, wherein
2. The semiconductor laser according to claim 1, wherein the insulating film has an uneven shape perpendicular to, parallel to, or in a lattice shape with respect to the ridge-shaped waveguide.
リッジ状の導波路構造を備えた半導体レーザの製造方法であって、
前記半導体レーザの表面および前記リッジ状の導波路の側面を、Alを含む絶縁膜により皮膜することを特徴とする半導体レーザの製造方法。
A method of manufacturing a semiconductor laser having a ridge-shaped waveguide structure,
A method of manufacturing a semiconductor laser, comprising: coating a surface of the semiconductor laser and a side surface of the ridge-shaped waveguide with an insulating film containing Al.
請求項3記載の半導体レーザの製造方法において、
前記絶縁膜を、CVD法またはスパッタ法または蒸着法により形成することを特徴とする半導体レーザの製造方法。
In the manufacturing method of the semiconductor laser according to claim 3,
A method of manufacturing a semiconductor laser, wherein the insulating film is formed by a CVD method, a sputtering method, or an evaporation method.
請求項4記載の半導体レーザの製造方法において、
前記絶縁膜の表面に、ホトリソグラフィ法により、前記リッジ状の導波路に対して垂直または平行または格子状に凹凸を形成することを特徴とする半導体レーザの製造方法。
In the manufacturing method of the semiconductor laser according to claim 4,
A method of manufacturing a semiconductor laser, comprising: forming a concavo-convex pattern on the surface of the insulating film in a vertical, parallel, or grid pattern with respect to the ridge-shaped waveguide by a photolithography method.
JP2004361731A 2004-12-14 2004-12-14 Semiconductor laser and its manufacturing method Pending JP2006173265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361731A JP2006173265A (en) 2004-12-14 2004-12-14 Semiconductor laser and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361731A JP2006173265A (en) 2004-12-14 2004-12-14 Semiconductor laser and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006173265A true JP2006173265A (en) 2006-06-29

Family

ID=36673699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361731A Pending JP2006173265A (en) 2004-12-14 2004-12-14 Semiconductor laser and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006173265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071155A (en) * 2009-09-24 2011-04-07 Oki Electric Industry Co Ltd Method of manufacturing semiconductor laser
WO2012101686A1 (en) * 2011-01-26 2012-08-02 パナソニック株式会社 Semiconductor light emitting element and light emitting device
US10707651B2 (en) 2018-06-08 2020-07-07 Sharp Kabushiki Kaisha Semiconductor laser element
CN115236910A (en) * 2022-09-23 2022-10-25 惠科股份有限公司 Display panel and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135893A (en) * 1997-08-29 1999-05-21 Xerox Corp Edge-emitting laser
JPH11317403A (en) * 1998-01-20 1999-11-16 Rohm Co Ltd Semiconductor device
JP2001251018A (en) * 2000-03-03 2001-09-14 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor laser
JP2002198613A (en) * 2000-12-27 2002-07-12 Canon Inc Semiconductor device having salient structure, and method of manufacturing the semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135893A (en) * 1997-08-29 1999-05-21 Xerox Corp Edge-emitting laser
JPH11317403A (en) * 1998-01-20 1999-11-16 Rohm Co Ltd Semiconductor device
JP2001251018A (en) * 2000-03-03 2001-09-14 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor laser
JP2002198613A (en) * 2000-12-27 2002-07-12 Canon Inc Semiconductor device having salient structure, and method of manufacturing the semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071155A (en) * 2009-09-24 2011-04-07 Oki Electric Industry Co Ltd Method of manufacturing semiconductor laser
WO2012101686A1 (en) * 2011-01-26 2012-08-02 パナソニック株式会社 Semiconductor light emitting element and light emitting device
US10707651B2 (en) 2018-06-08 2020-07-07 Sharp Kabushiki Kaisha Semiconductor laser element
CN115236910A (en) * 2022-09-23 2022-10-25 惠科股份有限公司 Display panel and display device
US11916053B1 (en) 2022-09-23 2024-02-27 HKC Corporation Limited Display panel and display device

Similar Documents

Publication Publication Date Title
JP6495921B2 (en) Semiconductor laser diode, method for manufacturing semiconductor laser diode, and semiconductor laser diode device
JP5491679B1 (en) Nitride semiconductor light emitting device
JP2006196577A (en) Method for manufacturing orientational thermoelectric thin film and semiconductor device provided therewith
JP2011517851A (en) Semiconductor light-emitting device with double-sided passivation
JP2003209318A (en) Semiconductor laser element and manufacturing method thereof
JP2007158195A (en) Semiconductor laser element and manufacturing method therefor
JP2006173265A (en) Semiconductor laser and its manufacturing method
US20100003778A1 (en) Method of manufacturing semiconductor laser
TWI460885B (en) A semiconductor optical device having air media layer and the method for forming the air media layer
JP2009272530A (en) Semiconductor device and method for manufacturing same
JP2012151392A (en) Heat radiation material and manufacturing method of the same
JP2023014105A (en) Semiconductor laser and process for planarization of semiconductor laser
US20050186757A1 (en) Method for lift off GaN pseudomask epitaxy layer using wafer bonding way
JP3678769B2 (en) Manufacturing method of semiconductor device
JP7249193B2 (en) Power generation element, power generation module, power generation device, power generation system, and method for manufacturing power generation element
JPH02288287A (en) Semiconductor laser element
JP2004523117A5 (en)
JP2007234269A (en) Manufacturing method of organic el element, and film formation device
CN217281626U (en) Semiconductor laser device
JP2021009942A (en) Double-sided mounting board, manufacturing method of double-sided mounting board, and semiconductor laser
JP2007165640A (en) Method for manufacturing semiconductor optical element
JP2000022262A (en) Semiconductor laser
TWI838695B (en) Indium-gallium-nitride light emitting diodes with increased quantum efficiency
CN114976853A (en) Semiconductor laser and method for manufacturing the same
JP2006054231A (en) Manufacturing method of substrate for group 3 nitride semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Effective date: 20100121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A02