JP2006171562A - Optical axis adjusting mechanism - Google Patents

Optical axis adjusting mechanism Download PDF

Info

Publication number
JP2006171562A
JP2006171562A JP2004366498A JP2004366498A JP2006171562A JP 2006171562 A JP2006171562 A JP 2006171562A JP 2004366498 A JP2004366498 A JP 2004366498A JP 2004366498 A JP2004366498 A JP 2004366498A JP 2006171562 A JP2006171562 A JP 2006171562A
Authority
JP
Japan
Prior art keywords
optical axis
rotating plate
mirror
adjusting mechanism
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004366498A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yonesu
敏之 米須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2004366498A priority Critical patent/JP2006171562A/en
Publication of JP2006171562A publication Critical patent/JP2006171562A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical axis adjusting mechanism for an optical apparatus, where the optical axis adjusting mechanism is designed such that fine adjustment is easy, the adjustment shift is less likely to occur after adjustment, displacement of the optical axis, resulting from being subjected to temperature cycling at high temperature and low temperature, is reduced. <P>SOLUTION: The optical axis adjusting mechanism for the optical apparatus capable of adjusting the angle of a mirror (22) includes a rotating plate (36) having a wedge-shaped section and used to fix the mirror; an optical axis adjusting mechanism housing (20) that slides against the rotary plate; and a fixing screw (34), used to fix the rotary plate to the optical axis adjusting mechanism housing. The circumferential face of the rotating plate has a pin insertion hole (32), into which an adjustment pin (30) is inserted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学機器の光軸調整機構に関し、さらに詳細には、光波距離計等の測量機において、ミラーで反射した光を精確に測量機の望遠鏡の光軸と平行にできるように、ミラーの角度を調整できる光軸調整機構に関する。   The present invention relates to an optical axis adjustment mechanism of an optical instrument, and more particularly, in a surveying instrument such as a lightwave distance meter, so that the light reflected by the mirror can be accurately parallel to the optical axis of the telescope of the surveying instrument. The present invention relates to an optical axis adjustment mechanism that can adjust the angle of the light.

光学機器の光軸調整機構としては、下記特許文献1に開示されたようなものが知られている。この光軸調整機構を図5に示す。   As an optical axis adjusting mechanism of an optical device, one disclosed in Patent Document 1 below is known. This optical axis adjusting mechanism is shown in FIG.

この光軸調整機構は、第1レンズ1の光軸L1に沿う光線を反射鏡(ミラー)7で反射させて第2レンズ2の光軸L2と一致させるものである。一端に反射鏡7を固定する補正部材4は、他端が球面にされていて、この他端が装置本体10に設けられた球面坐3に球面嵌合しており、反射鏡7の角度を自在に調整できるようになっている。補正部材4は、反射鏡7の角度を調整後、ビス(ねじ)5、6で装置本体10に固定される。これにより、第1レンズ1の光軸L1に沿う光線を反射鏡7で反射させて第2レンズの光軸L2と一致させることができる。
特開昭58−106505号公報
This optical axis adjustment mechanism reflects a light beam along the optical axis L1 of the first lens 1 with a reflecting mirror (mirror) 7 so as to coincide with the optical axis L2 of the second lens 2. The correction member 4 for fixing the reflecting mirror 7 at one end has a spherical end at the other end, and the other end is spherically fitted to a spherical seat 3 provided in the apparatus main body 10. It can be adjusted freely. The correction member 4 is fixed to the apparatus main body 10 with screws (screws) 5 and 6 after adjusting the angle of the reflecting mirror 7. Thereby, the light beam along the optical axis L1 of the first lens 1 can be reflected by the reflecting mirror 7 to coincide with the optical axis L2 of the second lens.
JP 58-106505 A

前記特許文献1に開示された光軸調整機構では、補正部材4すなわち反射鏡7の角度をゆっくりと変化させる機構がないので微調整が困難であり、また、補正部材4と装置本体10との間の球面嵌合による摩擦力も小さいので、調整後にビス5、6を締めるときに補正部材4の角度を狂わせ易く、さらに、高温と低温の温度サイクルを与えると、熱膨張でビス5、6が伸縮して補正部材4の角度が狂い易く、元の温度に戻ったときの両光軸L1、L2が一致する再現性が悪いという問題があった。   In the optical axis adjustment mechanism disclosed in Patent Document 1, since there is no mechanism for slowly changing the angle of the correction member 4, that is, the reflecting mirror 7, fine adjustment is difficult. Since the frictional force due to the spherical fitting between them is small, the angle of the correction member 4 is easily changed when the screws 5 and 6 are tightened after adjustment. Further, when a high temperature and low temperature cycle are given, the screws 5 and 6 are thermally expanded. There was a problem that the angle of the correction member 4 was easily changed due to expansion and contraction, and the reproducibility of matching both optical axes L1 and L2 when returning to the original temperature was poor.

本発明は、前記問題に鑑みてなされたものであって、光学機器の光軸調整機構において、微調整が容易であり、調整後に調整ずれが起き難く、高温と低温の温度サイクルを与えた後の光軸の狂いを少なくすることを課題とする。   The present invention has been made in view of the above problems, and in an optical axis adjustment mechanism of an optical instrument, fine adjustment is easy, adjustment deviation hardly occurs after adjustment, and after a high temperature and a low temperature cycle are given. The problem is to reduce the optical axis deviation.

前記課題を解決するため、請求項1に係る発明は、ミラーの角度調整可能な光学機器の光軸調整機構において、前記ミラーを固定するとともに断面がくさび形状の回転板と、該回転板と摺接する光軸調整機構ハウジングと、前記回転板を前記光軸調整機構ハウジングに固定する固定ねじとを備えたことを特徴とする。   In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an optical axis adjustment mechanism of an optical device capable of adjusting the angle of a mirror, and a rotary plate that fixes the mirror and has a wedge shape in cross section, An optical axis adjustment mechanism housing in contact with the optical axis adjustment mechanism housing and a fixing screw for fixing the rotating plate to the optical axis adjustment mechanism housing are provided.

請求項2に係る発明は、請求項1に係る発明において、前記回転板の周面には調整ピン挿入孔が形成されたことを特徴とする特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, an adjustment pin insertion hole is formed in the peripheral surface of the rotating plate.

請求項3に係る発明は、請求項1又は2に係る発明において、前記回転板のテーパ角は、略1〜5°であることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the taper angle of the rotating plate is approximately 1 to 5 °.

請求項1に係る発明の光波距離計によれば、ミラーの角度調整可能な光学機器の光軸調整機構において、前記ミラーを固定するとともに断面がくさび形状の回転板と、該回転板と摺接する光軸調整機構ハウジングと、前記回転板を前記光軸調整機構ハウジングに固定する固定ねじとを備えたから、前記回転板を回転させると、前記回転板のテーパ角のためにミラーの角度がゆっくりと変わり、光学機器の光軸調整は極めて容易になる。また、前記回転板と光軸調整機構ハウジング間には充分な摩擦力が働き、前記回転板が回転し難いので、光軸の狂いを少なくできる。さらに、固定ねじで前記回転板の回転中心を固定したから、ねじ固定歪みを均一に分散させることができ、高温と低温の温度サイクルを与えた後の光軸の狂いを少なくすることができる。   According to the optical distance meter of the invention according to claim 1, in the optical axis adjustment mechanism of the optical device capable of adjusting the angle of the mirror, the rotary plate having a wedge-shaped cross section is fixed while the mirror is fixed, and is in sliding contact with the rotary plate. Since the optical axis adjusting mechanism housing and the fixing screw for fixing the rotating plate to the optical axis adjusting mechanism housing are provided, when the rotating plate is rotated, the angle of the mirror becomes slow due to the taper angle of the rotating plate. In other words, the optical axis adjustment of the optical device becomes extremely easy. In addition, a sufficient frictional force acts between the rotating plate and the optical axis adjusting mechanism housing, and the rotating plate is difficult to rotate, so that the optical axis can be less misaligned. Further, since the rotation center of the rotating plate is fixed by the fixing screw, the screw fixing distortion can be uniformly distributed, and the optical axis deviation after applying the high temperature and low temperature cycles can be reduced.

請求項2に係る発明の光波距離計によれば、前記回転板の周面には調整ピン挿入孔が形成されたから、調整ピンを調整ピン挿入孔に挿入して前記回転板を回転させることができるが、調整後には、光軸調整機構ハウジングと前記回転板との間の摩擦力のために前記回転板が回転することはなく、光軸の調整ずれが起き難いものとなる。   According to the optical distance meter of the invention according to claim 2, since the adjustment pin insertion hole is formed in the peripheral surface of the rotation plate, the adjustment plate can be inserted into the adjustment pin insertion hole to rotate the rotation plate. However, after the adjustment, the rotating plate does not rotate due to the frictional force between the optical axis adjusting mechanism housing and the rotating plate, and the adjustment deviation of the optical axis hardly occurs.

請求項3に係る発明の光波距離計によれば、前記回転板のテーパ角は略1〜5°であるから、前記回転板を回転させるとミラーの角度が適切な変位で変わり、光学機器の光軸調整は極めて容易になる。   According to the optical distance meter of the invention according to claim 3, since the taper angle of the rotating plate is approximately 1 to 5 °, when the rotating plate is rotated, the angle of the mirror changes with an appropriate displacement, and The optical axis adjustment becomes extremely easy.

以下、図面に基づいて、本発明の光軸調整装置の一実施例を説明する。図1は、この光軸調整装置の斜視図である。図2は、図1のII−II線に沿う断面図である。図3は、この光軸調整装置の調整方法を説明する図である。   Hereinafter, an embodiment of an optical axis adjusting device of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of the optical axis adjusting device. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is a diagram for explaining an adjustment method of the optical axis adjustment device.

この光軸調整機構は、光波距離計等の測量機において、光源から出射された測距光Lを90°方向変換させるとともに、光軸調整機構ハウジング20に対するミラー22の取付角度を二軸方向に関して微調整容易にするものである。   This optical axis adjustment mechanism converts the ranging light L emitted from the light source by 90 ° in a surveying instrument such as a light wave rangefinder, and the angle of attachment of the mirror 22 to the optical axis adjustment mechanism housing 20 with respect to the biaxial direction. This facilitates fine adjustment.

光軸調整機構ハウジング20は、ミラー22を内部に収容するための45°傾斜面24aを設けたミラー収容部24と、ミラー収容部24両端に設けられた耳部26とからなり、耳部26には長孔28が開けられている。光軸調整機構ハウジング20は、長孔28に通したビス47によって、図示しない測量機本体に固定される。   The optical axis adjusting mechanism housing 20 includes a mirror housing portion 24 provided with a 45 ° inclined surface 24a for housing the mirror 22 therein, and ear portions 26 provided at both ends of the mirror housing portion 24. A long hole 28 is formed in the. The optical axis adjusting mechanism housing 20 is fixed to a surveying instrument main body (not shown) by a screw 47 passed through the long hole 28.

ミラー22をミラー収容部24に固定するには、断面くさび形にテーパした回転板36を傾斜面24aに摺接状態で収容し、固定ねじ34を座金48を介し傾斜面24aの外部から内部へ貫通させ、回転板36の回転中心ねじ49に螺合させて、回転板36をミラー収容部24に固定し、この回転板36にミラー22を接着等により固定することにより行う。回転板36の断面におけるテーパ角αは、1〜5°程度であり、特に3°程度が最適である。   In order to fix the mirror 22 to the mirror accommodating portion 24, the rotating plate 36 tapered in a wedge shape is accommodated in sliding contact with the inclined surface 24a, and the fixing screw 34 is moved from the outside to the inside of the inclined surface 24a via the washer 48. The rotation plate 36 is screwed into the rotation center screw 49 of the rotating plate 36 to fix the rotating plate 36 to the mirror accommodating portion 24, and the mirror 22 is fixed to the rotating plate 36 by bonding or the like. The taper angle α in the cross section of the rotating plate 36 is about 1 to 5 °, and particularly about 3 ° is optimal.

回転板36のミラー側には、回転板36を貫通した固定ねじ34の先端付近に、回転板36の歪みを避ける凹所46が設けられている。   On the mirror side of the rotating plate 36, a recess 46 is provided near the tip of the fixing screw 34 penetrating the rotating plate 36 to avoid distortion of the rotating plate 36.

ミラー収容部24の傾斜面24aと回転板36との間には、固定ねじ34で締め付けたとき、回転板36のピン挿入孔32に調整ピン30を挿入して回したときは回転板36を回転させられるが、指先で回転板36を回そうとしても回転しない程度の摩擦力が働くようにする。このように傾斜面24aと回転板36との間の摩擦力を適切にするため、ミラー収容部と回転板36の材質にはアルマイト処理されたアルミニウムが適しており、また、回転板36の傾斜面24a側には凹所44を設けて、両者の接触面積を適当に設定している。   When the fixing plate 34 is tightened between the inclined surface 24a of the mirror housing portion 24 and the rotating plate 36, the rotating plate 36 is moved when the adjusting pin 30 is inserted into the pin insertion hole 32 of the rotating plate 36 and rotated. Although it is rotated, even if it tries to rotate the rotating plate 36 with a fingertip, a frictional force that does not rotate is applied. Thus, in order to make the frictional force between the inclined surface 24 a and the rotating plate 36 appropriate, anodized aluminum is suitable for the material of the mirror housing portion and the rotating plate 36, and the inclined surface of the rotating plate 36 is inclined. A recess 44 is provided on the surface 24a side, and the contact area between the two is set appropriately.

また、ミラー収容部24には窓38が設けられていて、窓38から回転板36の一部が露出している。回転板36の側面40には、所定間隔でピン挿入孔32が設けられていて、ピン挿入孔32には調整ピン30を挿入して、回転板36を固定ねじ34とともに回転させることができるようになっている。   Further, the mirror housing portion 24 is provided with a window 38, and a part of the rotating plate 36 is exposed from the window 38. Pin insertion holes 32 are provided in the side surface 40 of the rotation plate 36 at predetermined intervals, and the adjustment pin 30 is inserted into the pin insertion hole 32 so that the rotation plate 36 can be rotated together with the fixing screw 34. It has become.

この光軸調整機構を、測量機例えば光波距離計の光路中に設けた例を図4に示す。本実施例の光軸調整機構は、測量機(特に光波距離計又はトータルステーション)の光学系に使用すると、図5に示した従来の反射鏡7の調整機構に比べて、すばやく確実に調整ができるので、測量機のコスト削減ができる。図4は、光波距離計の光路図であって、その望遠鏡70は、視準望遠鏡(対物レンズ54、合焦レンズ59、焦点板60、接眼レンズ61)と、距離を計測する測距送光光学系(光源51、コリメータレンズ52、本実施例の光軸調整機構を備えるミラー22、ミラー55、対物レンズ54、ビームスプリッター56、ミラー57、受光素子58)で構成されて、距離計測を行うものである。光源51からの送光光Lは、ミラー22とミラー55で直角に曲げられ、望遠鏡70の光軸(視準軸)Cと一致させる必要があるが、本実施例では、光軸調整機構を備えるミラー22を調整することによって、送光光Lと光軸Cとを容易に一致させることができる。   FIG. 4 shows an example in which this optical axis adjusting mechanism is provided in the optical path of a surveying instrument such as a lightwave distance meter. When the optical axis adjustment mechanism of this embodiment is used in an optical system of a surveying instrument (especially a light wave distance meter or a total station), the optical axis adjustment mechanism can be quickly and surely adjusted as compared with the adjustment mechanism of the conventional reflecting mirror 7 shown in FIG. Therefore, the cost of the surveying instrument can be reduced. FIG. 4 is an optical path diagram of the optical distance meter, and the telescope 70 is a collimating telescope (objective lens 54, focusing lens 59, focusing plate 60, eyepiece lens 61), and distance measuring transmission light for measuring the distance. The optical system (the light source 51, the collimator lens 52, and the mirror 22, the mirror 55, the objective lens 54, the beam splitter 56, the mirror 57, and the light receiving element 58 provided with the optical axis adjustment mechanism of this embodiment) is used to measure the distance. Is. The transmitted light L from the light source 51 is bent at a right angle by the mirror 22 and the mirror 55 and needs to coincide with the optical axis (collimation axis) C of the telescope 70. In this embodiment, the optical axis adjustment mechanism is The transmitted light L and the optical axis C can be easily matched by adjusting the provided mirror 22.

このように構成した測量機のミラー22を調整するには、測量機の望遠鏡70の光軸C上にコリメータ(図示省略)を精確に設置し、測量機から測距光Lを出射し、コリメータで観測する。まず、コリメータと望遠鏡70を対向させ、コリメータの光軸(十字線50の中心52)と望遠鏡の光軸C(視準望遠鏡の焦点板60の十字線)とを、測量機の水平・高度角微動装置により一致させる。最初は、ミラー22に取付角度誤差があるため、図3に示したように、コリメータの視野50V内において、十字線50の中心50cから外れたP1位置に輝点Pを見る。そこで、ピン挿入孔32には調整ピン30を挿入して、回転板36を回転させると、回転板36のテーパ角αのため、ミラー22の角度が変わり、輝点Pは斜め方向へ移動していく。輝点Pがコリメータの十字線50の縦線又は横線に一致したところで回転板36を止める。この際、テーパ角αが小さいため、回転板36を大きく回転させても、輝点Pはゆっくりと動くので、ここまでの調整は極めて容易である。   In order to adjust the mirror 22 of the surveying instrument configured as described above, a collimator (not shown) is accurately installed on the optical axis C of the telescope 70 of the surveying instrument, and the ranging light L is emitted from the surveying instrument. Observe at. First, the collimator and the telescope 70 are made to face each other, and the optical axis of the collimator (the center 52 of the crosshair 50) and the optical axis C of the telescope (the crosshair of the focusing plate 60 of the collimating telescope) are set to the horizontal and altitude angles of the surveying instrument. Match by fine motion device. At first, since there is an attachment angle error in the mirror 22, as shown in FIG. 3, the bright spot P is seen at the P1 position deviated from the center 50c of the cross line 50 in the collimator visual field 50V. Therefore, when the adjustment pin 30 is inserted into the pin insertion hole 32 and the rotating plate 36 is rotated, the angle of the mirror 22 changes due to the taper angle α of the rotating plate 36, and the bright spot P moves in an oblique direction. To go. When the bright spot P coincides with the vertical line or horizontal line of the crosshair 50 of the collimator, the rotating plate 36 is stopped. At this time, since the taper angle α is small, the bright spot P moves slowly even if the rotating plate 36 is rotated greatly, and thus the adjustment so far is very easy.

次に、光軸調整機構ハウジング20を測量機本体に固定するビス47を緩めて、長孔28に沿って平行移動させる。すると、輝点Pは、長孔28の方向により十字線50の縦線又は横線に沿って移動するので、輝点Pを十字線50の中心50cに一致させ、ビス47を締め直す。輝点Pを十字線50に沿って移動させるときは、光軸調整機構ハウジング20が長孔28に挿通されたビス47よってガイドされるから、この調整も極めて容易である。   Next, the screw 47 for fixing the optical axis adjusting mechanism housing 20 to the surveying instrument main body is loosened and translated along the long hole 28. Then, the bright spot P moves along the vertical line or horizontal line of the cross line 50 depending on the direction of the long hole 28, so that the bright spot P coincides with the center 50 c of the cross line 50 and the screw 47 is tightened again. When the bright spot P is moved along the cross line 50, the optical axis adjusting mechanism housing 20 is guided by the screw 47 inserted through the long hole 28, and this adjustment is very easy.

これで、測量機の望遠鏡70の光軸Cと測距送光光学系の光軸が一致し、光源51から出射された測距光Lは望遠鏡70の光軸Cに一致して送光される。   Thus, the optical axis C of the telescope 70 of the surveying instrument coincides with the optical axis of the distance measuring and transmitting optical system, and the distance measuring light L emitted from the light source 51 is transmitted in accordance with the optical axis C of the telescope 70. The

本実施例によれば、測量機の望遠鏡70の光軸Cと測距送光光学系の光軸を簡単に一致させられるから、誤差の少ない距離測定が可能になる。一般に、望遠鏡70の光軸Cと測距送光光学系の光軸がずれた場合に、プリズムに比べて反射シートを測点においた場合の誤差は大きいが、本実施例の光軸調整装置を用いると光軸調整が容易となるため、安価な反射シートを用いても測距誤差を小さくでき経済的である。   According to the present embodiment, since the optical axis C of the telescope 70 of the surveying instrument and the optical axis of the distance measuring optical system can be easily matched, distance measurement with little error is possible. In general, when the optical axis C of the telescope 70 and the optical axis of the distance measuring light transmission optical system are deviated from each other, the error when the reflection sheet is set at the measuring point is larger than that of the prism. Since it is easy to adjust the optical axis, the distance measurement error can be reduced even if an inexpensive reflective sheet is used, which is economical.

また、調整ピン30を用いることによって、回転板36と光軸調整機構ハウジング20の傾斜面24aとの摩擦力に抗して光軸調整を容易に行うことができるが、調整後には、傾斜面24aと回転板36との摩擦力が適切な大きさを有しているので、調整ずれが起き難いものとなる。   Also, by using the adjustment pin 30, the optical axis can be easily adjusted against the frictional force between the rotating plate 36 and the inclined surface 24a of the optical axis adjusting mechanism housing 20, but after the adjustment, the inclined surface Since the frictional force between 24a and the rotating plate 36 has an appropriate magnitude, it is difficult for misalignment to occur.

さらに、固定ネジ34でに光軸調整機構ハウジング20の傾斜面24aに回転板36を固定する際に、固定ねじ34を回転板36の回転中心に配置したから、ねじ固定の歪みを均一に分散させることができ、高温と低温の温度サイクルを与えた後の光軸の狂いを少なくすることができる。   Further, when the rotating plate 36 is fixed to the inclined surface 24a of the optical axis adjusting mechanism housing 20 with the fixing screw 34, the fixing screw 34 is arranged at the rotation center of the rotating plate 36, so that the screw fixing distortion is uniformly distributed. Therefore, it is possible to reduce the deviation of the optical axis after applying a high temperature and low temperature cycle.

本発明は、光波距離計だけでなく、光波距離計を内蔵した測量機、例えばトータルステーションや、その他の距離測定装置の他、光学機器において互いに交差する光軸を調整する場合等に広く利用できる。   INDUSTRIAL APPLICABILITY The present invention can be widely used not only for a light wave distance meter but also for a surveying instrument incorporating a light wave distance meter, for example, a total station or other distance measuring devices, or when adjusting optical axes that intersect each other in an optical device.

本発明の1実施例に係る光軸調整機構の斜視図である。It is a perspective view of the optical axis adjustment mechanism which concerns on one Example of this invention. 図1におけるII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire in FIG. 前記光軸調整機構で光軸調整を行う方法を説明する図である。It is a figure explaining the method of performing an optical axis adjustment with the said optical axis adjustment mechanism. 前記光軸調整機構を備えた測量機の光路図である。It is an optical path diagram of a surveying instrument provided with the optical axis adjustment mechanism. 従来の光軸調整機構の縦断面図である。It is a longitudinal cross-sectional view of the conventional optical axis adjustment mechanism.

符号の説明Explanation of symbols

20 光軸調整機構ハウジング
22 ミラー
30 調整ピン
34 固定ねじ
36 回転板
40 周面
42 ピン挿入孔
α テーパ角
20 Optical axis adjustment mechanism housing 22 Mirror 30 Adjustment pin 34 Fixing screw 36 Rotating plate 40 Circumferential surface 42 Pin insertion hole α Taper angle

Claims (3)

ミラーの角度調整可能な光学機器の光軸調整機構において、
前記ミラーを固定するとともに断面がくさび形状の回転板と、該回転板と摺接する光軸調整機構ハウジングと、前記回転板を前記光軸調整機構ハウジングに固定する固定ねじとを備えたことを特徴とする光軸調整機構。
In the optical axis adjustment mechanism of the optical equipment that can adjust the angle of the mirror,
A rotating plate having a wedge-shaped cross section that fixes the mirror, an optical axis adjusting mechanism housing that is in sliding contact with the rotating plate, and a fixing screw that fixes the rotating plate to the optical axis adjusting mechanism housing. An optical axis adjustment mechanism.
前記回転板の周面には調整ピン挿入孔が形成されたことを特徴とする特徴とする請求項1に記載の光軸調整機構。   2. The optical axis adjustment mechanism according to claim 1, wherein an adjustment pin insertion hole is formed on a peripheral surface of the rotating plate. 前記回転板のテーパ角は、略1〜5°であることを特徴とする請求項1又は2に記載の光軸調整機構。   The optical axis adjusting mechanism according to claim 1, wherein a taper angle of the rotating plate is approximately 1 to 5 °.
JP2004366498A 2004-12-17 2004-12-17 Optical axis adjusting mechanism Pending JP2006171562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366498A JP2006171562A (en) 2004-12-17 2004-12-17 Optical axis adjusting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366498A JP2006171562A (en) 2004-12-17 2004-12-17 Optical axis adjusting mechanism

Publications (1)

Publication Number Publication Date
JP2006171562A true JP2006171562A (en) 2006-06-29

Family

ID=36672380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366498A Pending JP2006171562A (en) 2004-12-17 2004-12-17 Optical axis adjusting mechanism

Country Status (1)

Country Link
JP (1) JP2006171562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9141025B1 (en) 2014-04-22 2015-09-22 Kyocera Document Solutions Inc. Optical scanning device and image forming apparatus including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399316U (en) * 1986-12-15 1988-06-28
JPH0459813U (en) * 1990-10-01 1992-05-22
JPH10307202A (en) * 1997-05-09 1998-11-17 Fujitsu General Ltd Reflection mirror for projector and optical distortion adjusting system
JPH11223785A (en) * 1998-02-06 1999-08-17 Fuji Xerox Co Ltd Mounting structure for optical part
JP2002296473A (en) * 2001-03-29 2002-10-09 Ricoh Opt Ind Co Ltd Multi-beam source unit and optical scanner having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399316U (en) * 1986-12-15 1988-06-28
JPH0459813U (en) * 1990-10-01 1992-05-22
JPH10307202A (en) * 1997-05-09 1998-11-17 Fujitsu General Ltd Reflection mirror for projector and optical distortion adjusting system
JPH11223785A (en) * 1998-02-06 1999-08-17 Fuji Xerox Co Ltd Mounting structure for optical part
JP2002296473A (en) * 2001-03-29 2002-10-09 Ricoh Opt Ind Co Ltd Multi-beam source unit and optical scanner having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9141025B1 (en) 2014-04-22 2015-09-22 Kyocera Document Solutions Inc. Optical scanning device and image forming apparatus including the same

Similar Documents

Publication Publication Date Title
CN107209267B (en) MEMS-based LIDAR
EP0305182B1 (en) Apparatus and method for measuring reflective cone
US4470664A (en) Reflector device for use with optical distance measuring apparatus
US7885500B2 (en) Apparatus and method for adjusting an optical rotating data transmission device
JP2013142620A (en) Attachment device and total station
WO2006101923A2 (en) High intensity fabry-perot sensor
US7336433B2 (en) Focusable laser collimator
US9797922B2 (en) Scanning probe microscope head design
JP6293367B1 (en) Optical axis adjustment mechanism
KR20120082463A (en) Sighting device, in particular telescopic sight, for a geodetic measuring apparatus and optical objective unit assembly for such a sighting device
JP2006011438A (en) Apparatus and method for manipulating laser beam in reflection
US7889326B2 (en) Distance measuring apparatus
JP4019995B2 (en) Line indicator
US4826304A (en) Adjustable optical mounting assembly
JP2006171562A (en) Optical axis adjusting mechanism
US5959789A (en) One piece beam angle adjustment element
US7073915B2 (en) Mirror fixing method and optical apparatus
JP4933243B2 (en) Method for adjusting the laser device for ink marking
US5589940A (en) Apparatus for measuring the curvature of a surface using moveable reflecting and focusing elements
JP4201693B2 (en) Optical interference unit, optical interference objective lens device and measuring device
KR101035305B1 (en) The large aperture mirror system having the automatic focus adjusting athermalization mechanism that is less sensitive to the temperature change using standard laser
KR100845712B1 (en) Beam magnifying instrument used axicon lens
EP3885789A1 (en) Distance measuring device
KR100394963B1 (en) A Reflection Adjusting Device Using Plane Reflector Of Zero Prism Constant
GB2116745A (en) Level instrument with telescope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214