JP2006171430A - Optical element and optical system having the same - Google Patents
Optical element and optical system having the same Download PDFInfo
- Publication number
- JP2006171430A JP2006171430A JP2004364527A JP2004364527A JP2006171430A JP 2006171430 A JP2006171430 A JP 2006171430A JP 2004364527 A JP2004364527 A JP 2004364527A JP 2004364527 A JP2004364527 A JP 2004364527A JP 2006171430 A JP2006171430 A JP 2006171430A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical element
- fine concavo
- convex structure
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
本発明は界面反射光量を抑制する機能を有する光学素子及びそれを有する光学系に関するものであり、例えばカメラやビデオカメラをはじめとする撮像機器、望遠鏡や反眼鏡の観察装置、液晶プロジェクタ、そして電子写真機器の光走査装置等をはじめとする各種の光学機器の光学系に好適なものである。 The present invention relates to an optical element having a function of suppressing the amount of reflected light from an interface and an optical system having the same. For example, an imaging device such as a camera or a video camera, an observation device for a telescope or an anti-glass, a liquid crystal projector, and an electronic device It is suitable for an optical system of various optical devices such as an optical scanning device of a photographic device.
従来、レンズなどの光学素子の光学面に光の反射を低減する為の反射防止膜を形成する方法として、真空蒸着法やスパッタリング法や、ディップ法などのウエット方式が広く利用されている。 Conventionally, wet methods such as a vacuum deposition method, a sputtering method, and a dip method have been widely used as a method of forming an antireflection film for reducing light reflection on the optical surface of an optical element such as a lens.
また、近年では、光学薄膜を用いずに波長以下の微細周期構造を光学面に形成した反射防止構造体も多く提案されている(特許文献1、2)。 In recent years, many antireflection structures have been proposed in which a fine periodic structure of a wavelength or less is formed on the optical surface without using an optical thin film (Patent Documents 1 and 2).
特許文献1は、透明基材の表面に、特定の微細周期構造を設けることで、反射率を低減する表示装置の窓材を開示している。微細周期構造の形状は最凸部における周期PMAXを、可視光の波長帯域の真空中における最小波長λMIN以下とし、水平断面内における透明基材部分の断面積の占有率が、微細周期構造の最凸部から最凹部に行くに従って連続的に漸次増加していき、最凹部において1としている。 Patent document 1 is disclosing the window material of the display apparatus which reduces a reflectance by providing a specific fine periodic structure in the surface of a transparent base material. The shape of the fine periodic structure is such that the period P MAX at the most convex portion is equal to or less than the minimum wavelength λ MIN in vacuum in the visible light wavelength band, and the occupation ratio of the cross-sectional area of the transparent substrate portion in the horizontal section is the fine periodic structure The number gradually increases from the most convex part to the most concave part, and is set to 1 in the most concave part.
その微細凹凸形状を、ガラス基板上にレジスト層を形成した後、電子線描画法やレーザー干渉法でパターンを露光しエッチングし、ガラス基板を腐蝕させて製作している。 The fine concavo-convex shape is manufactured by forming a resist layer on a glass substrate, then exposing and etching the pattern by an electron beam drawing method or a laser interference method, and corroding the glass substrate.
特許文献2は、アルミニウム化合物を含む溶液を基体に塗布して、皮膜を形成し、特に熱処理することなく温水に浸漬することで表面に微細凹凸組織を形成する低温形成方法を開示している。そして接触角150°以上の優れた超撥水状態とともに、可視域で透過率90%以上の高い透明性を示す反射防止膜を実現している。
真空蒸着法やスパッタ法による反射防止膜の形成では、装置が大掛かりで、かつ、成膜時間以外にも真空引きなどで多くの時間を要し、生産タクト(工程)が長くなるという難点があった。 In the formation of an antireflection film by vacuum deposition or sputtering, the apparatus is large, and in addition to the film formation time, a lot of time is required for evacuation and the production tact (process) becomes long. It was.
また、ディップ法などのウエット方式による反射防止膜の形成方法は、単層では高い反射防止性能が得られず、また、多層にするには塗布工程と乾燥工程とを繰り返す必要があり、結局、真空蒸着法と同様に製造工程が長くなる傾向がある。 In addition, a method for forming an antireflection film by a wet method such as a dip method cannot provide high antireflection performance with a single layer, and it is necessary to repeat a coating process and a drying process in order to make a multilayer, eventually, Like the vacuum deposition method, the manufacturing process tends to be long.
特許文献1の透明基板上に微細凹凸部を設ける方法は、可視域における波長以下の周期構造を形成可能な微細加工装置(電子線描画装置やレーザー干渉露光装置、半導体露光装置、エッチング装置など)を必要とする。一般にこれらの装置は極めて大掛かりな装置となり、非常に複雑な構造となる。 The method of providing fine irregularities on the transparent substrate of Patent Document 1 is a fine processing apparatus (electron beam drawing apparatus, laser interference exposure apparatus, semiconductor exposure apparatus, etching apparatus, etc.) capable of forming a periodic structure with a wavelength equal to or less than the wavelength in the visible range. Need. In general, these devices are extremely large and have a very complicated structure.
又平面上への微細凹凸構造の形成には適しているが、曲面など複雑な形状の上に形成することは非常に困難である。 Although it is suitable for forming a fine uneven structure on a flat surface, it is very difficult to form it on a complicated shape such as a curved surface.
本発明は、光学面上に反射防止機能を有する微細凹凸構造体を光学面全体に容易に設けることができ、良好なる反射防止特性を有した光学素子及びそれを有する光学系の提供を目的とする。 An object of the present invention is to provide an optical element having an excellent antireflection characteristic and an optical system having the same, which can easily provide a fine concavo-convex structure having an antireflection function on the optical surface over the entire optical surface. To do.
本発明の光学素子は、微細凹凸構造体を具備した光学素子であって、該微細凹凸構造体は金属化合物を含有する材料からなり、該微細凹凸構造体は、平均面粗さをRa、表面積比Sratioとするとき、後述する条件式(1)、(2)を満足することを特徴としている。 The optical element of the present invention is an optical element having a fine concavo-convex structure, and the fine concavo-convex structure is made of a material containing a metal compound, and the fine concavo-convex structure has an average surface roughness of R a , When the surface area ratio S ratio is satisfied, the following conditional expressions (1) and (2) are satisfied.
本発明によれば光学面上に反射防止機能を有する微細凹凸構造体を光学面全体に容易に設けることができ、良好なる反射防止特性を有した光学素子を得ることができる。 According to the present invention, a fine concavo-convex structure having an antireflection function can be easily provided on the entire optical surface, and an optical element having good antireflection characteristics can be obtained.
以下、図面を用いて本発明の光学素子及びその製造方法の実施例を説明する。 Embodiments of the optical element and the manufacturing method thereof according to the present invention will be described below with reference to the drawings.
本発明の光学素子は、平面又は曲面(球面、非球面、回転非対称面を含む)又は複数の曲面を配列した曲面群(シリンドリカル面やトーリック面又はそれらの面を配列した面)等の光学面上にアルミニウム化合物等の金属化合物から成る複数の微細凹凸部より成る反射防止機能を有した微細凹凸構造体を形成した構成より成っている。 The optical element of the present invention is an optical surface such as a flat surface or a curved surface (including a spherical surface, an aspherical surface, a rotationally asymmetric surface) or a curved surface group in which a plurality of curved surfaces are arrayed (a cylindrical surface, a toric surface, or a surface in which those surfaces are arrayed). It has a configuration in which a fine concavo-convex structure body having an antireflection function composed of a plurality of fine concavo-convex portions made of a metal compound such as an aluminum compound is formed thereon.
ここで微細凹凸構造体は、光学面の表面に設計波長(例えば波長550nm)と同等以下のピッチで微細凹凸部を形成することで界面反射光量を抑制できるものである。 Here, the fine concavo-convex structure body can suppress the amount of light reflected at the interface by forming fine concavo-convex portions on the surface of the optical surface with a pitch equal to or less than the design wavelength (for example, wavelength 550 nm).
光学素子としては、レンズ、fθレンズ、プリズム、平行平板、フライアイインテグレータ等である。 Examples of the optical element include a lens, an fθ lens, a prism, a parallel plate, and a fly eye integrator.
本発明の光学光学素子は、結像光学系、観察光学系、撮影光学系、走査光学系等の各種の光学系に用いられる。 The optical optical element of the present invention is used in various optical systems such as an imaging optical system, an observation optical system, a photographing optical system, and a scanning optical system.
本発明の光学素子は、可視光領域(波長400nm〜700nm)や赤外領域(波長700nm以上)において使用できる。 The optical element of the present invention can be used in a visible light region (wavelength 400 nm to 700 nm) or an infrared region (wavelength 700 nm or more).
実施例1及び以下の各実施例において、微細凹凸構造体を設ける光学面における平均面粗さRa、表面積比Sratioは In Example 1 and the following examples, the average surface roughness R a and the surface area ratio S ratio on the optical surface on which the fine concavo-convex structure is provided are
を満足している。 Is satisfied.
この条件(1),(2)を満足する微細凹凸構造体を光学面上に設けた光学素子を用いることによって光学表面での光の反射を低減し、光学系中に用いた場合もフレア光やゴースト光など有害光の発生が抑制された良好な光学性能の光学系を実現している。尚、更に好ましくは式(1),(2)を次の如く設定するのが良い。 Reflection of light on the optical surface is reduced by using an optical element provided on the optical surface with a fine concavo-convex structure satisfying these conditions (1) and (2), and flare light is also used when used in an optical system. An optical system with good optical performance in which the generation of harmful light such as ghost light is suppressed. More preferably, the formulas (1) and (2) are set as follows.
ここで平均面粗さRa,表面積比SratioはX,Y,Zを直交座標とし、
H(X,Y):光学面をX−Y平面としたときの面内で任意にサンプリングした領域の微
細凹凸部の凹凸形状のZ方向の値(凹凸の高さ)をあらわす関数
X1:X方向のサンプリング開始座標
XM:X方向のサンプリング終了座標
Y1:Y方向のサンプリング開始座標
YN:Y方向のサンプリング終了座標
Have:H(X,Y)の平均値
S0:任意にサンプリングした領域が,平面であるとしたときの面積
=|(XM−X1)(YN−Y1)|
λmin:光学素子の使用波長領域における最短波長
S:任意にサンプリングした領域における凹凸構造表面の実際の表面積
とするとき
Here, the average surface roughness Ra and the surface area ratio S ratio have X, Y and Z as orthogonal coordinates,
H (X, Y): Fine area of an arbitrarily sampled area in the plane when the optical surface is the XY plane
A function X 1 representing a value in the Z direction (height of the unevenness) of the uneven shape of the fine uneven portion: X-direction sampling start coordinate X M : X-direction sampling end coordinate Y 1 : Y-direction sampling start coordinate Y N : Sampling end coordinates in the Y direction H ave : Average value of H (X, Y) S 0 : Area when an arbitrarily sampled area is a plane = | (X M −X 1 ) (Y N −Y 1 ) |
λ min : shortest wavelength in the wavelength range of use of the optical element S: when the actual surface area of the concavo-convex structure surface in an arbitrarily sampled area
で定義されるものである。 Is defined by
実際の微細凹凸部の形状において、上記に定義した平均面粗さRa、表面積比Sratioの真の値を求めることが困難なときには例えばAFM(原子間力顕微鏡)を用いて、測定エリアの高さをある間隔で測定し、得られた測定値から、以下のように定義した平均面粗さRa’と表面積比S’ratioで代用した条件式(1)’(2)’を用いても良い。 When it is difficult to find the true values of the average surface roughness R a and the surface area ratio S ratio as defined above in the actual shape of the fine concavo-convex portion, for example, using an AFM (atomic force microscope) The height is measured at a certain interval, and the conditional expression (1) ′ (2) ′ substituting with the average surface roughness R a ′ and the surface area ratio S ′ ratio defined as follows is used from the obtained measurement values. May be.
即ち、
H( m , n ):光学面をX − Y平面とし、任意の間隔で測定した際のX方向にm番目、Y方向にn番目の測定値(高さ)
M:X方向の測定数
N:Y方向の測定数
MN:サンプリングした全データの数
Have:測定した全H(m,n)の平均値
That is,
H (m, n): The optical surface is an XY plane, and the measured value (height) is mth in the X direction and nth in the Y direction when measured at an arbitrary interval.
M: Number of measurements in the X direction N: Number of measurements in the Y direction MN: Number of all sampled data H ave : Average value of all measured H (m, n)
ここで、 here,
Pm,n :X方向にm番目、Y方向にn番目の測定ポイントの座標
すなわち,X方向の測定間隔をdX、Y方向の測定間隔を
dYとしたとき,
P m, n : The coordinates of the mth measurement point in the X direction and the nth measurement point in the Y direction, that is, when the measurement interval in the X direction is d X and the measurement interval in the Y direction is d Y ,
とし、 age,
とするとき、 And when
である。 It is.
また、可視光よりも微細な形状を、AFM(原子間力顕微鏡)などで実際に測定する場合、一回で測定する領域は数mm角程度と光学素子の有効面積に比べて極めて小さいのが一般的である。そこで、上記の定義において、微細凹凸部の形状がレンズなど曲面状に形成されている場合も、ベース面が曲率を有することによるH(m , n) の値の変化は無視できる場合がほとんどであるが、無視できない場合は、そのベース面形状による変化分を差し引いて、補正した値で再定義している。 In addition, when actually measuring a finer shape than visible light with an AFM (Atomic Force Microscope) or the like, the area to be measured at a time is about several square mm, which is extremely small compared to the effective area of the optical element. It is common. Therefore, in the above definition, even when the shape of the fine uneven portion is formed in a curved surface such as a lens, the change in the value of H (m, n) due to the curvature of the base surface is almost negligible. If it is not negligible, it is redefined with the corrected value after subtracting the change due to the shape of the base surface.
微細凹凸構造体の横方向の大きさが光の波長よりも小さい場合、ある高さでの有効屈折率neは、微細凹凸構造体を形成している材料の屈折率をn1、その高さでの空間占有率をf1としたとき、Lorentz-Lorenzの公式から、以下の関係式 If lateral extent of the concave-convex nanostructure is smaller than the wavelength of light, the effective refractive index n e at a certain height, the n 1, the high refractive index of the material forming the fine uneven structure From the Lorentz-Lorenz formula where the space occupancy is f 1
のように求めることができる。 Can be obtained as follows.
従って、微細凹凸構造体の空間占有率が、空気(入射媒質)から基板(射出媒質)に向かって徐々に変化した場合、有効屈折率neも徐々に変化することになる。 Therefore, when the space occupation ratio of the fine concavo-convex structure gradually changes from the air (incident medium) toward the substrate (exit medium), the effective refractive index ne also changes gradually.
屈折率が徐々に変化した場合でも、Fresnelの公式により、その微小変化量に応じた反射光が各高さで発生する。さらに,各高さで発生した反射光は干渉するが、微細凹凸構造体の高さが一定以上の場合、それらが干渉により打ち消しあい、反射光が低減することとなる。従って、微細凹凸構造体は、高さが大きい方が好ましい。 Even if the refractive index changes gradually, the reflected light corresponding to the minute change amount is generated at each height according to Fresnel's formula. Further, although the reflected light generated at each height interferes, if the height of the fine concavo-convex structure is a certain level or more, they cancel each other out due to the interference, and the reflected light is reduced. Therefore, it is preferable that the fine uneven structure has a large height.
また、光学素子の反射防止構造では入射光の回折・散乱が発生しないことが必要である。微細凹凸構造体で回折・散乱光が発生しないためには、隣り合う山同士の距離pが、光線の入射角をθincとしたとき、 In addition, it is necessary that the antireflection structure of the optical element does not cause diffraction / scattering of incident light. In order not to generate the diffracted and scattered light in a fine concavo-convex structure, the distance p of the mountain adjacent to each other, when the angle of incidence of the ray was theta inc,
の式を満たす必要がある。 It is necessary to satisfy the following formula.
発明者は、鋭意検討の結果、光の反射率が低く、回折・散乱光の発生しない微細凹凸構造体の条件として、前出の式(1),(2)の関係式を見出した。 As a result of intensive studies, the inventor found the relational expressions (1) and (2) above as conditions for a fine concavo-convex structure having low light reflectance and no diffracted / scattered light.
すなわち、式(1)の関係式を満たせば、微細凹凸構造体は光学面での光の反射を低減するのに十分な高さを持つこととなり、同時に式(2)を満たせば、その微細凹凸構造体の隣り合う山同士の距離は回折・散乱光が発生しない程度に十分小さなものとなる。 That is, if the relational expression (1) is satisfied, the fine concavo-convex structure has a height sufficient to reduce the reflection of light on the optical surface. The distance between adjacent peaks of the concavo-convex structure is sufficiently small so that no diffracted / scattered light is generated.
次に本発明の光学素子及びそれを有する光学系及び光学素子の製造方法の各実施例について説明する。 Next, each example of the optical element of the present invention, an optical system having the optical element, and a method for manufacturing the optical element will be described.
図1は、本発明の実施例1の光学素子の正面図である。図1において、光学素子1は両面が凹形状の凹レンズであり、基板2の両面上に反射防止用の微細凹凸構造体3が設けられた構成となっている。 FIG. 1 is a front view of an optical element according to Example 1 of the present invention. In FIG. 1, the optical element 1 is a concave lens having concave shapes on both sides, and has a configuration in which a fine uneven structure 3 for preventing reflection is provided on both sides of a substrate 2.
図2は、実施例1の光学素子1を図1中のA−A’断面で切断した断面図である。ここで、基板2は、互いに非平行な2面(ともに凹面)2a,2bの光学面から形成されており、光学面には平均面粗さRaが20nm以上、表面積比Sratioが1.42以上のアルミニウム酸化物を主成分とする微細凹凸構造体3からなる反射防止膜を形成している。これにより光学面2a,2bでの光の反射を低減している。 FIG. 2 is a cross-sectional view of the optical element 1 of Example 1 cut along the AA ′ cross-section in FIG. Here, the substrate 2 is formed of two non-parallel optical surfaces (both concave surfaces) 2a and 2b. The optical surface has an average surface roughness Ra of 20 nm or more and a surface area ratio S ratio of 1. An antireflection film composed of the fine concavo-convex structure 3 mainly composed of 42 or more aluminum oxide is formed. This reduces the reflection of light on the optical surfaces 2a and 2b.
ここで、実施例1の光学素子1の使用波長領域は可視域なので、使用波長領域における最短波長を400nmとしている。 Here, since the use wavelength region of the optical element 1 of Example 1 is a visible region, the shortest wavelength in the use wavelength region is set to 400 nm.
実施例1では、光学素子として凹レンズの場合を示したが、本実施例の光学素子はこれに限定されるものではなく,レンズ形状は両レンズ面が凸面でもメニスカス形状でも構わない。 In the first embodiment, a concave lens is shown as the optical element. However, the optical element of the present embodiment is not limited to this, and the lens shape may be either a convex surface or a meniscus shape.
図3は、本発明の実施例2の光学素子の正面図である。同図において、光学素子1はプリズムであり、基体2の光学面に反射防止構造体3が設けられた構造となっている。 FIG. 3 is a front view of an optical element according to Example 2 of the present invention. In the figure, the optical element 1 is a prism and has a structure in which an antireflection structure 3 is provided on the optical surface of a base 2.
図4は、実施例2の光学素子1を図3中のA−A’断面で切断した断面図である。ここで、基体2は、互いに非平行な3面の光学面2a,2b,2cから形成されており、各光学面には平均面粗さRaが20nm以上、表面積比Sratioが1.42以上のアルミニウム酸化物を主成分とする微細凹凸構造からなる反射防止構造体3を形成している。これにより、光学面での光の反射を低減している。 FIG. 4 is a cross-sectional view of the optical element 1 of Example 2 cut along the AA ′ cross-section in FIG. 3. Here, the substrate 2 is formed of three non-parallel optical surfaces 2a, 2b, and 2c. Each optical surface has an average surface roughness Ra of 20 nm or more and a surface area ratio S ratio of 1.42. The antireflection structure 3 having a fine concavo-convex structure mainly composed of the above aluminum oxide is formed. Thereby, the reflection of light on the optical surface is reduced.
ここで、実施例2の光学素子の使用波長領域は可視域なので、使用波長領域における最短波長を400nmとしている。 Here, since the use wavelength region of the optical element of Example 2 is a visible region, the shortest wavelength in the use wavelength region is set to 400 nm.
実施例2では、プリズムの各光学面のなす角度が、90°,45°の場合を示したが、実施例2はこれに限定されるものではなく、光学面がどんな角度で構成されたプリズムでも構わない。 In the second embodiment, the angle formed by each optical surface of the prism is 90 ° and 45 °. However, the second embodiment is not limited to this, and the prism in which the optical surface is configured at any angle. It doesn't matter.
図5は、本発明の実施例3の光学素子の正面図である。同図において、光学素子1はフライアイインテグレータであり、基板2の光学面に反射防止構造体3が設けられた構造となっている。 FIG. 5 is a front view of an optical element according to Example 3 of the present invention. In the drawing, an optical element 1 is a fly eye integrator, and has a structure in which an antireflection structure 3 is provided on an optical surface of a substrate 2.
図6は、実施例3の光学素子1を図5中のA−A’断面で切断した断面図である。ここで、基板2は、互いに非平行な2面(一方が複数の曲面より成る光学面2a、他方が平面2b)の光学面から形成されており、各光学面には平均面粗さRaが20nm以上、表面積比Sratioが1.42以上のアルミニウム酸化物を主成分とする微細凹凸構造からなる反射防止構造体3を形成している。 FIG. 6 is a cross-sectional view of the optical element 1 of Example 3 cut along the line AA ′ in FIG. 5. Here, the substrate 2 is formed of two non-parallel optical surfaces (one is an optical surface 2a composed of a plurality of curved surfaces and the other is a flat surface 2b), and each optical surface has an average surface roughness R a. The antireflection structure 3 having a fine concavo-convex structure mainly composed of an aluminum oxide having a surface area ratio S ratio of 1.42 or more is formed.
これにより、光学面での光の反射を低減している。ここで、実施例3の光学素子の使用波長領域は可視域なので、使用波長領域における最短波長を400nmとしている。 Thereby, the reflection of light on the optical surface is reduced. Here, since the use wavelength region of the optical element of Example 3 is a visible region, the shortest wavelength in the use wavelength region is set to 400 nm.
実施例3では、フライアイインテグレータの非平行な2面のうち一方が複数の曲面より成る光学面2a、他方が平面の場合を示したが、実施例3はこれに限定されるものではなく、一方が複数の曲面より成る光学面で他方も同様の曲面であっても構わない。 In the third embodiment, the case where one of the two non-parallel surfaces of the fly-eye integrator is an optical surface 2a composed of a plurality of curved surfaces and the other is a flat surface, but the third embodiment is not limited to this. One may be an optical surface composed of a plurality of curved surfaces, and the other may be a similar curved surface.
図7は、本発明の実施例4の光学素子の正面図である。同図において、光学素子1はfθレンズであり、基板2に反射防止構造体3が設けられた構造となっている。 FIG. 7 is a front view of an optical element according to Example 4 of the present invention. In the figure, the optical element 1 is an fθ lens and has a structure in which an antireflection structure 3 is provided on a substrate 2.
図8は、実施例4の光学素子1を図7中のA−A’断面で切断した断面図である。ここで、基板2は、互いに非平行な2面の光学面2a、2bから形成されており、各光学面には平均面粗さRaが21nm以上、表面積比Sratioが1.45以上のアルミニウム酸化物を主成分とする微細凹凸構造からなる反射防止構造体3を形成している。これにより光学面での光の反射を低減している。ここで、実施例4の光学素子1の使用波長は405nmである。 FIG. 8 is a cross-sectional view of the optical element 1 of Example 4 cut along the AA ′ cross-section in FIG. 7. Here, the substrate 2 is formed of two non-parallel optical surfaces 2a and 2b, and each optical surface has an average surface roughness Ra of 21 nm or more and a surface area ratio S ratio of 1.45 or more. An antireflection structure 3 having a fine concavo-convex structure mainly composed of aluminum oxide is formed. Thereby, reflection of light on the optical surface is reduced. Here, the use wavelength of the optical element 1 of Example 4 is 405 nm.
図9は本発明の実施例5として、光学素子を観察光学系に用いた要部概略図である。 FIG. 9 is a schematic view of a main part in which an optical element is used in an observation optical system as Example 5 of the present invention.
図9は、双眼鏡の一対の光学系のうち、一方の断面を示している。 FIG. 9 shows a cross section of one of the pair of optical systems of the binoculars.
図9において、4は観察像を形成する対物レンズ、5は像を反転させるための像反転手段としてのプリズム(展開して図示)、6は接眼レンズ、7は観察像の結像面、8は瞳面(評価面)である。図9において3は本発明に関わる反射防止構造体であり、平均面粗さRaが20nm以上、表面積比Sratioが1.42以上のアルミニウム酸化物を主成分とする微細凹凸構造より成り、各光学面に設けて光の反射を低減している。ここで、実施例5の光学系の使用波長領域は可視域なので、使用波長領域における最短波長を400nmとしている。また、実施例5では、対物レンズ4の最も物体側の光学面9および接眼レンズ6の最も評価面側の光学面10には微細凹凸構造からなる反射防止構造体3を設けていない。これは、反射防止構造体3が使用中の接触などにより性能が劣化するので設けなかったが、これに限定されるものではなく、光学面9,10に反射防止構造体3を設けてもよい。 In FIG. 9, 4 is an objective lens for forming an observation image, 5 is a prism (expanded and shown) as an image inverting means for inverting the image, 6 is an eyepiece, 7 is an imaging plane of the observation image, 8 Is the pupil plane (evaluation plane). In FIG. 9, reference numeral 3 denotes an antireflection structure according to the present invention, which comprises a fine concavo-convex structure mainly composed of an aluminum oxide having an average surface roughness Ra of 20 nm or more and a surface area ratio S ratio of 1.42 or more. It is provided on each optical surface to reduce light reflection. Here, since the use wavelength region of the optical system of Example 5 is a visible region, the shortest wavelength in the use wavelength region is set to 400 nm. In Example 5, the optical surface 9 closest to the object side of the objective lens 4 and the optical surface 10 closest to the evaluation surface of the eyepiece lens 6 are not provided with the antireflection structure 3 having a fine concavo-convex structure. This is not provided because the performance deteriorates due to contact or the like during use of the antireflection structure 3, but is not limited thereto, and the antireflection structure 3 may be provided on the optical surfaces 9 and 10. .
図10は、本発明の実施例6として、光学素子を撮像光学系に用いた要部概略図である。 図10は、カメラなどの撮影レンズの断面を示している。 FIG. 10 is a main part schematic diagram in which an optical element is used in an imaging optical system as Example 6 of the present invention. FIG. 10 shows a cross section of a photographic lens such as a camera.
図10において、7は結像面であり、フィルム、またはCCD,CMOSなどの固体撮像素子(光電変換素子)が配置されている。11は絞りである。図10において3は本発明に関わる反射防止構造体であり、平均面粗さRaが20nm以上、表面積比Sratioが1.42以上のアルミニウム酸化物を主成分とする微細凹凸構造より成り、各光学面に設けて光の反射を低減している。ここで、実施例6の光学系の使用波長領域は、可視域なので、使用波長領域における最短波長を400nmとしている。 In FIG. 10, reference numeral 7 denotes an image plane, on which a film or a solid-state imaging device (photoelectric conversion device) such as a CCD or CMOS is arranged. Reference numeral 11 denotes an aperture. In FIG. 10, reference numeral 3 denotes an antireflection structure according to the present invention, which comprises a fine concavo-convex structure mainly composed of an aluminum oxide having an average surface roughness Ra of 20 nm or more and a surface area ratio S ratio of 1.42 or more. It is provided on each optical surface to reduce light reflection. Here, since the use wavelength region of the optical system of Example 6 is the visible region, the shortest wavelength in the use wavelength region is set to 400 nm.
また、実施例6では、対物レンズの最も物体側の光学面9には微細凹凸構造からなる反射防止構造体3を設けていない。これは、反射防止構造体3が使用中の接触などにより性能が劣化するので設けなかったが、これに限定されるものではなく、光学面9に反射防止構造体3を設けてもよい。 In Example 6, the optical surface 9 closest to the object side of the objective lens is not provided with the antireflection structure 3 having a fine concavo-convex structure. This is not provided because the performance deteriorates due to contact of the antireflection structure 3 during use or the like, but is not limited thereto, and the antireflection structure 3 may be provided on the optical surface 9.
図11は、本発明の実施例7として、光学素子を投影光学系(プロジェクタ)に用いた要部概略図である。 FIG. 11 is a main part schematic diagram in which an optical element is used in a projection optical system (projector) as a seventh embodiment of the present invention.
図11は、プロジェクタ光学系の断面を示したものである。 FIG. 11 shows a cross section of the projector optical system.
図11において、12は光源、13a,13bはフライアイインテグレータ、14は偏光変換素子、15はコンデンサーレンズ、16はミラー、17はフィールドレンズ、18a,18b,18c,18dは色分解合成用のプリズム、19a,19b,19cは光変調素子、20は投影レンズである。図11において3は本発明に関わる反射防止構造体であり、平均面粗さRaが20nm以上、表面積比Sratioが1.42以上のアルミニウム酸化物を主成分とする微細凹凸構造より成り、各光学面に設けて光の反射を低減している。ここで、実施例7の光学系の使用波長領域は、可視域なので、使用波長領域における最短波長を400nmとしている。 In FIG. 11, 12 is a light source, 13a and 13b are fly eye integrators, 14 is a polarization conversion element, 15 is a condenser lens, 16 is a mirror, 17 is a field lens, and 18a, 18b, 18c and 18d are prisms for color separation / synthesis. , 19a, 19b, 19c are light modulation elements, and 20 is a projection lens. In FIG. 11, reference numeral 3 denotes an antireflection structure according to the present invention, which comprises a fine concavo-convex structure mainly composed of an aluminum oxide having an average surface roughness Ra of 20 nm or more and a surface area ratio S ratio of 1.42 or more. It is provided on each optical surface to reduce light reflection. Here, since the use wavelength region of the optical system of Example 7 is the visible region, the shortest wavelength in the use wavelength region is set to 400 nm.
また、実施例7の反射防止構造体3は、主にアルミニウム酸化物から構成されているので、耐熱性も高く、光源12に近く高熱に曝させる光学面13aの位置に用いても、性能劣化の心配がない。 In addition, since the antireflection structure 3 of Example 7 is mainly composed of aluminum oxide, it has high heat resistance, and even when used at the position of the optical surface 13a that is exposed to high heat close to the light source 12, the performance deteriorates. There is no worry.
図12は、本発明の実施例8として、光学素子を走査光学系(レーザービームプリンタ)に用いた要部概略図である。 FIG. 12 is a schematic diagram of a main part in which an optical element is used in a scanning optical system (laser beam printer) as an eighth embodiment of the present invention.
図12は、走査光学系の断面を示している。 FIG. 12 shows a cross section of the scanning optical system.
図12において、12は光源、21はコリメーターレンズ、11は開口絞り、22はシリンドリカルレンズ、23は光偏向器、24a,24bはfθレンズを構成する光学素子、7は像面である。図12において3は本発明に関わる反射防止構造体であり、平均面粗さRaが21nm以上、表面積比Sratioが1.45以上のアルミニウム酸化物を主成分とする微細凹凸構造より成り、各光学面に設けて光の反射を低減し、高品位な画像形成を実現している。ここで、実施例8の光学系の使用波長は405nmである。 In FIG. 12, 12 is a light source, 21 is a collimator lens, 11 is an aperture stop, 22 is a cylindrical lens, 23 is an optical deflector, 24a and 24b are optical elements constituting an fθ lens, and 7 is an image plane. In FIG. 12, reference numeral 3 denotes an antireflection structure according to the present invention, which comprises a fine concavo-convex structure mainly composed of an aluminum oxide having an average surface roughness Ra of 21 nm or more and a surface area ratio S ratio of 1.45 or more. It is provided on each optical surface to reduce the reflection of light and realize high-quality image formation. Here, the operating wavelength of the optical system of Example 8 is 405 nm.
図13は本発明の実施例9として、反射防止構造体3を具備する光学素子(プリズム)の製造方法の概略図である。 FIG. 13 is a schematic view of a method for manufacturing an optical element (prism) including the antireflection structure 3 as Embodiment 9 of the present invention.
図13において2は基板であり、例えばプリズムより成っている。 In FIG. 13, reference numeral 2 denotes a substrate, for example, a prism.
基板2を中性洗剤、純水リンス,アルコールで順次洗浄し乾燥後、図13(A)に示したように、支持部材25で固定した。 The substrate 2 was sequentially washed with a neutral detergent, pure water rinse, and alcohol, dried, and then fixed with a support member 25 as shown in FIG.
アルミニウム−seconday−ブトキシド(Al(O−sec−Bu)3)を2−プロパノール(IPA)中に添加し、攪拌後、アセト酢酸エチル(EAcAc)を添加し、約3時間室温で攪拌した。さらに0.01M希塩酸(HClaq.)を加え、溶液のモル比を
Al(O−sec−Bu)3:IPA:EAcAc:HClaq.=1:20:1:1
の割合とした。これを約1時間室温で攪拌し、塗布液26を調製した。
Aluminum-secondday-butoxide (Al (O-sec-Bu) 3 ) was added to 2-propanol (IPA), and after stirring, ethyl acetoacetate (EAcAc) was added and stirred at room temperature for about 3 hours. Further, 0.01 M dilute hydrochloric acid (HClaq.) Was added, and the molar ratio of the solution was changed to Al (O-sec-Bu) 3 : IPA: EAcAc: HClaq. = 1: 20: 1: 1
The ratio of This was stirred for about 1 hour at room temperature to prepare a coating solution 26.
次いで、支持部材25に固定した基板2を塗布液26に浸漬し、1mm/secの速度で引き上げ、基板2の光学面に透明な皮膜を形成した(皮膜形成工程)。 Next, the substrate 2 fixed to the support member 25 was immersed in the coating solution 26 and pulled up at a speed of 1 mm / sec to form a transparent film on the optical surface of the substrate 2 (film formation process).
続いて、約60℃で30分間乾燥後、図13(B)に示したように約60℃の温水27に所定時間浸漬し、約60℃で再び乾燥し、基板2の表面上に反射防止構造体3を形成した(微細凹凸部形成工程)。 Subsequently, after drying at about 60 ° C. for 30 minutes, as shown in FIG. 13 (B), it is immersed in warm water 27 at about 60 ° C. for a predetermined time and dried again at about 60 ° C. to prevent reflection on the surface of the substrate 2. The structure 3 was formed (a fine uneven part forming step).
この反射防止構造体3の表面形状をAFM装置(セイコーインスツルメンツ社製SPA−500+SPI3800N)に、先鋭な先端形状を有するカンチレバー(同社製SI−DF20S)を用いて測定を行ったところ、式(1)′のように定義された平均面粗さRa’が22.8nm、式(2)′のように定義された表面積比Sratio’が1.996であった。また、そのプリズムの可視光線の透過率測定を行ったところ、回折・散乱などの不要光の発生はなく、図14に示したように可視域全域で99.3%以上と極めて優れた透過率であった。 When the surface shape of this antireflection structure 3 was measured with an AFM apparatus (SPA-500 + SPI3800N manufactured by Seiko Instruments Inc.) using a cantilever having a sharp tip shape (SI-DF20S manufactured by the same company), the formula (1) The average surface roughness R a ′ defined as ′ was 22.8 nm, and the surface area ratio S ratio ′ defined as formula (2) ′ was 1.996. Further, when the visible light transmittance of the prism was measured, there was no generation of unnecessary light such as diffraction and scattering, and an extremely excellent transmittance of 99.3% or more in the entire visible region as shown in FIG. Met.
また、この方法では、製造工程中の処理温度が約60℃と低温であるため、光学素子1の基板もしくは基体2として、樹脂等を用いた場合も変形や変質などの問題が発生することもない。 In this method, since the processing temperature during the manufacturing process is as low as about 60 ° C., problems such as deformation and alteration may occur even when a resin or the like is used as the substrate or the base 2 of the optical element 1. Absent.
実施例9では、光学素子1の基板がプリズムの場合について説明したが、これに限定するものではなく、他にも凸レンズ、凹レンズ、メニスカスレンズ、フライアイインテグレータやfθレンズなど様々な基板であっても同様の方法で優れた反射防止構造体を形成することができる。 In the ninth embodiment, the case where the substrate of the optical element 1 is a prism has been described. However, the present invention is not limited to this, and various other substrates such as a convex lens, a concave lens, a meniscus lens, a fly eye integrator, and an fθ lens can be used. In the same manner, an excellent antireflection structure can be formed.
さらに、実施例9では、被膜の形成および乾燥後、温水に所定時間浸漬したが、これに限定するものではなく、水蒸気中に所定時間さらしても良い。 Further, in Example 9, after the coating was formed and dried, it was immersed in warm water for a predetermined time. However, the present invention is not limited to this, and it may be exposed to water vapor for a predetermined time.
図15は本発明の実施例10として、反射防止構造体3を具備する光学素子(フライアイインテグレータ)の製造方法の要部概略図である。図15において2は基板であり、例えばフライアイレンズより成っている。 FIG. 15: is principal part schematic of the manufacturing method of the optical element (fly eye integrator) which comprises the reflection preventing structure 3 as Example 10 of this invention. In FIG. 15, reference numeral 2 denotes a substrate, for example, a fly eye lens.
基板2を中性洗剤、純水リンス、アルコールで順次洗浄し、乾燥後、図15(A)に示したように、支持部材25で固定した。 The substrate 2 was sequentially washed with a neutral detergent, pure water rinse, and alcohol, dried, and then fixed with a support member 25 as shown in FIG.
硝酸アルミニウム9水和物 (Al(NO3)3・9H2O)を2−プロパノール(IPA)中に添加し攪拌後、さらにアセト酢酸エチル(EAcAc)を添加し約3時間室温で攪拌した。ここで、溶液のモル比は、
Al(NO3)3・9H2O:IPA:EAcAc=1:20:1
の割合とした。これを約1時間室温で攪拌し、塗布液26を調製した。
After stirring was added aluminum nitrate 9 hydrate (Al (NO 3) 3 · 9H 2 O) in 2-propanol (IPA), was stirred at room temperature for about 3 hours and further adding ethyl acetoacetate (EAcAc). Here, the molar ratio of the solution is
Al (NO 3) 3 · 9H 2 O: IPA: EAcAc = 1: 20: 1
The ratio of This was stirred for about 1 hour at room temperature to prepare a coating solution 26.
次いで、支持部材25に固定した基板2を塗布液26に浸漬し、1mm/secの速度で引き上げ、基板2の光学面に透明な皮膜を形成した。 Next, the substrate 2 fixed to the support member 25 was immersed in the coating liquid 26 and pulled up at a speed of 1 mm / sec to form a transparent film on the optical surface of the substrate 2.
続いて、約60℃で30分間乾燥後、図15(B)に示したように水蒸気28に所定時間さらし、約60℃で再び乾燥し、基板2の表面上に反射防止構造体3を形成した。 Subsequently, after drying at about 60 ° C. for 30 minutes, as shown in FIG. 15B, it is exposed to water vapor 28 for a predetermined time and dried again at about 60 ° C. to form the antireflection structure 3 on the surface of the substrate 2. did.
この反射防止構造体3の表面形状をAFM装置(セイコーインスツルメンツ社製SPA−500+SPI3800N)に、先鋭な先端形状を有するカンチレバー(同社製SI−DF20S)を用いて測定を行ったところ、式(1)′のように定義された平均面粗さRa’が23.6nm、式(2)′のように定義された表面積比Sratio’が1.776であった。また、そのフライアイインテグレータの可視光線の透過率測定を行ったところ、回折・散乱などの不要光の発生はなく、図16に示したように可視域全域で98.5%以上と極めて優れた透過率であった。 When the surface shape of this antireflection structure 3 was measured with an AFM apparatus (SPA-500 + SPI3800N manufactured by Seiko Instruments Inc.) using a cantilever having a sharp tip shape (SI-DF20S manufactured by the same company), the formula (1) The average surface roughness R a ′ defined as ′ was 23.6 nm, and the surface area ratio S ratio ′ defined as formula (2) ′ was 1.776. Further, when the transmittance of visible light of the fly eye integrator was measured, there was no generation of unnecessary light such as diffraction and scattering, and it was extremely excellent at 98.5% or more in the entire visible region as shown in FIG. Transmittance.
また、この方法では、製造工程中の処理温度が低温であるため、光学素子1の基板もしくは基体2として、樹脂等を用いた場合も変形や変質などの問題が発生することもない。 Further, in this method, since the processing temperature during the manufacturing process is low, problems such as deformation and deterioration do not occur even when a resin or the like is used as the substrate or the base 2 of the optical element 1.
実施例10では、光学素子1の基板がフライアイインテグレータの場合について説明したが、これに限定するものではなく、他にも凸レンズ、凹レンズ、メニスカスレンズ、プリズムやfθレンズなど様々な基板であっても同様の方法で優れた反射防止構造体を形成することができる。 In the tenth embodiment, the case where the substrate of the optical element 1 is a fly-eye integrator has been described. However, the present invention is not limited to this, and there are various substrates such as a convex lens, a concave lens, a meniscus lens, a prism, and an fθ lens. In the same manner, an excellent antireflection structure can be formed.
さらに、実施例10では、被膜の形成および乾燥後、水蒸気中に所定時間さらしたが、これに限定するものではなく温水に所定時間浸漬しても良い。 Further, in Example 10, after the coating was formed and dried, it was exposed to water vapor for a predetermined time. However, the present invention is not limited to this, and it may be immersed in warm water for a predetermined time.
以上説明したように、実施例1〜8によれば、光学素子の表面での光の反射を低減し、光学系中に用いた場合もフレア光やゴースト光など有害光の発生を抑制し良好な光学性能の光学系を実現できる。 As described above, according to Examples 1 to 8, reflection of light on the surface of the optical element is reduced, and generation of harmful light such as flare light and ghost light is suppressed even when used in an optical system. An optical system with excellent optical performance can be realized.
また、実施例9、10の光学素子の製造方法によれば、ディップ法という大掛かりで高価な装置を必要としない簡便な方法で、電子線描画装置、レーザー干渉露光装置、半導体露光装置、エッチング装置などを用いても形成が困難な光学面を有する光学素子上に、容易にして高性能な反射防止構造体を形成することができる。 In addition, according to the optical element manufacturing methods of Examples 9 and 10, an electron beam lithography apparatus, a laser interference exposure apparatus, a semiconductor exposure apparatus, and an etching apparatus can be used by a simple method that does not require a large and expensive apparatus such as a dip method. It is possible to easily form a high-performance antireflection structure on an optical element having an optical surface that is difficult to form even using, for example.
1 :光学素子
2 :基板,基体
3 :反射防止構造体
4 :対物レンズ
5 :プリズム
6 :接眼レンズ
7 :結像面
8 :瞳面
9 :最も物体側の光学面
10 :最も評価面(瞳面もしくは結像面)側の光学面
11 :絞り
12 :光源
13 :フライアイインテグレータ
14 :偏光変換素子
15 :コンデンサーレンズ
16 :ミラー
17 :フィールドレンズ
18 :プリズム
19 :光変調素子
20 :投影レンズ
21 :コリメータレンズ
22 :シリンドリカルレンズ
23 :光偏向器
24 :fθレンズ
25 :支持部材
26 :塗布液
27 温水
28 水蒸気
29 蓋
DESCRIPTION OF SYMBOLS 1: Optical element 2: Board | substrate, base | substrate 3: Antireflection structure 4: Objective lens 5: Prism 6: Eyepiece lens 7: Imaging surface 8: Pupil surface 9: Optical surface of the most object side 10: Most evaluation surface (pupil) Optical surface on the surface or imaging surface) side 11: Aperture 12: Light source 13: Fly eye integrator 14: Polarization conversion element 15: Condenser lens 16: Mirror 17: Field lens 18: Prism 19: Light modulation element 20: Projection lens 21 : Collimator lens 22: Cylindrical lens 23: Optical deflector 24: fθ lens 25: Support member 26: Coating liquid 27 Hot water 28 Water vapor 29 Lid
Claims (5)
ただし、
H(X,Y):光学面をX−Y平面としたときの面内で任意にサンプリングした領域の該
微細凹凸部の凹凸形状のZ方向の値をあらわす関数
X1:X方向のサンプリング開始座標
XM:X方向のサンプリング終了座標
Y1:Y方向のサンプリング開始座標
YN:Y方向のサンプリング終了座標
Have:H( X , Y )の平均値
S0:任意にサンプリングした領域が,平面であるとしたときの面積
= |(XM−X1)(YN−Y1)|
λmin:使用波長領域における最短波長
S:任意にサンプリングした領域における微細凹凸構造体表面の実際の表面積
であるとき
However,
H (X, Y): The area of an arbitrarily sampled area in the plane when the optical plane is the XY plane
Function X 1 : X direction sampling start coordinate X M : X direction sampling end coordinate Y 1 : Y direction sampling start coordinate Y N : Y direction sampling end coordinate H ave : Average value of H (X, Y) S 0 : Area when an arbitrarily sampled area is a plane = | (X M −X 1 ) (Y N −Y 1 ) |
λ min : shortest wavelength in the used wavelength region S: actual surface area of the surface of the fine concavo-convex structure in an arbitrarily sampled region
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004364527A JP2006171430A (en) | 2004-12-16 | 2004-12-16 | Optical element and optical system having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004364527A JP2006171430A (en) | 2004-12-16 | 2004-12-16 | Optical element and optical system having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006171430A true JP2006171430A (en) | 2006-06-29 |
JP2006171430A5 JP2006171430A5 (en) | 2008-01-31 |
Family
ID=36672261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004364527A Pending JP2006171430A (en) | 2004-12-16 | 2004-12-16 | Optical element and optical system having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006171430A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010097197A (en) * | 2008-09-16 | 2010-04-30 | Canon Inc | Image pickup apparatus |
JP2010191074A (en) * | 2009-02-17 | 2010-09-02 | Canon Inc | Optical element |
JP2010269957A (en) * | 2009-05-20 | 2010-12-02 | Canon Inc | Optical element and optical system having the same |
JP2011145627A (en) * | 2010-01-18 | 2011-07-28 | Canon Inc | Optical element |
EP2390229A1 (en) * | 2010-05-07 | 2011-11-30 | Canon Kabushiki Kaisha | Precursor sol of aluminum oxide, optical member, and method for producing optical member |
JP2012133398A (en) * | 2012-03-26 | 2012-07-12 | Canon Electronics Inc | Camera |
JP2014170253A (en) * | 2014-06-25 | 2014-09-18 | Canon Inc | Method for manufacturing lens |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04182236A (en) * | 1990-11-16 | 1992-06-29 | Canon Inc | Sheet supply device |
JPH10259037A (en) * | 1997-03-19 | 1998-09-29 | Central Glass Co Ltd | Water-repelling coating film and its formation |
JP2000144052A (en) * | 1998-11-10 | 2000-05-26 | Central Glass Co Ltd | Hydrophilic coated film |
JP2001017907A (en) * | 1999-07-08 | 2001-01-23 | Tsutomu Minami | Formation of surface fine rugged structure at low temperature and base body having the same structure |
-
2004
- 2004-12-16 JP JP2004364527A patent/JP2006171430A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04182236A (en) * | 1990-11-16 | 1992-06-29 | Canon Inc | Sheet supply device |
JPH10259037A (en) * | 1997-03-19 | 1998-09-29 | Central Glass Co Ltd | Water-repelling coating film and its formation |
JP2000144052A (en) * | 1998-11-10 | 2000-05-26 | Central Glass Co Ltd | Hydrophilic coated film |
JP2001017907A (en) * | 1999-07-08 | 2001-01-23 | Tsutomu Minami | Formation of surface fine rugged structure at low temperature and base body having the same structure |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010097197A (en) * | 2008-09-16 | 2010-04-30 | Canon Inc | Image pickup apparatus |
JP2010191074A (en) * | 2009-02-17 | 2010-09-02 | Canon Inc | Optical element |
US8559112B2 (en) | 2009-02-17 | 2013-10-15 | Canon Kabushiki Kaisha | Optical element |
JP2010269957A (en) * | 2009-05-20 | 2010-12-02 | Canon Inc | Optical element and optical system having the same |
JP2011145627A (en) * | 2010-01-18 | 2011-07-28 | Canon Inc | Optical element |
EP2390229A1 (en) * | 2010-05-07 | 2011-11-30 | Canon Kabushiki Kaisha | Precursor sol of aluminum oxide, optical member, and method for producing optical member |
US8580026B2 (en) | 2010-05-07 | 2013-11-12 | Canon Kabushiki Kaisha | Precursor sol of aluminum oxide, optical member, and method for producing optical member |
JP2012133398A (en) * | 2012-03-26 | 2012-07-12 | Canon Electronics Inc | Camera |
JP2014170253A (en) * | 2014-06-25 | 2014-09-18 | Canon Inc | Method for manufacturing lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7237057B2 (en) | Polarizing element | |
CN100443923C (en) | Optical system | |
US7811684B2 (en) | Optical transparent member and optical system using the same | |
TWI375048B (en) | Anti-reflection coating, and optical element and optical system with anti-reflection coating | |
CN100595608C (en) | Optical transparent member and optical system using the same | |
US20220390826A1 (en) | Reflective mask blank, reflective mask, and method for manufacturing semiconductor device | |
JP5885649B2 (en) | Optical element having antireflection film, optical system and optical apparatus | |
JP2015004919A (en) | Anti-reflection film and optical element having the same | |
JP6362105B2 (en) | Optical element, optical system, and optical device having antireflection film | |
JP2015094878A (en) | Anti-reflection film, optical element, optical system, and optical device | |
JP2010079274A (en) | Optical element and optical system | |
US8559112B2 (en) | Optical element | |
JP2007226033A (en) | Lens system | |
JP2006171430A (en) | Optical element and optical system having the same | |
JP2010066704A (en) | Optical element, optical system, and optical apparatus | |
JP5294584B2 (en) | Optical element and optical apparatus | |
JP2006178186A (en) | Polarization control element, manufacturing method for the polarization control element, design method of the polarization control element and electronic apparatus | |
JP2009186670A (en) | Antireflective film | |
JP2004361906A (en) | Transmission type optical element and optical device | |
JP2010048896A (en) | Optical system | |
JP2005326434A (en) | Reflection mirror and rear projection type video display apparatus using same | |
JP2005302860A (en) | Optical element for extremely short ultraviolet optical system and extremely short ultraviolet exposure device | |
JP2003084095A (en) | Multi-layer film reflecting-mirror, manufacturing method therefor, x-ray exposure device, method of manufacturing semiconductor device, and x-ray optical system | |
JP2006138633A (en) | Optical system and optical device | |
JP2009042472A (en) | Optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110705 |