JP2006171332A - Antireflection film - Google Patents

Antireflection film Download PDF

Info

Publication number
JP2006171332A
JP2006171332A JP2004363350A JP2004363350A JP2006171332A JP 2006171332 A JP2006171332 A JP 2006171332A JP 2004363350 A JP2004363350 A JP 2004363350A JP 2004363350 A JP2004363350 A JP 2004363350A JP 2006171332 A JP2006171332 A JP 2006171332A
Authority
JP
Japan
Prior art keywords
layer
antireflection film
geometric thickness
layers
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363350A
Other languages
Japanese (ja)
Inventor
Koji Ikegami
耕司 池上
Toshimasa Kanai
敏正 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2004363350A priority Critical patent/JP2006171332A/en
Publication of JP2006171332A publication Critical patent/JP2006171332A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pickup unit which has exact compatibility with a plurality of kinds of optical disks and also has superior reliability, by appropriately improving an antireflection film of an optical element, such as aberration correcting element. <P>SOLUTION: An antireflection film, having a reflection factor of ≤3% to light beams of 405 nm, 658 nm, and 780 nm in wavelength or an antireflection film, having a reflector factor of ≤3% to light beams in wavelength ranges of 400 to 410 nm, 640 to 680 nm, and 760 to 800 nm is formed on both the top and the reverse surfaces of the aberration correcting element 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、反射防止膜に係り、詳しくは、複数種の光ディスクに対して互換性のある光ピックアップ装置の収差補正素子等の光学素子に設けられる反射防止膜の改良技術に関する。   The present invention relates to an antireflection film, and more particularly, to an improvement technique of an antireflection film provided on an optical element such as an aberration correction element of an optical pickup device compatible with a plurality of types of optical disks.

周知のように、光学的に情報記録または情報再生が行なわれる情報記録媒体としては、CD(Compact Disc)やDVD(Digital Versatile Disc)等の光ディスクが、小型且つ大容量で利便性を有する観点から注目されている。そして、近年においては、これらの種類の異なる光ディスクを一台で使用することが可能な互換性を有する光ピックアップ装置(光学式情報記録再生装置)が開発されるに至っている。   As is well known, as an information recording medium on which information is recorded or reproduced optically, an optical disc such as a CD (Compact Disc) or a DVD (Digital Versatile Disc) is small, has a large capacity and is convenient. Attention has been paid. In recent years, compatible optical pickup devices (optical information recording / reproducing devices) that can use these different types of optical disks in a single unit have been developed.

この場合、DVDは、CDの約7倍の情報の高密度化を確保したものであるが、このように光ディスクの高密度化を確保するには、光ピックアップ装置に備えられている対物レンズの開口数(NA)を大きくすることや、短波長の光ビームを用いることにより、照射径の小さな光ビームを光ディスクに照射することが必要となる。   In this case, the DVD has a density of information about 7 times that of the CD, but in order to ensure the density of the optical disk in this way, an objective lens provided in the optical pickup device is used. By increasing the numerical aperture (NA) or using a light beam with a short wavelength, it is necessary to irradiate the optical disk with a light beam having a small irradiation diameter.

しかしながら、上記のように対物レンズのNAを大きくしたり、短波長の光ビームを用いる手法では、光ディスクによる光ビームへの収差の影響が大きくなり、記録や再生の精度を向上させることが困難となる。そこで、下記の特許文献1や特許文献2によれば、このような収差の影響を低減するため、収差補正素子(特許文献1では光学素子と称されている)を使用することが開示されている。   However, when the NA of the objective lens is increased as described above or the light beam having a short wavelength is used, the influence of the aberration on the light beam by the optical disk increases, and it is difficult to improve the recording and reproduction accuracy. Become. Therefore, according to the following Patent Document 1 and Patent Document 2, it is disclosed to use an aberration correction element (referred to as an optical element in Patent Document 1) in order to reduce the influence of such aberration. Yes.

特開2001−100174号公報JP 2001-100194 A 特開2000−292755号公報JP 2000-292755 A

ところで、上述の特許文献1、2に開示された何れの収差補正素子にも、光ビームの反射による光源への戻り光を低減することや、ロスなく光ビームを透過させることを目的として、反射防止膜が設けられている。この反射防止膜は、特許文献1に開示の収差補正素子では、MgFやAl23の単層膜が使用され、また特許文献2に開示の収差補正素子では、SiO、Al23、MgF、CaFからなる単層膜が使用されている。 By the way, in any of the aberration correction elements disclosed in Patent Documents 1 and 2 described above, in order to reduce the return light to the light source due to the reflection of the light beam and to transmit the light beam without loss, A prevention film is provided. As the antireflection film, a single layer film of MgF or Al 2 O 3 is used in the aberration correction element disclosed in Patent Document 1, and in the aberration correction element disclosed in Patent Document 2, SiO, Al 2 O 3 , A single layer film made of MgF or CaF is used.

この場合において、従来の反射防止膜が設けられた収差補正素子では、例えば、特許文献2の図14〜図17に示されているように、CDで使用される波長780nmの光ビームやDVDで使用される波長658nmの光ビームの透過率は高いものの、BD(Blue Laser Disc)で使用される波長405nmの光ビームの透過率は、70%にも満たないものとなっている。従って、このような反射防止膜が設けられた収差補正素子では、CD、DVD、及びBDの三種の光ディスクに対して互換性を有するものとしては使用できないという問題を有していた。   In this case, in the aberration correction element provided with the conventional antireflection film, for example, as shown in FIGS. 14 to 17 of Patent Document 2, a light beam having a wavelength of 780 nm used for a CD or a DVD is used. Although the transmittance of the light beam having a wavelength of 658 nm used is high, the transmittance of the light beam having a wavelength of 405 nm used in BD (Blue Laser Disc) is less than 70%. Therefore, the aberration correction element provided with such an antireflection film has a problem that it cannot be used as compatible with three types of optical disks of CD, DVD, and BD.

また、同文献の図18には、反射防止膜が設けられた収差補正素子として、BDで使用される波長405nmの光ビームの透過率が80%を超えているものが記載されている。しかしながら、この収差補正素子は、CD及びDVDで使用される波長780nm及び658nmの光ビームの透過率が何れも88%に満たないのみならず、波長405nmの光ビームの透過率は85%に満たないものとなっている。これに対して、同文献における既述の図14〜図17に示す収差補正素子では、波長780nm及び658nmの光ビームの透過率は何れも93%を超えている。この事を勘案すれば、同文献の図18に示す収差補正素子は、400nm〜800nmの波長領域の全域に亘って透過率が低く、且つその中でも波長405nm近傍の光ビームの透過率は、同文献の図14〜図17に示す収差補正素子と同様に、最も低くなっている。以上のような事項から判断すれば、同文献の図18に示す収差補正素子も、CD、DVD、及びBDの三種の光ディスクに対して互換性を有するものとしては適していないということができる。   Also, FIG. 18 of the same document describes an aberration correction element provided with an antireflection film, in which the transmittance of a light beam having a wavelength of 405 nm used in BD exceeds 80%. However, this aberration correction element not only has a transmittance of light beams with wavelengths of 780 nm and 658 nm used for CDs and DVDs of less than 88%, but also has a transmittance of light beam with a wavelength of 405 nm of less than 85%. It has never been. On the other hand, in the aberration correction element shown in FIGS. 14 to 17 described in the same document, the transmittances of light beams with wavelengths of 780 nm and 658 nm both exceed 93%. Taking this into consideration, the aberration correction element shown in FIG. 18 of the same document has a low transmittance over the entire wavelength region of 400 nm to 800 nm, and among them, the transmittance of the light beam near the wavelength of 405 nm is the same. Similar to the aberration correction element shown in FIGS. Judging from the above matters, it can be said that the aberration correction element shown in FIG. 18 of the same document is not suitable for compatibility with the three types of optical disks of CD, DVD, and BD.

そして、以上のように収差補正素子が上記三種の光ディスクに対して互換性を有しないものとなるのは、反射防止膜における上記三つの波長での光ビームの透過率が適切でないことに大きく由来している。   As described above, the reason why the aberration correction element is not compatible with the above three types of optical disks is largely derived from the fact that the transmittance of the light beam at the above three wavelengths in the antireflection film is not appropriate. is doing.

本発明は、上記事情に鑑みてなされたものであり、収差補正素子等の光学素子の反射防止膜に適切な改良を加えることにより、複数種の光ディスクに対して的確な互換性を有し且つ信頼性に優れた光ピックアップ装置を提供することを技術的課題とする。   The present invention has been made in view of the above circumstances, and has an appropriate compatibility with a plurality of types of optical discs by adding appropriate improvements to the antireflection film of an optical element such as an aberration correction element. It is a technical problem to provide an optical pickup device with excellent reliability.

上記技術的課題を解決するために創案された本発明は、光ピックアップ装置の構成要素である収差補正素子に設けられる反射防止膜において、波長が、405nm、658nm及び780nmでの光ビームの反射率が3%以下であることに特徴づけられる。   The present invention devised to solve the above technical problem is an antireflection film provided in an aberration correction element that is a component of an optical pickup device, and the reflectance of a light beam at wavelengths of 405 nm, 658 nm, and 780 nm. Is characterized by 3% or less.

即ち、本発明は、収差補正素子に設けられる反射防止膜の特性を適切なものとすれば、当該収差補正素子における特定複数の波長での光ビームの透過特性が優れたものになることを、本発明者等が知見したことにより案出されたものである。そして、上記の構成によれば、CD、DVD及びBDでそれぞれ使用される波長780nm、658nm及び波長405nmでの光ビームの反射率が全て3%以下となる反射防止膜が提供されることから、上記三種の光ディスクに対して的確な互換性を有し且つ信頼性に優れた収差補正素子ひいては光ピックアップ装置を得ることが可能となる。詳述すると、上記三つの波長のうち少なくとも何れか一つの波長での光ビームの反射率が仮に3%を超える反射防止膜を収差補正素子に設けたならば、その少なくとも何れか一つの波長での光ビームの反射に起因する光源への戻り光を適切に低減できなくなり、或いはロスを生じることなくその光ビームを透過させることが困難となるおそれがある。従って、上記の反射率が全て3%以下であれば、このような不具合は生じ難くなる。この事を勘案すれば、上記の反射率は全て1%以下、更には全て0.5%以下であることがより好ましい。   That is, according to the present invention, if the characteristic of the antireflection film provided in the aberration correction element is appropriate, the transmission characteristic of the light beam at a plurality of specific wavelengths in the aberration correction element is excellent. This has been devised by the knowledge of the present inventors. And according to said structure, since the reflectance of the light beam in wavelength 780nm, 658nm, and wavelength 405nm which are each used by CD, DVD, and BD is all provided 3% or less, It is possible to obtain an aberration correction element that is precisely compatible with the above three types of optical disks and excellent in reliability, and thus an optical pickup device. More specifically, if an anti-reflection film having a light beam reflectance of at least one of the three wavelengths above 3% is provided on the aberration correction element, at least one of the wavelengths is used. There is a possibility that the return light to the light source due to the reflection of the light beam cannot be appropriately reduced, or it is difficult to transmit the light beam without causing a loss. Therefore, if all the reflectances are 3% or less, such a problem is hardly caused. In consideration of this, it is more preferable that the above-mentioned reflectances are all 1% or less, and further all are 0.5% or less.

また、上記技術的課題を解決するために創案された本発明に係る反射防止膜は、波長領域が、400〜410nm、640〜680nm及び760〜800nmでの光ビームの反射率が3%以下であることに特徴づけられる。   In addition, the antireflection film according to the present invention created to solve the above technical problem has a light beam reflectance of 3% or less in the wavelength region of 400 to 410 nm, 640 to 680 nm, and 760 to 800 nm. Characterized by being.

このような構成によれば、上記と同様の作用効果が得られることに加えて、光源の波長のバラツキや光ディスクからの反射光の波長シフトがあっても、当該収差補正素子としては、不当なロスを生じることなく好適に光ビームを透過させることが可能となる。この事を勘案すれば、上記三つの波長領域での光ビームの反射率は、全て1%以下であることがより好ましい。   According to such a configuration, in addition to obtaining the same effect as described above, even if there is a variation in the wavelength of the light source or a wavelength shift of the reflected light from the optical disc, the aberration correction element is inappropriate. It is possible to transmit the light beam suitably without causing loss. Considering this, it is more preferable that the reflectance of the light beam in the above three wavelength regions is 1% or less.

更に、上記技術的課題を解決するために創案された本発明に係る反射防止膜は、収差補正素子の基体上に少なくとも4つの層が形成され、この4つの層は、基体側から順に、屈折率ndが2.0以上で且つ幾何学的厚みが5〜50nmの第1の層と、屈折率ndが1.5以下で且つ幾何学的厚みが10〜200nmの第2の層と、屈折率ndが2.0以上で且つ幾何学的厚みが50〜200nmの第3の層と、SiO2またはAl23もしくはSiONを含み且つ幾何学的厚みが50〜200nmの第4の層とを備えていることに特徴づけられる。ここで、上記の「幾何学的厚み」とは、λ/4等の光学的厚みと区別されるものであり、波長に依存しない厚みである。また、上記の「SiO2またはAl23もしくはSiONを含み」とは、それらの物質が主たる成分として含まれていることを意味する。 Furthermore, the antireflection film according to the present invention, which was created to solve the above technical problem, has at least four layers formed on the base of the aberration correction element, and these four layers are refracted in order from the base. A first layer having a refractive index nd of 2.0 or more and a geometric thickness of 5 to 50 nm, a second layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 200 nm, A third layer having a ratio nd of 2.0 or more and a geometric thickness of 50 to 200 nm, and a fourth layer containing SiO 2, Al 2 O 3 or SiON and a geometric thickness of 50 to 200 nm It is characterized by having. Here, the above “geometric thickness” is distinguished from an optical thickness such as λ / 4, and is a thickness that does not depend on the wavelength. Moreover, the above-mentioned “including SiO 2, Al 2 O 3 or SiON” means that these substances are included as main components.

そして、上記のように4つの層を形成すれば、従来の単層の場合と比較して、反射率特性が好適に変化し、既に述べたように、波長が、405nm、658nm及び780nmでの光ビームの反射率が3%以下(好ましくは1%以下、より好ましくは0.5%以下)の反射防止膜、または、波長領域が、400〜410nm、640〜680nm及び760〜800nmでの光ビームの反射率が3%以下(好ましくは1%以下)の反射防止膜を得ることができる。従って、これらに対応する構成について既に述べた事項と同様の作用効果を得ることができる。   When the four layers are formed as described above, the reflectance characteristics are suitably changed as compared with the case of the conventional single layer, and as already described, the wavelengths are 405 nm, 658 nm, and 780 nm. An antireflection film having a light beam reflectance of 3% or less (preferably 1% or less, more preferably 0.5% or less), or light having a wavelength region of 400 to 410 nm, 640 to 680 nm, and 760 to 800 nm An antireflection film having a beam reflectance of 3% or less (preferably 1% or less) can be obtained. Therefore, it is possible to obtain the same operational effects as those already described for the configuration corresponding to these.

この場合、光ビームの反射率が、特定複数の波長域で上記の4つの層を有する場合と同等の小さな値を示す反射防止膜を得るという要請に応じるには、以下に示すような構成とすることもできる。   In this case, in order to respond to a request to obtain an antireflection film having a light beam reflectivity that is as small as that of the above-described four layers in a plurality of specific wavelength ranges, the following configuration is used. You can also

即ち、前記基体上に少なくとも5つの層を形成し、この5つの層は、前記第1〜第4の層に加えて、前記基体と前記第1の層との間に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の内層を備えるようにする。   That is, at least five layers are formed on the substrate, and in addition to the first to fourth layers, the five layers have a refractive index nd of 1 between the substrate and the first layer. And a first inner layer having a geometric thickness of 10 to 150 nm.

また、前記基体上に少なくとも6つの層を形成し、この6つの層は、前記第1〜第4の層に加えて、前記第3の層と前記第4の層との間に、前記基体側から順に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の外層と、屈折率ndが2.0以上で且つ幾何学的厚みが10〜200nmの第2の外層とを備えるようにする。   Further, at least six layers are formed on the substrate, and the six layers are arranged between the third layer and the fourth layer in addition to the first to fourth layers. In order from the side, a first outer layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 150 nm, and a second outer layer having a refractive index nd of 2.0 or more and a geometric thickness of 10 to 200 nm. The outer layer is provided.

更に、前記基体上に少なくとも9つの層を形成し、この9つの層は、前記第1〜第4の層に加えて、前記基体と前記第1の層との間に、前記基体側から順に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の内層と、屈折率ndが2.0以上で且つ幾何学的厚みが5〜50nmの第2の内層と、屈折率ndが1.5以下で且つ幾何学的厚みが10〜100nmの第3の内層とを備えると共に、前記第3の層と前記第4の層との間に、前記基体側から順に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の外層と、屈折率ndが2.0以上で且つ幾何学的厚みが10〜200nmの第2の外層とを備えるようにする。   Further, at least nine layers are formed on the substrate, and these nine layers are arranged in order from the substrate side between the substrate and the first layer in addition to the first to fourth layers. A first inner layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 150 nm, and a second inner layer having a refractive index nd of 2.0 or more and a geometric thickness of 5 to 50 nm And a third inner layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 100 nm, and in order from the substrate side between the third layer and the fourth layer. A first outer layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 150 nm, and a second outer layer having a refractive index nd of 2.0 or more and a geometric thickness of 10 to 200 nm Be prepared.

以上の構成において、前記屈折率ndが2.0以上の層は、TiO2またはNb25を含む層であり、前記屈折率ndが1.5以下の層は、SiO2、MgF及びCaFから選ばれた層であることが好ましい。 In the above configuration, the layer having a refractive index nd of 2.0 or more is a layer containing TiO 2 or Nb 2 O 5, and the layer having a refractive index nd of 1.5 or less is SiO 2 , MgF and CaF. It is preferable that the layer is selected from

また、以上の構成においては、前記第4の層を、最外層とすることができる。このようにした場合に、その第4の層が、特に既述のSiO2を含むものであれば、保護膜としての役目を果たすことができ、耐アルカリ性、耐溶剤性、耐NaCl性、及び耐湿性に優れた反射防止膜を得ることが可能となる。 In the above configuration, the fourth layer can be the outermost layer. In such a case, if the fourth layer contains SiO 2 as described above, it can serve as a protective film, and can have alkali resistance, solvent resistance, NaCl resistance, and It is possible to obtain an antireflection film excellent in moisture resistance.

更に、以上の各層は、スパッタ膜として形成することができ、そのようにした場合には、耐摩耗性や付着性(または密着性)に優れた反射防止膜を得ることが可能となる。   Further, each of the above layers can be formed as a sputtered film. In such a case, an antireflection film excellent in wear resistance and adhesion (or adhesion) can be obtained.

そして、以上の反射防止膜は、良好な特性を得る上で、収差補正素子の表裏両面に設けることが好ましい。   The antireflection film described above is preferably provided on both the front and back surfaces of the aberration correction element in order to obtain good characteristics.

この場合において、以上の反射防止膜は、光ピックアップ装置の収差補正素子に代えて、他の光学素子に使用することもできる。すなわち、波長が、405nm、658nm及び780nmでの光ビームの反射率、または、波長領域が、400〜410nm、640〜680nm及び760〜800nmでの光ビームの反射率が、上述のように小さな値を示すことが要求される光学素子であれば、収差補正素子に限らず、他の光学素子に以上の反射防止膜を設けるようにしてもよい。   In this case, the above antireflection film can be used for other optical elements instead of the aberration correction element of the optical pickup device. That is, the reflectance of the light beam when the wavelength is 405 nm, 658 nm and 780 nm, or the reflectance of the light beam when the wavelength region is 400 to 410 nm, 640 to 680 nm and 760 to 800 nm is a small value as described above. As long as the optical element is required to show the above, the above-described antireflection film may be provided not only on the aberration correction element but also on other optical elements.

また、以上の反射防止膜をガラス板(例えば光学素子の全部又は一部として使用されるガラス板の表面)に設けて、ガラス物品として提供することもできる。   Moreover, the antireflection film described above can be provided on a glass plate (for example, the surface of a glass plate used as all or part of an optical element) and provided as a glass article.

以上のように本発明に係る反射防止膜によれば、CD、DVD及びBDでそれぞれ使用される三つの波長または三つの波長領域での光ビームの反射率が適切に小さくされることから、上記三種の光ディスクに対して的確な互換性を有し且つ信頼性に優れた光学素子ひいては光ピックアップ装置を得ることが可能となり、利便性の向上を図る上で極めて有利となる。加えて、この反射防止膜が設けられた光学素子は、上記三つの波長の光ビームが反射することによる光源への戻り光を適切に低減でき、しかも不当なロスを生じることなくそれらの光ビームを良好に透過させることが可能となり、高品質の光学的特性が得られる。   As described above, according to the antireflection film according to the present invention, the reflectance of the light beam at three wavelengths or three wavelength regions respectively used for CD, DVD, and BD is appropriately reduced. It is possible to obtain an optical element having an appropriate compatibility with the three types of optical discs and excellent in reliability, and thus an optical pickup device, which is extremely advantageous for improving convenience. In addition, the optical element provided with the antireflection film can appropriately reduce the return light to the light source due to the reflection of the light beams of the three wavelengths, and those light beams can be generated without causing undue loss. Can be transmitted satisfactorily, and high-quality optical characteristics can be obtained.

以下、本発明の実施形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の実施形態に係る反射防止膜が設けられた収差補正素子を構成要素とする光ピックアップ装置の一例を示す概略図である。同図に示すように、この光ピックアップ装置1は、半導体レーザ2、ビームスプリッタ3、倍率変換機構4、ミラー5、収差補正素子(液晶素子)6、NA制御素子7、1/4波長板8、対物レンズ9、及び光検出器10から概略構成されている。そして、半導体レーザ2から照射された光ビームLは、ビームスプリッタ3を透過した後、倍率変換機構4で平行光線とされ、更に収差補正素子6などを透過して、対物レンズ9により光ディスクDの記録面に集光される。また、光ディスクDの記録面で反射した光ビームLは、ビームスプリッタ3に再度入射した後、光路を屈曲させて光検出器10に導かれ、所定の検出が行なわれる。   FIG. 1 is a schematic view showing an example of an optical pickup device having an aberration correction element provided with an antireflection film according to an embodiment of the present invention as a constituent element. As shown in the figure, this optical pickup device 1 includes a semiconductor laser 2, a beam splitter 3, a magnification conversion mechanism 4, a mirror 5, an aberration correction element (liquid crystal element) 6, an NA control element 7, and a quarter wavelength plate 8. , Objective lens 9 and photodetector 10. Then, the light beam L emitted from the semiconductor laser 2 passes through the beam splitter 3, is converted into parallel rays by the magnification conversion mechanism 4, further passes through the aberration correction element 6, and the like, and is transmitted through the objective lens 9 to the optical disk D. Focused on the recording surface. The light beam L reflected from the recording surface of the optical disc D is incident on the beam splitter 3 again, and then the optical path is bent and guided to the photodetector 10 for predetermined detection.

この場合、光ビームLは、収差補正素子6を透過することにより、球面収差などが補正されるが、この収差補正素子6の表裏両面または片面には、それぞれ以下に示すような反射防止膜が設けられている。   In this case, the light beam L is transmitted through the aberration correction element 6 to correct spherical aberration and the like. The antireflection film as shown below is provided on both the front and back surfaces or one surface of the aberration correction element 6. Is provided.

即ち、第1の例として、図2に符号40で示す欄に記載した四層の反射防止膜が、収差補正素子6の基体(例えば当該素子6の表裏に配置されるガラス基材)の片面(光ビームが入射する側の面)に、スパッタ法により形成される。詳述すると、この四層の反射防止膜は、基体側から順に、幾何学的厚みが24nmであってTiO2からなる第1の層と、幾何学的厚みが33nmであってSiO2からなる第2の層と、幾何学的厚みが111nmであってNb25からなる第3の層と、幾何学的厚みが119nmであってSiO2からなる第4の層(最外層)とを形成してなる。この場合、TiO2の屈折率ndは、2.32であり、SiO2の屈折率ndは、1.47であり、Nb25の屈折率ndは、2.20である。 That is, as a first example, the four-layer antireflection film described in the column indicated by reference numeral 40 in FIG. It is formed by sputtering on the surface on which the light beam is incident. More specifically, the four-layer antireflection film has, in order from the substrate side, a first layer having a geometric thickness of 24 nm and made of TiO 2, and a geometric thickness of 33 nm and made of SiO 2. A second layer, a third layer having a geometric thickness of 111 nm and made of Nb 2 O 5, and a fourth layer (outermost layer) having a geometric thickness of 119 nm and made of SiO 2 Formed. In this case, the refractive index nd of TiO 2 is 2.32, the refractive index nd of SiO 2 is 1.47, and the refractive index nd of Nb 2 O 5 is 2.20.

図3は、本発明者等が、ホウケイ酸塩ガラス基板(屈折率ndが1.52)上に、上記の四層の反射防止膜をスパッタ法により形成し、その反射防止膜の反射率を測定することにより得られた反射率曲線4Aを示すグラフである。尚、反射率は、第4の層(最外層)から光ビームを入射し、分光光度計で測定した値である。この図3に示す反射率曲線4Aから概ね把握できるように、波長405nmでの光ビームの反射率は0.04%、波長658nmでの光ビームの反射率は0.03%、波長780nmでの光ビームの反射率は0.05%であった(図2に符号40で示す欄参照)。   FIG. 3 shows that the inventors formed the above four-layer antireflection film on a borosilicate glass substrate (refractive index nd is 1.52) by sputtering, and measured the reflectance of the antireflection film. It is a graph which shows the reflectance curve 4A obtained by measuring. The reflectance is a value measured with a spectrophotometer after the light beam is incident from the fourth layer (outermost layer). As can be generally understood from the reflectance curve 4A shown in FIG. 3, the reflectance of the light beam at the wavelength of 405 nm is 0.04%, the reflectance of the light beam at the wavelength of 658 nm is 0.03%, and the reflectance at the wavelength of 780 nm. The reflectance of the light beam was 0.05% (see the column denoted by reference numeral 40 in FIG. 2).

次に、第2の例として、図2に符号50で示す欄に記載した五層の反射防止膜は、収差補正素子6の基体の片面に、基体側から順に、幾何学的厚みが50nmであってSiO2からなる第1の内層と、幾何学的厚みが24nmであってTiO2からなる第1の層と、幾何学的厚みが35nmであってSiO2からなる第2の層と、幾何学的厚みが111nmであってNb25からなる第3の層と、幾何学的厚みが117nmであってSiO2からなる第4の層(最外層)とを、スパッタ法により形成したものである。 Next, as a second example, the five-layer antireflection film described in the column denoted by reference numeral 50 in FIG. 2 has a geometric thickness of 50 nm on one side of the base of the aberration correction element 6 in order from the base. A first inner layer made of SiO 2 , a first layer made of TiO 2 with a geometric thickness of 24 nm, a second layer made of SiO 2 with a geometric thickness of 35 nm, A third layer made of Nb 2 O 5 with a geometric thickness of 111 nm and a fourth layer (outermost layer) made of SiO 2 with a geometric thickness of 117 nm were formed by sputtering. Is.

ここで、本発明者等が、上記第1の例と同様の手順で、五層の反射防止膜を形成し、その反射防止膜の反射率を測定することにより得られた反射率曲線は、上述の図3に示す曲線4Aと略同一となった。そして、この五層の反射防止膜は、波長405nmでの光ビームの反射率が0.02%、波長658nmでの光ビームの反射率が0.03%、波長780nmでの光ビームの反射率が0.05%であった(図2に符号50で示す欄参照)。   Here, the present inventors have formed a five-layer antireflection film in the same procedure as in the first example, and the reflectance curve obtained by measuring the reflectance of the antireflection film is: This is substantially the same as the curve 4A shown in FIG. The five-layer antireflection film has a light beam reflectance at a wavelength of 405 nm of 0.02%, a light beam reflectance at a wavelength of 658 nm of 0.03%, and a light beam reflectance at a wavelength of 780 nm. Was 0.05% (see the column denoted by reference numeral 50 in FIG. 2).

更に、第3の例として、図2に符号60で示す欄に記載した六層の反射防止膜は、収差補正素子6の基体の片面に、基体側から順に、幾何学的厚みが7nmであってNb25からなる第1の層と、幾何学的厚みが163nmであってSiO2からなる第2の層と、幾何学的厚みが160nmであってNb25からなる第3の層と、幾何学的厚みが119nmであってSiO2からなる第1の外層と、幾何学的厚みが147nmであってNb25からなる第2の外層と、幾何学的厚みが58nmであってSiO2からなる第4の層(最外層)とを、スパッタ法により形成したものである。 Furthermore, as a third example, the six-layer antireflection film described in the column denoted by reference numeral 60 in FIG. 2 has a geometric thickness of 7 nm on one side of the base of the aberration correction element 6 in order from the base. A first layer made of Nb 2 O 5, a second layer made of SiO 2 with a geometric thickness of 163 nm, and a third layer made of Nb 2 O 5 with a geometric thickness of 160 nm A first outer layer made of SiO 2 with a geometric thickness of 119 nm, a second outer layer made of Nb 2 O 5 with a geometric thickness of 147 nm, and a geometric thickness of 58 nm Thus, a fourth layer (outermost layer) made of SiO 2 is formed by sputtering.

図4は、本発明者等が、上記第1の例と同様の手順で、六層の反射防止膜を形成し、その反射防止膜の反射率を測定することにより得られた反射率曲線6Aを示すグラフである。この図4に示す反射率曲線6Aから概ね把握できるように、波長405nmでの光ビームの反射率は0.05%、波長658nmでの光ビームの反射率は0.22%、波長780nmでの光ビームの反射率は0.04%であった(図2に符号60で示す欄参照)。   FIG. 4 shows a reflectance curve 6A obtained by the inventors forming a six-layer antireflection film and measuring the reflectance of the antireflection film in the same procedure as in the first example. It is a graph which shows. As can be generally understood from the reflectance curve 6A shown in FIG. 4, the reflectance of the light beam at a wavelength of 405 nm is 0.05%, the reflectance of the light beam at a wavelength of 658 nm is 0.22%, and the reflectance at a wavelength of 780 nm. The reflectance of the light beam was 0.04% (see the column denoted by reference numeral 60 in FIG. 2).

また、第4の例として、図2に符号90で示す欄に記載した九層の反射防止膜は、収差補正素子6の基体の片面に、基体側から順に、幾何学的厚みが99nmであってSiO2からなる第1の内層と、幾何学的厚みが7nmであってTiO2からなる第2の内層と、幾何学的厚みが47nmであってSiO2からなる第3の内層と、幾何学的厚みが21nmであってNb25からなる第1の層と、幾何学的厚みが31nmであってSiO2からなる第2の層と、幾何学的厚みが79nmであってNb25からなる第3の層と、幾何学的厚みが16nmであってSiO2からなる第1の外層と、幾何学的厚みが22nmであってNb25からなる第2の外層と、幾何学的厚みが101nmであってSiO2からなる第4の層(最外層)とを、スパッタ法により形成したものである。 As a fourth example, the nine-layer antireflection film described in the column denoted by reference numeral 90 in FIG. 2 has a geometric thickness of 99 nm on one side of the base of the aberration correction element 6 in order from the base. A first inner layer made of SiO 2, a second inner layer made of TiO 2 with a geometric thickness of 7 nm, a third inner layer made of SiO 2 with a geometric thickness of 47 nm, A first layer having a geometric thickness of 21 nm and made of Nb 2 O 5, a second layer having a geometric thickness of 31 nm and made of SiO 2, and a geometric thickness of 79 nm and Nb 2 A third layer made of O 5, a first outer layer having a geometric thickness of 16 nm and made of SiO 2, a second outer layer made of Nb 2 O 5 and having a geometric thickness of 22 nm, and a fourth layer geometrical thickness of SiO 2 to a 101 nm (outermost layer), scan Tsu is obtained by forming by another method.

図5は、本発明者等が、上記第1の例と同様の手順で、九層の反射防止膜を形成し、その反射防止膜の反射率を測定することにより得られた反射率曲線9Aを示すグラフである。この図5に示す反射率曲線9Aから概ね把握できるように、波長405nmでの光ビームの反射率は0.05%、波長658nmでの光ビームの反射率は0.18%、波長780nmでの光ビームの反射率は0.23%であった(図2に符号90で示す欄参照)。   FIG. 5 shows a reflectance curve 9A obtained by the inventors forming a nine-layer antireflection film and measuring the reflectance of the antireflection film in the same procedure as in the first example. It is a graph which shows. As can be generally understood from the reflectance curve 9A shown in FIG. 5, the reflectance of the light beam at the wavelength of 405 nm is 0.05%, the reflectance of the light beam at the wavelength of 658 nm is 0.18%, and the reflectance at the wavelength of 780 nm. The reflectance of the light beam was 0.23% (see the column denoted by reference numeral 90 in FIG. 2).

上記の図3〜図6に示す四層、五層、六層、九層の各反射防止膜の各反射率曲線4A、6A、9Aによれば、光ディスクDとしてCD、DVD及びBDでそれぞれ使用される波長780nm、658nm及び波長405nmでの光ビームの反射率が全て3%以下(実験値では0.25%以下)となっている。しかも、波長領域が、400〜410nm、640〜680nm及び760〜800nmでの光ビームの反射率も全て3%以下(実験値では0.8%以下)となっている。従って、これらの反射防止膜が表裏両面に形成された収差補正素子6は、上記三種の光ディスクに対して的確な互換性を有するものとなることが伺える。   According to the reflectance curves 4A, 6A, and 9A of the antireflection films of four layers, five layers, six layers, and nine layers shown in FIGS. 3 to 6, the optical disc D is used for CD, DVD, and BD, respectively. The reflectances of the light beams at the wavelengths of 780 nm, 658 nm, and 405 nm are all 3% or less (the experimental value is 0.25% or less). In addition, the reflectance of the light beam in the wavelength region of 400 to 410 nm, 640 to 680 nm, and 760 to 800 nm is all 3% or less (experimental value is 0.8% or less). Therefore, it can be seen that the aberration correction element 6 in which these antireflection films are formed on both the front and back surfaces has accurate compatibility with the above three types of optical disks.

更に、本発明者等は、上記の各反射防止膜を形成してなるホウケイ酸塩ガラス基板(以下、試料という)について、耐アルカリ性、耐溶剤性、耐NaCl性、耐湿性、耐摩耗性、及び付着性の評価試験を行なったところ、全て合格となった。   Furthermore, the present inventors, for the borosilicate glass substrate (hereinafter referred to as a sample) formed with each of the antireflection films, alkali resistance, solvent resistance, NaCl resistance, moisture resistance, wear resistance, When the adhesiveness evaluation test was performed, all passed.

尚、耐アルカリ性については、試料を3%のKOH水溶液に10分間浸漬し、耐溶剤性については、試料を室温でアセトンに20分間浸漬し、その時の各試料の反射率が、波長405nm±10nm、波長658nm±25nm、及び波長780nm±25nmにおいて0.5%以下であり、且つ、膜剥れ、クラック、及びシミがなければ合格とした。また、耐NaCl性については、MIL−C−675 3.8.1に準じ、試料をNaCl溶液に24時間浸漬した後、膜欠け、剥れ、クラック、及び気泡等の膜の劣化が認められなければ合格とした。更に、耐摩耗性については、KIL−C−675 3.8.4に準じ、約1.0kgの荷重をかけた消しゴムで試料を50ストローク擦った後、膜剥れがなく、且つ、乾いた清潔なコットン(ベンコットン)で試料を擦った後、膜剥れがなければ合格とした。また、耐湿性については、MIL−C−675 3.8.2に準じ、48.9±2.2℃で95〜100%湿度の雰囲気に試料を24時間曝した後、膜欠け、剥れ、クラック、及び気泡等の膜の劣化がなく、且つ、上記の耐摩耗性に合格することを条件として合格とした。更に、付着性については、MIL−C−675 3.8.5に準じ、ニチバンセロテープ(登録商標)♯405(株式会社ニチバン製)を試料に貼り付け、3回剥がした時点で、膜剥れがなければ合格とした。   For alkali resistance, the sample was immersed in a 3% KOH aqueous solution for 10 minutes, and for solvent resistance, the sample was immersed in acetone at room temperature for 20 minutes, and the reflectance of each sample at that time was a wavelength of 405 nm ± 10 nm. When the wavelength was 658 nm ± 25 nm and the wavelength was 780 nm ± 25 nm and the ratio was 0.5% or less, and there were no film peeling, cracks, and spots, the test was accepted. As for NaCl resistance, in accordance with MIL-C-675 3.8.1, after immersing the sample in a NaCl solution for 24 hours, film deterioration such as film chipping, peeling, cracks, and bubbles was observed. Otherwise, it was accepted. Further, regarding abrasion resistance, the sample was rubbed for 50 strokes with an eraser applied with a load of about 1.0 kg in accordance with KIL-C-675 3.8.4, and then the film was not peeled off and dried. After rubbing the sample with clean cotton (Ben cotton), if the film did not peel off, the sample was accepted. In addition, regarding moisture resistance, according to MIL-C-675 3.8.2, the sample was exposed to an atmosphere of 95% to 100% humidity at 48.9 ± 2.2 ° C. for 24 hours, and then the film was chipped or peeled off. The film was evaluated as acceptable on the condition that the film did not deteriorate, such as cracks and bubbles, and passed the above abrasion resistance. Furthermore, regarding adhesion, according to MIL-C-675 3.8.5, Nichiban Cello Tape (registered trademark) # 405 (manufactured by Nichiban Co., Ltd.) was attached to the sample, and the film was peeled off when peeled three times. If there is no, it was accepted.

なお、上記実施形態では、本発明に係る反射防止膜を、光ピックアップ装置の収差補正素子に設けるようにしたが、波長が、405nm、658nm及び780nmでの光ビームの反射率、または、波長領域が、400〜410nm、640〜680nm及び760〜800nmでの光ビームの反射率が、上述のように小さな値を示すことが要求される光学素子であれば、他の光学素子に、本発明に係る反射防止膜を設けるようにしてもよい。   In the above embodiment, the antireflection film according to the present invention is provided in the aberration correction element of the optical pickup device. However, the reflectance of the light beam at wavelengths of 405 nm, 658 nm, and 780 nm, or the wavelength region. However, as long as the optical element is required to have a low light beam reflectance at 400 to 410 nm, 640 to 680 nm, and 760 to 800 nm as described above, the present invention can be applied to other optical elements. Such an antireflection film may be provided.

本発明に係る反射防止膜は、CD、DVD、BDの互換性のある収差補正素子(例えばホログラム素子)に使用可能である、また、これと同様の作用効果を奏することが要求されるガラス物品にも使用可能である。   The antireflection film according to the present invention can be used for an aberration correction element (for example, a hologram element) compatible with CD, DVD, and BD, and is required to exhibit the same function and effect. Can also be used.

本発明の実施形態に係る反射防止膜が設けられた収差補正素子を構成要素とする光ピックアップ装置の一例を示す概略図である。It is the schematic which shows an example of the optical pick-up apparatus which uses the aberration correction element provided with the antireflection film based on embodiment of this invention as a component. 本発明の実施形態に係る四種類の反射防止膜の構成を示す概略図である。It is the schematic which shows the structure of four types of antireflection film which concerns on embodiment of this invention. 本発明の実施形態に係る反射防止膜(第1及び第2の例)の特性を示すグラフである。It is a graph which shows the characteristic of the anti-reflective film (1st and 2nd example) which concerns on embodiment of this invention. 本発明の実施形態に係る反射防止膜(第3の例)の特性を示すグラフである。It is a graph which shows the characteristic of the anti-reflective film (3rd example) which concerns on embodiment of this invention. 本発明の実施形態に係る反射防止膜(第4の例)の特性を示すグラフである。It is a graph which shows the characteristic of the anti-reflective film (4th example) which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 光ピックアップ装置
6 収差補正素子(光学素子)
40 四層の反射防止膜
50 五層の反射防止膜
60 六層の反射防止膜
90 九層の反射防止膜
1 Optical pickup device 6 Aberration correction element (optical element)
40 Four-layer antireflection film 50 Five-layer antireflection film 60 Six-layer antireflection film 90 Nine-layer antireflection film

Claims (11)

光ピックアップ装置の構成要素である収差補正素子に設けられる反射防止膜であって、波長が、405nm、658nm及び780nmでの光ビームの反射率が3%以下であることを特徴とする反射防止膜。   An antireflection film provided on an aberration correction element as a component of an optical pickup device, wherein the reflectance of a light beam at wavelengths of 405 nm, 658 nm, and 780 nm is 3% or less . 光ピックアップ装置の構成要素である収差補正素子に設けられる反射防止膜であって、波長領域が、400〜410nm、640〜680nm及び760〜800nmでの光ビームの反射率が3%以下であることを特徴とする反射防止膜。   An antireflection film provided on an aberration correction element that is a component of the optical pickup device, and the reflectance of the light beam in the wavelength region of 400 to 410 nm, 640 to 680 nm, and 760 to 800 nm is 3% or less. An antireflection film characterized by. 光ピックアップ装置の構成要素である収差補正素子に設けられる反射防止膜であって、前記収差補正素子の基体上に少なくとも4つの層が形成され、この4つの層は、前記基体側から順に、屈折率ndが2.0以上で且つ幾何学的厚みが5〜50nmの第1の層と、屈折率ndが1.5以下で且つ幾何学的厚みが10〜200nmの第2の層と、屈折率ndが2.0以上で且つ幾何学的厚みが50〜200nmの第3の層と、SiO2またはAl23もしくはSiONを含み且つ幾何学的厚みが50〜200nmの第4の層とを備えていることを特徴とする反射防止膜。 An antireflection film provided on an aberration correction element that is a constituent element of an optical pickup device, wherein at least four layers are formed on a base of the aberration correction element, and the four layers are refracted sequentially from the base. A first layer having a refractive index nd of 2.0 or more and a geometric thickness of 5 to 50 nm, a second layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 200 nm, A third layer having a ratio nd of 2.0 or more and a geometric thickness of 50 to 200 nm, and a fourth layer containing SiO 2, Al 2 O 3 or SiON and a geometric thickness of 50 to 200 nm An antireflection film characterized by comprising: 前記基体上に少なくとも5つの層が形成され、この5つの層は、前記第1〜第4の層に加えて、前記基体と前記第1の層との間に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の内層を備えていることを特徴とする請求項3に記載の反射防止膜。   At least five layers are formed on the substrate, and in addition to the first to fourth layers, the five layers have a refractive index nd of 1.5 between the substrate and the first layer. The antireflection film according to claim 3, further comprising a first inner layer having a geometric thickness of 10 to 150 nm. 前記基体上に少なくとも6つの層が形成され、この6つの層は、前記第1〜第4の層に加えて、前記第3の層と前記第4の層との間に、前記基体側から順に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の外層と、屈折率ndが2.0以上で且つ幾何学的厚みが10〜200nmの第2の外層とを備えていることを特徴とする請求項3に記載の反射防止膜。   At least six layers are formed on the substrate, and these six layers are arranged between the third layer and the fourth layer in addition to the first to fourth layers from the substrate side. In order, a first outer layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 150 nm, and a second outer layer having a refractive index nd of 2.0 or more and a geometric thickness of 10 to 200 nm. The antireflection film according to claim 3, further comprising: 前記基体上に少なくとも9つの層が形成され、この9つの層は、前記第1〜第4の層に加えて、前記基体と前記第1の層との間に、前記基体側から順に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の内層と、屈折率ndが2.0以上で且つ幾何学的厚みが5〜50nmの第2の内層と、屈折率ndが1.5以下で且つ幾何学的厚みが10〜100nmの第3の内層とを備えると共に、前記第3の層と前記第4の層との間に、前記基体側から順に、屈折率ndが1.5以下で且つ幾何学的厚みが10〜150nmの第1の外層と、屈折率ndが2.0以上で且つ幾何学的厚みが10〜200nmの第2の外層とを備えていることを特徴とする請求項3に記載の反射防止膜。   At least nine layers are formed on the substrate, and these nine layers are refracted in order from the substrate side between the substrate and the first layer in addition to the first to fourth layers. A first inner layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 150 nm; a second inner layer having a refractive index nd of 2.0 or more and a geometric thickness of 5 to 50 nm; A third inner layer having a ratio nd of 1.5 or less and a geometric thickness of 10 to 100 nm, and being refracted in order from the substrate side between the third layer and the fourth layer. A first outer layer having a refractive index nd of 1.5 or less and a geometric thickness of 10 to 150 nm; and a second outer layer having a refractive index nd of 2.0 or more and a geometric thickness of 10 to 200 nm. The antireflection film according to claim 3. 前記屈折率ndが2.0以上の層は、TiO2またはNb25を含む層であり、前記屈折率ndが1.5以下の層は、SiO2、MgF及びCaFから選ばれた層であることを特徴とする請求項3〜6の何れかに記載の反射防止膜。 The layer having a refractive index nd of 2.0 or more is a layer containing TiO 2 or Nb 2 O 5, and the layer having a refractive index nd of 1.5 or less is a layer selected from SiO 2 , MgF and CaF. The antireflection film according to any one of claims 3 to 6, wherein 前記第4の層は、最外層であることを特徴とする請求項3〜7の何れかに記載の反射防止膜。   The antireflection film according to claim 3, wherein the fourth layer is an outermost layer. 前記収差補正素子の表裏両面に設けられていることを特徴とする請求項1〜8の何れかに記載の反射防止膜。   The antireflection film according to claim 1, wherein the antireflection film is provided on both front and back surfaces of the aberration correction element. 請求項1〜9の何れかに記載の反射防止膜が、収差補正素子に代えて、他の光学素子に設けられていることを特徴とする反射防止膜。   The antireflection film according to claim 1, wherein the antireflection film is provided on another optical element instead of the aberration correction element. 請求項1〜10の何れかに記載の反射防止膜が、ガラス板に設けられてなることを特徴とするガラス物品。   A glass article, wherein the antireflection film according to any one of claims 1 to 10 is provided on a glass plate.
JP2004363350A 2004-12-15 2004-12-15 Antireflection film Pending JP2006171332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363350A JP2006171332A (en) 2004-12-15 2004-12-15 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363350A JP2006171332A (en) 2004-12-15 2004-12-15 Antireflection film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010182432A Division JP2011008280A (en) 2010-08-17 2010-08-17 Antireflection film

Publications (1)

Publication Number Publication Date
JP2006171332A true JP2006171332A (en) 2006-06-29

Family

ID=36672172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363350A Pending JP2006171332A (en) 2004-12-15 2004-12-15 Antireflection film

Country Status (1)

Country Link
JP (1) JP2006171332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152069A (en) * 2006-12-19 2008-07-03 Nippon Electric Glass Co Ltd Antireflection film
CN107703567A (en) * 2017-11-06 2018-02-16 广东弘景光电科技股份有限公司 High rigidity antireflective plated film lens
WO2024043120A1 (en) * 2022-08-24 2024-02-29 Agc株式会社 Dielectric multilayer film-equipped substrate and method for manufacturing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996701A (en) * 1995-10-03 1997-04-08 Nikon Corp Antireflection film and its production
JP2000111702A (en) * 1998-10-02 2000-04-21 Olympus Optical Co Ltd Antireflection film
JP2001043559A (en) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd Optical head and optical disk device
JP2001100174A (en) * 1999-07-07 2001-04-13 Matsushita Electric Ind Co Ltd Optical device, optical head and optical recording reproducing device
JP2003302514A (en) * 2002-04-09 2003-10-24 Ricoh Co Ltd Diffraction optical element, method for manufacturing the same, optical pickup device and optical disk drive device
JP2004138895A (en) * 2002-10-18 2004-05-13 Asahi Glass Co Ltd Optical head device
JP2004157497A (en) * 2002-09-09 2004-06-03 Shin Meiwa Ind Co Ltd Optical antireflection film and process for forming the same
JP2005038581A (en) * 2003-06-30 2005-02-10 Konica Minolta Opto Inc Optical element and optical pickup device
JP2005266780A (en) * 2004-02-16 2005-09-29 Konica Minolta Opto Inc Optical element and optical pickup device
JP2006302484A (en) * 2004-07-22 2006-11-02 Hitachi Maxell Ltd Antireflection coating, optical pickup component, objective lens and method for manufacturing optical pickup component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996701A (en) * 1995-10-03 1997-04-08 Nikon Corp Antireflection film and its production
JP2000111702A (en) * 1998-10-02 2000-04-21 Olympus Optical Co Ltd Antireflection film
JP2001100174A (en) * 1999-07-07 2001-04-13 Matsushita Electric Ind Co Ltd Optical device, optical head and optical recording reproducing device
JP2001043559A (en) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd Optical head and optical disk device
JP2003302514A (en) * 2002-04-09 2003-10-24 Ricoh Co Ltd Diffraction optical element, method for manufacturing the same, optical pickup device and optical disk drive device
JP2004157497A (en) * 2002-09-09 2004-06-03 Shin Meiwa Ind Co Ltd Optical antireflection film and process for forming the same
JP2004138895A (en) * 2002-10-18 2004-05-13 Asahi Glass Co Ltd Optical head device
JP2005038581A (en) * 2003-06-30 2005-02-10 Konica Minolta Opto Inc Optical element and optical pickup device
JP2005266780A (en) * 2004-02-16 2005-09-29 Konica Minolta Opto Inc Optical element and optical pickup device
JP2006302484A (en) * 2004-07-22 2006-11-02 Hitachi Maxell Ltd Antireflection coating, optical pickup component, objective lens and method for manufacturing optical pickup component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152069A (en) * 2006-12-19 2008-07-03 Nippon Electric Glass Co Ltd Antireflection film
CN107703567A (en) * 2017-11-06 2018-02-16 广东弘景光电科技股份有限公司 High rigidity antireflective plated film lens
WO2024043120A1 (en) * 2022-08-24 2024-02-29 Agc株式会社 Dielectric multilayer film-equipped substrate and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4215497B2 (en) Optical recording medium
US7276274B2 (en) Optical recording medium and method for recording and reproducing data
EP0520619A1 (en) Optical information recording medium
US9672861B2 (en) Optical recording medium
JP2008282507A (en) Objective lens and optical pickup device
KR100199298B1 (en) Dual-layered optical disc and pickup head
JPH1139710A (en) Optical disk
JP4239403B2 (en) optical disk
CA2488825C (en) Dual stack optical data storage medium and use of such medium
JP4633840B2 (en) Multi-layer information recording medium
JP2006171332A (en) Antireflection film
KR20060105233A (en) Hybrid disc and recording and/or reproducing apparatus and method for the same
JP2001101709A (en) Optical recording medium, optical recording medium producing method and optical recording method
JP4645938B2 (en) Optical component and optical pickup device
JP2011008280A (en) Antireflection film
JP2008152069A (en) Antireflection film
JP2008186588A (en) Optical recording medium
JPH1116208A (en) Multilayer information recording medium
JP2011119011A (en) Optical information recording and reproducing optical system and optical information recording and reproducing device
JP4132800B2 (en) Translucent reflective layer and optical information recording medium for optical information recording medium
JP2009080929A (en) Measurement method and evaluation method
JP2004241008A (en) Optical recording medium
JP3159375B2 (en) Information recording medium
JP2003091881A (en) Optical recording medium
JP2002074753A (en) Translucent reflection film and optical recording medium formed by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101126