JP2006170823A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor Download PDF

Info

Publication number
JP2006170823A
JP2006170823A JP2004364182A JP2004364182A JP2006170823A JP 2006170823 A JP2006170823 A JP 2006170823A JP 2004364182 A JP2004364182 A JP 2004364182A JP 2004364182 A JP2004364182 A JP 2004364182A JP 2006170823 A JP2006170823 A JP 2006170823A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
semiconductor
support
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004364182A
Other languages
Japanese (ja)
Inventor
Chikako Kato
知香子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004364182A priority Critical patent/JP2006170823A/en
Publication of JP2006170823A publication Critical patent/JP2006170823A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor pressure sensor capable of reducing stress concentration occurring in and around the joint between a semiconductor substrate and a support substrate. <P>SOLUTION: The semiconductor pressure sensor where a diaphragm formed on the semiconductor substrate is deflected by pressure and the distortion is detected by a pressure detection element formed on the diaphragm is improved. The sensor has the pressure detection element on its one surface and, on the other surface, the semiconductor substrate having the diaphragm and a support section obtained by forming a recessed part and having a support body substrate that is joined to the support section on the other surface of the semiconductor substrate and where the outer peripheral shape of the joined part is a circle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板に形成されたダイアフラムが圧力によってたわみ、その歪みをダイアフラム上に形成された圧力検出素子が検出する半導体圧力センサに関するものであり、詳しくは、半導体基板と支持体基板との接合部や接合部周辺に生ずる応力集中を低減することができる半導体圧力センサに関するものである。   The present invention relates to a semiconductor pressure sensor in which a diaphragm formed on a semiconductor substrate bends due to pressure and a distortion is detected by a pressure detection element formed on the diaphragm. Specifically, the present invention relates to a semiconductor substrate and a support substrate. The present invention relates to a semiconductor pressure sensor that can reduce stress concentration occurring in a joint portion and around the joint portion.

図7は、従来の半導体圧力センサの構成図であり、図7(a)は断面図であり、図7(b)は支持体基板の底面側から示した図である(例えば、特許文献1〜5参照)。図7において、半導体基板10は、例えば、シリコン等の半導体であり、一方の面に歪みゲージ11が形成され、他方の面に凹部12を形成してダイアフラム13及び支持部14が形成される。なお、歪みゲージ11は、圧力検出素子である。   7 is a configuration diagram of a conventional semiconductor pressure sensor, FIG. 7A is a cross-sectional view, and FIG. 7B is a diagram showing the bottom surface side of a support substrate (for example, Patent Document 1). To 5). In FIG. 7, a semiconductor substrate 10 is a semiconductor such as silicon, for example. A strain gauge 11 is formed on one surface, and a recess 12 is formed on the other surface to form a diaphragm 13 and a support portion 14. The strain gauge 11 is a pressure detection element.

支持体基板20は、例えば、パイレックス(登録商標)等のガラスであり、基板10の他方の面と陽極接合等によって接合される。また、支持体基板20は、ダイアフラム13に圧力を加えるための連通孔21が設けられる。接合部22は、支持体基板20が半導体基板10と接合される部分である。支持体基板20がガラスであれば、接合部22は灰色部のように見える。   The support substrate 20 is, for example, glass such as Pyrex (registered trademark), and is bonded to the other surface of the substrate 10 by anodic bonding or the like. Further, the support substrate 20 is provided with a communication hole 21 for applying pressure to the diaphragm 13. The bonding portion 22 is a portion where the support substrate 20 is bonded to the semiconductor substrate 10. If the support substrate 20 is glass, the joint portion 22 looks like a gray portion.

溝23は、支持体基板20に設けられ、半導体基板10と接合される面側の外周を加工して形成されるものであり、陽極接合時の半導体基板10の基板反りの影響の緩和や圧力センサの特性向上のために接合面積を調整する目的で形成される。接合エッジ部24(図1(a)中、破線で囲った部分)は、接合部22や接合部22周辺の部分であり、具体的には、接合部22と溝23とにかかっており、接合部22の外周側の端付近と溝23の基板10側付近である。角部25は、接合部22のうち、直線部分の辺部と辺部とが交差する部分である。   The groove 23 is provided on the support substrate 20 and is formed by processing the outer periphery on the surface side to be bonded to the semiconductor substrate 10. The groove 23 reduces the influence of the warp of the semiconductor substrate 10 at the time of anodic bonding and the pressure. It is formed for the purpose of adjusting the bonding area to improve the sensor characteristics. The joining edge portion 24 (the portion surrounded by the broken line in FIG. 1A) is a portion around the joining portion 22 and the joining portion 22, and specifically, covers the joining portion 22 and the groove 23. The vicinity of the end on the outer peripheral side of the bonding portion 22 and the vicinity of the substrate 10 side of the groove 23. The corner portion 25 is a portion of the joint portion 22 where the side portion and the side portion of the straight line portion intersect.

このようなセンサの製造方法を説明する。
シリコンのウエハ上に半導体基板10が複数作成される。一方、ガラスのウエハ上に支持体基板20が複数作成される。なお、溝23の加工は、例えば、ダイシング加工で行なわれる。そして、基板10のウエハと基板20のウエハとを重ね合わせ、ウエハ一括で陽極接合を行い、接合後に図1に示すようなチップ単位に切り出される。この場合、半導体基板10と支持体基板20の外形はほぼ等しくなるが、溝23によって、接合部22の外形は、半導体基板10の他方の面の外形よりも小さく、角形形状になる。そして、半導体基板10が、支持体基板20を介して図示しない金属部品に取り付けられる。
A method for manufacturing such a sensor will be described.
A plurality of semiconductor substrates 10 are formed on a silicon wafer. On the other hand, a plurality of support substrates 20 are formed on a glass wafer. In addition, the process of the groove | channel 23 is performed by a dicing process, for example. And the wafer of the board | substrate 10 and the wafer of the board | substrate 20 are piled up, anodic bonding is performed for a wafer collectively, and it cuts out in a chip unit as shown in FIG. In this case, the outer shapes of the semiconductor substrate 10 and the support substrate 20 are substantially equal, but due to the grooves 23, the outer shape of the bonding portion 22 is smaller than the outer shape of the other surface of the semiconductor substrate 10 and becomes a square shape. Then, the semiconductor substrate 10 is attached to a metal component (not shown) via the support substrate 20.

なお、量産の場合には、陽極接合をウエハ一括で行なうことが多いが、チップに切り出した基板10、20のそれぞれで陽極接合してもよい。   In the case of mass production, anodic bonding is often performed in a batch of wafers, but anodic bonding may be performed on each of the substrates 10 and 20 cut into chips.

次に、図7に示すセンサの動作を説明する。
ダイアフラム13の外側や連通孔21を介してダイアフラム13の内側に圧力が印加され、ダイアフラム13がたわむ。そして、歪みゲージ11がダイアフラム13の歪みを検出する。
実開平4−59437号公報 実開平5−50335号公報 実公平6−4301号公報 特開昭63−196826号公報 特開平2−158174号公報
Next, the operation of the sensor shown in FIG. 7 will be described.
Pressure is applied to the inside of the diaphragm 13 through the outside of the diaphragm 13 and the communication hole 21, and the diaphragm 13 is bent. Then, the strain gauge 11 detects the strain of the diaphragm 13.
Japanese Utility Model Publication No. 4-59437 Japanese Utility Model Publication No. 5-50335 No. 6-4301 JP-A 63-196826 Japanese Patent Laid-Open No. 2-158174

しかしながら、半導体基板10と支持体基板20とは材質が異なり、熱膨張係数が異なるため、陽極接合温度(約400℃)から室温に戻すと、熱応用による応力集中が接合エッジ部24に発生するが、特に角部25に集中するという問題があった。   However, since the semiconductor substrate 10 and the support substrate 20 are made of different materials and have different thermal expansion coefficients, stress concentration due to thermal application occurs at the bonding edge portion 24 when the temperature is returned from the anodic bonding temperature (about 400 ° C.) to room temperature. However, there is a problem that it is concentrated on the corner 25 in particular.

また、ダイアフラム13の外側に圧力が印加された場合、半導体基板10と支持体基板20のヤング率の差により変形量に差が出るため、応力集中が接合エッジ部24に発生するが、特に角部25に集中するという問題があった。   Further, when a pressure is applied to the outside of the diaphragm 13, a difference in deformation amount occurs due to a difference in Young's modulus between the semiconductor substrate 10 and the support substrate 20, and stress concentration occurs at the joint edge portion 24. There was a problem of concentrating on the part 25.

そして、直線部分の辺部に比べて角部25への応力集中が大きくなり、基板10、20が破壊されるという問題があった。   Then, there is a problem that the stress concentration on the corner portion 25 becomes larger than the side portion of the straight portion, and the substrates 10 and 20 are destroyed.

そこで本発明の目的は、半導体基板と支持体基板との接合部や接合部周辺に生ずる応力集中を低減することができる半導体圧力センサを実現することにある。   SUMMARY OF THE INVENTION An object of the present invention is to realize a semiconductor pressure sensor that can reduce stress concentration occurring at a joint portion between a semiconductor substrate and a support substrate and around the joint portion.

請求項1記載の発明は、
一方の面に圧力検出素子を有し、他方の面に凹部を形成してダイアフラム及び支持部が設けられる半導体基板と、
この半導体基板の他方の面の支持部に接合され、この接合される接合部の外周の形状が円形である支持体基板と
を有することを特徴とするものである。
The invention according to claim 1
A semiconductor substrate having a pressure detecting element on one surface and forming a recess and a supporting portion on the other surface;
The semiconductor substrate is bonded to a support portion on the other surface of the semiconductor substrate, and the outer periphery of the bonded portion to be bonded has a circular support substrate.

請求項2記載の発明は、
一方の面に圧力検出素子を有し、他方の面に凹部を形成してダイアフラム及び支持部が設けられる半導体基板と、
この半導体基板の他方の面の支持部に接合される支持体基板と
を有し、前記支持体基板の接合部の外周の角部を、直線または曲面に面取りした面取り部を設けたことを特徴とするものである。
The invention according to claim 2
A semiconductor substrate having a pressure detecting element on one surface and forming a recess and a supporting portion on the other surface;
A support substrate to be bonded to the support portion on the other surface of the semiconductor substrate, and a chamfered portion in which corners on the outer periphery of the bond portion of the support substrate are chamfered into a straight line or a curved surface is provided. It is what.

請求項3記載の発明は、請求項1または2記載の発明において、
前記半導体基板と前記支持体基板は、陽極接合されることを特徴とするものである。
請求項4記載の発明は、請求項1〜3のいずれかに記載の発明において、
前記半導体基板の外周の形状は、エッチングで形成されることを特徴とするものである。
The invention according to claim 3 is the invention according to claim 1 or 2,
The semiconductor substrate and the support substrate are anodically bonded.
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
The shape of the outer periphery of the semiconductor substrate is formed by etching.

本発明によれば、以下のような効果がある。
請求項1、3、4によれば、半導体基板と支持体基板とが接合される接合部の外周の形状を円形にするので、接合時に発生する熱応力や圧力印加により発生する応力が円周上に分散する。これにより、半導体基板と支持体基板との接合部や接合部周辺に生ずる応力集中を低減することができる。従って、半導体基板や支持体基板の破壊を防ぐことができる。
The present invention has the following effects.
According to the first, third, and fourth aspects, since the shape of the outer periphery of the joint portion where the semiconductor substrate and the support substrate are joined is circular, the thermal stress generated at the time of joining and the stress generated by the pressure application are circumferential. Disperse on top. Thereby, the stress concentration which arises in the junction part of a semiconductor substrate and a support body substrate, or a junction part periphery can be reduced. Therefore, destruction of the semiconductor substrate and the support substrate can be prevented.

請求項2〜4によれば、半導体基板と支持体基板とが接合される接合部の外周の角部を面取りするので、接合時に発生する熱応力や圧力印加により発生する応力が面取り部に分散する。これにより、半導体基板と支持体基板との接合部や接合部周辺に生ずる応力集中を低減することができる。従って、半導体基板や支持体基板の破壊を防ぐことができる。   According to the second to fourth aspects, since the corners of the outer periphery of the bonded portion where the semiconductor substrate and the support substrate are bonded are chamfered, the thermal stress generated during bonding and the stress generated by applying pressure are dispersed in the chamfered portion. To do. Thereby, the stress concentration which arises in the junction part of a semiconductor substrate and a support body substrate, or a junction part periphery can be reduced. Therefore, destruction of the semiconductor substrate and the support substrate can be prevented.

以下図面を用いて本発明の実施の形態を説明する。
[第1の実施例]
図1は、本発明の第1の実施例を示した構成図であり、図1(a)は断面図であり、図1(b)は支持体基板の底面側から示した図である。ここで、図7と同一のものには同一符号を付し説明を省略する。図1において、接合部26は、支持体基板20が半導体基板10の他方の面に形成される支持部14と接合される部分であり、図7に示す接合部22のような角形形状でなく、外周の形状が円形に形成される。溝27は、支持体基板20に設けられ、溝23の代わりに半導体基板10と接合される面側の外周を加工して形成されるものである。すなわち、この溝27によって接合部26の外周の形状が形成されている。なお、溝27は、溝23と同様に、陽極接合時の半導体基板10の基板反りの影響の緩和や圧力センサの特性向上のために接合面積を調整する目的で形成される。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention, FIG. 1 (a) is a cross-sectional view, and FIG. 1 (b) is a diagram showing the bottom surface side of a support substrate. Here, the same components as those in FIG. In FIG. 1, the joint portion 26 is a portion where the support substrate 20 is joined to the support portion 14 formed on the other surface of the semiconductor substrate 10, and is not a square shape like the joint portion 22 shown in FIG. 7. The outer periphery is formed in a circular shape. The groove 27 is provided in the support substrate 20 and is formed by processing the outer periphery on the surface side to be bonded to the semiconductor substrate 10 instead of the groove 23. That is, the outer peripheral shape of the joint portion 26 is formed by the groove 27. Similar to the groove 23, the groove 27 is formed for the purpose of adjusting the bonding area in order to alleviate the influence of the substrate warp of the semiconductor substrate 10 during anodic bonding and to improve the characteristics of the pressure sensor.

ここで、図2は、接合部26の近傍を拡大した断面構成図であリ、図1と同一のもには同一符号を付し、説明を省略する。図2において、接合部26のA点からB点間と、溝27を形成するB点からC点(図2中、太線で図示)が、接合エッジ部24である。   Here, FIG. 2 is a cross-sectional configuration diagram in which the vicinity of the joint portion 26 is enlarged. The same components as those in FIG. In FIG. 2, the connecting edge portion 24 is from the point A to the point B of the bonding portion 26 and from the point B to the point C forming the groove 27 (shown by a bold line in FIG. 2).

このようなセンサの製造方法は、図7に示すセンサの製造方法と同様だが、異なる部分は、接合部26の外周の形状が円形となるように、溝27が加工される。例えば、接合部26となる部分をマスキングしてエッチングにより加工される。   The manufacturing method of such a sensor is the same as the manufacturing method of the sensor shown in FIG. 7, except that the groove 27 is processed so that the outer periphery of the joint portion 26 has a circular shape. For example, the portion to be the joint 26 is masked and processed by etching.

ここで、図3は、陽極接合温度(約400℃)から室温に戻す際に発生する熱応力を示した応力分布図であり、応力集中が特に発生するB−C点間を示している。図3において、横軸は、B点とC点間の位置である。縦軸は、主応力であり、+側は引張り方向の応力であり、−側は圧縮方向の応力である。図3(a)は、図7に示す接合部22の接合形状が角形の場合であり、図3(b)は、図1に示す接合部26の接合形状が円形の場合である。なお、半導体基板10がシリコンで、支持体基板20がパイレックス(登録商標)の場合を一例として挙げる。   Here, FIG. 3 is a stress distribution diagram showing the thermal stress generated when the temperature is returned from the anodic bonding temperature (about 400 ° C.) to room temperature, and shows between B and C points where stress concentration particularly occurs. In FIG. 3, the horizontal axis is the position between point B and point C. The vertical axis is the main stress, the positive side is the stress in the tensile direction, and the negative side is the stress in the compression direction. 3A shows a case where the joint shape of the joint portion 22 shown in FIG. 7 is a square, and FIG. 3B shows a case where the joint shape of the joint portion 26 shown in FIG. 1 is a circle. Note that the case where the semiconductor substrate 10 is silicon and the support substrate 20 is Pyrex (registered trademark) is taken as an example.

半導体基板10と支持体基板20の熱膨張係数差により、陽極接合温度から室温に戻すと、熱応力による応力集中が接合エッジ部(特に、溝27を形成するB点とC点の中間付近)24に発生するが、図に示すように、外周の形状が角形の接合部22に比べて、外周の形状が円形の接合部26の方が最大発生応力が低下している、これは、角部25に集中していた応力が、円周上に分散するため最大発生応力が低下している。   When the temperature is returned from the anodic bonding temperature to room temperature due to the difference in thermal expansion coefficient between the semiconductor substrate 10 and the support substrate 20, the stress concentration due to the thermal stress is caused at the bonding edge portion (particularly near the middle of the points B and C forming the groove 27). However, as shown in the figure, the maximum generated stress is lower in the joint portion 26 having a circular outer periphery shape than in the joint portion 22 having a circular outer periphery shape. Since the stress concentrated on the portion 25 is dispersed on the circumference, the maximum generated stress is reduced.

次に、図1に示すセンサの動作を説明する。
ダイアフラム13の外側や連通孔21を介してダイアフラム13の内側に圧力が印加され、ダイアフラム13がたわむ。そして、歪みゲージ11がダイアフラム13の歪みを検出する。
Next, the operation of the sensor shown in FIG. 1 will be described.
Pressure is applied to the inside of the diaphragm 13 through the outside of the diaphragm 13 and the communication hole 21, and the diaphragm 13 is bent. Then, the strain gauge 11 detects the strain of the diaphragm 13.

ここで、図4は、ダイアフラム13の外側に圧力が印加された場合に発生する応力を示した応力分布図であり、応力集中が特に発生するA−B点間を示している。図4において、横軸は、A点とB点間の位置である。縦軸は、主応力であり、+側は引張り方向の応力であり、−側は圧縮方向の応力である。図4(a)は、図7に示す接合部22の接合形状が角形の場合であり、図4(b)は、図1に示す接合部26の接合形状が円形の場合である。   Here, FIG. 4 is a stress distribution diagram showing the stress generated when pressure is applied to the outside of the diaphragm 13, and shows between the points A and B where the stress concentration occurs particularly. In FIG. 4, the horizontal axis is the position between point A and point B. The vertical axis is the main stress, the positive side is the stress in the tensile direction, and the negative side is the stress in the compression direction. 4A shows a case where the joint shape of the joint portion 22 shown in FIG. 7 is a square, and FIG. 4B shows a case where the joint shape of the joint portion 26 shown in FIG. 1 is a circle.

ダイアフラム13の外側に圧力が印加された場合、半導体基板10と支持体基板20のヤング率の差により変形量に差がでるため、接合エッジ部(特に、接合部22の外周側の端となるB点)24に応力集中が発生するが、図4に示すように、外周の形状が角形の接合部22に比べて、外周の形状が円形の接合部26の方が最大発生応力が低下している、これは、角部25に集中していた応力が、円周上に分散するため最大発生応力が低下している。   When pressure is applied to the outside of the diaphragm 13, the amount of deformation is different due to the difference in Young's modulus between the semiconductor substrate 10 and the support substrate 20, so that the joint edge portion (in particular, the outer peripheral end of the joint portion 22) Stress concentration occurs at point B) 24. However, as shown in FIG. 4, the maximum generated stress is lower in the joint portion 26 having a circular outer periphery shape than in the joint portion 22 having a circular outer periphery shape. This is because the stress generated at the corner 25 is dispersed on the circumference, so that the maximum generated stress is reduced.

このように、半導体基板10と支持体基板20とが接合される接合部26の外周の形状を円形にするので、接合時に発生する熱応力や圧力印加により発生する応力が円周上に分散する。これにより、半導体基板と支持体基板との接合部や接合部周辺に生ずる応力集中を低減することができる。従って、半導体基板や支持体基板の破壊を防ぐことができる。   As described above, since the shape of the outer periphery of the joint portion 26 where the semiconductor substrate 10 and the support substrate 20 are joined is circular, thermal stress generated at the time of joining and stress generated by pressure application are dispersed on the circumference. . Thereby, the stress concentration which arises in the junction part of a semiconductor substrate and a support body substrate, or a junction part periphery can be reduced. Therefore, destruction of the semiconductor substrate and the support substrate can be prevented.

[第2の実施例]
図5は、本発明の第2の実施例を示した構成図である。図5(a)は断面図であり、図5(b)は支持体基板の底面側から示した図である。ここで、図7と同一のものには同一符号を付し説明を省略する。図5において、接合部28は、図7に示す接合部22の外周の角部25を曲面に面取りした面取り部30を有する。もちろん、溝29を加工することによって接合部28の外周の形状が形成されている。なお、溝29は、溝23、27と同様に、陽極接合時の半導体基板10の基板反りの影響の緩和や圧力センサの特性向上のために接合面積を調整する目的で形成される。
[Second Embodiment]
FIG. 5 is a block diagram showing a second embodiment of the present invention. FIG. 5A is a cross-sectional view, and FIG. 5B is a view from the bottom side of the support substrate. Here, the same components as those in FIG. In FIG. 5, the joint portion 28 has a chamfered portion 30 in which the corner portion 25 on the outer periphery of the joint portion 22 shown in FIG. 7 is chamfered. Of course, the outer peripheral shape of the joint portion 28 is formed by processing the groove 29. Similar to the grooves 23 and 27, the groove 29 is formed for the purpose of adjusting the bonding area in order to reduce the influence of the substrate warp of the semiconductor substrate 10 during anodic bonding and to improve the characteristics of the pressure sensor.

このようなセンサの製造方法は、図1に示すセンサの製造方法と同様だが、異なる部分は、接合部28の外周の直線部分の辺部と辺部とが交差する角部25が、曲面の面取り部30となるように溝29が加工される。なお、図5に示すセンサの動作は、図1に示すセンサの動作と同様なので説明を省略する。   The manufacturing method of such a sensor is the same as the manufacturing method of the sensor shown in FIG. 1 except that the corner portion 25 where the side portion of the linear portion on the outer periphery of the joint portion 28 intersects the side portion is a curved surface. The groove 29 is processed so as to become the chamfered portion 30. The operation of the sensor shown in FIG. 5 is the same as that of the sensor shown in FIG.

このように、半導体基板10と支持体基板20とが接合される接合部26の外周の角部25を面取りするので、接合時に発生する熱応力や圧力印加により発生する応力が面取り部30に分散する。これにより、半導体基板と支持体基板との接合部や接合部周辺に生ずる応力集中を低減することができる。従って、半導体基板や支持体基板の破壊を防ぐことができる。   As described above, since the corners 25 on the outer periphery of the joint portion 26 where the semiconductor substrate 10 and the support substrate 20 are joined are chamfered, thermal stress generated during joining and stress generated by pressure application are dispersed in the chamfered portion 30. To do. Thereby, the stress concentration which arises in the junction part of a semiconductor substrate and a support body substrate, or a junction part periphery can be reduced. Therefore, destruction of the semiconductor substrate and the support substrate can be prevented.

また、図1に示す接合部26よりも接合面積を大きくとることができるので、ダイアフラム13径が大きく、円形形状を適用するのが困難な場合に有効である。   Further, since the joining area can be made larger than that of the joining portion 26 shown in FIG. 1, it is effective when the diameter of the diaphragm 13 is large and it is difficult to apply a circular shape.

なお、本発明はこれに限定されるものではなく、以下に示すようなものでもよい。
図5に示すセンサにおいて、面取り部30を曲面にする構成を示したが、図6に示すように直線で面取りした面取り部30を形成し、接合部28の外周が多角形と成るように形成してもよい。もちろん、複数の角部25のうち一部を曲線で面取りし、残りを直線で面取りしてもよい。
The present invention is not limited to this, and may be as shown below.
In the sensor shown in FIG. 5, the configuration in which the chamfered portion 30 is curved is shown, but the chamfered portion 30 that is chamfered by a straight line is formed as shown in FIG. 6, and the outer periphery of the joint portion 28 is formed in a polygonal shape. May be. Of course, a part of the plurality of corners 25 may be chamfered with a curve, and the rest may be chamfered with a straight line.

本発明の第1の実施例を示した構成図である。It is the block diagram which showed the 1st Example of this invention. 図1に示す接合部26近傍を拡大した断面構成図である。It is the cross-sectional block diagram which expanded the junction part 26 vicinity shown in FIG. 陽極接合温度から室温に戻す際に発生する熱応力を示した応力分布図である。It is the stress distribution figure which showed the thermal stress generated when returning from anodic bonding temperature to room temperature. ダイアフラム13の外側に圧力が印加された場合に発生する応力を示した応力分布図である。FIG. 6 is a stress distribution diagram showing stress generated when pressure is applied to the outside of the diaphragm 13. 本発明の第2の実施例を示した構成図である。It is the block diagram which showed the 2nd Example of this invention. 本発明の第3の実施例を示した構成図である。It is the block diagram which showed the 3rd Example of this invention. 従来の半導体圧力センサの構成を示した図である。It is the figure which showed the structure of the conventional semiconductor pressure sensor.

符号の説明Explanation of symbols

10 半導体基板
11 歪みゲージ
12 凹部
13 ダイアフラム
14 支持部
20 支持体基板
25 角部
26、28 接合部
30 面取り部
DESCRIPTION OF SYMBOLS 10 Semiconductor substrate 11 Strain gauge 12 Recessed part 13 Diaphragm 14 Support part 20 Support body substrate 25 Corner | angular part 26, 28 Junction part 30 Chamfering part

Claims (4)

一方の面に圧力検出素子を有し、他方の面に凹部を形成してダイアフラム及び支持部が設けられる半導体基板と、
この半導体基板の他方の面の支持部に接合され、この接合される接合部の外周の形状が円形である支持体基板と
を有することを特徴とする半導体圧力センサ。
A semiconductor substrate having a pressure detecting element on one surface and forming a recess and a supporting portion on the other surface;
A semiconductor pressure sensor comprising: a support substrate which is bonded to a support portion on the other surface of the semiconductor substrate, and a shape of an outer periphery of the bonded portion to be bonded is circular.
一方の面に圧力検出素子を有し、他方の面に凹部を形成してダイアフラム及び支持部が設けられる半導体基板と、
この半導体基板の他方の面の支持部に接合される支持体基板と
を有し、前記支持体基板の接合部の外周の角部を、直線または曲面に面取りした面取り部を設けたことを特徴とする半導体圧力センサ。
A semiconductor substrate having a pressure detecting element on one surface and forming a recess and a supporting portion on the other surface;
A support substrate to be bonded to the support portion on the other surface of the semiconductor substrate, and a chamfered portion in which corners on the outer periphery of the bond portion of the support substrate are chamfered into a straight line or a curved surface is provided. A semiconductor pressure sensor.
前記半導体基板と前記支持体基板は、陽極接合されることを特徴とする請求項1または2記載の半導体圧力センサ。   The semiconductor pressure sensor according to claim 1, wherein the semiconductor substrate and the support substrate are anodically bonded. 前記半導体基板の外周の形状は、エッチングで形成されることを特徴とする請求項1〜3のいずれかに記載の半導体圧力センサ。
The semiconductor pressure sensor according to claim 1, wherein the outer peripheral shape of the semiconductor substrate is formed by etching.
JP2004364182A 2004-12-16 2004-12-16 Semiconductor pressure sensor Pending JP2006170823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364182A JP2006170823A (en) 2004-12-16 2004-12-16 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364182A JP2006170823A (en) 2004-12-16 2004-12-16 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JP2006170823A true JP2006170823A (en) 2006-06-29

Family

ID=36671741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364182A Pending JP2006170823A (en) 2004-12-16 2004-12-16 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2006170823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031122A (en) * 2007-07-27 2009-02-12 Yamatake Corp Pillar-shaped support and method for producing same
JP2012202762A (en) * 2011-03-24 2012-10-22 Denso Corp Dynamic quantity sensor
JP2021002541A (en) * 2019-06-19 2021-01-07 株式会社リコー Optical device, light source device, detection device, and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254137A (en) * 1988-08-17 1990-02-23 Toshiba Corp Semiconductor pressure sensor
JPH0821774A (en) * 1994-07-07 1996-01-23 Hitachi Ltd Semiconductor pressure sensor and its manufacture
JPH09236502A (en) * 1996-02-29 1997-09-09 Matsushita Electric Works Ltd Pressure sensor and its production
JP2000055760A (en) * 1998-08-10 2000-02-25 Unisia Jecs Corp Manufacture of device for detecting body to be measured
JP2002277337A (en) * 2001-03-22 2002-09-25 Yamatake Corp Differential pressure/pressure sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254137A (en) * 1988-08-17 1990-02-23 Toshiba Corp Semiconductor pressure sensor
JPH0821774A (en) * 1994-07-07 1996-01-23 Hitachi Ltd Semiconductor pressure sensor and its manufacture
JPH09236502A (en) * 1996-02-29 1997-09-09 Matsushita Electric Works Ltd Pressure sensor and its production
JP2000055760A (en) * 1998-08-10 2000-02-25 Unisia Jecs Corp Manufacture of device for detecting body to be measured
JP2002277337A (en) * 2001-03-22 2002-09-25 Yamatake Corp Differential pressure/pressure sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031122A (en) * 2007-07-27 2009-02-12 Yamatake Corp Pillar-shaped support and method for producing same
JP2012202762A (en) * 2011-03-24 2012-10-22 Denso Corp Dynamic quantity sensor
JP2021002541A (en) * 2019-06-19 2021-01-07 株式会社リコー Optical device, light source device, detection device, and electronic apparatus

Similar Documents

Publication Publication Date Title
US20060231521A1 (en) Technique for manufacturing micro-electro mechanical structures
US20130130424A1 (en) Process for minimizing chipping when separating mems dies on a wafer
JP2006170823A (en) Semiconductor pressure sensor
US9963340B2 (en) Pressure sensor die over pressure protection for high over pressure to operating span ratios
JP2005233926A (en) Capacity type dynamic quantity sensor
JP2005327830A (en) Semiconductor micro device
JP2019039708A (en) Torque detector
US9018771B2 (en) Thin film apparatus
US6089099A (en) Method for forming a bonded silicon-glass pressure sensor with strengthened corners
JP5187299B2 (en) Manufacturing method of semiconductor device
JP2008166576A (en) Semiconductor device manufacturing method
JP6105746B2 (en) Sample holder
JPH09126924A (en) Semiconductor pressure sensor
JP2005134155A (en) Semiconductor acceleration sensor
JP4570912B2 (en) Vacuum-sealed inertial force sensor
JP5493290B2 (en) Electronic component package
JP2015184063A (en) semiconductor pressure sensor
JP2009031122A (en) Pillar-shaped support and method for producing same
KR100344229B1 (en) Method for manufacturing glass of pressure sensor package
JP4438518B2 (en) Manufacturing method of capacitive mechanical quantity sensor
JP2006310888A (en) Electronic part and mounting structure thereof
JP3170667B2 (en) Semiconductor acceleration sensor
JP2002184808A (en) Semiconductor device and its packaging structure
KR20200020957A (en) Torque detector and manufacturing method of torque detector
JP2011049213A (en) Capacitive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070712

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Effective date: 20100416

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100708