JP2006170680A - Wheel tracking test method for pavement by means of random travel wheel load and wheel tracking tester for pavement by means of random travel wheel load - Google Patents

Wheel tracking test method for pavement by means of random travel wheel load and wheel tracking tester for pavement by means of random travel wheel load Download PDF

Info

Publication number
JP2006170680A
JP2006170680A JP2004360778A JP2004360778A JP2006170680A JP 2006170680 A JP2006170680 A JP 2006170680A JP 2004360778 A JP2004360778 A JP 2004360778A JP 2004360778 A JP2004360778 A JP 2004360778A JP 2006170680 A JP2006170680 A JP 2006170680A
Authority
JP
Japan
Prior art keywords
test
wheel
specimen
slide table
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360778A
Other languages
Japanese (ja)
Other versions
JP4635131B2 (en
Inventor
Shigeyuki Matsui
繁之 松井
Hiroshi Onishi
弘志 大西
Kozo Hokari
浩三 帆苅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004360778A priority Critical patent/JP4635131B2/en
Publication of JP2006170680A publication Critical patent/JP2006170680A/en
Application granted granted Critical
Publication of JP4635131B2 publication Critical patent/JP4635131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Repair (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correctly comprehend/evaluate the quality characteristics and deterioration durability strength of pavement material in a test environment where a running wheel load actually acting on a paved road is correctly simulated by executing a wheel tracking test standing on the actual condition of positional variation in a wheel running track of a vehicle that travels the paved road. <P>SOLUTION: A test wheel compared to the wheel of a vehicle traveling on a paved road is caused to repeatedly travel a number of times on a test specimen equipped with a structure of the same quality as a paved road under test and compared to the paved road under test. The test wheel is caused to travel along the same rectilinear track in a traveling direction X. With the test wheel apart from the test specimen after having traveled on the test specimen, the test specimen is moved to and positioned at a moving position changing in a moving direction Y different from the traveling direction X of the test wheel while randomly controlling the moving position and the occurrence frequency of the moving position according to a normal distribution characteristic. After the movement and positioning, the test wheel is caused to proceed to next traveling on the test specimen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、舗装道路上を往来する車両の走行車輪荷重に起因する舗装面の磨耗・変形・破損や、舗装材の品質・劣化耐久強度などを、模擬的試験によって把握・評価するためのホイールトラッキング試験方法と、その試験方法を実行するためのホイールトラッキング試験装置に関するものである。   This invention is a wheel for grasping / evaluating, by a simulation test, wear, deformation, and damage of a pavement surface caused by a traveling wheel load of a vehicle traveling on a paved road, quality of a pavement, deterioration durability strength, and the like. The present invention relates to a tracking test method and a wheel tracking test apparatus for executing the test method.

舗装道路上を走行する車両の車輪から受ける荷重(走行車輪荷重)に起因する道路舗装面の磨耗・変形・破損の状態あるいはそれらの予測を模擬的試験によって把握・評価するための方法・装置として、ホイールトラッキング試験方法、ホイールトラッキング試験装置が従来から周知であり、例えば特開2002−214102号公開特許公報(特許文献1)にも見られるところである。このような従来のホイールトラッキング試験方法・装置に共通する主要部の構成、すなわち被試験舗装道路に見立てた供試体と、走行する車両の車輪(走行車輪)に見立てた試験車輪の間の相互関係は、特許文献1の段落[0003]およびその図5の記載からも明らかなように、供試体102を水平に固定し、その供試体102上で、荷重の加わった試験車輪103を、試験車輪103の車軸方向には移動させることなく、特許文献1の図5で見る左右方向に反復往復運動させる構成である。すなわち、試験車輪103は供試体102上を同一直線軌跡で反復往復運動するものである。そして、試験車輪103の往復運動が積算されるにつれて、本願出願図面中の図6で端的に示すように、供試体102の舗装層102cに、試験車輪103の往復運動に伴う一条の轍106が次第に深く形成されて供試体102の変形や損傷が次第に大きくなって行く。したがって、試験車輪103の往復運動回数と供試体102の変形・損傷の度合との関係から(例えば試験車輪103の往復運動によって生ずる轍106の深さdが1cmに達するまでに要した往復運動回数の多少から)、供試体102の劣化耐久強度、すなわち車両の走行車輪荷重に起因する被試験舗装道路の舗装材の劣化耐久性を評価することができるものである。なお、本願出願の図面・図6において、102aは舗装道路のコンクリート床版、101cはアスファルト舗装層、102bはコンクリート床版102aとアスファルト舗装層102cの間に介在させた防水膜材で、本願において「舗装材」とは、アスファルト舗装層102cや防水膜材102bの総称である。   As a method / apparatus for grasping / evaluating the state of wear, deformation, breakage or prediction of road pavement caused by the load (traveling wheel load) received from the wheels of a vehicle traveling on a paved road through simulation tests In addition, a wheel tracking test method and a wheel tracking test apparatus are conventionally known, and can be found in, for example, Japanese Patent Application Laid-Open No. 2002-214102 (Patent Document 1). The structure of the main part common to such conventional wheel tracking test methods and devices, that is, the interrelationship between the test specimens as viewed on the paved road under test and the test wheels as viewed as the wheels of the traveling vehicle (traveling wheels) As apparent from the paragraph [0003] of Patent Document 1 and the description of FIG. 5, the specimen 102 is fixed horizontally, and the test wheel 103 to which a load is applied is placed on the specimen 102. No reciprocating movement is made in the direction of the axle 103, and the reciprocating motion is repeated in the left-right direction as seen in FIG. In other words, the test wheel 103 repeatedly reciprocates on the specimen 102 with the same linear locus. Then, as the reciprocating motion of the test wheel 103 is integrated, as shown in FIG. 6 in the drawings of the present application, a single ridge 106 accompanying the reciprocating motion of the test wheel 103 is formed on the pavement layer 102c of the specimen 102. The depth and depth of the specimen 102 are gradually increased and the deformation and damage of the specimen 102 are gradually increased. Therefore, based on the relationship between the number of reciprocating movements of the test wheel 103 and the degree of deformation / damage of the specimen 102 (for example, the number of reciprocating movements required until the depth d of the flange 106 generated by the reciprocating movement of the test wheel 103 reaches 1 cm). Thus, it is possible to evaluate the deterioration durability of the specimen 102, that is, the deterioration durability of the pavement material on the paved road under test caused by the running wheel load of the vehicle. In Fig. 6 of the present application, 102a is a concrete floor slab of a paved road, 101c is an asphalt pavement layer, 102b is a waterproofing film material interposed between the concrete floor slab 102a and the asphalt pavement layer 102c, “Pavement material” is a general term for the asphalt pavement layer 102c and the waterproof membrane material 102b.

しかしながら、現実に舗装道路上を頻繁に走行する車両の車輪の走行軌跡群を観察すると、その車輪走行軌跡群の各車輪走行軌跡は、路上の或る一条の線上のみに集中しているのではなく、道路の幅方向に拡がる分布領域内で、異なる発生頻度でもって分散・分布していることが分っている。すなわち、その車輪走行軌跡群の分布実態を観察すると、次々に現れる個々の車輪走行軌跡の位置が道路幅方向にランダムに変化しており、これを統計的に見れば、最も発生頻度の高い車輪走行軌跡を中央位置とする標準偏差σの正規分布を呈して、車輪走行軌跡の分布位置とその各分布位置の発生頻度の特性は所謂ガウス分布曲線を示すと言われている。したがって、従来のホイールトラッキング試験方法・装置のように、供試体102上の一条の直線上で試験車輪103を往復運動させた試験結果の評価では、道路上の現実の走行車輪軌跡に即した評価が得られないという問題が内在している。また、この問題点を是正するために、供試体上の車輪走行軌跡の位置を都度変化させるべく、供試体102のアスファルト舗装層102c上で試験車輪103を往復運動させながら、その試験車輪103がアスファルト舗装層102cに接地したままの状態で、試験車輪103または供試体102を試験車輪103の車軸Sの方向(矢印Y方向)へ移動させることも考えられるが、その場合には、前記本願出願の図面・図6で端的に示すように、供試体102の上に形成された轍106の壁面W1と、その轍101aに嵌って走行する試験車輪103の側面W2が接触して両者の間に大きな接触圧力が生じ、この圧力によってアスファルト舗装層102cや防水膜材102bに対し、試験車輪103の車軸S方向(矢印Y方向)に引き裂くような無用の異常な力が作用することになる。したがって、供試体102上で試験車輪103を走行させながら試験車輪103が供試体102に接地したままの状態で、試験車輪103または供試体102を試験車輪103の車軸S方向(矢印Y方向)へ移動させるようにしても、舗装道路上を走行する車両の車輪走行軌跡群の実態に合致した舗装の模擬試験とはならないことになる。
特開2002−214102号公開特許公報
However, when actually observing the traveling trajectory group of wheels of a vehicle that travels frequently on a paved road, each wheel traveling trajectory group of the wheel traveling trajectory group is not concentrated only on a certain line on the road. In other words, it is known that they are distributed and distributed with different occurrence frequencies in the distribution area extending in the width direction of the road. That is, when observing the actual distribution of the wheel trajectory group, the position of each individual wheel trajectory that appears one after another changes randomly in the road width direction. Presenting a normal distribution of the standard deviation σ with the traveling locus as the center position, it is said that the characteristics of the distribution position of the wheel traveling locus and the frequency of occurrence of each distribution position show a so-called Gaussian distribution curve. Therefore, as in the conventional wheel tracking test method / apparatus, in the evaluation of the test result in which the test wheel 103 is reciprocated on a straight line on the specimen 102, the evaluation is based on the actual traveling wheel trajectory on the road. The problem that cannot be obtained is inherent. In addition, in order to correct this problem, the test wheel 103 is moved back and forth on the asphalt pavement layer 102c of the specimen 102 to change the position of the wheel traveling locus on the specimen each time. It is conceivable to move the test wheel 103 or the specimen 102 in the direction of the axle S of the test wheel 103 (in the direction of the arrow Y) while being in contact with the asphalt pavement layer 102c. As shown briefly in FIG. 6 and FIG. 6, the wall surface W1 of the eaves 106 formed on the specimen 102 and the side surface W2 of the test wheel 103 running on the eaves 101a come into contact with each other. A large contact pressure is generated, and an unnecessary abnormal force such as tearing in the axle S direction (arrow Y direction) of the test wheel 103 acts on the asphalt pavement layer 102c and the waterproof membrane material 102b. That. Accordingly, the test wheel 103 or the specimen 102 is moved in the direction of the axis S (arrow Y direction) of the test wheel 103 while the test wheel 103 is grounded to the specimen 102 while the test wheel 103 is running on the specimen 102. Even if it is moved, it will not be a pavement simulation test that matches the actual condition of the wheel traveling locus group of the vehicle traveling on the paved road.
Japanese Patent Laid-Open No. 2002-214102

この発明は、上記のような従来のホイールトラッキング試験方法・装置における問題点を是正し、現実に道路上でランダムに変動する車両走行軌跡すなわち車輪走行軌跡の実態を模した試験環境を設定した上でホイールトラッキング試験を実行し、舗装道路上の現実の車輪走行状態に即して舗装材の品質劣化度合や劣化耐久強度を把握し評価することを目的とする。また、コンクリート床版にアスファルト舗装を施した舗装道路構造では、コンクリート床版の上に防水膜材を介してアスファルト舗装層を積層してなるが、その舗装構造における防水膜材の役割が極めて大きいことから、この発明は、舗装道路上を走行する車両の車輪走行軌跡の実態に即した走行車輪荷重が加わる状態で且つ車輪車軸方向の異常な引っ張り力・引き裂き力が舗装材、とりわけ防水膜材に加わらない状態で、防水膜材が受ける破損・劣化の実態や、防水膜材の劣化耐久強度を把握することができるホイールトラッキング試験方法・装置を得ようとするものである。   The present invention corrects the problems in the conventional wheel tracking test method and apparatus as described above, and sets up a test environment that imitates the actual condition of a vehicle traveling locus that actually varies randomly on a road, that is, a wheel traveling locus. The purpose of this is to perform a wheel tracking test in order to grasp and evaluate the quality deterioration degree and deterioration durability strength of the pavement material according to the actual wheel running state on the paved road. In addition, in a paved road structure in which asphalt pavement is applied to the concrete floor slab, an asphalt pavement layer is laminated on the concrete floor slab via a waterproof membrane material. The role of the waterproof membrane material in the pavement structure is extremely large. Therefore, the present invention is a pavement material, particularly a waterproof film material, in which a traveling wheel load is applied in accordance with the actual condition of a wheel traveling locus of a vehicle traveling on a paved road and an abnormal tensile force / tear force in the wheel axle direction is applied. The object is to obtain a wheel tracking test method and apparatus capable of grasping the actual state of damage / deterioration of the waterproof membrane material and the deterioration durability strength of the waterproof membrane material without being added to the above.

上記の課題・目的を達成するためのホイールトラッキング試験方法として、この発明では、被試験舗装道路と同質の構成を備えて被試験舗装道路に見立てた供試体上で、舗装道路上を走行する車両の車輪に見立てた試験車輪を何回も反復走行させ、その反復走行過程において、試験車輪を走行方向Xの同一直線軌跡で走行させると共に、その試験車輪の走行範囲を、試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲とし、試験車輪が供試体上を走行し終えて供試体から離れている状態において、供試体を、試験車輪の走行方向Xとは異なる移動方向Yにランダムに変化する移動位置の一つの移動位置に移動させて位置決めし、その移動位置決め後に試験車輪を供試体上への次回の走行に移行させることを基本に置く。   As a wheel tracking test method for achieving the above-mentioned problems / objects, in the present invention, a vehicle that travels on a paved road on a specimen that has the same quality configuration as the test paved road and is regarded as the paved road to be tested. The test wheel, which is considered to be the wheel of the test vehicle, is repeatedly traveled several times, and in the repeated travel process, the test wheel is traveled on the same straight line locus in the traveling direction X, and the test wheel travels on the specimen. Is the range from the end of traveling to the position away from the specimen, and in the state where the test wheel has finished traveling on the specimen and is away from the specimen, the specimen is the traveling direction X of the test wheel. It is based on moving to the one movement position of the movement position which changes in the different movement directions Y at random, and making it move to the next run on the specimen after the movement positioning.

そして上記基本に立って上記の課題・目的を達成するホイールトラッキング試験方法として、被試験舗装道路と同質の構成を備えて被試験舗装道路に見立てた供試体上で、舗装道路上を走行する車両の車輪に見立てた試験車輪を何回も反復走行させ、その反復走行過程において、試験車輪を走行方向Xの同一直線軌跡で走行させると共に、その試験車輪の走行範囲を、試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲とし、試験車輪が供試体上を走行し終えて供試体から離れている状態において、供試体を、試験車輪の走行方向Xとは異なる移動方向Yに変化する移動位置に、その移動位置とその移動位置の発生頻度を正規分布特性に従ってランダムに制御しながら移動させて位置決めし、その移動位置決め後に試験車輪を供試体上への次回の走行に移行させる。 And, as a wheel tracking test method that achieves the above-mentioned problems and objectives based on the above basics, a vehicle that travels on a paved road with a specimen of the same quality as that of the paved road to be tested and viewed as the paved road to be tested The test wheel, which is considered to be the wheel of the test vehicle, is repeatedly traveled several times, and in the repeated travel process, the test wheel is traveled on the same straight line locus in the traveling direction X, and the test wheel travels on the specimen. Is the range from the end of traveling to the position away from the specimen, and in the state where the test wheel has finished traveling on the specimen and is away from the specimen, the specimen is the traveling direction X of the test wheel. Move to different movement directions Y, move and position the movement position and the frequency of occurrence of the movement position randomly according to the normal distribution characteristics, and test after the movement positioning To shift the wheel for the next running onto the specimen.

一方、この発明に係る上記のホイールトラッキング方法を実行して前記の課題・目的を達成するためのホイールトラッキング試験装置として、被試験舗装道路と同質の構成で被試験舗装道路に見立てた供試体を保持するスライドテーブルと;舗装道路上を走行する車両の車輪に見立てて供試体上を走行する試験車輪と;底部にその試験車輪が装着され且つ重量調整可能な荷重が付加される移動体と;試験車輪を走行方向Xの同一直線軌跡で走行させると共にその試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲で反復走行させる試験車輪走行手段と;供試体を保持したスライドテーブルを、試験車輪の走行方向Xとは異なる移動方向Yにランダムに変化する移動位置に移動させて位置決めするスライドテーブル移動位置決め手段と;試験車輪が供試体上を走行し終えて供試体から離れた位置にあることを検知してスライドテーブル移動位置信号を試験車輪の1回の走行毎にランダムに発生させ、そのスライドテーブル移動位置信号に基づいてスライドテーブル移動制御信号を発生させるスライドテーブル移動制御信号発生回路と;そのスライドテーブル移動制御信号に基づいてスライドテーブル移動位置決め手段を駆動制御するスライドテーブル駆動・制御回路を備えた構成とする   On the other hand, as a wheel tracking test apparatus for executing the wheel tracking method according to the present invention to achieve the above-mentioned problems / objects, a test specimen that is considered to be a test paved road with the same quality configuration as the test paved road is provided. A slide table to be held; a test wheel that travels on the specimen as if it were a vehicle wheel traveling on a paved road; and a moving body to which the test wheel is mounted and a weight-adjustable load is applied at the bottom; A test wheel traveling means for causing the test wheel to travel along the same linear locus in the traveling direction X and to repeatedly travel in a range from the test wheel traveling on the specimen to reaching a position away from the specimen; Slide table moving position for positioning the held slide table by moving it to a moving position that randomly changes in the moving direction Y different from the traveling direction X of the test wheel Determining means; detecting that the test wheel has finished traveling on the specimen and located at a position away from the specimen, and generating a slide table movement position signal at each run of the test wheel at random; A slide table movement control signal generation circuit for generating a slide table movement control signal based on the table movement position signal; and a slide table drive / control circuit for driving and controlling the slide table movement positioning means based on the slide table movement control signal With a configuration

また前記の課題を解決するための更に具現化したホイールトラッキング試験装置として、被試験舗装道路と同質の構成で被試験舗装道路に見立てた供試体を保持するスライドテーブルと;舗装道路上を走行する車両の車輪に見立てて前記供試体上を走行する試験車輪と;底部に試験車輪が装着され且つ重量調整可能な荷重が付加される移動体と;試験車輪を走行方向Xの同一直線軌跡で走行させると共にその試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲で反復走行させる試験車輪走行手段と;供試体を保持したスライドテーブルを、試験車輪の走行方向Xとは異なる移動方向Yにランダムに変化する移動位置に移動させて位置決めするスライドテーブル移動位置決め手段と;試験車輪が供試体上を走行し終えて供試体から離れた位置にあることを検知して、スライドテーブルの移動位置とその移動位置の発生頻度が正規分布特性に従うスライドテーブル移動位置信号を試験車輪の1回の走行毎にランダムに発生させ、そのスライドテーブル移動位置信号に基づいてスライドテーブル移動制御信号を発生させるスライドテーブル移動制御信号発生回路と;前記スライドテーブル移動制御信号に基づいてスライドテーブル移動位置決め手段を駆動制御するスライドテーブル駆動・制御回路を備えた構成とする。 Further, as a further embodied wheel tracking test apparatus for solving the above-mentioned problem, a slide table that holds a specimen as if to be a test paved road with the same configuration as the test paved road; and runs on the paved road A test wheel that travels on the specimen as if it were a vehicle wheel; a moving body that has a test wheel attached to the bottom and that is loaded with a weight-adjustable load; And a test wheel traveling means for repeatedly traveling the test wheel on the specimen until it reaches a position away from the specimen; and a sliding table holding the specimen is moved in the running direction X of the test wheel. And a slide table moving positioning means for positioning by moving to a moving position that randomly changes in a moving direction Y different from that of the test wheel; Detecting that the position is away from the body, the slide table movement position and the frequency of occurrence of the movement position is generated randomly every time the test wheel travels according to the normal distribution characteristics, A slide table movement control signal generation circuit for generating a slide table movement control signal based on the slide table movement position signal; and a slide table drive / control circuit for driving and controlling the slide table movement positioning means based on the slide table movement control signal It is set as the structure provided with.

また試験車輪を走行方向Xの同一直線軌跡で且つ供試体上を超えてその供試体から離れた位置に至る迄の範囲で往復走行させる前記の試験車輪走行手段として、試験車輪を装着した移動体を往復動させるための移動体駆動用回転体の偏心位置に連結杆の一端を回動自在に軸支すると共にその連結杆の多端を移動体に回動自在に軸支した構成とする。 Further, the moving body equipped with the test wheel as the test wheel traveling means for reciprocally traveling the test wheel in the range of the same straight line locus in the traveling direction X and beyond the specimen to reach the position away from the specimen. One end of the connecting rod is pivotally supported at an eccentric position of the moving body driving rotator for reciprocating the moving body, and the other end of the connecting rod is pivotally supported by the moving body.

また前記のスライドテーブル移動制御信号発生回路は、試験車輪が供試体上を走行し終えて供試体から離れた位置にあることを検知して試験車輪位置信号を発する試験車輪位置検知器と、その試験車輪位置信号を受けて試験車輪の1回の走行毎に正規乱数xを出力する乱数発生器と、その正規乱数xを基にスライドテーブルの移動位置とその移動位置の発生頻度が正規分布特性に従うスライドテーブル移動位置信号yをランダムに発生するスライドテーブル移動位置演算回路と、上記スライドテーブル移動位置信号yを基にスライドテーブル移動制御信号cを発生するスライドテーブル制御信号演算回路を備えた構成とする。   Further, the slide table movement control signal generating circuit includes a test wheel position detector that detects that the test wheel has finished traveling on the specimen and is at a position away from the specimen and generates a test wheel position signal, and A random number generator that receives a test wheel position signal and outputs a normal random number x for each run of the test wheel, and based on the normal random number x, the moving position of the slide table and the frequency of occurrence of the moving position are normal distribution characteristics A slide table movement position calculation circuit that randomly generates a slide table movement position signal y according to the above, and a slide table control signal calculation circuit that generates a slide table movement control signal c based on the slide table movement position signal y To do.

更にまた実用上の視点から、供試体はコンクリート床版の上に防水膜材を介してアスファルト舗装層が積層された構成とし、試験車輪の走行方向Xと供試体の移動方向Yを直交関係に設定する。 Furthermore, from a practical point of view, the specimen is configured by asphalt pavement layer laminated on a concrete floor slab with a waterproof membrane material, and the traveling direction X of the test wheel and the moving direction Y of the specimen are orthogonal to each other. Set.

そして上記のようなこの発明に係るランダム走行車輪荷重による舗装のホイールトラッキング試験方法ならびにその試験装置を用いれば、正規分布特性に従って舗装道路上で変動すると言われる車輪走行軌跡の変動・分布実態を踏まえた試験環境を模擬的に形成した上でホイールトラッキング試験を実行することができ、したがって現実に舗装道路を走行する車両の車輪走行軌跡の実態に合う試験環境下で、舗装材の劣化進行度合や劣化耐久強度を把握し評価することができる。また、コンクリート床版の上に防水膜材を介してアスファルト舗装層を積層してなる舗装道路についてホイールトラッキング試験を行う際に、コンクリート床版の劣化防止に大きく関わる防水膜材に対し、現実とは異なる異常な横方向の引っ張り力・引き裂き力が作用することがなく、したがって舗装道路上を走行する車両の車輪走行軌跡の実態に即した状態で、防水膜材の劣化・破損の進行状態や、防水膜材の劣化耐久強度を正しく把握し評価することができる。   And if the pavement wheel tracking test method and test apparatus for pavement with the random running wheel load according to the present invention as described above are used, based on the fluctuation / distribution actual condition of the wheel running locus which is said to fluctuate on the paved road according to the normal distribution characteristics. Therefore, the wheel tracking test can be executed after simulating the test environment. Deterioration durability strength can be grasped and evaluated. In addition, when conducting a wheel tracking test on a paved road made by laminating an asphalt pavement layer on a concrete floor slab via a waterproof membrane material, Different abnormal lateral pulling and tearing forces are not applied, and therefore, in accordance with the actual condition of the vehicle wheel trajectory traveling on the paved road, It is possible to correctly grasp and evaluate the deterioration durability strength of the waterproof membrane material.

この発明の最良の実施形態の一つは、コンクリート床版の上に防水膜材を介してアスファルト舗装層が積層された被試験舗装道路と同質構成で被試験舗装道路に見立てた供試体上で、舗装道路上を走行する車両の車輪に見立てた試験車輪を何回も往復走行させ、その往復走行過程において、重量調整可能な荷重が付加される試験車輪を走行方向Xの同一直線軌跡で走行させると共に、その試験車輪の走行範囲を、試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲とし、その試験車輪が供試体上を走行し終えて供試体から離れている状態で、供試体を、試験車輪の走行方向Xと直交関係にある移動方向Yに変化する移動位置に、その移動位置とその移動位置の発生頻度を正規分布特性に従ってランダムに制御しながら移動させて位置決めし、その移動位置決め後に試験車輪を供試体上への次回の走行に移行させるランダム走行車輪荷重による舗装のトラッキング試験方法である。   One of the best embodiments of the present invention is that on a specimen that looks like a test pavement with the same quality as a test pavement in which an asphalt pavement layer is laminated on a concrete floor slab via a waterproof membrane material. A test wheel resembling a vehicle wheel traveling on a paved road is reciprocated many times, and the test wheel to which a weight-adjustable load is applied in the reciprocating process travels in the same linear locus in the traveling direction X. In addition, the travel range of the test wheel is defined as the range from when the test wheel finishes traveling on the specimen until it reaches a position away from the specimen, and from the specimen after the test wheel finishes traveling on the specimen. In a separated state, the specimen is moved to a moving position that changes in the moving direction Y orthogonal to the traveling direction X of the test wheel, and the moving position and the frequency of occurrence of the moving position are randomly controlled according to the normal distribution characteristics. While moving Positioned by a random running wheels pavement tracking test method due to the load to shift the next running of the test wheel after the movement positioning onto specimen.

この発明の最良の実施形態の他の一つは、コンクリート床版の上に防水膜材を介してアスファルト舗装層が積層された被試験舗装道路と同質の構成で被試験舗装道路に見立てた供試体を保持するスライドテーブルと;舗装道路上を走行する車両の車輪に見立てて前記供試体上を走行する試験車輪と;底部に前記試験車輪が装着され且つ重量調整可能な荷重が付加される移動体と;駆動モータで回転させる伝動歯車と噛み合う移動体駆動歯車の偏心位置に連結杆の一端が回動自在に軸支されその連結杆の多端が前記移動体に回動自在に軸支されて成り、前記試験車輪を走行方向Xの同一直線軌跡で且つ前記供試体上を超えてその供試体から離れた位置に至る迄の範囲で往復走行させる試験車輪走行手段と;サーボモータで回転させるボールねじが前記スライドテーブルに螺合して成り、前記供試体を保持したスライドテーブルを前記試験車輪の走行方向Xと直交関係にある移動方向Yの移動位置に移動させて位置決めするスライドテーブル移動位置決め機構と;前記試験車輪が前記供試体上を走行し終えて供試体から離れた位置にあることを検知して試験車輪位置信号を発する試験車輪位置検知器、前記試験車輪位置信号を受けて前記試験車輪の1回の走行毎に正規乱数xを出力する乱数発生器、前記正規乱数xを基に前記スライドテーブルの移動位置とその移動位置の発生頻度が正規分布特性に従うスライドテーブル移動位置信号yをランダムに発生させるスライドテーブル移動位置演算回路、および前記スライドテーブル移動位置信号yを基に前記サーボモータの制御信号cを発生させるサーボモータ制御信号演算回路を含むサーボモータ制御信号発生回路と;前記サーボモータ制御信号cに基づいて前記サーボモータの回転方向・回転数を制御して前記サーボモータを駆動するサーボモータ駆動・制御回路を備えたランダム走行車輪荷重による舗装のトラッキング試験装置である。   Another embodiment of the present invention is that the test pavement is similar in structure to the test pavement in which the asphalt pavement layer is laminated on the concrete floor slab with a waterproof membrane material interposed therebetween. A slide table that holds a specimen; a test wheel that travels on the specimen as if it is a vehicle wheel traveling on a paved road; and a movement that is loaded with a weight-adjustable load with the test wheel mounted on the bottom One end of a connecting rod is pivotally supported at an eccentric position of a movable body driving gear that meshes with a body and a transmission gear rotated by a drive motor, and multiple ends of the connecting rod are pivotally supported by the movable body. A test wheel traveling means for reciprocating the test wheel in the range of the same linear locus in the traveling direction X and exceeding the specimen and reaching a position away from the specimen; a ball rotated by a servo motor screw A slide table movement positioning mechanism that is screwed to the slide table and moves the slide table holding the specimen to a movement position in the movement direction Y orthogonal to the traveling direction X of the test wheel; A test wheel position detector that detects that the test wheel has finished traveling on the specimen and is at a position away from the specimen, and generates a test wheel position signal; receives the test wheel position signal; A random number generator that outputs a normal random number x for each run, and based on the normal random number x, the slide table movement position and the frequency of occurrence of the movement position according to the normal distribution characteristics are randomly generated. The servo motor control signal c is generated based on the slide table moving position calculation circuit to be generated and the slide table moving position signal y. A servo motor control signal generation circuit including a servo motor control signal calculation circuit to be driven; a servo motor drive / control for driving the servo motor by controlling a rotation direction and a rotation speed of the servo motor based on the servo motor control signal c; This is a tracking test device for pavement with a random running wheel load equipped with a circuit.

以下、図面を参考にしながら、この発明の一実施例を説明する。図1はこの発明に係るランダム走行車輪荷重による舗装のホイールトラッキング試験装置の側面図、図2は同試験装置におけるスライドテーブル移動位置決め機構の斜視図、図3は同試験装置の制御回路ブロック図である。図4は図1における供試体とその供試体上を走行する試験車輪の移動関係の説明図、図5は同供試体上を走行する試験車輪の走行軌跡の分布頻度特性図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view of a pavement wheel tracking test apparatus according to the present invention for a random running wheel load, FIG. 2 is a perspective view of a slide table moving positioning mechanism in the test apparatus, and FIG. 3 is a control circuit block diagram of the test apparatus. is there. FIG. 4 is an explanatory diagram of the movement relationship between the specimen in FIG. 1 and the test wheel traveling on the specimen, and FIG. 5 is a distribution frequency characteristic diagram of the traveling locus of the test wheel traveling on the specimen.

図1乃至図5において、1は試験・評価しようとする舗装道路(被試験舗装道路)に見立てた供試体、2は舗装道路上を走行する車両の車輪に見立てた試験車輪である。供試体1は被試験舗装道路と同質の構成で、図4に示すように、コンクリート床版1aの上に、防水膜材1bを介してアスファルト舗装層1cが積層されたものである。防水膜材1bは、アスファルト舗装層1cとコンクリート床版1aに対する付着性に富んだ材質で、アスファルト塗膜、ウレタン樹脂、アスファルト防水シート(不織布にアスファルト膜を付着したシート)等が用いられている。防水膜材1bは、アスファルト舗装層1cから浸透し或いはアスファルト舗装層1cに生じたひび割れからアスファルト舗装層内に沁み込んだ雨水がコンクリート床版1aにまで浸入することを防止するために配設されるもので、防水膜材1bが破れたり位置ずれが生ずると、コンクリート床版1aに漏水が浸入してコンクリートを著しく劣化させることから、舗装道路上における現実の車輪走行軌跡群を模して再現した状態で、走行車輪荷重によるホイールトラッキング試験によってコンクリート床版1aとアスファルト舗装層1cの間に介在させる各種の防水膜材1bの劣化進行度合いや劣化耐久強度を試験し評価することは、実用上極めて重要なことである。   In FIG. 1 to FIG. 5, reference numeral 1 denotes a specimen that is considered to be a paved road to be tested and evaluated (test paved road), and 2 is a test wheel that is assumed to be a wheel of a vehicle traveling on the paved road. The specimen 1 has the same configuration as the test paved road, and as shown in FIG. 4, an asphalt pavement layer 1c is laminated on a concrete floor slab 1a with a waterproof membrane material 1b interposed therebetween. The waterproof membrane material 1b is made of a material having high adhesion to the asphalt pavement layer 1c and the concrete floor slab 1a, and an asphalt coating film, a urethane resin, an asphalt waterproof sheet (a sheet having an asphalt film attached to a nonwoven fabric), or the like is used. . The waterproof membrane material 1b is disposed in order to prevent rainwater that has permeated from the asphalt pavement layer 1c or has penetrated into the asphalt pavement layer from cracks generated in the asphalt pavement layer 1c. Therefore, if the waterproof membrane 1b is torn or misaligned, water leaks into the concrete floor slab 1a and significantly deteriorates the concrete. Therefore, it reproduces a group of actual wheels on the paved road. It is practically necessary to test and evaluate the degree of deterioration and the durability of various waterproofing membrane materials 1b interposed between the concrete floor slab 1a and the asphalt pavement layer 1c by a wheel tracking test using a traveling wheel load. It is extremely important.

3は供試体1を載置して保持するスライドテーブル、4はスライドテーブル3を所定の位置へ移動させてそこに位置決めするスライドテーブル移動位置決め機構(スライドテーブル移動位置決め手段)で、スライドテーブル移動位置決め機構4は、図2に示すような従来周知の1軸方向スライドテーブル位置決め機構と同じ構造のものである。すなわち、スライドテーブル移動位置決め機構4は、案内レール5上に水平に置かれて案内レール5に沿って矢印Y方向に往復運動自在に保持されたスライドテーブル3と、サーボモータ6と、サーボモータ6の回転軸に連結されて案内レール5と並行して延び且つスライドテーブル3の一部に螺合したボールねじ7とを備えており、サーボモータ6の回転方向と回転角度(回転数)を制御することによって、ボールねじ7の回転方向と回転角度が制御されて、ボールねじ7に螺合しているスライドテーブル3とその上に保持した供試体1を、矢印Y方向(図1における紙面に垂直な方向、すなわち試験車輪2の車軸方向)に所定位置まで精度良く移動させて停止・位置決めし、スライドテーブル3の次の動きに備えるものである。なお、スライドテーブルを移動位置決めする駆動源は、上記のような回転サーボモータ6に限られるものではなく、リニアモータや、油圧制御機構などの直線駆動源によるスライドテーブル移動位置決め手段によって、スライドテーブル3を矢印Y方向に移動させ位置決めすることも勿論可能である。   3 is a slide table for mounting and holding the specimen 1, and 4 is a slide table movement positioning mechanism (slide table movement positioning means) that moves the slide table 3 to a predetermined position and positions it there. The mechanism 4 has the same structure as a conventionally known uniaxial slide table positioning mechanism as shown in FIG. That is, the slide table movement positioning mechanism 4 is placed horizontally on the guide rail 5 and is held along the guide rail 5 so as to freely reciprocate in the direction of the arrow Y, the servo motor 6, and the servo motor 6. And a ball screw 7 that is connected to the rotation shaft of the servo motor 6 and extends in parallel with the guide rail 5 and screwed into a part of the slide table 3. The rotation direction and rotation angle (rotation number) of the servo motor 6 are controlled. As a result, the rotation direction and the rotation angle of the ball screw 7 are controlled, and the slide table 3 screwed into the ball screw 7 and the specimen 1 held thereon are moved in the direction indicated by the arrow Y (on the paper surface in FIG. 1). The slide table 3 is prepared for the next movement of the slide table 3 by accurately moving to a predetermined position in the vertical direction, that is, in the direction of the axle of the test wheel 2 and stopping and positioning. Note that the drive source for moving and positioning the slide table is not limited to the rotary servo motor 6 as described above, and the slide table 3 is moved by a slide table moving and positioning means using a linear drive source such as a linear motor or a hydraulic control mechanism. Of course, it is also possible to position by moving in the arrow Y direction.

8は車両の車体にも見立てられる移動体で、移動体8の底部に試験車輪2が装着されると共に、移動体8の上には重量調整可能な荷重体(一種の分銅)9が載置され、その荷重体9によって、現実の車両の走行車輪荷重に相当する所定の荷重が試験車輪2に付加される。そして移動体8は案内レール10に支持され案内されて矢印X方向に往復運動するもので、その移動体8の往復運動に伴って、試験車輪2は供試体1上に接して移動体8と荷重体9の荷重を供試体1上に加えながら矢印X方向に往復走行する。なお、試験車輪2に荷重を付加する手段は、上記のような荷重体9を移動体8に載置する手段に限らず、例えば圧力調整可能な流体圧力を移動体8上に加えるような手段も可能である。   Reference numeral 8 denotes a moving body that can be regarded as a vehicle body. The test wheel 2 is mounted on the bottom of the moving body 8, and a load body (a kind of weight) 9 capable of adjusting the weight is placed on the moving body 8. Then, a predetermined load corresponding to the traveling wheel load of the actual vehicle is applied to the test wheel 2 by the load body 9. The moving body 8 is supported and guided by the guide rail 10 and reciprocates in the direction of the arrow X. As the moving body 8 reciprocates, the test wheel 2 comes into contact with the test body 1 and While applying the load of the load body 9 on the specimen 1, it travels in the direction of arrow X. The means for applying the load to the test wheel 2 is not limited to the means for placing the load body 9 on the moving body 8 as described above, and for example, means for applying a fluid pressure capable of adjusting the pressure on the moving body 8. Is also possible.

また試験車輪2の矢印X方向の往復走行範囲は、供試体1の上面の範囲を超えて試験車輪2が供試体1から完全に離れた状態に至るまでの範囲に設定されている。図4において、Sは試験車輪の車軸、m0は供試体1の上を走行する試験車輪2の走行軌跡の一つを示している。11は駆動モータ(図示省略)によって回転する伝動歯車、12は伝動歯車11と噛合う移動体駆動歯車、13は移動体駆動歯車11と移動体8を繋ぐ連結杆で、連結杆13の一端は移動体8の一端8aに回動自在に軸支され、連結杆13の他端は移動体駆動歯車12の偏心位置にある偏心軸12aに回動自在に軸支されている。そして、駆動モータで伝動歯車11を介して移動体駆動歯車12を回転させると、その移動体駆動歯車12の回転運動が連結杆13を介して移動体8の往復直線運動に変換されて、移動体8ならびに試験車輪2が矢印X方向に往復運動する。そして偏心軸12aの偏心距離Lを変えることにより、移動体8ならびに試験車輪2の往復運動範囲(図1において、試験車輪2が最も左側に来た位置と最も右側に来た位置の間の距離)を変化させ調整することができる。なお、前記移動体駆動歯車12は、一般的には任意の手段で回転する移動体駆動用回転体を意味する。 The reciprocating range of the test wheel 2 in the direction of the arrow X is set to a range that exceeds the range of the upper surface of the specimen 1 and reaches the state in which the test wheel 2 is completely separated from the specimen 1. In FIG. 4, S represents the axle of the test wheel, and m 0 represents one of the traveling trajectories of the test wheel 2 traveling on the specimen 1. 11 is a transmission gear that is rotated by a drive motor (not shown), 12 is a movable body drive gear that meshes with the transmission gear 11, 13 is a coupling rod that connects the movable body driving gear 11 and the movable body 8, and one end of the coupling rod 13 is The movable body 8 is pivotally supported by one end 8 a and the other end of the connecting rod 13 is pivotally supported by an eccentric shaft 12 a at an eccentric position of the movable body drive gear 12. When the movable body drive gear 12 is rotated by the drive motor via the transmission gear 11, the rotational motion of the movable body drive gear 12 is converted into the reciprocating linear motion of the movable body 8 via the connecting rod 13, and moved. The body 8 and the test wheel 2 reciprocate in the arrow X direction. Then, by changing the eccentric distance L of the eccentric shaft 12a, the range of reciprocation of the moving body 8 and the test wheel 2 (in FIG. 1, the distance between the position where the test wheel 2 is located on the leftmost side and the position on the rightmost side). ) Can be changed and adjusted. The moving body driving gear 12 generally means a moving body driving rotating body that is rotated by any means.

また14,15は、供試体1の上を往復走行する試験車輪2の往復走行範囲で試験車輪2が供試体1から離れた位置に来たことを検知する試験車輪位置検知器(光検知器、電磁検知器など)で、試験車輪位置検知器14,15は、例えば移動体駆動歯車12の側面に対向して配設され、移動体駆動歯車12の回転に伴って変化する移動体駆動歯車12の偏心軸12aの左右方向(矢印X方向)位置を検知することにより、試験車輪2が供試体1上を走行し終えて供試体1から離れた状態になったことを検知し、その試験車輪位置検知信号d1,d2を出力するものである。 Reference numerals 14 and 15 denote test wheel position detectors (light detectors) that detect that the test wheel 2 has come to a position away from the specimen 1 in the reciprocating range of the test wheel 2 that reciprocates on the specimen 1. The test wheel position detectors 14 and 15 are arranged to face, for example, the side surface of the mobile drive gear 12 and change as the mobile drive gear 12 rotates. By detecting the position of the twelve eccentric shafts 12a in the left-right direction (arrow X direction), it is detected that the test wheel 2 has finished running on the specimen 1 and is separated from the specimen 1, and the test Wheel position detection signals d1 and d2 are output.

この発明の特徴として重要なことは、試験車輪2の上記往復走行範囲が、供試体1の範囲を超えて供試体1の上面から完全に離れた位置までの範囲、すなわち図5に示すように試験車輪2が供試体1上を通過した位置2f,2eまでの範囲にわたり、且つ試験車輪2が供試体1から完全に離れている状態(試験車輪2が図5の位置2f,2eに至った状態)において、サーボモータ6が回転してスライドテーブル3を矢印Y方向の所定位置まで移動させることである。言い換えれば、試験車輪2が供試体1上にある状態では供試体1が矢印Y方向に移動しないようにサーボモータ6の回転が制御されるものである。なお上記の実施例では、スライドテーブル3および供試体1の移動方向(矢印Y方向)と試験車輪2の走行方向(矢印X方向)の交叉角度は90°で直交関係にあるが、その交叉角度は必ずしも90°に限られるものではなく、試験の目的によって任意に設定することできる。したがって、この発明に係るホイールトラッキング試験においては、試験車輪2が供試体1の上を走行する過程で形成された轍の壁面と試験車輪2の側面が接触してその接触圧力によって供試体1の舗装材に水平方向の異常な引っ張り力・引き裂き力が加わることが防止される。   What is important as a feature of the present invention is that the above-described reciprocating range of the test wheel 2 exceeds the range of the specimen 1 and reaches a position completely away from the upper surface of the specimen 1, that is, as shown in FIG. A state in which the test wheel 2 passes over the specimen 1 to the positions 2f and 2e and is completely separated from the specimen 1 (the test wheel 2 has reached positions 2f and 2e in FIG. 5). State), the servo motor 6 rotates to move the slide table 3 to a predetermined position in the arrow Y direction. In other words, the rotation of the servo motor 6 is controlled so that the specimen 1 does not move in the arrow Y direction when the test wheel 2 is on the specimen 1. In the above embodiment, the crossing angle between the moving direction of the slide table 3 and the specimen 1 (arrow Y direction) and the traveling direction of the test wheel 2 (arrow X direction) is 90 °, and the crossing angle is orthogonal. Is not necessarily limited to 90 °, and can be arbitrarily set depending on the purpose of the test. Therefore, in the wheel tracking test according to the present invention, the wall surface of the kite formed in the process in which the test wheel 2 travels on the specimen 1 and the side surface of the test wheel 2 come into contact with each other and the contact pressure of the specimen 1 The pavement material is prevented from applying an abnormal horizontal pulling force or tearing force.

図5は、現実に舗装道路上を走行する車両の車輪走行軌跡群の実態観察に基づいて、その車輪走行軌跡の分布とその各車輪走行軌跡の発生頻度の関係を模して、供試体1上を走行する試験車輪の車輪走行軌跡に模擬的に再現させた状態を示したものである。図5において、1は供試体、2は供試体1の舗装面上を矢印X方向に往復走行する試験車輪で、2f,2eは試験車輪2の往復走行範囲の両端位置を示し、2f,2eは試験車輪2が供試体1から完全に離れた位置である。mは供試体1上を試験車輪2が何回も往復走行する過程で生ずる試験車輪走行軌跡群で、供試体1上の位置が異なる多数の試験車輪走行軌跡m0 〜 mnから成る。また、縦軸のyは供試体1上における試験車輪走行軌跡m0 〜 mnの分布位置を示し、横軸のpは各試験車輪走行軌跡m0 〜 mnの発生頻度を示している。なおpは、各試験車輪走行軌跡m0 〜 mnの発生頻度を示すと同時に、スライドテーブル3ならびに供試体1の移動位置を意味する。そして現実に舗装道路上を走行している車両の車輪走行軌跡群の実態に照らして、試験車輪走行軌跡群mを構成する各走行軌跡m0 〜 mnを時間的にランダムに発生させ、且つ試験車輪走行軌跡m0 〜 mnの発生頻度が、試験車輪走行軌跡群mの中央にあって発生頻度pが最も高い試験車輪走行軌跡m0を中央値とする正規分布特性に従うように制御されている。図5の曲線Gは試験車輪走行軌跡群mを構成する各試験車輪走行軌跡m0 〜 mnの発生頻度特性を示す正規分布特性曲線(ガウス分布曲線)を表すものである。 FIG. 5 shows a specimen 1 simulating the relationship between the distribution of the wheel travel trajectory and the frequency of occurrence of each wheel travel trajectory based on the actual observation of the wheel travel trajectory group of the vehicle actually traveling on the paved road. It shows the state reproduced in a simulated manner on the wheel travel trajectory of the test wheel traveling above. In FIG. 5, 1 is a specimen, 2 is a test wheel that reciprocates on the pavement surface of the specimen 1 in the direction of arrow X, 2f and 2e indicate the positions of both ends of the reciprocating range of the test wheel 2, and 2f and 2e. Is a position where the test wheel 2 is completely separated from the specimen 1. m is a test wheel travel locus group generated in the process in which the test wheel 2 reciprocates many times on the specimen 1 and is composed of a large number of test wheel travel loci m 0 to m n having different positions on the specimen 1. Further, y in the vertical axis shows the distribution position of the test wheel traveling locus m 0 ~ m n on specimens 1, p of the horizontal axis represents the frequency of occurrence of each test wheel traveling locus m 0 ~ m n. Note that p represents the occurrence frequency of each test wheel travel locus m 0 to m n and at the same time the movement position of the slide table 3 and the specimen 1. Then, in light of the actual condition of the wheel traveling locus group of the vehicle actually traveling on the paved road, each traveling locus m 0 to m n constituting the test wheel traveling locus group m is randomly generated in time, and The occurrence frequency of the test wheel travel trajectories m 0 to m n is controlled to follow a normal distribution characteristic with the test wheel travel trajectory m 0 having the highest occurrence frequency p in the center of the test wheel travel trajectory group m as the median value. ing. A curve G in FIG. 5 represents a normal distribution characteristic curve (Gaussian distribution curve) indicating the occurrence frequency characteristic of each test wheel travel locus m 0 to mn constituting the test wheel travel locus group m.

そこで、舗装道路上を走行する車両の現実の車輪走行軌跡特性を再現した状態でホイールトラッキング試験を実行するために、この発明は、試験車輪2の矢印X方向の往復走行位置を一定位置に保つと共に、その試験車輪2を供試体1上で走行させるに先立って、スライドテーブル3および供試体1を、試験車輪2の往復走行方向(矢印X方向)とは異なる矢印Y方向の所定の移動位置y、すなわち前記の正規分布特性に従う移動位置yに移動させ、その移動後の供試体1上で試験車輪2を走行させるように制御するものである。そして上記実施例では、サーボモータ6の回転方向と回転数を制御することによって、スライドテーブル3を所定の移動位置yへ迅速に移動させ位置決めするものである。   Therefore, in order to execute the wheel tracking test in a state in which the actual wheel traveling trajectory characteristic of the vehicle traveling on the paved road is reproduced, the present invention keeps the reciprocating traveling position of the test wheel 2 in the arrow X direction at a constant position. In addition, prior to running the test wheel 2 on the specimen 1, the slide table 3 and the specimen 1 are moved in a predetermined movement direction in the arrow Y direction different from the reciprocating direction (arrow X direction) of the test wheel 2. It is controlled to move to the moving position y according to y, that is, the normal distribution characteristic, and to run the test wheel 2 on the specimen 1 after the movement. In the above embodiment, the slide table 3 is quickly moved to the predetermined movement position y and positioned by controlling the rotation direction and the rotation speed of the servo motor 6.

すなわち、試験車輪2の矢印X方向の往復走行に対するスライドテーブル3および供試体1の矢印Y方向の移動タイミングとその移動位置yは、図3に示す制御回路によって制御される。図3において、6は、スライドテーブル3および供試体1を矢印Y方向に移動制御するサーボモータ、14,15は前記の試験車輪位置検知器、16は電源、17はサーボモータ駆動・制御回路(スライドテーブル駆動・制御回路)、18はサーボモータ制御信号発生回路(スライドテーブル移動制御信号発生回路)で、サーボモータ制御信号発生回路(スライドテーブル移動制御信号発生回路)18は、乱数発生器19と、スライドテーブル移動位置演算回路20と、サーボモータ制御信号演算回路(スライドテーブル制御信号演算回路)21から成っている。   That is, the movement timing and the movement position y of the slide table 3 and the specimen 1 in the arrow Y direction with respect to the reciprocating travel of the test wheel 2 in the arrow X direction are controlled by the control circuit shown in FIG. In FIG. 3, 6 is a servo motor that controls movement of the slide table 3 and the specimen 1 in the direction of arrow Y, 14 and 15 are the test wheel position detectors, 16 is a power source, and 17 is a servo motor drive / control circuit ( 18 is a servo motor control signal generation circuit (slide table movement control signal generation circuit), and a servo motor control signal generation circuit (slide table movement control signal generation circuit) 18 is connected to a random number generator 19. , A slide table moving position calculation circuit 20 and a servo motor control signal calculation circuit (slide table control signal calculation circuit) 21.

そして、試験車輪位置検知器14,15は、前記のように、試験車輪2が供試体1上を走行し終えて供試体1から離れた位置にあることを検知して試験車輪位置信号d1,d2を発し、乱数発生器19がその試験車輪位置信号d1,d2を受けて、試験車輪2の1回の走行毎に、その試験車輪2の毎回の走行に同期した一定時間間隔で、1個の正規乱数xを演算し生成して出力する。なお、正規乱数xは、0から1までの間の二つの一様乱数U,Uを用いて次の式(1)に基づく演算で生成することができるもので、乱数発生器19は式(1)の演算プログラムを備えている。

Figure 2006170680
・・・・・式(1)
Then, as described above, the test wheel position detectors 14 and 15 detect that the test wheel 2 has finished traveling on the specimen 1 and is in a position away from the specimen 1, and thus the test wheel position signal d 1. , D 2 , the random number generator 19 receives the test wheel position signals d 1 , d 2, and is synchronized with the test wheel 2 every time when the test wheel 2 runs once. Then, one normal random number x is calculated and generated and output. The normal random number x can be generated by an operation based on the following equation (1) using two uniform random numbers U 1 and U 2 between 0 and 1, and the random number generator 19 The calculation program of Formula (1) is provided.

Figure 2006170680
・ ・ ・ ・ ・ Formula (1)

次いで、スライドテーブル移動位置演算回路20が前記正規乱数xを受けて、その正規乱数xを基にスライドテーブル移動位置信号yを次の式(2)に基づく演算で生成して出力する。なお、スライドテーブル移動位置演算回路20は式(2)の演算プログラムを備えている。またこの出願において、yはスライドテーブル移動位置信号を表すと同時に、スライドテーブルに保持された供試体の移動位置信号、スライドテーブル3ならびに供試体1の移動位置をも意味している。

Figure 2006170680
・・・・・式(2)

但し、μ:発生頻度が最も大きい中心位置
σ:標準偏差
Next, the slide table movement position calculation circuit 20 receives the normal random number x, and generates and outputs a slide table movement position signal y by calculation based on the following equation (2) based on the normal random number x. Note that the slide table movement position calculation circuit 20 includes a calculation program of the formula (2). In this application, y represents the slide table movement position signal, and also means the movement position signal of the specimen held on the slide table, the movement position of the slide table 3 and the specimen 1.

Figure 2006170680
・ ・ ・ ・ ・ Formula (2)

Where μ: center position where occurrence is highest σ: standard deviation

次いで、サーボモータ制御信号演算回路(すなわちスライドテーブル制御信号演算回路)21が、スライドテーブル移動位置信号yを受けて、そのスライドテーブル移動位置信号yを基に、そのスライドテーブル移動位置yにスライドテーブル3を移動させるに必要なサーボモータ駆動制御信号(すなわちスライドテーブル移動制御信号)cを、式:c=f(y) に基づいて演算して出力する。なお、サーボモータ制御信号演算回路21は式:c=f(y)の演算プログラムを備えている。そして、サーボモータ駆動・制御回路(すなわちスライドテーブル駆動・制御回路)17がサーボモータ駆動制御信号(すなわちスライドテーブル移動制御信号)cを受け、そのサーボモータ駆動制御信号cに基づいてサーボモータ6の回転方向と回転数を制御してスライドテーブル3ならびに供試体1を所定の移動位置に瞬時に移動させ位置決めすることができる。   Next, the servo motor control signal calculation circuit (that is, the slide table control signal calculation circuit) 21 receives the slide table movement position signal y, and moves the slide table to the slide table movement position y based on the slide table movement position signal y. A servo motor drive control signal (that is, a slide table movement control signal) c required to move 3 is calculated and output based on the formula: c = f (y). The servo motor control signal calculation circuit 21 has a calculation program of the formula: c = f (y). Then, the servo motor drive / control circuit (namely, slide table drive / control circuit) 17 receives the servo motor drive control signal (namely, slide table movement control signal) c, and the servo motor 6 is controlled based on the servo motor drive control signal c. By controlling the rotation direction and the number of rotations, the slide table 3 and the specimen 1 can be instantaneously moved to a predetermined moving position for positioning.

上述のように供試体上における試験車輪の反復走行制御と供試体の移動位置制御を行うことにより、道路上でランダムに変動する車輪走行軌跡の実態を踏まえた試験環境下でホイールトラッキング試験が可能となり、舗装道路上の現実の車輪走行状態に即して、舗装材の品質劣化度合や劣化耐久強度を把握し評価することができる。 By performing repeated running control of the test wheel on the specimen and moving position control of the specimen as described above, a wheel tracking test can be performed in a test environment based on the actual condition of the wheel running trajectory that fluctuates randomly on the road. Thus, it is possible to grasp and evaluate the quality deterioration degree and deterioration durability strength of the pavement material in accordance with the actual wheel running state on the paved road.

上述のように、この発明に係るランダム走行車輪荷重による舗装のホイールトラッキング試験方法ならびにその試験装置は、現実に舗装道路上を走行する車両の車輪走行軌跡の形成実態に即した試験条件で舗装材の変形、破損状態、劣化強度を把握し評価することができるので、各種舗装材の開発や商品化の分野、舗装道路の建設、安全管理、補修などの分野で、産業上広く利用することができる。   As described above, the pavement wheel tracking test method and the test apparatus according to the present invention for the random running wheel load according to the present invention is a pavement material under test conditions that are in line with the actual condition of the wheel running trajectory of the vehicle running on the paved road. It is possible to grasp and evaluate the deformation, breakage state, and deterioration strength of the road, so that it can be widely used industrially in the fields of development and commercialization of various paving materials, construction of paved roads, safety management, repair, etc. it can.

この発明に係るランダム走行車輪荷重による舗装のホイールトラッキング試験装置の側面図。The side view of the wheel tracking test apparatus of the pavement by the random running wheel load concerning this invention. 同試験装置におけるスライドテーブル移動位置決め機構の斜視図。The perspective view of the slide table movement positioning mechanism in the test apparatus. 同試験装置の制御回路ブロック図。FIG. 3 is a control circuit block diagram of the test apparatus. 同試験装置における供試体と試験車輪の移動関係説明図。Explanatory drawing of the movement relationship between the specimen and the test wheel in the test apparatus. 同試験装置の試験車輪の車輪走行軌跡の分布頻度特性図。The distribution frequency characteristic figure of the wheel run locus of the test wheel of the test device. 従来のホイールトラッキング試験中における供試体と試験車輪の略断面図。Schematic sectional view of a specimen and a test wheel during a conventional wheel tracking test.

符号の説明Explanation of symbols

1:供試体
1a:コンクリート床版
1b:防水膜材
1c:アスファルト舗装層
2:試験車輪
3:スライドテーブル
4:スライドテーブル移動位置決め機構(スライドテーブル移動位置決め手段)
5:案内レール
6:サーボモータ
7:ボールねじ
8:移動体
8a:移動体の一端
9:荷重体
10:案内レール
11:伝動歯車
12:移動体駆動歯車(移動体駆動用回転体)
12 a:移動体駆動歯車の偏心軸
13:連結杆
14:試験車輪位置検知器
15:試験車輪位置検知器
16:電源
17:サーボモータ駆動・制御回路
(スライドテーブル駆動・制御回路)
18:サーボモータ制御信号発生回路
(スライドテーブル移動制御信号発生回路)
19:乱数発生器
20:スライドテーブル移動位置演算回路
21:サーボモータ制御信号演算回路
(スライドテーブル制御信号演算回路)
L:移動体駆動歯車の偏心軸の偏心距離
R:試験車輪走行手段/移動体駆動手段
S:試験車輪の車軸
X:試験車輪の走行方向
Y:スライドテーブルの移動方向/供試体の移動方向/試験車輪の車軸方向
c:サーボモータ制御信号
(スライドテーブル移動制御信号)
d1:試験車輪位置信号
d2:試験車輪位置信号
m0,m1,m2・・・mn:試験車輪走行軌跡
m0:発生頻度が最も高い試験車輪走行軌跡
m:試験車輪走行軌跡群
p:試験車輪走行軌跡の発生頻度/スライドテーブルの移動位置の発生頻度/
供試体の移動位置の発生頻度
x:正規乱数
y:スライドテーブル移動位置/スライドテーブル移動位置信号/
供試体移動位置/供試体移動位置信号
1: Specimen
1a: Concrete slab
1b: Waterproof membrane material
1c: Asphalt pavement layer 2: Test wheel 3: Slide table 4: Slide table movement positioning mechanism (slide table movement positioning means)
5: Guide rail 6: Servo motor 7: Ball screw 8: Moving body
8a: One end of the moving body 9: Load body 10: Guide rail 11: Transmission gear 12: Moving body driving gear (moving body driving rotator)
12a: Eccentric shaft 13 of moving body drive gear 13: Connecting rod 14: Test wheel position detector 15: Test wheel position detector 16: Power supply 17: Servo motor drive / control circuit (slide table drive / control circuit)
18: Servo motor control signal generation circuit (slide table movement control signal generation circuit)
19: Random number generator 20: Slide table movement position calculation circuit 21: Servo motor control signal calculation circuit (slide table control signal calculation circuit)
L: Eccentric distance of eccentric shaft of moving body drive gear R: Test wheel traveling means / moving body driving means S: Axle of test wheel X: Running direction of test wheel Y: Moving direction of slide table / Moving direction of specimen / Axle direction c of test wheel: Servo motor control signal (slide table movement control signal)
d 1 : Test wheel position signal
d 2: test wheel position signal
m 0 , m 1 , m 2 ... m n : Test wheel travel locus
m 0 : Test wheel traveling locus with the highest occurrence frequency m: Test wheel traveling locus group p: Test wheel traveling locus occurrence frequency / slide table moving position occurrence frequency /
Frequency of occurrence of movement position of specimen x: normal random number y: slide table movement position / slide table movement position signal /
Specimen movement position / Specimen movement position signal

Claims (11)

被試験舗装道路と同質の構成を備えて被試験舗装道路に見立てた供試体上で、舗装道路上を走行する車両の車輪に見立てた試験車輪を何回も反復走行させ、その反復走行過程において、試験車輪を走行方向Xの同一直線軌跡で走行させると共に、その試験車輪の走行範囲を、試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲とし、前記試験車輪が前記供試体上を走行し終えて供試体から離れている状態で、前記供試体を、前記試験車輪の走行方向Xとは異なる移動方向Yにランダムに変化する移動位置の一つの移動位置に移動させて位置決めし、その移動位置決め後に前記試験車輪を前記供試体上への次回の走行に移行させることを特徴とするランダム走行車輪荷重による舗装のトラッキング試験方法。 The test wheel, which has the same composition as the test paved road and is considered to be the test paved road, is repeatedly run several times with the test wheel set as the wheel of the vehicle running on the paved road. The test wheel travels along the same linear locus in the traveling direction X, and the travel range of the test wheel is the range from the test wheel finishes traveling on the specimen until it reaches a position away from the specimen. One moving position of the moving position that randomly changes in the moving direction Y different from the traveling direction X of the test wheel in a state where the wheel has finished traveling on the specimen and is separated from the specimen. The pavement tracking test method using a random running wheel load, wherein the test wheel is moved to the next run on the specimen after the move positioning. 被試験舗装道路と同質の構成を備えて被試験舗装道路に見立てた供試体上で、舗装道路上を走行する車両の車輪に見立てた試験車輪を何回も反復走行させ、その反復走行過程において、試験車輪を走行方向Xの同一直線軌跡で走行させると共に、その試験車輪の走行範囲を、試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲とし、前記試験車輪が前記供試体上を走行し終えて供試体から離れている状態で、前記供試体を、前記試験車輪の走行方向Xとは異なる移動方向Yに変化する移動位置に、その移動位置とその移動位置の発生頻度を正規分布特性に従ってランダムに制御しながら移動させて位置決めし、その移動位置決め後に前記試験車輪を前記供試体上への次回の走行に移行させることを特徴とするランダム走行車輪荷重による舗装のトラッキング試験方法。 The test wheel, which has the same composition as the test paved road and is considered to be the test paved road, is repeatedly run several times with the test wheel set as the wheel of the vehicle running on the paved road. The test wheel travels along the same linear locus in the traveling direction X, and the travel range of the test wheel is the range from the test wheel finishes traveling on the specimen until it reaches a position away from the specimen. In a state where the wheel has finished traveling on the specimen and is separated from the specimen, the specimen is moved to a movement position that changes in a movement direction Y different from the traveling direction X of the test wheel. Random running characterized in that the frequency of occurrence of a moving position is controlled while being randomly controlled according to a normal distribution characteristic, and the test wheel is shifted to the next running on the specimen after the moving positioning. Tracking Test method pavement by wheel load. 供試体が、コンクリート床版の上に防水膜材を介してアスファルト舗装層が積層された構成であることを特徴とする請求項1または請求項2に記載のランダム走行車輪荷重による舗装のトラッキング試験方法。   3. The pavement tracking test with a random traveling wheel load according to claim 1 or 2, wherein the specimen has a structure in which an asphalt pavement layer is laminated on a concrete floor slab with a waterproof membrane material interposed therebetween. Method. 試験車輪の走行方向Xと供試体の移動方向Yが直交関係にあることを特徴とする請求項1または請求項2に記載のランダム走行車輪荷重による舗装のトラッキング試験方法。   3. The pavement tracking test method according to claim 1 or 2, wherein the traveling direction X of the test wheel and the moving direction Y of the specimen are orthogonal to each other. 被試験舗装道路と同質の構成で被試験舗装道路に見立てた供試体を保持するスライドテーブルと;舗装道路上を走行する車両の車輪に見立てて前記供試体上を走行する試験車輪と;底部に前記試験車輪が装着され且つ重量調整可能な荷重が付加される移動体と;前記試験車輪を走行方向Xの同一直線軌跡で走行させると共にその試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲で反復走行させる試験車輪走行手段と;前記供試体を保持したスライドテーブルを、試験車輪の走行方向Xとは異なる移動方向Yにランダムに変化する移動位置に移動させて位置決めするスライドテーブル移動位置決め手段と;前記試験車輪が前記供試体上を走行し終えて供試体から離れた位置にあることを検知して前記スライドテーブルの移動位置信号を前記試験車輪の1回の走行毎にランダムに発生させ、そのスライドテーブル移動位置信号に基づいてスライドテーブル移動制御信号を発生させるスライドテーブル移動制御信号発生回路と;前記スライドテーブル移動制御信号に基づいて前記スライドテーブル移動位置決め手段を駆動制御するスライドテーブル駆動・制御回路を備えたことを特徴とするランダム走行車輪荷重による舗装のトラッキング試験装置。 A slide table that holds a specimen that is similar in structure to the test paved road and that is viewed as the test paved road; a test wheel that travels on the test specimen as a vehicle wheel traveling on the paved road; A moving body to which the test wheel is mounted and a weight-adjustable load is applied; the test wheel is made to travel along the same linear locus in the traveling direction X, and the test wheel has finished running on the specimen, and from the specimen Test wheel travel means for repeatedly traveling in a range up to a distant position; and moving the slide table holding the specimen to a travel position that randomly changes in a travel direction Y different from the travel direction X of the test wheel. A slide table moving positioning means for positioning the slide table; detecting that the test wheel has finished traveling on the specimen and is at a position away from the specimen; A slide table movement control signal generating circuit for randomly generating a movement position signal for each run of the test wheel and generating a slide table movement control signal based on the slide table movement position signal; and the slide table movement control; A pavement tracking test apparatus using a random traveling wheel load, comprising a slide table drive / control circuit for driving and controlling the slide table movement positioning means based on a signal. 被試験舗装道路と同質の構成で被試験舗装道路に見立てた供試体を保持するスライドテーブルと;舗装道路上を走行する車両の車輪に見立てて前記供試体上を走行する試験車輪と;底部に前記試験車輪が装着され且つ重量調整可能な荷重が付加される移動体と;前記試験車輪を走行方向Xの同一直線軌跡で走行させると共にその試験車輪が供試体上を走行し終えて供試体から離れた位置に至る迄の範囲で反復走行させる試験車輪走行手段と;前記供試体を保持したスライドテーブルを、試験車輪の走行方向Xとは異なる移動方向Yにランダムに変化する移動位置に移動させて位置決めするスライドテーブル移動位置決め手段と;前記試験車輪が前記供試体上を走行し終えて供試体から離れた位置にあることを検知して、前記スライドテーブルの移動位置とその移動位置の発生頻度が正規分布特性に従うスライドテーブル移動位置信号を前記試験車輪の1回の走行毎にランダムに発生させ、そのスライドテーブル移動位置信号に基づいてスライドテーブル移動制御信号を発生させるスライドテーブル移動制御信号発生回路と;前記スライドテーブル移動制御信号に基づいて前記スライドテーブル移動位置決め手段を駆動制御するスライドテーブル駆動・制御回路を備えたことを特徴とするランダム走行車輪荷重による舗装のトラッキング試験装置。 A slide table that holds a specimen that is similar in structure to the test paved road and that is viewed as the test paved road; a test wheel that travels on the test specimen as a vehicle wheel traveling on the paved road; A moving body to which the test wheel is mounted and a weight-adjustable load is applied; the test wheel is made to travel along the same linear locus in the traveling direction X, and the test wheel has finished running on the specimen, and from the specimen Test wheel travel means for repeatedly traveling in a range up to a distant position; and moving the slide table holding the specimen to a travel position that randomly changes in a travel direction Y different from the travel direction X of the test wheel. A slide table moving positioning means for positioning the slide table; detecting that the test wheel has finished traveling on the specimen and is in a position away from the specimen; A slide table movement position signal in which the movement position and the frequency of occurrence of the movement position follow a normal distribution characteristic is randomly generated for each run of the test wheel, and a slide table movement control signal is generated based on the slide table movement position signal. A pavement with a random traveling wheel load, comprising: a slide table movement control signal generation circuit to be generated; and a slide table drive / control circuit for driving and controlling the slide table movement positioning means based on the slide table movement control signal Tracking test equipment. 移動体駆動用回転体の偏心位置に連結杆の一端が回動自在に軸支されその連結杆の多端が移動体に回動自在に軸支され、前記試験車輪を走行方向Xの同一直線軌跡で且つ前記供試体上を超えてその供試体から離れた位置に至る迄の範囲で往復走行させる試験車輪走行手段を備えたことを特徴とする請求項5または請求項6に記載のランダム走行車輪荷重による舗装のトラッキング試験装置。 One end of the connecting rod is pivotally supported at an eccentric position of the rotating body for driving the moving body, and the other end of the connecting rod is pivotally supported by the moving body. 7. A random traveling wheel according to claim 5 or 6, further comprising test wheel traveling means for reciprocally traveling in a range beyond the specimen and reaching a position away from the specimen. Pavement tracking test device by load. 試験車輪が供試体上を走行し終えて供試体から離れた位置にあることを検知して試験車輪位置信号を発する試験車輪位置検知器と、前記試験車輪位置信号を受けて前記試験車輪の1回の走行毎に正規乱数xを出力する乱数発生器と、前記正規乱数xを基にスライドテーブルの移動位置とその移動位置の発生頻度が正規分布特性に従うスライドテーブル移動位置信号yをランダムに発生するスライドテーブル移動位置演算回路と、前記スライドテーブル移動位置信号yを基にスライドテーブル移動制御信号cを発生するスライドテーブル移動制御信号演算回路を含むスライドテーブル移動制御信号発生回路を備えたことを特徴とする請求項5または請求項6に記載のランダム走行車輪荷重による舗装のトラッキング試験装置。   A test wheel position detector that detects that the test wheel has finished traveling on the specimen and is at a position away from the specimen and generates a test wheel position signal; A random number generator that outputs a normal random number x every time the vehicle travels, and a slide table moving position signal y according to a normal distribution characteristic in which the moving position of the slide table and the frequency of occurrence of the moving position are randomly generated based on the normal random number x And a slide table movement control signal generation circuit including a slide table movement control signal calculation circuit for generating a slide table movement control signal c based on the slide table movement position signal y. A tracking test apparatus for pavement with a random traveling wheel load according to claim 5 or 6. 供試体が、コンクリート床版の上に防水膜材を介してアスファルト舗装層が積層された構成であることを特徴とする請求5ないし請求項8のいずれか1項に記載のランダム走行車輪荷重による舗装のトラッキング試験装置。 The test specimen has a structure in which an asphalt pavement layer is laminated on a concrete floor slab with a waterproof membrane material interposed therebetween. Pavement tracking test equipment. 試験車輪の走行方向Xと供試体の移動方向Yが直交関係にあることを特徴とする請求項5ないし請求項8のいずれか1項に記載のランダム走行車輪荷重による舗装のトラッキング試験装置。 The pavement tracking test apparatus according to any one of claims 5 to 8, wherein the traveling direction X of the test wheel and the moving direction Y of the specimen are orthogonal to each other. コンクリート床版の上に防水膜材を介してアスファルト舗装層が積層された被試験舗装道路と同質の構成で被試験舗装道路に見立てた供試体を保持するスライドテーブルと;舗装道路上を走行する車両の車輪に見立てて前記供試体上を走行する試験車輪と;底部に前記試験車輪が装着され且つ重量調整可能な荷重が付加される移動体と;駆動モータで回転させる伝動歯車と噛み合う移動体駆動歯車の偏心位置に連結杆の一端が回動自在に軸支されその連結杆の多端が前記移動体に回動自在に軸支されて成り、前記試験車輪を走行方向Xの同一直線軌跡で且つ前記供試体上を超えてその供試体から離れた位置に至る迄の範囲で往復走行させる試験車輪走行手段と;サーボモータで回転させるボールねじが前記スライドテーブルに螺合して成り、前記供試体を保持したスライドテーブルを前記試験車輪の走行方向Xと直交関係となる移動方向Yの移動位置に移動させて位置決めするスライドテーブル移動位置決め機構と;前記試験車輪が前記供試体上を走行し終えて供試体から離れた位置にあることを検知して試験車輪位置信号を発する試験車輪位置検知器、前記試験車輪位置信号を受けて前記試験車輪の1回の走行毎に正規乱数xを出力する乱数発生器、前記正規乱数xを基に前記スライドテーブルの移動位置とその移動位置の発生頻度が正規分布特性に従うスライドテーブル移動位置信号yをランダムに発生するスライドテーブル移動位置演算回路、および前記スライドテーブル移動位置信号yを基に前記サーボモータの制御信号cを発生するサーボモータ制御信号演算回路を含むサーボモータ制御信号発生回路と;前記サーボモータ制御信号cに基づき前記サーボモータを駆動するサーボモータ駆動・制御回路を備えたことを特徴とするランダム走行車輪荷重による舗装のトラッキング試験装置。
A slide table that holds a specimen that looks like a test paved road with the same quality as the test paved road, in which the asphalt pavement layer is laminated on the concrete floor slab with a waterproof membrane; traveling on the paved road A test wheel that travels on the specimen as if it were a vehicle wheel; a mobile body on which the test wheel is mounted and a weight-adjustable load is applied; and a mobile body that meshes with a transmission gear that is rotated by a drive motor One end of a connecting rod is pivotally supported at an eccentric position of the drive gear, and multiple ends of the connecting rod are pivotally supported by the movable body, and the test wheel is moved along the same linear locus in the traveling direction X. And a test wheel running means for reciprocating in a range from the specimen to a position away from the specimen; and a ball screw that is rotated by a servo motor is screwed to the slide table, A slide table movement positioning mechanism for positioning the slide table holding the specimen by moving it to a movement position in the movement direction Y orthogonal to the running direction X of the test wheel; and the test wheel traveling on the specimen A test wheel position detector that detects that the test wheel position signal is detected after being finished and is in a position away from the specimen, and receives the test wheel position signal and obtains a normal random number x for each run of the test wheel. A random number generator for outputting, a slide table movement position calculation circuit for randomly generating a slide table movement position signal y in which the movement position of the slide table and the frequency of occurrence of the movement position follow normal distribution characteristics based on the normal random number x, and A servo motor control signal calculation circuit for generating a control signal c of the servo motor based on the slide table movement position signal y Bomota control signal generating circuit and; the servo motor control signal pavement tracking test apparatus according to the random travel wheel load, characterized in that it comprises a servo motor drive and control circuit for driving the servo motor based to c.
JP2004360778A 2004-12-14 2004-12-14 Pavement wheel tracking test method with random running wheel load and pavement wheel tracking test device with random running wheel load. Expired - Fee Related JP4635131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360778A JP4635131B2 (en) 2004-12-14 2004-12-14 Pavement wheel tracking test method with random running wheel load and pavement wheel tracking test device with random running wheel load.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360778A JP4635131B2 (en) 2004-12-14 2004-12-14 Pavement wheel tracking test method with random running wheel load and pavement wheel tracking test device with random running wheel load.

Publications (2)

Publication Number Publication Date
JP2006170680A true JP2006170680A (en) 2006-06-29
JP4635131B2 JP4635131B2 (en) 2011-02-16

Family

ID=36671610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360778A Expired - Fee Related JP4635131B2 (en) 2004-12-14 2004-12-14 Pavement wheel tracking test method with random running wheel load and pavement wheel tracking test device with random running wheel load.

Country Status (1)

Country Link
JP (1) JP4635131B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2283229A1 (en) * 2007-01-25 2007-10-16 Universidad Politecnica De Madrid Evaluating method for self regulation of asphalt mixtures, involves simulating charges of traffic on road surfaces of highway which is used for study of different properties of asphalt mixture
DE102007048839A1 (en) * 2007-10-11 2009-04-16 Technische Universität Darmstadt Apparatus and method for investigating the wear resistance of a surface of a pavement sample
JP2009192391A (en) * 2008-02-15 2009-08-27 Kobe Univ Method and device for evaluating asphalt mixture and sample
US20110200699A1 (en) * 2010-02-01 2011-08-18 Mecpart S.R.L. Roller compactor integrated to a wheel track machine for laboratory tests on bituminous mixes
CN102305801A (en) * 2011-05-27 2012-01-04 丹东市无损检测设备有限公司 Train wheel disc detection device
CN103344497A (en) * 2013-06-19 2013-10-09 福州大学 Method and device for mechanical parameter test on granular aggregate roadbed
CN103471946A (en) * 2013-08-23 2013-12-25 长安大学 Accelerated wear test device and test method for cement concrete pavement
KR101498199B1 (en) * 2013-11-07 2015-03-05 (주)제이에프엠엔지니어링 Tester pressing electric vehicle connector
CN104792607A (en) * 2015-04-21 2015-07-22 武汉友枫模塑有限责任公司 Analysis meter for wheel tracking tests
CN105842077A (en) * 2016-05-19 2016-08-10 青岛信希塑胶有限公司 Automatic foot wheel walking testing machine and testing method
CN104215498B (en) * 2013-05-29 2016-10-05 福州美德实验仪器有限公司 A kind of multifunctional track tester
CN106018145A (en) * 2016-06-21 2016-10-12 长安大学 Device for combined testing of wear resistance and load sand bonding property of sand-containing fog seal
RU173579U1 (en) * 2017-04-18 2017-08-31 Сергей Юрьевич Андронов DEVICE FOR TESTING FOR RUTGING OF ROAD COMPOSITE MIXTURES
RU2642978C1 (en) * 2017-04-18 2018-01-29 Сергей Юрьевич Андронов Rut testing bench of road composite mixtures
CN108196039A (en) * 2018-03-15 2018-06-22 郑州大学 Characteristic of crack and its simulator and method on overlay influence between broken block
KR101877295B1 (en) * 2017-02-28 2018-07-11 (주)이큐브시스템 Apparatus for testing fatigue or abrasion of rail and wheel
JP2018173314A (en) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 Method for testing sliding resistance of concrete, method for selecting fine aggregate, and method for manufacturing concrete
CN109060381A (en) * 2018-08-28 2018-12-21 齐鲁交通发展集团有限公司 Single-point type large size full size road surface accelerated loading system track test device and method
CN109724893A (en) * 2019-03-18 2019-05-07 广东华路交通科技有限公司 The test device and method of ultra-thin wearing layer endurance quality in a kind of testing tunnel
CN110018044A (en) * 2019-04-17 2019-07-16 南京理工大学 A kind of paving steel bridge deck modulus test device based on digital picture
CN110579361A (en) * 2019-09-25 2019-12-17 中信戴卡股份有限公司 wheel testing machine
CN110793844A (en) * 2019-12-18 2020-02-14 阜阳市路兴公路工程监理有限公司 Detection device for bituminous paving rut experiments
CN112033831A (en) * 2020-07-16 2020-12-04 中交一公局集团有限公司海外分公司 Rut tester
CN112113872A (en) * 2020-09-24 2020-12-22 华北水利水电大学 Inorganic binder stable material scouring simulation test device and detection method
CN113029720A (en) * 2021-03-11 2021-06-25 南充市公信检测有限公司 Rut sample forming machine
CN114383960A (en) * 2022-01-20 2022-04-22 广西北投交通养护科技集团有限公司 Asphalt mixture anti-rutting capability test device and use method thereof
CN114778346A (en) * 2022-04-21 2022-07-22 合肥工业大学 Driving load simulation device
CN110579361B (en) * 2019-09-25 2024-06-07 中信戴卡股份有限公司 Wheel testing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764630B (en) * 2017-10-19 2020-04-14 长安大学 Test device for testing shear failure of asphalt pavement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059805A (en) * 1999-08-24 2001-03-06 Bridgestone Corp Load moving test apparatus
JP2002082033A (en) * 2000-06-30 2002-03-22 Abe Yorimasa Load movement testing apparatus and method
JP2002214102A (en) * 2001-01-15 2002-07-31 Nikken Kk Load moving test device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059805A (en) * 1999-08-24 2001-03-06 Bridgestone Corp Load moving test apparatus
JP2002082033A (en) * 2000-06-30 2002-03-22 Abe Yorimasa Load movement testing apparatus and method
JP2002214102A (en) * 2001-01-15 2002-07-31 Nikken Kk Load moving test device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2283229A1 (en) * 2007-01-25 2007-10-16 Universidad Politecnica De Madrid Evaluating method for self regulation of asphalt mixtures, involves simulating charges of traffic on road surfaces of highway which is used for study of different properties of asphalt mixture
DE102007048839A1 (en) * 2007-10-11 2009-04-16 Technische Universität Darmstadt Apparatus and method for investigating the wear resistance of a surface of a pavement sample
DE102007048839B4 (en) * 2007-10-11 2009-08-20 Technische Universität Darmstadt Apparatus and method for investigating the wear resistance of a surface of a pavement sample
JP2009192391A (en) * 2008-02-15 2009-08-27 Kobe Univ Method and device for evaluating asphalt mixture and sample
US20110200699A1 (en) * 2010-02-01 2011-08-18 Mecpart S.R.L. Roller compactor integrated to a wheel track machine for laboratory tests on bituminous mixes
US8376729B2 (en) * 2010-02-01 2013-02-19 Mecpart S.P.A. Roller compactor integrated to a wheel track machine for laboratory tests on bituminous mixes
CN102305801A (en) * 2011-05-27 2012-01-04 丹东市无损检测设备有限公司 Train wheel disc detection device
CN104215498B (en) * 2013-05-29 2016-10-05 福州美德实验仪器有限公司 A kind of multifunctional track tester
CN103344497A (en) * 2013-06-19 2013-10-09 福州大学 Method and device for mechanical parameter test on granular aggregate roadbed
CN103471946A (en) * 2013-08-23 2013-12-25 长安大学 Accelerated wear test device and test method for cement concrete pavement
CN103471946B (en) * 2013-08-23 2016-03-02 长安大学 A kind of cement concrete pavement accelerates abrasion test device and test method thereof
KR101498199B1 (en) * 2013-11-07 2015-03-05 (주)제이에프엠엔지니어링 Tester pressing electric vehicle connector
CN104792607A (en) * 2015-04-21 2015-07-22 武汉友枫模塑有限责任公司 Analysis meter for wheel tracking tests
CN105842077A (en) * 2016-05-19 2016-08-10 青岛信希塑胶有限公司 Automatic foot wheel walking testing machine and testing method
CN106018145A (en) * 2016-06-21 2016-10-12 长安大学 Device for combined testing of wear resistance and load sand bonding property of sand-containing fog seal
CN106018145B (en) * 2016-06-21 2019-02-15 长安大学 A kind of sealing abrasion performance of mist containing sand and the simultaneous determination device of load scab
KR101877295B1 (en) * 2017-02-28 2018-07-11 (주)이큐브시스템 Apparatus for testing fatigue or abrasion of rail and wheel
JP2018173314A (en) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 Method for testing sliding resistance of concrete, method for selecting fine aggregate, and method for manufacturing concrete
RU2642978C1 (en) * 2017-04-18 2018-01-29 Сергей Юрьевич Андронов Rut testing bench of road composite mixtures
RU173579U1 (en) * 2017-04-18 2017-08-31 Сергей Юрьевич Андронов DEVICE FOR TESTING FOR RUTGING OF ROAD COMPOSITE MIXTURES
CN108196039B (en) * 2018-03-15 2024-02-27 郑州大学 Device and method for simulating crack characteristics among broken blocks and influence of crack characteristics on layering
CN108196039A (en) * 2018-03-15 2018-06-22 郑州大学 Characteristic of crack and its simulator and method on overlay influence between broken block
CN109060381A (en) * 2018-08-28 2018-12-21 齐鲁交通发展集团有限公司 Single-point type large size full size road surface accelerated loading system track test device and method
CN109060381B (en) * 2018-08-28 2024-04-02 山东高速集团有限公司 Rut testing device and rut testing method for single-point type large-scale pavement acceleration loading system
CN109724893A (en) * 2019-03-18 2019-05-07 广东华路交通科技有限公司 The test device and method of ultra-thin wearing layer endurance quality in a kind of testing tunnel
CN110018044A (en) * 2019-04-17 2019-07-16 南京理工大学 A kind of paving steel bridge deck modulus test device based on digital picture
CN110579361A (en) * 2019-09-25 2019-12-17 中信戴卡股份有限公司 wheel testing machine
CN110579361B (en) * 2019-09-25 2024-06-07 中信戴卡股份有限公司 Wheel testing machine
CN110793844A (en) * 2019-12-18 2020-02-14 阜阳市路兴公路工程监理有限公司 Detection device for bituminous paving rut experiments
CN112033831A (en) * 2020-07-16 2020-12-04 中交一公局集团有限公司海外分公司 Rut tester
CN112113872A (en) * 2020-09-24 2020-12-22 华北水利水电大学 Inorganic binder stable material scouring simulation test device and detection method
CN113029720A (en) * 2021-03-11 2021-06-25 南充市公信检测有限公司 Rut sample forming machine
CN113029720B (en) * 2021-03-11 2024-03-15 南充市公信检测有限公司 Rut sample make-up machine
CN114383960A (en) * 2022-01-20 2022-04-22 广西北投交通养护科技集团有限公司 Asphalt mixture anti-rutting capability test device and use method thereof
CN114383960B (en) * 2022-01-20 2024-01-02 广西北投交通养护科技集团有限公司 Asphalt mixture rut resistance test device and application method thereof
CN114778346A (en) * 2022-04-21 2022-07-22 合肥工业大学 Driving load simulation device
CN114778346B (en) * 2022-04-21 2024-04-12 合肥工业大学 Driving load simulation device

Also Published As

Publication number Publication date
JP4635131B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4635131B2 (en) Pavement wheel tracking test method with random running wheel load and pavement wheel tracking test device with random running wheel load.
CN106970364B (en) A kind of trailer-mounted radar is in ring real-time simulation test macro and its method
CN105937199B (en) Independently detect intelligent apparatus in hub-type road face
JP2018128278A (en) Hammer sound inspector and hammer sound system
Guthrie et al. Automated air-coupled impact-echo testing of a concrete bridge deck from a continuously moving platform
Cheng et al. Fatigue tests of welded connections between longitudinal stringer and deck plate in railway bridge orthotropic steel decks
CN102636400A (en) Asphalt mixture fatigue property test method based on wheel load instrument
CN105890646A (en) Construction site rolling vehicle working condition acquiring method and construction site rolling vehicle working condition acquiring device
CN105181493B (en) Steel and concrete interface fatigue experimental device
EP0837314A2 (en) Apparatus and related methods for determining tire tread stiffness
JP2011158448A (en) Rubber tester
CN106769437A (en) Asphalt transversely deforming measurement apparatus under a kind of temperature load coupling
Kang et al. Rapid damage assessment of concrete bridge deck leveraging an automated double-sided bounce system
CN109855947A (en) Double drive wheel track material object rolling contact fatigue-testing machine
EP2198262B1 (en) Apparatus and method for investigating the wear resistance of a surface of a road surfacing sample
CN104032657B (en) The calibration steps of a kind of laser pavement texture meter and device
Jurado et al. Evaluation of asphalt damage and cracking development with seismic pavement analyzer
CN110231467A (en) Not viscous wheel pitch is not viscous to take turns performance testing device and test method
JP2019039787A (en) Hammering test device and method for structure
CN202533430U (en) Detection device for detecting defects in concrete test specimens
EP2930508A1 (en) Method for inspecting components by ultrasound and testing device with a manipulator
JP4129341B2 (en) Load transfer test equipment
CN210294260U (en) Asphalt non-stick wheel performance testing device for non-stick wheel
CN209542401U (en) A kind of use for laboratory Bitumen Pavement Anti-Skid Performance experimental apparatus for testing
DE102005005230B4 (en) Device and method for detecting obstacles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees