JP2006170488A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006170488A
JP2006170488A JP2004361130A JP2004361130A JP2006170488A JP 2006170488 A JP2006170488 A JP 2006170488A JP 2004361130 A JP2004361130 A JP 2004361130A JP 2004361130 A JP2004361130 A JP 2004361130A JP 2006170488 A JP2006170488 A JP 2006170488A
Authority
JP
Japan
Prior art keywords
compressor
pipe
suction
discharge
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004361130A
Other languages
Japanese (ja)
Other versions
JP3984258B2 (en
Inventor
Michiyoshi Kusaka
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2004361130A priority Critical patent/JP3984258B2/en
Priority to KR1020050031834A priority patent/KR100621881B1/en
Publication of JP2006170488A publication Critical patent/JP2006170488A/en
Application granted granted Critical
Publication of JP3984258B2 publication Critical patent/JP3984258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of being operated corresponding to load with a simple constitution. <P>SOLUTION: This air conditioner 1 comprises two compressors 4, 5, and a suction-side check valve 10 is mounted in a second suction branch pipe 9 of the upper-side compressor 5. Discharge branch pipes 13, 14 of the compressors 4, 5 are constituted to allow refrigerants to flow together after passing through the discharge-side check valves 15, 18. A bypass pipe 16 further extends from the discharge branch pipe 13 of the lower-side compressor 4, and the bypass pipe 16 is connected with the second suction branch pipe 9. An opening and closing valve 17 is mounted in the bypass pipe 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二段圧縮が可能な空気調和機に関する。   The present invention relates to an air conditioner capable of two-stage compression.

冷房運転と、暖房運転とが切り替え可能な空気調和機には、圧縮機を直列にしたものがある(例えば、特許文献1、特許文献2参照)。特許文献1に開示されている空気調和機は、低段側圧縮器と、高段側圧縮機と、凝縮器と、中間冷却器と、主絞り装置と、蒸発器とが順次配管で接続されている。   Some air conditioners that can be switched between a cooling operation and a heating operation include a compressor in series (for example, see Patent Document 1 and Patent Document 2). In the air conditioner disclosed in Patent Document 1, a low-stage compressor, a high-stage compressor, a condenser, an intercooler, a main throttle device, and an evaporator are sequentially connected by piping. ing.

また、特許文献2に開示されている空気調和機では、低段側圧縮機、又は高段側圧縮機の一方のみで空調ができるように切替装置が設けられている。具体的には、四方弁の切り換えによって冷房運転と暖房運転を切換可能な構成において、低段側圧縮機の吸入側の配管中に三方弁を設け、低段側圧縮機を介さずに、冷媒を高段側圧縮機に直接に導入できるように配管されている。さらに、低段側圧縮機と、高段側圧縮機とを結ぶ配管中に三方弁を設けて、高段側圧縮機を介さずに、低段側圧縮機からの冷媒を直接に熱交換器に供給できるように配管されている。これら三方弁、及び四方弁からなる切替装置は、室外空気温度によって切り替えられ、3通りの運転サイクルが可能になる。
特開平2−213652号公報 特開平10−111031号公報
Moreover, in the air conditioner disclosed in Patent Document 2, a switching device is provided so that air conditioning can be performed by only one of the low-stage compressor and the high-stage compressor. Specifically, in the configuration in which the cooling operation and the heating operation can be switched by switching the four-way valve, a three-way valve is provided in the piping on the suction side of the low-stage compressor, and the refrigerant is not passed through the low-stage compressor. Is piped so that it can be directly introduced into the high stage compressor. Furthermore, a three-way valve is provided in the pipe connecting the low-stage compressor and the high-stage compressor, so that the refrigerant from the low-stage compressor is directly passed through the heat exchanger without going through the high-stage compressor. It is piped so that it can be supplied to The switching device composed of these three-way valve and four-way valve is switched depending on the outdoor air temperature, and three operation cycles are possible.
Japanese Unexamined Patent Publication No. Hei 2-213652 JP 10-1111031 A

しかしながら、特許文献1に開示されているような空気調和機は、低段側圧縮機と、高段側圧縮機とが、直列に接続されているので、常に2台の圧縮機を同時に運転させなければならず、各圧縮機の単独運転、すなわち、単段圧縮運転をすることができなかった。単段圧縮運転ができないと、過負荷運転時などのように、高圧が上昇する運転条件においては、高圧カットによって圧縮機が停止するなどして、快適性の低下に繋がると共に、圧縮機の信頼性が低下することになる。また、暖房過負荷や、冷房低温条件などの低負荷条件においても、2台の圧縮機が常に運転するため、能力過剰となって、システム全体として発停を繰り返して行うようになり、エネルギ消費効率が低下してしまう。
また、特許文献2に開示されているような空気調和機では、冷房と暖房の切り替えに使用される四方弁の他に、各圧縮機周りの冷媒の流路を切り替えるために、三方弁が2つ必要になり、装置構成が複雑になるという問題があった。また、弁の数が増えると共に、これら弁の切り替えに複雑な制御が必要になるので、装置のコストが高くなるという問題があった。
この発明は、このような事情に鑑みてなされたものであり、その目的とするところは、簡単な構成で、負荷に合わせた運転を可能にすることである。
However, in the air conditioner disclosed in Patent Document 1, since the low-stage compressor and the high-stage compressor are connected in series, the two compressors are always operated at the same time. In other words, each compressor cannot be operated independently, that is, a single-stage compression operation cannot be performed. If single-stage compression operation is not possible, under high-pressure operation conditions, such as during overload operation, the compressor will stop due to a high-pressure cut, resulting in a decrease in comfort and reliability of the compressor. The sex will be reduced. Also, even under low load conditions such as heating overload and cooling low temperature conditions, the two compressors always operate, so the capacity becomes excessive and the entire system is repeatedly started and stopped, resulting in energy consumption. Efficiency will decrease.
In addition, in an air conditioner as disclosed in Patent Document 2, in addition to the four-way valve used for switching between cooling and heating, a three-way valve is used for switching the refrigerant flow path around each compressor. Therefore, there is a problem that the apparatus configuration becomes complicated. In addition, as the number of valves increases, complicated control is required for switching these valves, resulting in a problem that the cost of the apparatus increases.
The present invention has been made in view of such circumstances, and an object of the present invention is to enable operation in accordance with a load with a simple configuration.

上記の課題を解決する本発明の請求項1に係る発明は、第1の圧縮機、第2の圧縮機、四方弁、室外熱交換器、室外側減圧手段を有する室外機と、室内側減圧手段、室内熱交換機を有する室内機とを、液管及びガス管で接続した空気調和機において、前記第1、第2の圧縮機に冷媒を吸入させる吸入配管は、前記第1の圧縮機の第1吸入分岐管と、前記第2の圧縮機の第2吸入分岐管とに分岐しており、前記第2吸入分岐管中には、冷媒の逆流を防止する吸入側逆止弁が設けられており、前記第1、第2の圧縮機から吐出される冷媒が通流する吐出配管は、前記第1の圧縮機の第1吐出配管と、前記第2の圧縮機の第2吐出配管とが合流した後に前記四方弁に接続され、前記第1、第2吐出配管中には、冷媒の逆流を防止する吐出側逆止弁がそれぞれ設けられ、前記第1吐出配管の前記吐出側逆止弁と前記第1の圧縮機との間からは、バイパス分岐管が分岐し、前記バイパス分岐管は、前記第2吸入分岐管の前記吸入側逆止弁と前記第2の圧縮機との間で接続されていることを特徴とする空気調和機とした。   The invention according to claim 1 of the present invention that solves the above-described problems includes a first compressor, a second compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit having an outdoor decompression means, and an indoor decompression. Means, an air conditioner in which an indoor unit having an indoor heat exchanger is connected by a liquid pipe and a gas pipe, and a suction pipe for sucking refrigerant into the first and second compressors is provided in the first compressor. The first suction branch pipe branches into a second suction branch pipe of the second compressor, and a suction-side check valve for preventing a reverse flow of the refrigerant is provided in the second suction branch pipe. A discharge pipe through which the refrigerant discharged from the first and second compressors flows is a first discharge pipe of the first compressor and a second discharge pipe of the second compressor. Are connected to the four-way valve, and a discharge-side check valve for preventing a refrigerant backflow is provided in the first and second discharge pipes. A bypass branch pipe branches from between the discharge check valve of the first discharge pipe and the first compressor, and the bypass branch pipe is connected to the second suction branch pipe. The air conditioner is characterized in that it is connected between the suction side check valve and the second compressor.

この空気調和機では、第1の圧縮機から吐出するガス冷媒を、バイパス分岐管を通って第2の圧縮機に吸入させて、さらに圧縮するような、いわゆる2段圧縮を行うことができる。この場合に、第1の圧縮機側の吐出側逆止弁によって、第2の圧縮機から吐出される高圧のガス冷媒が第2吐出配管を通って第1の圧縮機に逆流することはない。このよう吐出側逆止弁の機能は、第2の圧縮機のみを運転させた場合にも発揮される。また、吸入側逆止弁によって、バイパス分岐管を通流するガス冷媒が、第2吸入分岐管を逆流することはない。このように構成することで、冷媒の吸入経路や、吐出経路を適宜切り換えることが可能になり、単段圧縮と、2段圧縮とを任意に選択できるようになる。   In this air conditioner, so-called two-stage compression can be performed in which the gas refrigerant discharged from the first compressor is sucked into the second compressor through the bypass branch pipe and further compressed. In this case, the high-pressure gas refrigerant discharged from the second compressor does not flow back to the first compressor through the second discharge pipe by the discharge-side check valve on the first compressor side. . The function of the discharge side check valve is also exhibited when only the second compressor is operated. Also, the gas refrigerant flowing through the bypass branch pipe does not flow back through the second suction branch pipe by the suction side check valve. With this configuration, the refrigerant suction path and the discharge path can be switched as appropriate, and single-stage compression and two-stage compression can be arbitrarily selected.

請求項2に係る発明は、請求項1に記載の空気調和機において、前記第1の圧縮機は、前記第2の圧縮機よりも容量が大きいことを特徴とする。
この空気調和機は、2段圧縮する際に、第1の圧縮機を低段側圧縮機として運転させる際に、第1の圧縮機の方が圧縮機容量を大きくなるので、ガス冷媒を効率良く昇圧することができる。
The invention according to claim 2 is the air conditioner according to claim 1, characterized in that the first compressor has a larger capacity than the second compressor.
In this air conditioner, when the first compressor is operated as a low-stage compressor when the two-stage compression is performed, the compressor capacity of the first compressor is increased, so that the gas refrigerant is efficiently used. Boosts well.

請求項3に係る発明は、請求項1又は請求項2に記載の空気調和機において、前記第1の圧縮機のみを運転させるモードと、前記第2の圧縮機のみを運転させるモードと、前記第1、第2の圧縮機の両方を同時に運転させるモードと、を切り替える制御部を備えることを特徴とする。
この空気調和機では、2段圧縮運転に加えて、負荷に応じて適正な容量の圧縮機を段階的に選択でき、効率良く運転をすることができる。
The invention according to claim 3 is the air conditioner according to claim 1 or 2, wherein only the first compressor is operated, only the second compressor is operated, and A control unit that switches between a mode in which both the first and second compressors are operated simultaneously is provided.
In this air conditioner, in addition to the two-stage compression operation, a compressor having an appropriate capacity can be selected in stages according to the load, and the operation can be performed efficiently.

請求項4に係る発明は、請求項1又は請求項2に記載の空気調和機において、前記分岐管には、開閉弁が設けられていることを特徴とする。
この空気調和機では、開閉弁を閉じると、第1の圧縮機の吐出側から第2の圧縮機の吸入側に向かうガス冷媒の流れを禁止できる。このように開閉弁を設けることによって、並列圧縮モードが実施可能になる。
The invention according to claim 4 is the air conditioner according to claim 1 or 2, wherein the branch pipe is provided with an open / close valve.
In this air conditioner, when the on-off valve is closed, the flow of the gas refrigerant from the discharge side of the first compressor toward the suction side of the second compressor can be prohibited. By providing the on-off valve in this way, the parallel compression mode can be implemented.

請求項5に係る発明は、請求項4に記載の空気調和機において、前記第1の圧縮機のみを運転させるモードと、前記第2の圧縮機のみを運転させるモードと、前記開閉弁を開き、前記第1、第2の圧縮機の両方を同時に運転させるモードと、前記開閉弁を閉じて、両方の前記圧縮機を運転させるモードとを切り替える制御部を備えることを特徴とする
この空気調和機では、低負荷時や、標準運転時には、第1の圧縮機、又は第2の圧縮機を用いた単段圧縮を行い、暖房の低外気温条件等、圧縮比が大きくなるような条件では、開閉弁を開いて2段圧縮を行う。さらに、高負荷時など圧縮機能力を必要とする場合には、開閉弁を閉じて、2台の圧縮機で並列に単段圧縮を行う。
According to a fifth aspect of the present invention, in the air conditioner according to the fourth aspect, a mode in which only the first compressor is operated, a mode in which only the second compressor is operated, and the on-off valve is opened. The air conditioner further comprises a control unit that switches between a mode in which both the first and second compressors are operated simultaneously and a mode in which the on-off valve is closed and both the compressors are operated. The machine performs single-stage compression using the first compressor or the second compressor at low load or during standard operation, and under conditions where the compression ratio is large, such as low outside air temperature conditions for heating. Then, the on-off valve is opened to perform two-stage compression. Further, when a compression function is required, such as at high loads, the on-off valve is closed and single-stage compression is performed in parallel by two compressors.

請求項6に係る発明は、請求項1から請求項5のいずれか一項に記載の空気調和機において、前記第1の圧縮機と、前記第2の圧縮機との少なくとも一方の圧縮機が、容量可変型の圧縮機であることを特徴とする。
この空気調和機では、一台の圧縮機で単段圧縮を行う際に、負荷に応じて圧縮機容量を制御することができる。また、容量を変化させることで、2段圧縮時に各圧縮機における圧縮比を適正化する。
The invention according to claim 6 is the air conditioner according to any one of claims 1 to 5, wherein at least one of the first compressor and the second compressor is included. The compressor is a variable capacity compressor.
In this air conditioner, when single-stage compression is performed with one compressor, the compressor capacity can be controlled according to the load. Moreover, the compression ratio in each compressor is optimized at the time of two-stage compression by changing the capacity.

本発明によれば、第1の圧縮機の吐出側と第2の圧縮機の吸入側とを接続するバイパス分岐管と、バイパス分岐管から第1の圧縮機の吸入側に向かう冷媒の逆流を防止する吸入側逆止弁と、一方の圧縮機の吐出側から他方の圧縮機の吐出側への逆流を防止する吐出側逆止弁とを設けたので、三方弁の切り替え制御を行わなくても単段圧縮と、2段圧縮とを選択的に実施することができ、運転状態に応じた適切な運転なサイクルを選択することが可能になる。さらに、切り替え弁の数を減らすことができるので、装置のコストを低減できる。また、分岐管中に開閉弁を設けると、2台の圧縮機を共に運転させる一般的な並列圧縮が可能になる。第1の圧縮機の容量を、第2の圧縮機の容量よりも大きくしたり、第2の圧縮機を容量可変型にしたりすると、多様な負荷の変化に対応することが可能になり、エネルギ消費効率を向上させることができると共に、2段圧縮時には各圧縮機における圧縮比を適正化でき、運転効率の向上、及び信頼性の向上が図れる。   According to the present invention, the bypass branch pipe connecting the discharge side of the first compressor and the suction side of the second compressor, and the reverse flow of the refrigerant from the bypass branch pipe toward the suction side of the first compressor Since there is a suction side check valve to prevent and a discharge side check valve to prevent backflow from the discharge side of one compressor to the discharge side of the other compressor, it is not necessary to control switching of the three-way valve In addition, single-stage compression and two-stage compression can be selectively performed, and it is possible to select an appropriate operation cycle according to the operation state. Furthermore, since the number of switching valves can be reduced, the cost of the apparatus can be reduced. In addition, when an on-off valve is provided in the branch pipe, general parallel compression in which two compressors are operated together becomes possible. If the capacity of the first compressor is made larger than the capacity of the second compressor or the capacity of the second compressor is made variable, it becomes possible to cope with various load changes and energy. Consumption efficiency can be improved, and at the time of two-stage compression, the compression ratio in each compressor can be optimized, so that operation efficiency and reliability can be improved.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1にシステム構成を示すように、空気調和機1は、室外機2と、室内機3とから構成されている。室外機3は、第1の圧縮機である低段側圧縮機4と、第2の圧縮機である高段側圧縮機5との2つの圧縮機を備えている。高段側圧縮機5は、低段側圧縮機4に比べて容量は小さいが、その容量を変化させることができる容量可変型の圧縮機である。
各圧縮機4,5の吸入側には、吸入配管6が接続されている。吸入配管6は、分岐点7で第1吸入分岐管8と、第2吸入分岐管9とに分岐している。第1吸入分岐管8は、低段側圧縮機4の吸入側に接続されており、第2吸入分岐管9は、高段側圧縮機5の吸入側に接続されている。第2吸入分岐管9中には、吸入側逆止弁10が設けられている。この吸入側逆止弁10は、高段側圧縮機5に向かう方向には、冷媒の通流を許容するが、その逆の方向には、冷媒を通流させないように設定されている。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the air conditioner 1 is composed of an outdoor unit 2 and an indoor unit 3. The outdoor unit 3 includes two compressors, a low-stage compressor 4 that is a first compressor and a high-stage compressor 5 that is a second compressor. The high-stage compressor 5 is a variable capacity compressor that has a smaller capacity than the low-stage compressor 4 but can change its capacity.
A suction pipe 6 is connected to the suction side of each compressor 4, 5. The suction pipe 6 branches at a branch point 7 into a first suction branch pipe 8 and a second suction branch pipe 9. The first suction branch pipe 8 is connected to the suction side of the low stage compressor 4, and the second suction branch pipe 9 is connected to the suction side of the high stage compressor 5. A suction side check valve 10 is provided in the second suction branch pipe 9. The suction-side check valve 10 is set so as to allow the refrigerant to flow in the direction toward the high-stage compressor 5 but not to allow the refrigerant to flow in the opposite direction.

さらに、各圧縮機4,5の吐出側には、吐出配管11が接続されている。吐出配管11は、低段側圧縮機4の吐出側に接続された第1吐出配管13と、高段側圧縮機5の吐出側に接続された第2吐出配管14とを有し、これら第1吐出配管13,14が合流するように構成されている。第1吐出配管13中には、吐出側逆止弁15が設けられている。吐出側逆止弁15は、低段側圧縮機4から合流点12に向かう方向には、冷媒の通流を許容するが、低段側圧縮機4に逆流する方向には冷媒を通流させないように設定されている。さらに、吐出側逆止弁15と、低段側圧縮機4との間からは、バイパス配管16が分岐している。このバイパス配管16は、第2吸入分岐管9に、吸入側逆止弁10よりも高段側圧縮機5側で連結されており、バイパス配管16中には、電磁弁からなる開閉弁17が設けられている。
また、第2吐出配管14は、高段側圧縮機5の吐出側に接続されている。この第2吐出配管14中には、吐出側逆止弁18が設けられている。この吐出側逆止弁18は、高段側圧縮機5から合流点12に向かう方向には、冷媒の通流を許容するが、高段側圧縮機5に向かう方向には冷媒を通流させないように設定されている。
Further, a discharge pipe 11 is connected to the discharge side of each of the compressors 4 and 5. The discharge pipe 11 has a first discharge pipe 13 connected to the discharge side of the low stage side compressor 4 and a second discharge pipe 14 connected to the discharge side of the high stage side compressor 5. The 1 discharge piping 13 and 14 is comprised so that it may join. A discharge side check valve 15 is provided in the first discharge pipe 13. The discharge-side check valve 15 allows the refrigerant to flow in the direction from the low-stage compressor 4 toward the junction 12, but does not allow the refrigerant to flow in the direction to flow backward to the low-stage compressor 4. Is set to Further, a bypass pipe 16 branches from between the discharge side check valve 15 and the low stage side compressor 4. The bypass pipe 16 is connected to the second suction branch pipe 9 on the higher stage side compressor 5 side than the suction side check valve 10, and in the bypass pipe 16, an on-off valve 17 made of an electromagnetic valve is provided. Is provided.
The second discharge pipe 14 is connected to the discharge side of the high stage compressor 5. A discharge-side check valve 18 is provided in the second discharge pipe 14. The discharge-side check valve 18 allows the refrigerant to flow in the direction from the high-stage compressor 5 toward the junction 12, but does not allow the refrigerant to flow in the direction toward the high-stage compressor 5. Is set to

さらに、吐出配管11は、四方弁20の第1のポート20aに接続されている。図1において、第1のポート20aは、第2のポート20bに連通しており、第2のポート20bは、配管21を介して、室内機3の室内熱交換器22に接続されている。さらに、室内熱交換器22には、液管である配管23の一端部が接続されており、この配管23の一端部側で、かつ室内機3内には、膨張弁24が設けられている。配管23の他端部は、室外機2に導かれ、膨張弁25を介して室外熱交換器26に接続されている。さらに、室外熱交換器26には配管27が接続されており、この配管27は、四方弁20の第3のポート20cに接続されている。図1において、第3のポート20cは、第4のポート20dに連通しており、第4のポート20dには、前記した吸入配管6が接続されている。なお、図1の配管構成は、暖房運転時に対応するもので、後述する冷房運転時には、四方弁20を切り換えて、第1のポート20aと第3のポート30cとが連通され、第2のポート20bと第4のポート20dとが連通される。   Further, the discharge pipe 11 is connected to the first port 20 a of the four-way valve 20. In FIG. 1, the first port 20 a communicates with the second port 20 b, and the second port 20 b is connected to the indoor heat exchanger 22 of the indoor unit 3 via a pipe 21. Furthermore, one end of a pipe 23 that is a liquid pipe is connected to the indoor heat exchanger 22, and an expansion valve 24 is provided on the one end side of the pipe 23 and in the indoor unit 3. . The other end of the pipe 23 is led to the outdoor unit 2 and connected to the outdoor heat exchanger 26 via the expansion valve 25. Furthermore, a pipe 27 is connected to the outdoor heat exchanger 26, and this pipe 27 is connected to the third port 20 c of the four-way valve 20. In FIG. 1, the third port 20c communicates with the fourth port 20d, and the aforementioned suction pipe 6 is connected to the fourth port 20d. The piping configuration in FIG. 1 corresponds to the heating operation. During the cooling operation, which will be described later, the four-way valve 20 is switched so that the first port 20a and the third port 30c communicate with each other. 20b communicates with the fourth port 20d.

また、室外機2には、制御部28が設けられており、制御部28は、各圧縮機4,5の制御や、開閉弁17、及び四方弁20の切り替え、膨張弁24,25の開度調整を司っている。   In addition, the outdoor unit 2 is provided with a control unit 28, which controls the compressors 4, 5, switches the on-off valve 17 and the four-way valve 20, and opens the expansion valves 24, 25. I am in charge of adjusting the degree.

次に、この実施の形態の作用について説明する。
この空気調和機1は、制御部28の制御によって、第1の圧縮機又は第2の圧縮機のどちらか一方のみを運転する単段圧縮モードと、2段圧縮モードと、並列圧縮モードとに切り替えて運転することができる。
Next, the operation of this embodiment will be described.
The air conditioner 1 is controlled by the control unit 28 into a single-stage compression mode in which only one of the first compressor and the second compressor is operated, a two-stage compression mode, and a parallel compression mode. You can switch and drive.

単段圧縮モードは、暖房過負荷時や、冷房低温条件時など、負荷に応じて、圧縮機4,5を適宜選択するものである。例えば、単段圧縮モードとして、高段側圧縮機5のみを運転させる場合には、低段側圧縮機4を停止させ、開閉弁17を閉じる。図2に矢印で示すように、暖房時では、高段側圧縮機5から吐出されたガス冷媒は、第2吐出配管14から合流点12を通り、四方弁20に導かれる。このとき、第1吐出配管13中には、吐出側逆止弁15があるので、低段側圧縮機4に冷媒が逆流することはない。したがって、冷媒は、四方弁20から配管21を通って室内熱交換機22に供給される。室内熱交換器22において熱交換により形成される液冷媒は、配管23に排出され、膨張弁24,25によって減圧され、室外熱交換器26に供給される。液冷媒は、室外熱交換器26で熱交換によってガス冷媒となり、配管27から排出され、四方弁20を通って、吸入配管6に導かれる。吸入配管6では、分岐点7を経て、第2吸入分岐管9を通り、高段側圧縮機5に吸入され、以降、冷媒は、上述した経路を循環する。なお、開閉弁17が閉じているので、バイパス配管16から低段側圧縮機4の吐出側に冷媒が流入することはない。   In the single-stage compression mode, the compressors 4 and 5 are appropriately selected according to the load, such as when the heating is overloaded or when the cooling is at a low temperature. For example, when only the high stage side compressor 5 is operated in the single stage compression mode, the low stage side compressor 4 is stopped and the on-off valve 17 is closed. As shown by the arrows in FIG. 2, during heating, the gas refrigerant discharged from the high-stage compressor 5 passes through the junction 12 from the second discharge pipe 14 and is guided to the four-way valve 20. At this time, since the discharge-side check valve 15 is present in the first discharge pipe 13, the refrigerant does not flow back to the low-stage compressor 4. Therefore, the refrigerant is supplied from the four-way valve 20 to the indoor heat exchanger 22 through the pipe 21. The liquid refrigerant formed by heat exchange in the indoor heat exchanger 22 is discharged to the pipe 23, decompressed by the expansion valves 24 and 25, and supplied to the outdoor heat exchanger 26. The liquid refrigerant becomes a gas refrigerant by heat exchange in the outdoor heat exchanger 26, is discharged from the pipe 27, passes through the four-way valve 20, and is led to the suction pipe 6. In the intake pipe 6, it passes through the branch point 7, passes through the second intake branch pipe 9, and is sucked into the high-stage compressor 5. Thereafter, the refrigerant circulates through the above-described path. In addition, since the on-off valve 17 is closed, the refrigerant does not flow into the discharge side of the low-stage compressor 4 from the bypass pipe 16.

冷房運転時には、制御部28(図1参照)が、四方弁20を切り替えて、第1のポート20aと第3のポート20cとを連通させ、第2のポート20bと第4のポート20dとを連通させる。その結果、高段側圧縮機5から吐出されたガス冷媒は、四方弁20の第3のポート20dから図2中の矢印とは逆の方向、つまり配管27から室外熱交換器26に供給され、熱交換によって液冷媒となり、膨張弁24,25で減圧された後に、室内熱交換器22に供給される。そして、室内熱交換器22で熱交換によってガス冷媒となった後に、第2のポート20bから吸入配管6を通って高段側圧縮機5に吸入される。
このような単段圧縮モードでは、容量の小さい高段側圧縮機5を使用することで、低負荷条件において圧縮機の発停を低減させるので、エネルギ消費効率が向上する。さらに、高段側圧縮機5は、負荷に合わせて容量を変化させるので、エネルギ消費効率がさらに向上する。
During the cooling operation, the control unit 28 (see FIG. 1) switches the four-way valve 20 to connect the first port 20a and the third port 20c, and connects the second port 20b and the fourth port 20d. Communicate. As a result, the gas refrigerant discharged from the high-stage compressor 5 is supplied to the outdoor heat exchanger 26 from the third port 20d of the four-way valve 20 in the direction opposite to the arrow in FIG. Then, it becomes liquid refrigerant by heat exchange, and is decompressed by the expansion valves 24 and 25 and then supplied to the indoor heat exchanger 22. And after it becomes a gas refrigerant | coolant by heat exchange with the indoor heat exchanger 22, it is suck | inhaled by the high stage side compressor 5 through the suction piping 6 from the 2nd port 20b.
In such a single-stage compression mode, by using the high-stage compressor 5 having a small capacity, the start / stop of the compressor is reduced under a low load condition, so that the energy consumption efficiency is improved. Furthermore, since the capacity of the high stage side compressor 5 is changed according to the load, the energy consumption efficiency is further improved.

2段圧縮モードは、暖房低温条件など、高圧縮比運転時に用いられ、開閉弁17を開いた状態で、両圧縮機4,5を運転させる。図3に示すように、低段側圧縮機4から吐出されるガス冷媒は、バイパス配管16を通って第2吸入分岐管9に導かれる。このとき、吸入側逆止弁10は、冷媒の逆流を防止しているので、冷媒は、高段側圧縮機5に吸入される。高段側圧縮機5でさらに圧縮された高温、高圧のガス冷媒は、吐出配管11を通って四方弁20に導かれる。このとき、第1吐出配管13中には、吐出側逆止弁15があるので、高段側圧縮機5にガス冷媒が逆流することはない。さらに、このガス冷媒は、低段側圧縮機4から吐出されるガス冷媒より高圧であるため、低段側圧縮機4側のガス冷媒が直接に合流点12に流入することはない。暖房時では、冷媒は、四方弁20から室内熱交換器22、膨張弁24,25、室外熱交換器26を通って、それぞれ熱交換を行いつつ、吸入配管6に戻る。そして、冷媒は、第1吸入分岐管8から低段側圧縮機4に吸入される。なお、第1吸入分岐管8内は、吸入側逆止弁10よりも高段側圧縮機5側が高圧になっているので、ガス冷媒が吸入側逆止弁10を通って、高段側圧縮機5に直接流入することはない。
このような2段圧縮モードでは、低圧のガス冷媒を低段側圧縮機4で一度圧縮した後に、高段側圧縮機5に導いて再度圧縮を行うので、圧縮比が高くならざるを得ない運転条件下でも、各圧縮機4,5ごとの圧縮比を下げることができ、運転効率を向上できる。また、信頼性の向上が図れる。
The two-stage compression mode is used at the time of high compression ratio operation such as a heating low temperature condition, and both compressors 4 and 5 are operated with the on-off valve 17 opened. As shown in FIG. 3, the gas refrigerant discharged from the low-stage compressor 4 is guided to the second intake branch pipe 9 through the bypass pipe 16. At this time, since the suction side check valve 10 prevents the refrigerant from flowing back, the refrigerant is sucked into the high stage compressor 5. The high-temperature and high-pressure gas refrigerant further compressed by the high-stage compressor 5 is guided to the four-way valve 20 through the discharge pipe 11. At this time, since the discharge-side check valve 15 is present in the first discharge pipe 13, the gas refrigerant does not flow back to the high-stage compressor 5. Further, since this gas refrigerant is higher in pressure than the gas refrigerant discharged from the low stage side compressor 4, the gas refrigerant on the low stage side compressor 4 does not directly flow into the junction 12. During heating, the refrigerant returns from the four-way valve 20 through the indoor heat exchanger 22, the expansion valves 24 and 25, and the outdoor heat exchanger 26 to the suction pipe 6 while performing heat exchange. Then, the refrigerant is sucked into the low-stage compressor 4 from the first suction branch pipe 8. In the first intake branch pipe 8, the high-stage compressor 5 side is at a higher pressure than the suction-side check valve 10, so that the gas refrigerant passes through the suction-side check valve 10 and is compressed to the high-stage side. It does not flow directly into the machine 5.
In such a two-stage compression mode, the low-pressure gas refrigerant is compressed once by the low-stage compressor 4 and then led to the high-stage compressor 5 to perform compression again, so the compression ratio must be increased. Even under operating conditions, the compression ratio for each of the compressors 4 and 5 can be lowered, and the operating efficiency can be improved. Further, the reliability can be improved.

並列圧縮モードでは、例えば、室内機3の接続容量が130%となるような大容量運転時に用いられ、開閉弁17を閉じた状態で、両圧縮機4,5を運転させる。図4に示すように、両圧縮機4,5から吐出されるガス冷媒は、合流点12で合流し、四方弁20に導かれる。このとき、開閉弁17が閉じているので、低段側圧縮機4から吐出されるガス冷媒が、高段側圧縮機5に吸入されることはない。また、前述の通り、吐出側逆止弁15,18の存在によって、一方の圧縮機4,5から吐出されたガス冷媒が、他方の圧縮機4,5の吐出側に逆流することはない。暖房時では、ガス冷媒は、四方弁20から室内熱交換器22、膨張弁24,25、室外熱交換器26を通って、それぞれ熱交換を行いつつ、吸入配管6に戻る。そして、ガス冷媒は、分岐点7で分流し、第1吸入分岐管8から低段側圧縮機4に吸入され、第2吸入分岐管9から高段側圧縮機5に吸入される。
この並列圧縮モードでは、2台の圧縮機4,5を並列に運転させることで、1台での単段圧縮モードの場合に比べて冷媒の循環量が多くなるので、冷房能力、又は暖房能力を向上させることができる。また、高段側圧縮機5を容量可変型としたので、負荷が小さい場合や、負荷が大きい場合であっても、負荷に応じた適正な能力を確保することができる。なお、負荷が小さい場合には、エネルギ消費効率を向上させることができる。
In the parallel compression mode, for example, it is used at the time of large capacity operation in which the connection capacity of the indoor unit 3 is 130%, and both the compressors 4 and 5 are operated with the on-off valve 17 closed. As shown in FIG. 4, the gas refrigerant discharged from both the compressors 4 and 5 joins at the joining point 12 and is guided to the four-way valve 20. At this time, since the on-off valve 17 is closed, the gas refrigerant discharged from the low-stage compressor 4 is not sucked into the high-stage compressor 5. Further, as described above, due to the presence of the discharge side check valves 15 and 18, the gas refrigerant discharged from the one compressor 4 or 5 does not flow backward to the discharge side of the other compressor 4 or 5. During heating, the gas refrigerant passes from the four-way valve 20 through the indoor heat exchanger 22, the expansion valves 24 and 25, and the outdoor heat exchanger 26, and returns to the suction pipe 6 while performing heat exchange. Then, the gas refrigerant is branched at the branch point 7, sucked into the low-stage compressor 4 from the first suction branch pipe 8, and sucked into the high-stage compressor 5 from the second suction branch pipe 9.
In this parallel compression mode, since the two compressors 4 and 5 are operated in parallel, the amount of refrigerant circulated is larger than in the single-stage compression mode with one unit. Can be improved. Further, since the high-stage compressor 5 is of a variable capacity type, it is possible to ensure an appropriate capacity corresponding to the load even when the load is small or the load is large. In addition, when load is small, energy consumption efficiency can be improved.

この実施の形態によれば、各圧縮機4,5の吐出側に吐出側逆止弁15,18を設けたので、圧縮機4,5を一台のみ運転するときには、一方の圧縮機4,5から吐出されたガス冷媒が他方の圧縮機4,5に逆流しなくなる。したがって、従来のような弁の切り替え動作を行わなくても各圧縮機4,5を選択的に使用することが可能になる。
さらに、低段側圧縮機4の第1吐出配管13から高段側圧縮機5の吸入側にガス冷媒を供給するバイパス配管16を設けたので、両圧縮機4,5を用いた2段圧縮が可能になる。この場合において、高段側圧縮機5側の第2吸入分岐管9に、吸入側逆止弁10を設けたので、低段側圧縮機4から吐出されたガス冷媒が逆流することが防止される。したがって、従来のような弁の切り替え動作を行わなくても2段圧縮を行うことができる。
さらに、バイパス配管16中に開閉弁17を設けたので、並列圧縮をする場合に、開閉弁17を閉止することによってバイパス配管16中にガス冷媒が通流することを防止できるようになり、両圧縮機4,5を共に運転する場合に、二段圧縮モードと、並列圧縮モードとの切り換えが可能になる。開閉弁17は、三方弁などに比べて安価であり、その制御も容易であることから、装置コストを低く抑えることができる。
また、低段側圧縮機4の容量に比べて高段側圧縮機5の容量を小さく設定したので、2段圧縮時に冷媒を効率良く圧縮することができる。
According to this embodiment, since the discharge side check valves 15 and 18 are provided on the discharge side of the compressors 4 and 5, when operating only one compressor 4 or 5, one compressor 4 or 5 is operated. The gas refrigerant discharged from 5 does not flow backward to the other compressors 4 and 5. Therefore, it is possible to selectively use each of the compressors 4 and 5 without performing a conventional valve switching operation.
Further, since the bypass pipe 16 for supplying the gas refrigerant from the first discharge pipe 13 of the low stage side compressor 4 to the suction side of the high stage side compressor 5 is provided, two-stage compression using both compressors 4 and 5 is provided. Is possible. In this case, since the suction side check valve 10 is provided in the second suction branch pipe 9 on the high stage side compressor 5 side, the gas refrigerant discharged from the low stage side compressor 4 is prevented from flowing back. The Therefore, it is possible to perform the two-stage compression without performing the conventional valve switching operation.
Furthermore, since the on-off valve 17 is provided in the bypass pipe 16, it is possible to prevent the gas refrigerant from flowing into the bypass pipe 16 by closing the on-off valve 17 when performing parallel compression. When the compressors 4 and 5 are operated together, it is possible to switch between the two-stage compression mode and the parallel compression mode. The on-off valve 17 is less expensive than a three-way valve and is easy to control, so that the device cost can be kept low.
Further, since the capacity of the high-stage compressor 5 is set smaller than the capacity of the low-stage compressor 4, the refrigerant can be efficiently compressed during the two-stage compression.

なお、本発明は、前記の実施の形態に限定されずに広く応用することができる。
例えば、前記の実施の形態では、高段側の第2の圧縮機5を能力可変型、低段側を一定速型としているので、低段側の一定速機である第1の圧縮機4のみを用いた単段圧縮モードは行わないが、第1、第2の圧縮機4,5が容量の異なる定速機の組み合せの場合には、第1の圧縮機4のみを運転させる単段圧縮モードが実施される。
バイパス配管16に、開閉弁17を設けない場合には、第1単段圧縮モード、又は2段圧縮モードのいずれかを実施することが可能になる。
低段側圧縮機4を容量可変型の圧縮機としても良い。この場合には、高段側圧縮機5を定容量の圧縮機としても良いし、両圧縮機4,5を容量可変型にしても良い。
Note that the present invention can be widely applied without being limited to the above-described embodiment.
For example, in the above-described embodiment, the second compressor 5 on the high stage side is a variable capacity type and the low stage side is a constant speed type, so the first compressor 4 that is a constant speed machine on the low stage side. However, when the first and second compressors 4 and 5 are a combination of constant speed machines having different capacities, only the first compressor 4 is operated. A compressed mode is implemented.
When the on-off valve 17 is not provided in the bypass pipe 16, it is possible to implement either the first single-stage compression mode or the two-stage compression mode.
The low stage compressor 4 may be a variable capacity compressor. In this case, the high-stage compressor 5 may be a constant capacity compressor, or both compressors 4 and 5 may be variable capacity types.

本発明の実施の形態における空気調和機のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the air conditioner in embodiment of this invention. 単段圧縮を実施するときの冷媒の循環経路を示す図である。It is a figure which shows the circulation path of a refrigerant | coolant when implementing single stage compression. 2段圧縮を実施するときの冷媒の循環経路を示す図である。It is a figure which shows the circulation path of a refrigerant | coolant when implementing two-stage compression. 並列圧縮を実施するときの冷媒の循環経路を示す図である。It is a figure which shows the circulation path | route of a refrigerant | coolant when implementing parallel compression.

符号の説明Explanation of symbols

1 空気調和機
4 低段側圧縮機(第1の圧縮機)
5 高段側圧縮機(第2の圧縮機)
6 吸入配管
8 吸入分岐管(一方の吸入分岐管)
9 吸入分岐管(他方の吸入分岐管)
10 吸入側逆止弁
11 吐出配管
13 吐出分岐管(一方の吐出分岐管)
14 吐出分岐管(他方の吐出分岐管)
15,18 吐出側逆止弁
16 バイパス配管
17 開閉弁
20 四方弁
22 室内熱交換機
24 膨張弁(室内側減圧手段)
25 膨張弁(室外側減圧手段)
26 室外熱交換機
28 制御部

1 Air conditioner 4 Low stage compressor (first compressor)
5 High-stage compressor (second compressor)
6 Suction pipe 8 Suction branch pipe (One suction branch pipe)
9 Inhalation branch pipe (the other inhalation branch pipe)
10 Suction side check valve 11 Discharge pipe 13 Discharge branch pipe (one discharge branch pipe)
14 Discharge branch (the other discharge branch)
15, 18 Discharge side check valve 16 Bypass piping 17 On-off valve 20 Four-way valve 22 Indoor heat exchanger 24 Expansion valve (indoor pressure reducing means)
25 Expansion valve (outdoor pressure reducing means)
26 Outdoor heat exchanger 28 Control unit

Claims (6)

第1の圧縮機、第2の圧縮機、四方弁、室外熱交換器、室外側減圧手段を有する室外機と、室内側減圧手段、室内熱交換機を有する室内機とを、液管及びガス管で接続した空気調和機において、
前記第1、第2の圧縮機に冷媒を吸入させる吸入配管は、前記第1の圧縮機の第1吸入分岐管と、前記第2の圧縮機の第2吸入分岐管とに分岐しており、前記第2吸入分岐管中には、冷媒の逆流を防止する吸入側逆止弁が設けられており、
前記第1、第2の圧縮機から吐出される冷媒が通流する吐出配管は、前記第1の圧縮機の第1吐出配管と、前記第2の圧縮機の第2吐出配管とが合流した後に前記四方弁に接続され、前記第1、第2吐出配管中には、冷媒の逆流を防止する吐出側逆止弁がそれぞれ設けられ、前記第1吐出配管の前記吐出側逆止弁と前記第1の圧縮機との間からは、バイパス分岐管が分岐し、前記バイパス分岐管は、前記第2吸入分岐管の前記吸入側逆止弁と前記第2の圧縮機との間で接続されていることを特徴とする空気調和機。
A first compressor, a second compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit having outdoor decompression means, an indoor unit having decompression means and indoor heat exchanger, a liquid pipe and a gas pipe In the air conditioner connected with
The suction pipe for letting the first and second compressors suck the refrigerant branches into a first suction branch pipe of the first compressor and a second suction branch pipe of the second compressor. The second suction branch pipe is provided with a suction-side check valve for preventing the refrigerant from flowing backward,
As for the discharge piping through which the refrigerant discharged from the first and second compressors flows, the first discharge piping of the first compressor and the second discharge piping of the second compressor merge. A discharge side check valve for preventing back flow of the refrigerant is provided in each of the first and second discharge pipes, connected to the four-way valve later, and the discharge side check valve of the first discharge pipe and the A bypass branch pipe branches from between the first compressor and the bypass branch pipe is connected between the suction-side check valve of the second suction branch pipe and the second compressor. An air conditioner characterized by
前記第1の圧縮機は、前記第2の圧縮機よりも容量が大きいことを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein the first compressor has a capacity larger than that of the second compressor. 前記第1の圧縮機のみを運転させるモードと、前記第2の圧縮機のみを運転させるモードと、前記第1、第2の圧縮機の両方を同時に運転させるモードと、を切り替える制御部を備えることを特徴とする請求項1又は請求項2に記載の空気調和機。   A controller that switches between a mode in which only the first compressor is operated, a mode in which only the second compressor is operated, and a mode in which both the first and second compressors are operated simultaneously; The air conditioner according to claim 1 or 2, characterized by the above. 前記バイパス分岐管には、開閉弁が設けられていることを特徴とする請求項1又は請求項2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the bypass branch pipe is provided with an on-off valve. 前記第1の圧縮機のみを運転させるモードと、前記第2の圧縮機のみを運転させるモードと、前記開閉弁を開き、前記第1、第2の圧縮機の両方を同時に運転させるモードと、前記開閉弁を閉じて、両方の前記圧縮機を運転させるモードとを切り替える制御部を備えることを特徴とする請求項4に記載の空気調和機。   A mode in which only the first compressor is operated, a mode in which only the second compressor is operated, a mode in which the on-off valve is opened and both the first and second compressors are operated simultaneously; The air conditioner according to claim 4, further comprising a controller that closes the on-off valve and switches between modes in which both the compressors are operated. 前記第1の圧縮機と、前記第2の圧縮機との少なくとも一方の圧縮機が、容量可変型の圧縮機であることを特徴とする請求項1から請求項5のいずれか一項に記載の空気調和機。

6. The compressor according to claim 1, wherein at least one of the first compressor and the second compressor is a variable capacity compressor. 6. Air conditioner.

JP2004361130A 2004-12-14 2004-12-14 Air conditioner Expired - Fee Related JP3984258B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004361130A JP3984258B2 (en) 2004-12-14 2004-12-14 Air conditioner
KR1020050031834A KR100621881B1 (en) 2004-12-14 2005-04-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361130A JP3984258B2 (en) 2004-12-14 2004-12-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006170488A true JP2006170488A (en) 2006-06-29
JP3984258B2 JP3984258B2 (en) 2007-10-03

Family

ID=36671436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361130A Expired - Fee Related JP3984258B2 (en) 2004-12-14 2004-12-14 Air conditioner

Country Status (2)

Country Link
JP (1) JP3984258B2 (en)
KR (1) KR100621881B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744774B1 (en) 2006-07-28 2007-08-01 삼성전자주식회사 Air conditioner
CN102022851A (en) * 2010-12-22 2011-04-20 天津商业大学 Two-stage compression refrigerating system
JP2012504221A (en) * 2008-09-29 2012-02-16 キャリア コーポレイション Increase in capacity when pulling down
JP2012042114A (en) * 2010-08-18 2012-03-01 Denso Corp Two-stage pressure buildup refrigeration cycle
WO2012169146A1 (en) * 2011-06-09 2012-12-13 株式会社デンソー Freezing cycle
CN103322718A (en) * 2013-07-04 2013-09-25 天津商业大学 Two-stage-throttling incomplete-intercooling double-duty refrigerating system
JP2014178079A (en) * 2013-03-15 2014-09-25 Aisin Seiki Co Ltd Air conditioning equipment
JP2014178078A (en) * 2013-03-15 2014-09-25 Aisin Seiki Co Ltd Air conditioning equipment
WO2017038131A1 (en) * 2015-09-01 2017-03-09 株式会社デンソー Two-stage pressure boosting type refrigeration cycle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140717B1 (en) 2007-09-06 2012-06-14 삼성전자주식회사 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664437B2 (en) * 1988-10-04 1997-10-15 三洋電機株式会社 Refrigeration equipment
JPH03279753A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Multi-refrigerating cycle starting load reduction structure
JPH10281566A (en) 1997-04-01 1998-10-23 Mitsubishi Heavy Ind Ltd Outdoor device of heat pump type air conditioner
KR100470476B1 (en) * 2002-09-04 2005-02-07 위니아만도 주식회사 Cooling system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744774B1 (en) 2006-07-28 2007-08-01 삼성전자주식회사 Air conditioner
JP2012504221A (en) * 2008-09-29 2012-02-16 キャリア コーポレイション Increase in capacity when pulling down
JP2012042114A (en) * 2010-08-18 2012-03-01 Denso Corp Two-stage pressure buildup refrigeration cycle
CN102022851A (en) * 2010-12-22 2011-04-20 天津商业大学 Two-stage compression refrigerating system
CN103597296A (en) * 2011-06-09 2014-02-19 株式会社电装 Freezing cycle
WO2012169146A1 (en) * 2011-06-09 2012-12-13 株式会社デンソー Freezing cycle
JP2012255603A (en) * 2011-06-09 2012-12-27 Denso Corp Refrigeration cycle
JP2014178078A (en) * 2013-03-15 2014-09-25 Aisin Seiki Co Ltd Air conditioning equipment
JP2014178079A (en) * 2013-03-15 2014-09-25 Aisin Seiki Co Ltd Air conditioning equipment
CN103322718A (en) * 2013-07-04 2013-09-25 天津商业大学 Two-stage-throttling incomplete-intercooling double-duty refrigerating system
WO2017038131A1 (en) * 2015-09-01 2017-03-09 株式会社デンソー Two-stage pressure boosting type refrigeration cycle
JPWO2017038131A1 (en) * 2015-09-01 2018-02-08 株式会社デンソー Two-stage boost refrigeration cycle
CN107709896A (en) * 2015-09-01 2018-02-16 株式会社电装 Two level boosting type refrigeration circulates
US10337766B2 (en) 2015-09-01 2019-07-02 Denso Corporation Two-stage compression refrigeration cycle

Also Published As

Publication number Publication date
JP3984258B2 (en) 2007-10-03
KR20060067087A (en) 2006-06-19
KR100621881B1 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
US7272948B2 (en) Heat pump with reheat and economizer functions
KR100621881B1 (en) Air conditioner
JP4441965B2 (en) Air conditioner
EP1980802A1 (en) Refrigeration system
JP2006524313A (en) Vapor compression system with bypass / economizer circuit
WO2004008048A1 (en) Refrigeration equipment
JP2009270748A (en) Refrigerating device
JP2007010282A (en) Two-stage compression type refrigeration cycle device
JP2009257706A (en) Refrigerating apparatus
WO2018078810A1 (en) Air conditioner
JP2008267707A (en) Refrigerant system having multi-speed scroll compressor and economizer circuit
JP2009180427A (en) Refrigerating device
JP2010048506A (en) Multi-air conditioner
JP2005061784A (en) Engine heat pump
JP2009180429A (en) Refrigerating device
JP2001056156A (en) Air conditioning apparatus
JP2006170541A (en) Air conditioner
WO2018097124A1 (en) Air conditioning device
JP2009257704A (en) Refrigerating apparatus
CN110779113B (en) Air conditioning apparatus
JP2018096575A (en) Freezer
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JP2007147228A (en) Refrigerating device
KR100757940B1 (en) Air conditioner
JP2013092369A (en) Heat pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees