JP2006170261A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2006170261A
JP2006170261A JP2004360797A JP2004360797A JP2006170261A JP 2006170261 A JP2006170261 A JP 2006170261A JP 2004360797 A JP2004360797 A JP 2004360797A JP 2004360797 A JP2004360797 A JP 2004360797A JP 2006170261 A JP2006170261 A JP 2006170261A
Authority
JP
Japan
Prior art keywords
transmission
continuously variable
shaft
variable transmission
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360797A
Other languages
Japanese (ja)
Other versions
JP2006170261A5 (en
JP4617863B2 (en
Inventor
Toshiro Toyoda
俊郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004360797A priority Critical patent/JP4617863B2/en
Publication of JP2006170261A publication Critical patent/JP2006170261A/en
Publication of JP2006170261A5 publication Critical patent/JP2006170261A5/ja
Application granted granted Critical
Publication of JP4617863B2 publication Critical patent/JP4617863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently dispose a rotatingly transmitting shaft 60 forming a transmission means for transmitting the movement of a shift lever. <P>SOLUTION: The rotatingly transmitting shaft 60 is installed on the radial outer side of a front stage unit 7 to an intermediate stage unit 8 forming a planetary gear type transmission 2 at a position twisted relative to the center axis of the planetary gear type transmission 2 between the planetary gear type transmission 2 and a valve body 23. Thus, the lowering of the strength of parts and the increasing of the downwardly projected amount of the continuously variable transmission due to the installation of the rotatingly transmitting shaft 60 can be prevented from occurring, and the traveling performance of a vehicle having the continuously variable transmission on a rough road can be increased or a cabin space can be increased. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、自動車用の自動変速機として利用する、トロイダル型無段変速機を組み込んだ無段変速装置の改良に関する。具体的には、シフトレバーの動きを伝達する為の伝達手段を構成する部材(回転伝達軸)を効率良く配置する事により、下方への突出量を小さくし、搭載した車両の悪路走破性の向上を図るものである。   The present invention relates to an improvement in a continuously variable transmission incorporating a toroidal type continuously variable transmission that is used as an automatic transmission for an automobile. Specifically, by efficiently arranging the members (rotation transmission shaft) that constitute the transmission means for transmitting the movement of the shift lever, the amount of downward projection can be reduced, and the mounted vehicle can run on rough roads. It is intended to improve.

自動車用変速機としてトロイダル型無段変速機を使用する事が、例えば非特許文献1、2に記載される等により従来から広く知られ、又、一部で実施されている。又、変速比の変動幅をより大きくすべく、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせた無段変速装置も、例えば特許文献1等に記載される等により従来から広く知られている。又、例えば特許文献2、3には、所謂ギヤードニュートラルと呼ばれ、入力軸を一方向に回転させたまま、出力軸の回転状態を、停止状態を挟んで正転、逆転に切り換えられる無段変速装置が記載されている。この様な無段変速装置の場合には、流体で動力を伝達するトルクコンバータ等の発進機構を省略して、上記無段変速装置にエンジンからの動力を直接伝達させる事ができる。この為、変速装置の小型・軽量化を図れる他、上記トルクコンバータを設ける事による伝達効率の低下等を防止して、発進時の応答性能の向上を図れる。   The use of a toroidal-type continuously variable transmission as a transmission for an automobile has been widely known, for example, as described in Non-Patent Documents 1 and 2, and has been partially implemented. Also, a continuously variable transmission in which a toroidal continuously variable transmission and a planetary gear transmission are combined to increase the fluctuation range of the gear ratio has been widely known, for example, as described in Patent Document 1 and the like. It has been. Further, for example, in Patent Documents 2 and 3, it is called so-called geared neutral, and the rotation state of the output shaft can be switched between forward rotation and reverse rotation with the input shaft rotated in one direction with the stop state interposed therebetween. A transmission is described. In the case of such a continuously variable transmission, a starting mechanism such as a torque converter that transmits power with fluid can be omitted, and the power from the engine can be directly transmitted to the continuously variable transmission. For this reason, the transmission device can be reduced in size and weight, and the transmission efficiency can be prevented from being lowered by providing the torque converter, thereby improving the response performance at the time of starting.

又、特許文献4、5には、上述の様なギヤードニュートラルを実現できる無段変速装置のより具体的な構造が記載されている。図7〜9は、上記特許文献4、5に記載された無段変速装置を示している。この無段変速装置は、トロイダル型無段変速機1と、遊星歯車式変速機2とを組み合わせて成り、入力軸3と出力軸4とを有する。これら入力軸3と出力軸4との間には、上記トロイダル型無段変速機1の入力回転軸5と伝達軸6とを、これら両軸3、4と同心に設けている。そして、上記遊星歯車式変速機2のうちの前段ユニット7と中段ユニット8とを上記入力回転軸5と上記伝達軸6との間に掛け渡す状態で、後段ユニット9をこの伝達軸6と上記出力軸4との間に掛け渡す状態で、それぞれ設けている。   Patent Documents 4 and 5 describe more specific structures of continuously variable transmissions that can realize the above-mentioned geared neutral. 7 to 9 show continuously variable transmissions described in Patent Documents 4 and 5. This continuously variable transmission is formed by combining a toroidal-type continuously variable transmission 1 and a planetary gear type transmission 2 and has an input shaft 3 and an output shaft 4. Between the input shaft 3 and the output shaft 4, the input rotary shaft 5 and the transmission shaft 6 of the toroidal continuously variable transmission 1 are provided concentrically with the shafts 3 and 4. In the state where the front stage unit 7 and the middle stage unit 8 of the planetary gear type transmission 2 are spanned between the input rotation shaft 5 and the transmission shaft 6, the rear stage unit 9 is connected to the transmission shaft 6 and the transmission shaft 6. Each is provided in a state of being spanned between the output shaft 4.

上記トロイダル型無段変速機1は、それぞれが特許請求の範囲に記載した外側ディスクに相当する、1対の入力側ディスク10a、10bと、同じく特許請求の範囲に記載した内側ディスクに相当する、一体型の出力側ディスク11と、複数のパワーローラ12、12とを備える。そして、上記1対の入力側ディスク10a、10bは、上記入力回転軸5を介して互いに同心に、且つ、同期した回転を自在として結合されている。又、上記出力側ディスク11は、上記両入力側ディスク10a、10b同士の間に、これら両入力側ディスク10a、10bと同心に、且つ、これら両入力側ディスク10a、10bに対する相対回転を自在として支持されている。   The toroidal-type continuously variable transmission 1 corresponds to a pair of input side disks 10a and 10b each corresponding to an outer disk described in the claims, and also corresponds to an inner disk described in the claims. An integrated output side disk 11 and a plurality of power rollers 12 and 12 are provided. The pair of input disks 10a and 10b are coupled to each other via the input rotation shaft 5 so as to be concentric with each other and capable of synchronous rotation. The output side disk 11 is concentric with the input side disks 10a and 10b between the input side disks 10a and 10b, and can freely rotate relative to the input side disks 10a and 10b. It is supported.

更に、上記各パワーローラ12、12は、上記出力側ディスク11の軸方向両側面と上記両入力側ディスク10a、10bの軸方向片側面との間に、それぞれ複数個(図示の例の場合は2個)ずつ挟持されている。そして、これら両入力側ディスク10a、10bの回転に伴って回転しつつ、これら両入力側ディスク10a、10bから上記出力側ディスク11に動力を伝達する。又、この出力側ディスク11はその軸方向両端部を、ケーシング13内に、それぞれ1対ずつの支柱14、14と、スラストアンギュラ玉軸受である転がり軸受15、15とにより、回転自在に支持している。又、上記両支柱14、14の両端部近傍に設けた各支持ポスト部16a、16bに、それぞれ支持板17a、17bを支持している。   Further, a plurality of each of the power rollers 12 and 12 is provided between both axial side surfaces of the output side disk 11 and one axial side surface of the both input side disks 10a and 10b (in the case of the illustrated example). 2). Then, power is transmitted from the input disks 10a, 10b to the output disk 11 while rotating with the rotation of the input disks 10a, 10b. The output side disk 11 is rotatably supported at both ends in the axial direction by a pair of support columns 14 and 14 and rolling bearings 15 and 15 which are thrust angular ball bearings. ing. Further, support plates 17a and 17b are respectively supported by support post portions 16a and 16b provided in the vicinity of both ends of the support columns 14 and 14, respectively.

又、上記両支持板17a、17b同士の間には、複数のトラニオン(支持部材)18、18の両端部に互いに同心に設けられた枢軸19、19を、揺動及び軸方向(図8の上下方向)の変位を可能に支持している。そして、上記各トラニオン18、18の内側面(互いに対向する面)に上記各パワーローラ12、12を、それぞれ支持軸20、20並びに複数組の転がり軸受を介して、回転並びに前記入力回転軸5の軸方向に関する若干の変位を自在に支持している。そして、上記各パワーローラ12、12の周面と、上記両入力側ディスク10a、10bの入力側面及び上記出力側ディスク11の出力側面とを転がり接触させている。   Further, between the support plates 17a, 17b, pivots 19, 19 provided concentrically with each other at both ends of a plurality of trunnions (support members) 18, 18 are swung and axially (see FIG. 8). Supports displacement in the vertical direction). The power rollers 12 and 12 are rotated on the inner side surfaces (surfaces facing each other) of the trunnions 18 and 18 through support shafts 20 and 20 and a plurality of sets of rolling bearings, respectively, and the input rotary shaft 5. A slight displacement in the axial direction is supported freely. The peripheral surfaces of the power rollers 12 and 12 are in rolling contact with the input side surfaces of the input disks 10a and 10b and the output side surface of the output disk 11.

前記トロイダル型無段変速機1に変速動作を行なわせる際には、上記両支柱14、14の下端部を結合固定したアクチュエータボディー21に内蔵した、各油圧式のアクチュエータ22、22により、上記各トラニオン18、18を上記各枢軸19、19の軸方向に変位させる。この結果、上記入力側、出力側各面と上記周面との転がり接触部(トラクション部)でサイドスリップが発生し、上記各トラニオン18、18が上記各枢軸19、19を中心として揺動する。そして、上記各ディスク10a、10b、11の径方向に関する、上記各転がり接触部の位置が変化し、上記両入力側ディスク10a、10bと上記出力側ディスク11との間の変速比が変化する。尚、上記各アクチュエータ22、22への圧油の給排は、上記アクチュエータボディー21の下方に設けたバルブボディー23に内蔵した変速比制御弁24(後述する図9参照)の切換により行なう。   When the toroidal-type continuously variable transmission 1 performs a shifting operation, the hydraulic actuators 22 and 22 built in the actuator body 21 in which the lower ends of both the struts 14 and 14 are coupled and fixed are used. The trunnions 18, 18 are displaced in the axial direction of the pivots 19, 19. As a result, side slip occurs at rolling contact portions (traction portions) between the input side and output side surfaces and the peripheral surface, and the trunnions 18 and 18 swing around the pivots 19 and 19. . And the position of each said rolling contact part regarding the radial direction of each said disk 10a, 10b, 11 changes, and the gear ratio between both said input side disk 10a, 10b and said output side disk 11 changes. The supply and discharge of pressure oil to and from the actuators 22 and 22 is performed by switching a transmission ratio control valve 24 (see FIG. 9 described later) built in a valve body 23 provided below the actuator body 21.

又、図示の無段変速装置の場合は、前記入力回転軸5の基端部(図7の左端部)を図示しないエンジンのクランクシャフトに、前記入力軸3を介して結合し、このクランクシャフトにより上記入力回転軸5を回転駆動する様にしている。又、上記入力回転軸5の基端部と上記入力側ディスク10aとの間に、油圧式の押圧装置25を設け、上記両入力側ディスク10a、10bの軸方向片側面(入力側面)及び上記出力側ディスク11の軸方向両側面(出力側面)と前記各パワーローラ12、12の周面との転がり接触部に適正な面圧を付与している。   In the case of the continuously variable transmission shown in the figure, the base end portion (left end portion in FIG. 7) of the input rotary shaft 5 is coupled to the crankshaft of the engine (not shown) via the input shaft 3. Thus, the input rotary shaft 5 is rotationally driven. Further, a hydraulic pressing device 25 is provided between the base end portion of the input rotary shaft 5 and the input side disk 10a, so that one axial side surface (input side surface) of the both input side disks 10a and 10b and the above-mentioned. Appropriate surface pressure is applied to the rolling contact portion between both axial side surfaces (output side surfaces) of the output side disk 11 and the peripheral surfaces of the power rollers 12 and 12.

又、上記出力側ディスク11に、中空回転軸26の基端部(図7の左端部)をスプライン係合させている。そして、この中空回転軸26を、エンジンから遠い側(図7の右側)の入力側ディスク10bの内側に挿通して、上記出力側ディスク11の回転力を取り出し自在としている。更に、上記中空回転軸26の先端部(図7の右端部)で上記入力側ディスク10bの外側面から突出した部分に、前記遊星歯車式変速機2の前段ユニット7を構成する為の、第一太陽歯車27を固設している。   Further, the base end portion (left end portion in FIG. 7) of the hollow rotary shaft 26 is spline-engaged with the output side disk 11. The hollow rotating shaft 26 is inserted inside the input side disk 10b on the side far from the engine (right side in FIG. 7) so that the rotational force of the output side disk 11 can be taken out. Further, a first stage unit 7 of the planetary gear type transmission 2 is configured in a portion protruding from the outer surface of the input side disk 10b at the tip end portion (right end portion in FIG. 7) of the hollow rotary shaft 26. One sun gear 27 is fixed.

一方、上記入力回転軸5の先端部(図7の右端部)で上記中空回転軸26から突出した部分と上記入力側ディスク10bとの間に、第一キャリア28を掛け渡す様に設けて、この入力側ディスク10bと上記入力回転軸5とが、互いに同期して回転する様にしている。そして、上記第一キャリア28の軸方向両側面の円周方向等間隔位置(一般的には3〜4個所位置)に、それぞれがダブルピニオン型である上記遊星歯車式変速機2の前段ユニット7及び前記中段ユニット8を構成する為の遊星歯車29〜31を、回転自在に支持している。更に、上記第一キャリア28の片半部(図7の右半部)周囲に第一リング歯車32を、回転自在に支持している。   On the other hand, the first carrier 28 is provided so as to span between the portion protruding from the hollow rotary shaft 26 at the tip end portion (right end portion in FIG. 7) of the input rotary shaft 5 and the input side disk 10b. The input side disk 10b and the input rotating shaft 5 rotate in synchronization with each other. The front unit 7 of the planetary gear type transmission 2 is a double pinion type at circumferentially equidistant positions (generally 3 to 4 positions) on both axial sides of the first carrier 28. Further, planetary gears 29 to 31 for constituting the middle unit 8 are rotatably supported. Further, a first ring gear 32 is rotatably supported around one half of the first carrier 28 (the right half of FIG. 7).

上記各遊星歯車29〜31のうち、前記トロイダル型無段変速機1寄り(図7の左寄り)で上記第一キャリア28の径方向に関して内側に設けた遊星歯車29は、上記第一太陽歯車27に噛合している。又、上記トロイダル型無段変速機1から遠い側(図7の右側)で上記第一キャリア28の径方向に関して内側に設けた遊星歯車30は、前記伝達軸6の基端部(図7の左端部)に固設した、第二太陽歯車33に噛合している。又、上記第一キャリア28の径方向に関して外側に設けた、残りの遊星歯車31は、上記内側に設けた遊星歯車29、30よりも軸方向寸法を大きくして、これら両遊星歯車29、30に噛合させている。更に、上記残りの遊星歯車31と上記第一リング歯車32とを、互いに噛合させている。   Among the planetary gears 29 to 31, the planetary gear 29 provided inside the radial direction of the first carrier 28 near the toroidal type continuously variable transmission 1 (leftward in FIG. 7) is the first sun gear 27. Is engaged. A planetary gear 30 provided on the inner side with respect to the radial direction of the first carrier 28 on the side farther from the toroidal-type continuously variable transmission 1 (right side in FIG. 7) is a base end portion (see FIG. 7). It meshes with the second sun gear 33 fixed at the left end). The remaining planetary gears 31 provided on the outer side in the radial direction of the first carrier 28 have a larger axial dimension than the planetary gears 29 and 30 provided on the inner side, so that both the planetary gears 29 and 30 are provided. Is engaged. Further, the remaining planetary gear 31 and the first ring gear 32 are meshed with each other.

一方、前記後段ユニット9を構成する為の第二キャリア34を、前記出力軸4の基端部(図7の左端部)に結合固定している。そして、この第二キャリア34と上記第一リング歯車32とを、クラッチ装置の一部である低速用クラッチ35を介して結合している。又、上記伝達軸6の先端寄り(図7の右端寄り)部分に第三太陽歯車36を固設している。又、この第三太陽歯車36の周囲に、第二リング歯車37を配置し、この第二リング歯車37と前記ケーシング13等の固定の部分との間に、クラッチ装置の残部である高速用クラッチ38を設けている。更に、上記第二リング歯車37と上記第三太陽歯車36との間に配置した複数組の遊星歯車39、40を、上記第二キャリア34に回転自在に支持している。これら各遊星歯車39、40は、互いに噛合すると共に、上記第二キャリア34の径方向に関して内側に設けた遊星歯車39を上記第三太陽歯車36に、同じく外側に設けた遊星歯車40を上記第二リング歯車37に、それぞれ噛合している。   On the other hand, the second carrier 34 for constituting the rear stage unit 9 is coupled and fixed to the base end portion (left end portion in FIG. 7) of the output shaft 4. The second carrier 34 and the first ring gear 32 are coupled via a low speed clutch 35 that is a part of the clutch device. Further, a third sun gear 36 is fixed to a portion near the tip of the transmission shaft 6 (near the right end in FIG. 7). Further, a second ring gear 37 is disposed around the third sun gear 36, and a high-speed clutch which is the remainder of the clutch device is disposed between the second ring gear 37 and the fixed portion of the casing 13 and the like. 38 is provided. Further, a plurality of planetary gears 39 and 40 disposed between the second ring gear 37 and the third sun gear 36 are rotatably supported by the second carrier 34. The planetary gears 39 and 40 mesh with each other, and the planetary gear 39 provided on the inner side with respect to the radial direction of the second carrier 34 is provided on the third sun gear 36, and the planetary gear 40 provided on the outer side is provided on the first side. The two ring gears 37 mesh with each other.

上述の様に構成する無段変速装置の場合、入力回転軸5から1対の入力側ディスク10a、10b、各パワーローラ12、12を介して一体型の出力側ディスク11に伝わった動力は、前記中空回転軸26を通じて取り出される。そして、前記低速用クラッチ35を接続し、上記高速用クラッチ38の接続を断った状態では、前記トロイダル型無段変速機1の変速比を変える事により、上記入力回転軸5の回転速度を一定にしたまま、前記出力軸4の回転速度を、停止状態を挟んで正転、逆転に変換自在となる。   In the case of the continuously variable transmission configured as described above, the power transmitted from the input rotating shaft 5 to the integrated output side disk 11 via the pair of input side disks 10a and 10b and the power rollers 12 and 12, respectively, It is taken out through the hollow rotary shaft 26. In a state where the low speed clutch 35 is connected and the high speed clutch 38 is disconnected, the rotational speed of the input rotary shaft 5 is kept constant by changing the gear ratio of the toroidal continuously variable transmission 1. In this state, the rotational speed of the output shaft 4 can be freely converted into forward rotation and reverse rotation with the stop state interposed therebetween.

即ち、この状態では、上記入力回転軸5と共に正方向に回転する第一キャリア28と、上記中空回転軸26と共に逆方向に回転する前記第一太陽歯車27との差動成分が、前記第一リング歯車32から、上記低速用クラッチ35、上記第二キャリア34を介して、上記出力軸4に伝達される。この状態では、上記トロイダル型無段変速機1の変速比を所定値にする事で上記出力軸4を停止させられる他、このトロイダル型無段変速機1の変速比を上記所定値から増速側に変化させる事により上記出力軸4を、車両を後退させる方向に回転させられる。これに対して、上記トロイダル型無段変速機1の変速比を上記所定値から減速側に変化させる事により上記出力軸4を、車両を前進させる方向に回転させられる。   That is, in this state, the differential component between the first carrier 28 that rotates in the forward direction together with the input rotation shaft 5 and the first sun gear 27 that rotates in the reverse direction together with the hollow rotation shaft 26 is the first component. It is transmitted from the ring gear 32 to the output shaft 4 through the low speed clutch 35 and the second carrier 34. In this state, the output shaft 4 is stopped by setting the gear ratio of the toroidal continuously variable transmission 1 to a predetermined value, and the speed ratio of the toroidal continuously variable transmission 1 is increased from the predetermined value. By changing to the side, the output shaft 4 is rotated in the direction in which the vehicle moves backward. On the other hand, the output shaft 4 is rotated in the direction of moving the vehicle forward by changing the gear ratio of the toroidal type continuously variable transmission 1 from the predetermined value to the deceleration side.

これに対して、上記高速用クラッチ38を接続し、上記低速用クラッチ35の接続を断った状態では、上記出力側ディスク11の回転が、上記中空回転軸26、前記遊星歯車式変速機2の第一太陽歯車27、前記各遊星歯車29〜31、前記伝達軸6、前記第二太陽歯車33、前記各遊星歯車39、40、上記第二キャリア34を介して、上記出力軸4に伝達される。この状態では、上記トロイダル型無段変速機1の変速比を増速側に変化させる程、無段変速装置全体としての変速比も増速側に変化する。   On the other hand, in a state where the high speed clutch 38 is connected and the low speed clutch 35 is disconnected, the output side disk 11 rotates with respect to the hollow rotary shaft 26 and the planetary gear type transmission 2. The first sun gear 27, the planetary gears 29 to 31, the transmission shaft 6, the second sun gear 33, the planetary gears 39 and 40, and the second carrier 34 are transmitted to the output shaft 4. The In this state, as the gear ratio of the toroidal continuously variable transmission 1 is changed to the speed increasing side, the speed ratio of the continuously variable transmission as a whole also changes to the speed increasing side.

図9は、上述の様に構成し作用する無段変速装置の油圧制御回路を示している。ケーシング13の下端部に設けたオイルパン41(図7、8参照)等の油溜に貯溜された潤滑油(トラクションオイル)は、高圧ポンプ42と低圧ポンプ43とに吸引され、それぞれ加圧された状態で吐出される。このうちの高圧ポンプ42から吐出された潤滑油は、リリーフ弁式の加圧用圧力調整弁44により圧力調整された状態で、変速比制御弁24を介して、変速比調節の為にトラニオン18、18を枢軸19、19(図8参照)の軸方向に変位させる、アクチュエータ22の油圧室45a、45bに送り込まれる。又、上記加圧用圧力調整弁44により圧力調整された潤滑油は、入力側ディスク10a、10bを出力側ディスク11(図7参照)に向け押圧する為の油圧式の押圧装置25の油圧室にも送り込む。   FIG. 9 shows a hydraulic control circuit of a continuously variable transmission constructed and operated as described above. Lubricating oil (traction oil) stored in an oil reservoir such as an oil pan 41 (see FIGS. 7 and 8) provided at the lower end of the casing 13 is sucked into the high pressure pump 42 and the low pressure pump 43 and pressurized. Discharged in a wet state. Of these, the lubricating oil discharged from the high-pressure pump 42 is in a state where the pressure is adjusted by a pressure adjusting valve 44 for pressurization of a relief valve type, and the trunnion 18, 18 is fed into the hydraulic chambers 45a and 45b of the actuator 22 for displacing the shaft 18 in the axial direction of the pivots 19 and 19 (see FIG. 8). The lubricating oil whose pressure has been adjusted by the pressure adjusting valve 44 for pressurization enters the hydraulic chamber of the hydraulic pressing device 25 for pressing the input side disks 10a and 10b toward the output side disk 11 (see FIG. 7). Also send.

これに対して、上記低圧ポンプ43から吐出された潤滑油は、リリーフ弁式の低圧側圧力調整弁46により、比較的低い所定圧に調整された状態で、無段変速装置内で潤滑油を必要とする部分に供給して、これら各部分を潤滑する。上記低圧ポンプ43から吐出されて上記低圧側圧力調整弁46により圧力調整された潤滑油を上記各部分に送り込む流路の途中には、上記加圧用圧力調整弁44のリリーフ回路部分(吐出ポート)に通じさせている。又、この加圧用圧力調整弁44のパイロット回路には、上記アクチュエータ22に設けた1対の油圧室45a、45b内の油圧の差を、差圧信号として導入している。これら両油圧室45a、45b同士の間の油圧の差は、入力側ディスク10a、10bから上記出力側ディスク11(或は出力側ディスク11から入力側ディスク10a、10b)に伝達する力2Ftに比例する。従って、上記加圧用圧力調整弁44のパイロット回路に導入される油圧は、トロイダル型無段変速機1を通過する動力の大きさに比例する。   On the other hand, the lubricating oil discharged from the low pressure pump 43 is adjusted in the continuously variable transmission with the relief valve type low pressure side pressure adjusting valve 46 adjusted to a relatively low predetermined pressure. Supply to the required parts and lubricate each of these parts. A relief circuit portion (discharge port) of the pressure adjusting valve 44 for pressurization is provided in the middle of the flow path through which the lubricating oil discharged from the low pressure pump 43 and pressure-adjusted by the low pressure side pressure adjusting valve 46 is sent to the respective portions. To let them know. Further, in the pilot circuit of the pressure adjusting valve 44 for pressurization, a difference in hydraulic pressure in the pair of hydraulic chambers 45a and 45b provided in the actuator 22 is introduced as a differential pressure signal. The difference in hydraulic pressure between the hydraulic chambers 45a and 45b is proportional to the force 2Ft transmitted from the input side disks 10a and 10b to the output side disk 11 (or from the output side disk 11 to the input side disks 10a and 10b). To do. Therefore, the hydraulic pressure introduced into the pilot circuit of the pressurizing pressure regulating valve 44 is proportional to the magnitude of the power passing through the toroidal type continuously variable transmission 1.

又、図示の例では、上記加圧用圧力調整弁44に、温度やアクセル開度等、上記トロイダル型無段変速機1の使用状態に対応する補正信号を入力して、このトロイダル型無段変速機1の運転状況に応じて、上記押圧装置25の油圧室に送り込む油圧に補正を加える様にしている。即ち、第一の電磁弁47の開閉制御により、上記加圧用圧力調整弁44の別のパイロット室内の油圧を調整して、この加圧用圧力調整弁44の開弁圧を調整自在としている。そして、加圧用圧力調整弁44から上記アクチュエータ22及び上記押圧装置25に導入する油圧を、上記トロイダル型無段変速機1を通過する動力の大きさに比例して大きくする事に加え、このトロイダル型無段変速機1の運転状況に応じて補正する様にしている。   In the illustrated example, a correction signal corresponding to the use state of the toroidal continuously variable transmission 1 such as temperature and accelerator opening is input to the pressure adjusting valve 44 for pressurization. In accordance with the operation status of the machine 1, the hydraulic pressure fed to the hydraulic chamber of the pressing device 25 is corrected. That is, by controlling the opening and closing of the first electromagnetic valve 47, the hydraulic pressure in another pilot chamber of the pressurizing pressure adjusting valve 44 is adjusted so that the opening pressure of the pressurizing pressure adjusting valve 44 can be adjusted. In addition to increasing the hydraulic pressure introduced from the pressurizing pressure adjusting valve 44 to the actuator 22 and the pressing device 25 in proportion to the magnitude of power passing through the toroidal-type continuously variable transmission 1, the toroidal Corrections are made according to the operating conditions of the continuously variable transmission 1.

又、図9に示した油圧回路では、前記変速比制御弁24を、ステッピングモータ48による他、差圧シリンダ49によっても調節自在として、トロイダル型無段変速機1を通過するトルクを目標値に調節すべく、このトロイダル型無段変速機1の変速比を微調節自在としている。又、上記差圧シリンダ49への圧油の給排は、第二の電磁弁50により制御される差圧制御弁51a、51bにより、前後進切換弁52を介して行なう様にしている。又、低速用、高速用両クラッチ35、38への圧油の給排を、第三の電磁弁53と、高速用、低速用両切換弁54、55と、シフト用切換弁56とにより行なう様にしている。更に、運転席に設けたシフトレバーにより操作される手動切換弁57により、各部の連通状態を切り換えられる様にしている。尚、上記変速比制御弁24を初めとする、油圧式の弁44、46、51a、51b、52、54〜56、58は、前記バルブボディー23(図7〜8参照)内に組み込んでいる。   In the hydraulic circuit shown in FIG. 9, the speed ratio control valve 24 can be adjusted not only by the stepping motor 48 but also by the differential pressure cylinder 49 so that the torque passing through the toroidal type continuously variable transmission 1 can be set to the target value. In order to adjust, the gear ratio of the toroidal-type continuously variable transmission 1 can be finely adjusted. The pressure oil is supplied to and discharged from the differential pressure cylinder 49 through the forward / reverse switching valve 52 by differential pressure control valves 51a and 51b controlled by the second electromagnetic valve 50. Further, supply and discharge of pressure oil to both the low speed and high speed clutches 35 and 38 are performed by the third solenoid valve 53, the high speed and low speed switching valves 54 and 55, and the shift switching valve 56. Like. Furthermore, the communication state of each part can be switched by a manual switching valve 57 operated by a shift lever provided in the driver's seat. The hydraulic valves 44, 46, 51a, 51b, 52, 54 to 56, 58 including the transmission ratio control valve 24 are incorporated in the valve body 23 (see FIGS. 7 to 8). .

前述の図7〜8に示した様な無段変速装置の場合、出力側ディスク11の回転力を、この出力側ディスク11並びに入力回転軸5と同心に設けた中空回転軸26により取り出している。この為、例えば前記特許文献1に記載された構造の様に、出力側ディスクの回転力を、出力側ディスクの径方向外側で、且つ、入力回転軸と平行に設けた伝達軸(カウンターシャフト)により取り出す必要がなくなり、上記無段変速装置を小型に構成できる。   In the case of the continuously variable transmission as shown in FIGS. 7 to 8 described above, the rotational force of the output side disk 11 is taken out by the hollow rotary shaft 26 provided concentrically with the output side disk 11 and the input rotary shaft 5. . For this reason, for example, as in the structure described in Patent Document 1, a transmission shaft (counter shaft) in which the rotational force of the output side disk is provided radially outside the output side disk and in parallel with the input rotational axis. Therefore, the continuously variable transmission can be made compact.

ところで、前述の様な無段変速装置を実際に自動車等の車両に組み込む場合、運転席に設けたシフトレバーの動きを、前記バルブボディー23内に組み込まれた前記手動切換弁57に伝達し、この手動切換弁57の切り換えに応じて前記低速用クラッチ35や前記高速用クラッチ38の断接を行なう。又、上記シフトレバーがPレンジ(駐車位置)に操作された場合には、このシフトレバーの動きに応じ、前記出力軸4の回転を阻止する為の制動手段(パーキングロック機構)を作動させる事が好ましい。但し、前述の各特許文献や各非特許文献には、上述の様なシフトレバーの動きを上記手動切換弁57に伝達する部分の構造や、上記制動手段を作動させる部分の構造に就いては記載されていない。   By the way, when the continuously variable transmission as described above is actually incorporated in a vehicle such as an automobile, the movement of the shift lever provided in the driver's seat is transmitted to the manual switching valve 57 incorporated in the valve body 23, In response to switching of the manual switching valve 57, the low speed clutch 35 and the high speed clutch 38 are connected and disconnected. Further, when the shift lever is operated to the P range (parking position), the braking means (parking lock mechanism) for preventing the rotation of the output shaft 4 is operated according to the movement of the shift lever. Is preferred. However, in each of the above-mentioned patent documents and non-patent documents, there is a structure of a part that transmits the movement of the shift lever as described above to the manual switching valve 57 and a structure of a part that operates the braking means. Not listed.

上述の様なシフトレバーの動きを上記手動切換弁57やパーキングロック機構に伝達する為の伝達手段の構造は、電動式とするよりも、リンク機構等により構成する機械式とする事が、故障しにくさ等の面からは好ましい。例えば、シフトレバーの動き(揺動)を、リンク腕等を介して回転伝達軸(マニュアルシャフト)に回転運動として伝達し、この回転伝達軸の回転に基づき、上記手動切換弁57のスプールや上記制動手段を作動させる為の部材を変位させる事が考えられる。この様な機械式の構造を採用すれば、上記伝達手段を簡素に構成でき、しかも信頼性も十分に確保できると考えられる。ところが、前述の図7〜9に示す様な無段変速装置の場合、上記伝達手段を構成する上記回転伝達軸をただ単に設けただけでは、装置が大型化したり、構造が複雑になる他、上記回転伝達軸の配設位置によっては各部の強度を確保しにくくなる可能性がある。特に、上記無段変速装置が大型化すると、車両に搭載した状態でこの無段変速装置の下方への突出量が大きくなり、搭載した車両の悪路走破性を低下させる等、好ましくない。   The structure of the transmission means for transmitting the movement of the shift lever as described above to the manual switching valve 57 and the parking lock mechanism may be a mechanical type constituted by a link mechanism or the like rather than an electric type. This is preferable from the standpoint of difficulty. For example, the movement (oscillation) of the shift lever is transmitted as a rotational motion to a rotation transmission shaft (manual shaft) via a link arm or the like, and based on the rotation of the rotation transmission shaft, the spool of the manual switching valve 57 or the above It is conceivable to displace a member for operating the braking means. By adopting such a mechanical structure, it is considered that the transmission means can be configured simply and sufficient reliability can be secured. However, in the case of the continuously variable transmission as shown in FIGS. 7 to 9 described above, simply providing the rotation transmission shaft constituting the transmission means makes the device larger and the structure becomes complicated. Depending on the position of the rotation transmission shaft, it may be difficult to ensure the strength of each part. In particular, an increase in the size of the continuously variable transmission is not preferable because the amount of downward projection of the continuously variable transmission increases in a state where the continuously variable transmission is mounted on the vehicle, thereby reducing the rough road running performance of the mounted vehicle.

例えば前述した特許文献1に記載された構造の様に、トロイダル型無段変速機の径方向外側に、出力側ディスクの回転力を伝達する為の伝達軸を設けると共に、高速用、低速用クラッチに加えて前後進切り換えクラッチ(後退用クラッチ)や発進クラッチを設けた構造の場合には、無段変速装置全体として大型のものになる。この為、上記伝達手段を構成する回転伝達軸等を配置するスペースが十分に余っており、この回転伝達軸を設ける場合に、装置が更に大型化したり、各部の強度を確保しにくくなる様な事はなかった。ところが、前述の図7〜8に示した無段変速装置の場合には、上述の様な伝達軸や前後進切り換えクラッチが必要ない分、上述の様な構造に比べて無段変速装置を小型に構成できる。この為、上記伝達手段を構成する回転伝達軸をただ単に配置するだけでは、上述の様な不都合が顕著になる。   For example, as in the structure described in Patent Document 1 described above, a transmission shaft for transmitting the rotational force of the output side disk is provided outside the toroidal-type continuously variable transmission in the radial direction, and the high-speed and low-speed clutches are provided. In addition, in the case of a structure provided with a forward / reverse switching clutch (reverse clutch) or a starting clutch, the entire continuously variable transmission becomes large. For this reason, there is a sufficient space for arranging the rotation transmission shaft and the like constituting the transmission means. When this rotation transmission shaft is provided, the apparatus is further increased in size and it is difficult to ensure the strength of each part. There was no thing. However, in the case of the continuously variable transmission shown in FIGS. 7 to 8, the transmission shaft and the forward / reverse switching clutch as described above are not necessary, so that the continuously variable transmission is smaller than the structure as described above. Can be configured. For this reason, the above-mentioned inconvenience becomes remarkable only by simply arranging the rotation transmission shaft constituting the transmission means.

又、従来から実施されている様な、自動変速装置をトロイダル型無段変速機単独で構成した場合や、入力軸とトロイダル型無段変速機との間に発進クラッチを設けた構造の場合には、出力軸と、上述の様な伝達軸と、出力側ディスクとが、それぞれ同期して回転する。この為、シフトレバーが駐車位置(Pレンジ)である場合にこのシフトレバーの動きに基づいて作動する制動手段を設ける場合には、上記出力軸と伝達軸と出力側ディスクとのうちの何れかの部材の回転を阻止するものであれば良かった。この為、上述の様な制動手段を設置し易い。これに対して、前述の図7〜8に示した無段変速装置の場合には、出力軸4と遊星歯車式変速機2の構成部材との間に低速用、高速用各クラッチ35、38を設けており、これら各クラッチ35、38は、上記シフトレバーがPレンジに切り換えられた状態で接続を断たれる。   In addition, when the automatic transmission is configured by a toroidal type continuously variable transmission alone or a structure in which a starting clutch is provided between the input shaft and the toroidal type continuously variable transmission, as has been conventionally performed. The output shaft, the transmission shaft as described above, and the output side disk rotate in synchronization with each other. For this reason, when providing a braking means that operates based on the movement of the shift lever when the shift lever is in the parking position (P range), any one of the output shaft, the transmission shaft, and the output side disk is used. Any member that prevents the rotation of the member may be used. For this reason, it is easy to install the braking means as described above. On the other hand, in the case of the continuously variable transmission shown in FIGS. 7 to 8, the low speed and high speed clutches 35, 38 are provided between the output shaft 4 and the constituent members of the planetary gear type transmission 2. The clutches 35 and 38 are disconnected when the shift lever is switched to the P range.

この為、上述の様な制動手段を設ける場合、上記出力軸4又はこの出力軸4と共に回転する部材の回転を阻止する様に構成する必要があり、上述した様な各構造に比べて上記制動手段を設置しにくい。しかも、この制動手段を構成する場合に、上記シフトレバーの動きを伝達する為の伝達手段を構成する回転伝達軸の配設位置によっては、この回転伝達軸の回転を上記制動手段に伝達する部材と他の部材とが干渉し易くなったり、この制動手段にシフトレバーの動きを伝達する部分の構造が複雑化、大型化する可能性もある。この為、この様な制動手段を設ける面からも、上記伝達手段を構成する回転伝達軸をただ単に配置するだけでは、上述の様な不都合が生じ、好ましくない。   For this reason, when the braking means as described above is provided, it is necessary to prevent the output shaft 4 or a member rotating together with the output shaft 4 from rotating. It is difficult to install means. In addition, in the case of constituting this braking means, a member for transmitting the rotation of the rotation transmission shaft to the braking means depending on the arrangement position of the rotation transmission shaft constituting the transmission means for transmitting the movement of the shift lever. And other members may easily interfere with each other, or the structure of the portion that transmits the movement of the shift lever to the braking means may be complicated and enlarged. For this reason, from the aspect of providing such a braking means, it is not preferable to simply arrange the rotation transmission shaft constituting the transmission means because the above-mentioned disadvantages occur.

特開平11−63146号公報JP 11-63146 A 米国特許第5607372号明細書US Pat. No. 5,607,372 特開2002−139124号公報JP 2002-139124 A 特開2004−169719号公報JP 2004-169719 A 特開2004−211744号公報JP 2004- 211744 A 青山元男著、「別冊ベストカー 赤バッジシリーズ245/クルマの最新メカがわかる本」、株式会社三推社/株式会社講談社、平成13年12月20日、p.92−93Motoo Aoyama, “Bessed Best Car Red Badge Series 245 / A book that understands the latest mechanics of cars”, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001, p. 92-93 田中裕久著、「トロイダルCVT」、株式会社コロナ社、2000年7月13日Hirohisa Tanaka, “Toroidal CVT”, Corona Inc., July 13, 2000

本発明は、上述の様な事情に鑑みて、シフトレバーの動きを伝達する為の伝達手段を構成する部材を効率良く配置する事により、下方への突出量を小さくし、搭載した車両の悪路走破性の向上を図れる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention efficiently disposes a member constituting a transmission means for transmitting the movement of the shift lever, thereby reducing the amount of downward projection and the badness of the mounted vehicle. It was invented to realize a structure that can improve road running performance.

本発明の無段変速装置は、前述した従来の無段変速装置と同様に、回転軸の周囲にこの回転軸と同期した回転を自在に支持した1対の外側ディスク、及びこの回転軸の中間部周囲でこれら両外側ディスクの間部分にこの回転軸に対する相対回転を自在に設けられた内側ディスク、及びこの内側ディスクと上記外側ディスクとの互いに対向する側面同士の間に挟持された複数個のパワーローラ、及び変速比変更の為のアクチュエータへの油圧制御を行なう為の変速比制御弁を収納したバルブボディーを備えたトロイダル型無段変速機と、遊星歯車式変速機とを、互いに同軸に、且つ、この遊星歯車式変速機と上記トロイダル型無段変速機の回転軸及び内側ディスクとの間で動力を伝達する状態で組み合わせている。そして、このうちのトロイダル型無段変速機の回転軸に入力軸を、上記遊星歯車式変速機の構成部材に出力軸を、それぞれ繋げる。又、これと共に、動力の伝達経路を切り換えるクラッチ装置を有し、このクラッチ装置への圧油の導入状態を切り換える為の手動切換弁を、上記バルブボディーに収納している。
特に、本発明の無段変速装置に於いては、運転席に設けたシフトレバーの操作に基づいて上記手動切換弁の切り換え状態を切り換える為の伝達手段を構成する回転伝達軸(マニュアルシャフト)を、上記各外側ディスクのうちの上記出力軸に近い側の外側ディスクよりもこの出力軸側で、上記遊星歯車式変速機の径方向外側に、この遊星歯車式変速機の中心軸に対し捻れの位置となる状態で設ける。
The continuously variable transmission according to the present invention includes a pair of outer disks that freely support rotation around the rotating shaft in synchronism with the rotating shaft, and an intermediate between the rotating shafts, as in the conventional continuously variable transmission described above. An inner disk that is freely rotatable relative to the rotating shaft at a portion between the outer disks, and a plurality of sandwiched between mutually facing side surfaces of the inner disk and the outer disk. A toroidal continuously variable transmission having a valve body housing a gear ratio control valve for performing hydraulic control to a power roller and an actuator for changing the gear ratio, and a planetary gear type transmission are coaxial with each other. In addition, the planetary gear type transmission is combined with the rotating shaft of the toroidal type continuously variable transmission and the inner disk in a state where power is transmitted. The input shaft is connected to the rotating shaft of the toroidal type continuously variable transmission, and the output shaft is connected to the constituent members of the planetary gear type transmission. Along with this, a clutch device for switching the power transmission path is provided, and a manual switching valve for switching the state of introduction of pressure oil into the clutch device is housed in the valve body.
In particular, in the continuously variable transmission of the present invention, a rotation transmission shaft (manual shaft) that constitutes a transmission means for switching the switching state of the manual switching valve based on the operation of a shift lever provided in the driver's seat is provided. The outer disk is closer to the output shaft than the outer disk closer to the output shaft, and is twisted with respect to the central axis of the planetary gear transmission on the radially outer side of the planetary gear transmission. Provided in position.

上述の様に構成する本発明の無段変速装置によれば、シフトレバーの動きを伝達する為の伝達手段を構成する回転伝達軸を、効率良く配置でき、この回転伝達軸を設ける事に伴う、各部の強度の低下や、下方への突出量の増大を防止できる。この為、搭載した車両の悪路走破性の向上を図れる。又、悪路走破性を同程度とした場合には、下方への突出量を小さくできる分、上記無段変速装置を下方に搭載する事ができ、車内空間の拡大も図れる。   According to the continuously variable transmission of the present invention configured as described above, the rotation transmission shaft constituting the transmission means for transmitting the movement of the shift lever can be efficiently arranged, and this rotation transmission shaft is provided. It is possible to prevent a decrease in strength of each part and an increase in the amount of protrusion downward. For this reason, it is possible to improve the rough road running performance of the mounted vehicle. In addition, when the rough road running ability is set to the same level, the continuously variable transmission can be mounted downward as much as the amount of downward protrusion can be reduced, and the interior space of the vehicle can be expanded.

本発明を実施する場合に好ましくは、請求項2に記載した様に、回転伝達軸を、遊星歯車式変速機の下端部とバルブボディーの上面との間に設ける。
この様に構成すれば、バルブボディーに収納した、クラッチ装置への圧油の導入状態を切り換える為の手動切換弁と上記回転伝達軸との距離を小さくできる。この為、この回転伝達軸の動き(回転)を上手動切換弁のスプールに伝達する為の部材(例えば揺動腕)の小型・短縮化を図れると共に、この部材を周囲の部材と干渉しにくくでき、設計の自由度が増す。又、この部材を配置する部分を小さくでき、ケーシングを含む装置の大型化、複雑化を防止できる。
When the present invention is implemented, preferably, as described in claim 2, the rotation transmission shaft is provided between the lower end portion of the planetary gear type transmission and the upper surface of the valve body.
If comprised in this way, the distance of the said manual transmission valve for switching the introduction state of the pressure oil to the clutch apparatus accommodated in the valve body and the said rotation transmission shaft can be made small. For this reason, a member (for example, a swing arm) for transmitting the movement (rotation) of the rotation transmission shaft to the spool of the upper manual switching valve can be reduced in size and shortened, and the member does not easily interfere with surrounding members. This increases the degree of design freedom. Further, the portion where this member is disposed can be reduced, and the increase in size and complexity of the apparatus including the casing can be prevented.

又、本発明を実施する場合に好ましくは、請求項3に記載した様に、シフトレバーの切り換え位置が駐車位置(Pレンジ)である場合に、出力軸又はこの出力軸と共に回転する部材と係合する事によりこの出力軸の回転を阻止する係合部材を、回転伝達軸の動きに基づいて、この出力軸又はこの出力軸と共に回転する部材と係脱するものとする。
この様に構成すれば、上記シフトレバーが駐車位置に操作された場合に作動する制動手段(パーキングロック機構)を簡素に構成できる。即ち、この様な制動手段により回転を阻止する上記出力軸又はこの出力軸と共に回転する部材と、上記回転伝達軸との距離を小さくできる。この為、この回転伝達軸の動き(回転)を上記係合部材に伝達する為の部材(例えばリンク腕、揺動腕、パーキングロッド等)の小型・短縮化を図れると共に、この部材を周囲の部材と干渉しにくくでき、設計の自由度が増す。又、この部材を含む上記制動手段を、大型化、複雑化する事なく簡素に構成できる。
Preferably, when the present invention is implemented, as described in claim 3, when the shift lever switching position is the parking position (P range), the output shaft or a member that rotates together with the output shaft is associated. Based on the movement of the rotation transmission shaft, the engagement member that prevents the rotation of the output shaft by engagement is engaged with or disengaged from the output shaft or a member that rotates with the output shaft.
If comprised in this way, the braking means (parking lock mechanism) which operate | moves when the said shift lever is operated to a parking position can be comprised simply. That is, the distance between the rotation transmission shaft and the output shaft that prevents rotation by such braking means or a member that rotates together with the output shaft can be reduced. For this reason, a member (for example, a link arm, a swing arm, a parking rod, etc.) for transmitting the movement (rotation) of the rotation transmission shaft to the engagement member can be reduced in size and shortened, and It is difficult to interfere with the member, and the degree of freedom in design increases. Further, the braking means including this member can be configured simply without increasing the size and complexity.

図1〜5は、本発明の実施例を示している。尚、本実施例の特徴は、運転席に設けたシフトレバー58の動きを手動切換弁57(図9参照)に伝達する為の伝達手段59を構成する回転伝達軸60の配置を工夫する事により、各部の強度が低下する事を防止しつつ、装置の小型・簡素化を図る点にある。無段変速装置自体の構造及び作用は、前述の図7〜9に示した従来構造と同様である為、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。   1 to 5 show an embodiment of the present invention. The feature of this embodiment is that the arrangement of the rotation transmission shaft 60 constituting the transmission means 59 for transmitting the movement of the shift lever 58 provided in the driver's seat to the manual switching valve 57 (see FIG. 9) is devised. Therefore, it is possible to reduce the size and simplification of the apparatus while preventing the strength of each part from decreasing. Since the structure and operation of the continuously variable transmission itself are the same as those of the conventional structure shown in FIGS. 7 to 9 described above, illustrations and explanations of equivalent parts are omitted or simplified. Hereinafter, the features of the present invention will be mainly described. Explained.

本実施例の場合には、上記シフトレバー58の操作に基づき手動切換弁57の連通状態を切り換える為の上記伝達手段59を、上記シフトレバー58の側から順に、第一のリンク腕61と、第一の揺動腕62と、上記回転伝達軸60と、第二の揺動腕63とにより構成している。このうちの第一のリンク腕61は、一端寄り(図2、3の右端寄り部、図4の左端寄り)部分に設けた係合孔64に、上記シフトレバー58の基端部を係合すると共に、他端部(図2、3の左端部、図4の右端部)を、上記第一の揺動腕62の先端部に揺動自在に支持している。従って、上記シフトレバー58が運転者の操作に基づき、支点αを中心に図2の矢印イで示す様に揺動すると、この揺動に基づき上記第一のリンク腕61は、図2〜4の矢印ロで示す様に、上記無段変速装置の配設方向(車両に搭載した状態で前後方向)に、ほぼ直線的に変位する。   In the case of the present embodiment, the transmission means 59 for switching the communication state of the manual switching valve 57 based on the operation of the shift lever 58 is, in order from the shift lever 58 side, the first link arm 61, The first swing arm 62, the rotation transmission shaft 60, and the second swing arm 63 are configured. Of these, the first link arm 61 engages the base end portion of the shift lever 58 in the engagement hole 64 provided near one end (the portion near the right end in FIGS. 2 and 3 and the left end in FIG. 4). At the same time, the other end (the left end in FIGS. 2 and 3 and the right end in FIG. 4) is swingably supported on the tip of the first swing arm 62. Accordingly, when the shift lever 58 swings around the fulcrum α as shown by the arrow A in FIG. 2 based on the driver's operation, the first link arm 61 is moved in FIG. As shown by the arrow B in FIG. 2, the continuously variable transmission is displaced substantially linearly in the direction in which the continuously variable transmission is disposed (the front-rear direction when mounted on the vehicle).

又、上記第一の揺動腕62は、上述の様に先端部を上記第一のリンク腕61の他端部に揺動自在に支持すると共に、基端部を、上記回転伝達軸60の軸方向一端部(車両に搭載した状態でこの車両の幅方向に関し運転席に近い側の端部であり、図3の左端部、図4の左下端部)に、この回転伝達軸60に対し回転不能に結合している。又、この回転伝達軸60は、トロイダル型無段変速機を構成する1対の出力側ディスク10a、10bのうちの出力軸4に近い側の出力側ディスク10bよりも、この出力軸4側に設けている。より具体的には、上記回転伝達軸60を、この出力側ディスク10bと隣接する状態で設けられた遊星歯車式変速機2の前段ユニット7乃至中段ユニット8の下側で、この遊星歯車式変速機2の下端部とバルブボディー23の上面との間に、この遊星歯車式変速機2の中心軸に対し捻れの位置となる状態で、ほぼ水平方向に設けている。この為に、本実施例の場合は、上記回転伝達軸60の軸方向両端部を、無段変速装置を構成するケーシング13の幅方向両側壁部65、65(図8参照)に、それぞれ回転自在に支持している。従って、上記第一の揺動腕62は、上記第一のリンク腕61の変位に基づき、上記回転伝達軸60との結合部を支点として図2〜4の矢印ハで示す様に揺動しつつ、この回転伝達軸60を図3〜4の矢印ニで示す様に回転させる。   Further, the first swing arm 62 supports the tip end portion of the first link arm 61 so as to be swingable as described above, and the base end portion of the rotation transmission shaft 60 as described above. With respect to the rotation transmission shaft 60 at one end in the axial direction (the end on the side closer to the driver's seat in the vehicle width direction when mounted on the vehicle, the left end in FIG. 3 and the lower left end in FIG. 4) It is coupled so that it cannot rotate. Further, the rotation transmission shaft 60 is closer to the output shaft 4 than the output disc 10b on the side close to the output shaft 4 of the pair of output discs 10a, 10b constituting the toroidal continuously variable transmission. Provided. More specifically, the rotation transmission shaft 60 is arranged below the planetary gear type transmission 8 on the lower side of the front stage unit 7 to the middle stage unit 8 of the planetary gear type transmission 2 provided adjacent to the output side disk 10b. Between the lower end portion of the machine 2 and the upper surface of the valve body 23, it is provided in a substantially horizontal direction in a state of being twisted with respect to the central axis of the planetary gear type transmission 2. For this reason, in the case of the present embodiment, both end portions in the axial direction of the rotation transmission shaft 60 are respectively rotated on both side walls 65 and 65 (see FIG. 8) in the width direction of the casing 13 constituting the continuously variable transmission. Supports freely. Accordingly, the first swing arm 62 swings as indicated by the arrow C in FIGS. 2 to 4 based on the displacement of the first link arm 61, with the coupling portion with the rotation transmission shaft 60 as a fulcrum. However, the rotation transmission shaft 60 is rotated as shown by arrows D in FIGS.

又、この回転伝達軸60の軸方向中間部で、前記手動切換弁57を構成するスプール66の中心軸と整合する位置に、上記第二の揺動腕63の基端部を、この回転伝達軸60に対し回転不能に結合している。又、これと共に、この第二の揺動腕63の先端部に設けた係合凸部67を、上記手動切換弁57のスプール66の端部に設けた係合凹部68に係合させている。従って、上記第二の揺動腕63は、上記回転伝達軸60の回転に基づき、この回転伝達軸60を支点として図2〜4の矢印ホで示す様に揺動し、この揺動に基づき上記手動切換弁57のスプール66を、図2〜4の矢印ヘで示す様に軸方向に変位させる。   In addition, the base end portion of the second swing arm 63 is connected to the rotation transmission shaft at a position aligned with the central axis of the spool 66 constituting the manual switching valve 57 at an intermediate portion in the axial direction of the rotation transmission shaft 60. The shaft 60 is non-rotatably coupled. At the same time, an engaging projection 67 provided at the tip of the second swing arm 63 is engaged with an engaging recess 68 provided at the end of the spool 66 of the manual switching valve 57. . Accordingly, the second swing arm 63 swings as indicated by the arrow H in FIGS. 2 to 4 based on the rotation of the rotation transmission shaft 60, with the rotation transmission shaft 60 as a fulcrum. The spool 66 of the manual switching valve 57 is displaced in the axial direction as indicated by arrows in FIGS.

又、上記回転伝達軸60の軸方向中間部で、上記第二の揺動腕63と隣り合う位置に、この回転伝達軸60の回転量を規制する為のディテント機構を構成するディテント部材69を、この回転伝達軸60に対し回転不能に結合している。このディテント部材69の外周面には、図示しない球状の係合子(ディテントボール)と係合する為の、複数の係合溝70、70を形成している。そして、これら係合子と何れかの係合溝70との係合に基づき、上記回転伝達軸60の回転量を規制する事により、上記第二の揺動腕63の揺動に基づき軸方向に変位する上記手動切換弁57のスプール66の位置決めを行なう。   In addition, a detent member 69 constituting a detent mechanism for restricting the amount of rotation of the rotation transmission shaft 60 is provided at a position adjacent to the second swing arm 63 at an intermediate portion in the axial direction of the rotation transmission shaft 60. The rotation transmission shaft 60 is non-rotatably coupled. On the outer peripheral surface of the detent member 69, a plurality of engagement grooves 70, 70 for engaging with a spherical engagement element (detent ball) (not shown) are formed. Then, the amount of rotation of the rotation transmission shaft 60 is restricted based on the engagement between the engagement elements and any one of the engagement grooves 70, so that the second swing arm 63 swings in the axial direction. The spool 66 of the manual switching valve 57 to be displaced is positioned.

上述の様な本実施例の場合、運転者の操作に基づき前記シフトレバー58が、図2の矢印イで示す様に揺動すると、このシフトレバー58の操作に基づき上記第一のリンク腕61が、図2〜4の矢印ロで示す様に変位する。そして、この変位に基づき上記第一の揺動腕63が、上記回転伝達軸60との結合部を支点に図2〜4の矢印ハで示す様に揺動しつつ、この回転伝達軸60を図3〜4の矢印ニで示す様に回転させる。そして、この回転に基づき上記第二の揺動腕63が、図2〜4の矢印ホで示す様に揺動し、この第二の揺動腕63の揺動に基づき、上記手動切換弁57のスプール66が、図2〜4の矢印ヘで示す様に軸方向に変位する。この際、上記ディテント部材69の外周面に設けた何れかの係合溝70と図示しない係合子とが係合する事により、上記回転伝達軸60の回転量が規制され、上記手動切換弁57のスプール66が、上記シフトレバー58の選択位置に応じた切り換え位置に位置決めされる。   In the case of the present embodiment as described above, when the shift lever 58 swings as shown by the arrow a in FIG. 2 based on the driver's operation, the first link arm 61 is operated based on the operation of the shift lever 58. However, it is displaced as shown by arrows B in FIGS. Then, based on this displacement, the first swing arm 63 swings as indicated by the arrow C in FIGS. Rotate as shown by arrows D in FIGS. Then, based on this rotation, the second swing arm 63 swings as shown by the arrow H in FIGS. 2 to 4. Based on the swing of the second swing arm 63, the manual switching valve 57. The spool 66 is displaced in the axial direction as indicated by arrows in FIGS. At this time, any engagement groove 70 provided on the outer peripheral surface of the detent member 69 is engaged with an engagement element (not shown), whereby the amount of rotation of the rotation transmission shaft 60 is restricted, and the manual switching valve 57. The spool 66 is positioned at the switching position corresponding to the selected position of the shift lever 58.

又、本実施例の場合、上記シフトレバー58がPレンジ(駐車位置)に操作された際に出力軸4の回転を阻止する為の制動手段である、パーキングロック機構71を設けている。このパーキングロック機構71は、上記シフトレバー58がPレンジに操作された際に、上記出力軸4と共に回転する部材、即ち、前記遊星歯車式変速機2を構成する後段ユニット9の構成部材のうちで、上記出力軸4と繋がる第二キャリア34の回転を阻止するものである。この為に、この第二キャリア34を構成する1対の側壁部72a、72bのうちで上記出力軸4から遠い側の側壁部72aの外周面に複数個の凹部73、73を、円周方向に亙り間欠的に設けている。又、これと共に、これら各凹部73、73と係脱自在の係合突部74を設けた係合部材75を、上記第二キャリア34の径方向外側で、上記各凹部73、73と対向する位置に設けている。この様な係合部材75は、基端部を上記第二キャリア34の中心軸と平行に設けた揺動中心軸76に支持している。そして、この揺動中心軸76と上記係合部材75の基端部との間に掛け渡す状態で、弾性部材である捩りコイルばね77を設け、この係合部材75に、上記係合突部74が上記各凹部73から離れる方向(揺動中心軸76を中心に、図3で時計回りの方向)の弾力を付与している。   In the case of this embodiment, a parking lock mechanism 71 is provided as a braking means for preventing the rotation of the output shaft 4 when the shift lever 58 is operated to the P range (parking position). This parking lock mechanism 71 is a member that rotates together with the output shaft 4 when the shift lever 58 is operated to the P range, that is, among the constituent members of the rear stage unit 9 constituting the planetary gear type transmission 2. Thus, the rotation of the second carrier 34 connected to the output shaft 4 is prevented. For this purpose, a plurality of recesses 73, 73 are arranged in the circumferential direction on the outer peripheral surface of the side wall 72a far from the output shaft 4 out of the pair of side walls 72a, 72b constituting the second carrier 34. It is provided intermittently. At the same time, the engaging member 75 provided with the engaging projections 74 detachably engageable with the recesses 73, 73 is opposed to the recesses 73, 73 on the outer side in the radial direction of the second carrier 34. Provided in position. Such an engaging member 75 has a base end portion supported by a swinging center shaft 76 provided in parallel with the center axis of the second carrier 34. In addition, a torsion coil spring 77 that is an elastic member is provided in a state of being spanned between the swing center shaft 76 and the base end portion of the engagement member 75, and the engagement protrusion 75 is provided on the engagement member 75. 74 provides elasticity in a direction away from each of the recesses 73 (a clockwise direction in FIG. 3 around the swinging center axis 76).

又、上記係合部材75の中間部で、上記第二キャリア34の径方向に関し上記係合突部73を設けた面と反対側の面に、上記シフトレバー58の操作に応じて上記係合部材75を、上記揺動中心軸76を中心に揺動させる為のガイド部材78を当接させている。このガイド部材78は、上記シフトレバー58が駐車位置(Pレンジ)に位置する場合に、上記係合部材75を、上記捩りコイルばね77の弾力に抗して、上記係合突部74が上記凹部73に係合する方向に揺動させるものである。この様なガイド部材78は、基端部外周面を他の部分よりも大径とした大径円筒面部79とすると共に、先端部外周面をこの大径円筒面部79よりも小径の小径円筒部80としている。そして、これら大径円筒面部79と小径円筒面部80とを傾斜円筒面部81により連続させている。尚、上記大径円筒面部79と小径円筒面部80との外径寸法の差H(図2)は、上記第二キャリア34に設けた上記各凹部の深さ寸法h(図3)よりも大きく(H>h)している。   Further, in the intermediate portion of the engagement member 75, the engagement member 75 is disposed on the surface opposite to the surface on which the engagement protrusion 73 is provided in the radial direction of the second carrier 34 according to the operation of the shift lever 58. A guide member 78 for causing the member 75 to swing about the swing center shaft 76 is brought into contact. When the shift lever 58 is located at the parking position (P range), the guide member 78 resists the engagement member 75 against the elasticity of the torsion coil spring 77, and the engagement protrusion 74 is It swings in the direction of engaging with the recess 73. Such a guide member 78 has a large-diameter cylindrical surface portion 79 whose base end portion outer peripheral surface has a larger diameter than other portions, and a distal end outer peripheral surface whose small-diameter cylindrical portion has a smaller diameter than the large-diameter cylindrical surface portion 79. 80. The large-diameter cylindrical surface portion 79 and the small-diameter cylindrical surface portion 80 are continued by the inclined cylindrical surface portion 81. The difference H (FIG. 2) in the outer diameter between the large-diameter cylindrical surface portion 79 and the small-diameter cylindrical surface portion 80 is larger than the depth dimension h (FIG. 3) of each concave portion provided in the second carrier 34. (H> h).

この様なガイド部材78を上記シフトレバー58の操作に応じて軸方向に変位させるべく、本実施例の場合には、このガイド部材78を第二のリンク腕82の先端寄り部に支持すると共に、この第二のリンク腕82の基端部と前記回転伝達軸60とを、第三の揺動腕83により連結している。即ち、上記回転伝達軸60の軸方向中央部で、前記ディテント機構を構成するディテント部材69と隣り合う位置に、上記第三の揺動腕83の基端部を、この回転伝達軸60に対し回転不能に結合している。そして、この第三の揺動腕83の先端部に、上記第二のリンク腕82の基端部を揺動自在に支持すると共に、この第二のリンク腕82の先端寄り部に上記ガイド部材78を支持している。   In order to displace such a guide member 78 in the axial direction in accordance with the operation of the shift lever 58, in this embodiment, the guide member 78 is supported near the tip of the second link arm 82. The base end portion of the second link arm 82 and the rotation transmission shaft 60 are connected by a third swing arm 83. That is, the base end portion of the third swing arm 83 is located with respect to the rotation transmission shaft 60 at a position adjacent to the detent member 69 constituting the detent mechanism at the axial central portion of the rotation transmission shaft 60. It is coupled so that it cannot rotate. The proximal end portion of the second link arm 82 is swingably supported by the distal end portion of the third swing arm 83, and the guide member is disposed near the distal end portion of the second link arm 82. 78 is supported.

尚、本実施例の場合、このガイド部材78を、弾性部材である圧縮コイルばね84により上記第二のリンク腕82の先端に向かう方向の弾力を付与した状態で、この第二のリンク腕82の先端寄り部分に支持している。即ち、上記ガイド部材78は、上記第二のリンク腕82に軸方向の相対変位を自在に外嵌すると共に、上記圧縮コイルばね84により弾力を付与された状態で、上記第二のリンク腕82の先端部に固定された、上記ガイド部材78の小径円筒面部80と同じ外径を有する固定円筒部材85の軸方向端面に、その端面を突き当てている。従って、上記ガイド部材78に上記固定円筒部材85の端面から離れる方向の大きな力が加わった場合には、このガイド部材78が上記圧縮コイルばね84の弾力に抗して、上記第二のリンク腕82の軸方向に相対変位する。   In the case of the present embodiment, the second link arm 82 is provided in a state in which the guide member 78 is given elasticity in a direction toward the tip of the second link arm 82 by a compression coil spring 84 which is an elastic member. It is supported on the part near the tip. In other words, the guide member 78 is externally fitted to the second link arm 82 so as to be freely displaced in the axial direction, and is elastically applied by the compression coil spring 84. The end face is abutted against the axial end face of the fixed cylindrical member 85 having the same outer diameter as that of the small-diameter cylindrical face portion 80 of the guide member 78 fixed to the distal end portion of the guide member 78. Accordingly, when a large force is applied to the guide member 78 in a direction away from the end surface of the fixed cylindrical member 85, the guide member 78 resists the elasticity of the compression coil spring 84 and the second link arm. 82 is relatively displaced in the axial direction.

この様な本実施例の場合、上記シフトレバー58の操作に基づき上記回転伝達軸60が回転すると、この回転に基づき上記第三の揺動腕83が上記回転伝達軸60を支点として、図2〜3の矢印トで示す様に揺動し、この揺動に基づき上記第二のリンク腕82が、図2〜4の矢印チで示す様に、無段変速装置の配設方向(車両に搭載した状態で前後方向)に直線的に変位する。そして、この様な第二のリンク腕82と共に上記ガイド部材78が変位する事により、上記係合部材75が前記揺動中心軸76を中心に揺動する。例えば、上記シフトレバー58がPレンジ以外、即ち、R、N、D、Lレンジに位置する場合には、上記係合部材75は上記捩りコイルばね77の弾力に基づき上記ガイド部材78の小径円筒面部80乃至上記固定円筒部材85の外周面に当接する。この状態では、上記係合部材75の先端面は、前記各凹部73、73を設けた第二キャリア34の側壁部72aの外周面(各凹部73、73同士の間の凸部により構成される外周面)よりも径方向外側に退避する。この為、上記係合部材75の係合突部74と何れかの上記凹部73とが係合する事はなく、上記第二キャリア34並びにこの第二キャリア34に繋がる前記出力軸4の回転が阻止される事はない。   In the case of this embodiment, when the rotation transmission shaft 60 rotates based on the operation of the shift lever 58, the third swing arm 83 uses the rotation transmission shaft 60 as a fulcrum based on this rotation. The second link arm 82 is oscillated as shown by the arrows 3 to 3, and the second link arm 82 is moved in accordance with the direction of the continuously variable transmission (as shown by the arrows H in FIGS. 2 to 4). Displaces linearly in the front-rear direction in the mounted state. When the guide member 78 is displaced together with the second link arm 82 as described above, the engagement member 75 swings about the swing center shaft 76. For example, when the shift lever 58 is located in a range other than the P range, that is, in the R, N, D, or L range, the engagement member 75 is a small diameter cylinder of the guide member 78 based on the elasticity of the torsion coil spring 77. The surface portion 80 is in contact with the outer peripheral surface of the fixed cylindrical member 85. In this state, the front end surface of the engaging member 75 is constituted by the outer peripheral surface of the side wall portion 72a of the second carrier 34 provided with the concave portions 73 and 73 (the convex portion between the concave portions 73 and 73). Retreats radially outward from the outer peripheral surface. For this reason, the engagement protrusion 74 of the engagement member 75 and any of the recesses 73 are not engaged, and the rotation of the second carrier 34 and the output shaft 4 connected to the second carrier 34 is prevented. There is no stopping.

一方、上記シフトレバー58がPレンジに操作されると、上記係合部材75が、上記ガイド部材78の傾斜円筒面部81乃至大径円筒面部79の外周面により、前記捩りコイルばね77の弾力に抗して押し上げられる方向(揺動中心軸76を中心に反時計方向)に揺動する。そして、この揺動に基づき上記係合部材75の係合突部74が、上記第二キャリア34の側壁部72aの外周面に設けた各凹部73、73の何れかに係合し、この第二キャリア34延いてはこの第二キャリア34に繋がる上記出力軸4の回転が阻止される。尚、上述の様に係合部材75が揺動する際、上記係合突部74と係合すべき凹部73との位相がずれていると、この係合突部74が上記各凹部73同士の間の凸部に当接したまま、上記係合部材75がそれ以上揺動しなくなる。この状態では、上記ガイド部材78が前記圧縮コイルばね84の弾力に拘らず、上記第二のリンク腕82の先端部に固定した固定円筒部材85に近付かない(大径円筒面部79が係合部材75の下側に進入しない)。但し、上記圧縮コイルばね84の弾力、及び、上記傾斜円筒面部81と上記係合部材75の下線との係合に基づき、この係合部材75に、上記係合突部74が上記各凹部73、73に係合する方向(揺動中心軸76を中心に、図3で反時計方向)の力が加わる。この力は、上記係合部材75の重量及び前記捩りコイルばね77の弾力により、図3で時計方向に加わる力よりも大きい。この為、上記係合突部74と何れかの凹部73との位相が合致する位置にまで上記第二キャリア34が回転した時点で、上記係合部材75が揺動し、上記係合突部74と何れかの凹部73、73とが係合する。この状態で、上記第二キャリア34延いてはこの第二キャリア74に繋がる出力軸4の回転が阻止される。   On the other hand, when the shift lever 58 is operated to the P range, the engagement member 75 is made elastic by the torsion coil spring 77 by the outer peripheral surface of the inclined cylindrical surface portion 81 to the large diameter cylindrical surface portion 79 of the guide member 78. It swings in the direction in which it is pushed up (counterclockwise about the center axis 76). Based on this swing, the engaging protrusion 74 of the engaging member 75 is engaged with one of the recesses 73 provided on the outer peripheral surface of the side wall 72a of the second carrier 34. The rotation of the output shaft 4 connected to the second carrier 34 and the second carrier 34 is prevented. When the engaging member 75 swings as described above, if the phase of the engaging protrusion 74 and the recess 73 to be engaged is shifted, the engaging protrusion 74 is connected to the recesses 73. The engagement member 75 does not swing any more while it is in contact with the convex portion between the two. In this state, the guide member 78 does not approach the fixed cylindrical member 85 fixed to the distal end portion of the second link arm 82 regardless of the elasticity of the compression coil spring 84 (the large-diameter cylindrical surface portion 79 is the engaging member). Do not enter under 75). However, on the basis of the elasticity of the compression coil spring 84 and the engagement between the inclined cylindrical surface portion 81 and the underline of the engagement member 75, the engagement protrusion 74 is connected to the recess 73 on the engagement member 75. , 73 (a counterclockwise direction in FIG. 3 centering on the swinging center shaft 76) is applied. This force is larger than the force applied in the clockwise direction in FIG. 3 due to the weight of the engaging member 75 and the elastic force of the torsion coil spring 77. For this reason, when the second carrier 34 rotates to a position where the phases of the engaging protrusions 74 and any of the recesses 73 coincide with each other, the engaging member 75 swings and the engaging protrusions 74 and any one of the recesses 73, 73 are engaged. In this state, the rotation of the output shaft 4 connected to the second carrier 34 and the second carrier 74 is prevented.

上述の様に構成する本発明の無段変速装置によれば、シフトレバー58の動きを伝達する為の伝達手段59を構成する回転伝達軸60を効率良く配置でき、この回転伝達軸60を設ける事に伴う、各部の強度低下や、下方への突出量の増大を防止できる。即ち、上記回転伝達軸60を、例えば図5に示す様に、アクチュエータボディー21とバルブボディー23との間部分に設けた場合には、これら各ボディー21、23の互いに対向する面に上記回転伝達軸60を挿通する為の凹溝86、86を形成する必要がある。この様に凹溝86、86を形成した場合には、上記バルブボディー23並びにアクチュエータボディー21の強度が低下する可能性がある。上記バルブボディー23内には、スプールとシリンダとの隙間が十数μm程度である複数の切換弁{例えば図9の変速比制御弁24、手動切換弁57、高速用切換弁54、低速用切換弁55、シフト用切換弁56、差圧制御弁51a、51b、前後進切換弁52等}を収納している。   According to the continuously variable transmission of the present invention configured as described above, the rotation transmission shaft 60 constituting the transmission means 59 for transmitting the movement of the shift lever 58 can be efficiently arranged, and this rotation transmission shaft 60 is provided. Accordingly, it is possible to prevent the strength of each part from decreasing and the amount of protrusion downward from being increased. That is, when the rotation transmission shaft 60 is provided in a portion between the actuator body 21 and the valve body 23 as shown in FIG. 5, for example, the rotation transmission is transmitted to the surfaces of the bodies 21 and 23 facing each other. It is necessary to form the concave grooves 86 and 86 for inserting the shaft 60. When the concave grooves 86 and 86 are formed in this way, the strength of the valve body 23 and the actuator body 21 may be reduced. In the valve body 23, a plurality of switching valves (for example, the gear ratio control valve 24, the manual switching valve 57, the high speed switching valve 54, the low speed switching in FIG. The valve 55, the shift switching valve 56, the differential pressure control valves 51a and 51b, the forward / reverse switching valve 52, etc.} are housed.

この為、上述の様にバルブボディー23の強度が低下した場合には、上記各切換弁を構成するスプールが上記シリンダ内で円滑に摺動しにくくなり、好ましくない。又、上記アクチュエータボディー21に設けたアクチュエータ22(図8、9参照)の油圧室45a、45b内には、トロイダル型無段変速機1を通過するトルク等に基づく大きな油圧が加わる。特に、入力軸3を一方向に回転させたまま、出力軸4の回転状態を、停止状態を挟んで正転、逆転に切り換えられる、所謂ギヤードニュートラルと呼ばれる無段変速装置の場合には、この様に出力軸4を停止乃至極低速で回転させる際に、上記トロイダル型無段変速機1を大きなトルクが通過する。この為、上述の様にアクチュエータボディー21の強度が低下すると、上記アクチュエータ22の駆動に基づくトラニオン18(図8参照)の位置決め精度が低下し、上記トロイダル型無段変速機1の変速比制御を安定して行なえなくなる可能性がある。これに対して、本実施例の場合には、前述の様に回転伝達軸60を遊星歯車式変速機2の径方向外側に設けている為、上述の様な強度低下を防止できる。   For this reason, when the strength of the valve body 23 is reduced as described above, it is not preferable because the spools constituting the switching valves are difficult to slide smoothly in the cylinder. Further, a large hydraulic pressure based on the torque passing through the toroidal type continuously variable transmission 1 is applied to the hydraulic chambers 45a and 45b of the actuator 22 (see FIGS. 8 and 9) provided in the actuator body 21. In particular, in the case of a continuously variable transmission called so-called geared neutral, in which the rotation state of the output shaft 4 can be switched between forward rotation and reverse rotation with the input shaft 3 rotated in one direction. Similarly, when the output shaft 4 is stopped or rotated at an extremely low speed, a large torque passes through the toroidal continuously variable transmission 1. For this reason, when the strength of the actuator body 21 decreases as described above, the positioning accuracy of the trunnion 18 (see FIG. 8) based on the driving of the actuator 22 decreases, and the transmission ratio control of the toroidal continuously variable transmission 1 is performed. There is a possibility that it cannot be performed stably. On the other hand, in the case of the present embodiment, since the rotation transmission shaft 60 is provided on the radially outer side of the planetary gear type transmission 2 as described above, it is possible to prevent the above-described decrease in strength.

又、上記回転伝達軸60を、上記遊星歯車式変速機2と上記バルブボディー23との間に設けている為、このバルブボディー23に収納した手動切換弁57と上記回転伝達軸60との距離を小さくできる。この為、この回転伝達軸60の動き(回転)をこの手動切換弁57に伝達する為の部材である第二の揺動腕63の小型・短縮化を図れると共に、この揺動腕63を周囲の部材と干渉しにくくでき、設計の自由度が増す。又、この揺動腕63を配置する部分を小さくでき、ケーシング13を含む装置の大型化、複雑化を防止できる。   Further, since the rotation transmission shaft 60 is provided between the planetary gear type transmission 2 and the valve body 23, the distance between the manual switching valve 57 accommodated in the valve body 23 and the rotation transmission shaft 60. Can be reduced. Therefore, the second swing arm 63 that is a member for transmitting the movement (rotation) of the rotation transmission shaft 60 to the manual switching valve 57 can be reduced in size and shortened, and the swing arm 63 can be This makes it difficult to interfere with other members and increases the degree of freedom in design. In addition, the portion where the swing arm 63 is disposed can be reduced, and the size and complexity of the device including the casing 13 can be prevented.

又、上述の様な位置に回転伝達軸60を設ける事により、パーキングロック機構71を簡素に構成できる。即ち、上記回転伝達軸60を、例えば図6に示す様に、トロイダル型無段変速機を構成する1対の出力側ディスク10a、10bのうちの入力軸3に近い側の出力側ディスク10aよりもこの入力軸3側に設けた場合には、上記回転伝達軸60と上記パーキングロック機構71を構成する係合部材75との距離Lが大きくなる。これに対して本実施例の場合には、図1に示す様に、上記回転伝達軸60と係合部材75との距離Lを小さくできる。この為、この回転伝達軸60の動き(回転)を上記係合部材75に伝達する為の部材である第二のリンク腕82並びに第三の揺動腕83の小型・短縮化を図れると共に、これら第二のリンク腕82並びに第三の揺動腕83を周囲の部材と干渉しにくくでき、設計の自由度が増す。又、これら第二のリンク腕82並びに第三の揺動腕83を含む上記パーキングロック機構71を、大型化、複雑化する事なく簡素に構成できる。この結果、上記無段変速装置を小型に構成でき、この無段変速装置を搭載した車両の悪路走破性の向上を図れる。又、悪路走破性と同程度とした場合には、下方への突出量を小さくできる分、上記無段変速装置を下方に搭載する事ができ、車内空間の拡大も図れる。   Further, the parking lock mechanism 71 can be simply configured by providing the rotation transmission shaft 60 at the position as described above. That is, for example, as shown in FIG. 6, the rotation transmission shaft 60 is connected to the output side disk 10a on the side close to the input shaft 3 of the pair of output side disks 10a and 10b constituting the toroidal type continuously variable transmission. In the case where it is also provided on the input shaft 3 side, the distance L between the rotation transmission shaft 60 and the engaging member 75 constituting the parking lock mechanism 71 is increased. On the other hand, in the case of the present embodiment, as shown in FIG. 1, the distance L between the rotation transmission shaft 60 and the engaging member 75 can be reduced. Therefore, the second link arm 82 and the third swing arm 83 which are members for transmitting the movement (rotation) of the rotation transmission shaft 60 to the engagement member 75 can be reduced in size and shortened. The second link arm 82 and the third swing arm 83 can be made difficult to interfere with surrounding members, and the degree of design freedom increases. In addition, the parking lock mechanism 71 including the second link arm 82 and the third swing arm 83 can be simply configured without increasing the size and complexity. As a result, the continuously variable transmission can be configured in a small size, and the rough road traveling performance of a vehicle equipped with the continuously variable transmission can be improved. In addition, when it is set to the same level as rough road running performance, the continuously variable transmission can be mounted downward as much as the downward projecting amount can be reduced, and the interior space of the vehicle can be expanded.

本発明は、無段変速装置を構成するトロイダル型無段変速機の種類がハーフトロイダル型であるかフルトロイダル型であるかを問わず、実施できる。   The present invention can be carried out regardless of whether the type of toroidal continuously variable transmission constituting the continuously variable transmission is a half toroidal type or a full toroidal type.

本発明の実施例を示す断面図。Sectional drawing which shows the Example of this invention. 要部を取り出して図1と同方向から見た図。The figure which took out the principal part and was seen from the same direction as FIG. 図2の左方から見た斜視図。The perspective view seen from the left of FIG. 図3の逆側から見た斜視図。The perspective view seen from the reverse side of FIG. 回転伝達軸の配設位置の別例の第1例を示す、図1と同様の断面図。Sectional drawing similar to FIG. 1 which shows the 1st example of another example of the arrangement | positioning position of a rotation transmission shaft. 同第2例を示す、図1と同様の断面図。Sectional drawing similar to FIG. 1, showing the second example. 従来から知られている、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせた無段変速装置の1例を示す断面図。Sectional drawing which shows one example of the continuously variable transmission which combined the toroidal type continuously variable transmission and planetary gear type transmission known conventionally. 図7のA−A断面図。AA sectional drawing of FIG. 無段変速装置に組み込む油圧回路図。The hydraulic circuit diagram incorporated in a continuously variable transmission.

符号の説明Explanation of symbols

1 トロイダル型無段変速機
2 遊星歯車式変速機
3 入力軸
4 出力軸
5 入力回転軸
6 伝達軸
7 前段ユニット
8 中段ユニット
9 後段ユニット
10a、10b 入力側ディスク
11 出力側ディスク
12 パワーローラ
13 ケーシング
14 支柱
15 転がり軸受
16a、16b 支持ポスト部
17a、17b 支持板
18 トラニオン
19 枢軸
20 支持軸
21 アクチュエータボディー
22 アクチュエータ
23 バルブボディー
24 変速比制御弁
25 押圧装置
26 中空回転軸
27 第一太陽歯車
28 第一キャリア
29 遊星歯車
30 遊星歯車
31 遊星歯車
32 第一リング歯車
33 第二太陽歯車
34 第二キャリア
35 低速用クラッチ
36 第三太陽歯車
37 第二リング歯車
38 高速用クラッチ
39 遊星歯車
40 遊星歯車
41 オイルパン
42 高圧ポンプ
43 低圧ポンプ
44 押圧用圧力調整弁
45a、45b 油圧室
46 低圧側圧力調整弁
47 第一の電磁弁
48 ステッピングモータ
49 差圧シリンダ
50 第二の電磁弁
51a、51b 差圧制御弁
52 前後進切換弁
53 第三の電磁弁
54 高速用切換弁
55 低速用切換弁
56 シフト用切換弁
57 手動切換弁
58 シフトレバー
59 伝達手段
60 回転伝達軸
61 第一のリンク腕
62 第一の揺動腕
63 第二の揺動腕
64 係合孔
65 側壁部
66 スプール
67 係合凸部
68 係合凹部
69 ディテント部材
70 係合溝
71 パーキングロック機構
72a、72b 側壁部
73 凹部
74 係合突部
75 係合部材
76 揺動中心軸
77 捩りコイルばね
78 ガイド部材
79 大径円筒面部
80 小径円筒面部
81 傾斜円筒面部
82 第二のリンク腕
83 第三の揺動腕
84 圧縮コイルばね
85 固定円筒部材
86 凹溝
DESCRIPTION OF SYMBOLS 1 Toroidal type continuously variable transmission 2 Planetary gear type transmission 3 Input shaft 4 Output shaft 5 Input rotation shaft 6 Transmission shaft 7 Front stage unit 8 Middle stage unit 9 Rear stage unit 10a, 10b Input side disk 11 Output side disk 12 Power roller 13 Casing 14 struts 15 rolling bearings 16a, 16b support posts 17a, 17b support plates 18 trunnions 19 pivots 20 support shafts 21 actuator bodies 22 actuators 23 valve bodies 24 transmission ratio control valves 25 pressing devices 26 hollow rotary shafts 27 first sun gears 28 first One carrier 29 Planetary gear 30 Planetary gear 31 Planetary gear 32 First ring gear 33 Second sun gear 34 Second carrier 35 Low speed clutch 36 Third sun gear 37 Second ring gear 38 High speed clutch 39 Planetary gear 40 Planetary gear 40 DESCRIPTION OF SYMBOLS 1 Oil pan 42 High pressure pump 43 Low pressure pump 44 Pressure adjusting valve 45a, 45b Pressing pressure chamber 46 Low pressure side pressure adjusting valve 47 First solenoid valve 48 Stepping motor 49 Differential pressure cylinder 50 Second solenoid valve 51a, 51b Differential pressure Control valve 52 Forward / reverse switching valve 53 Third solenoid valve 54 High speed switching valve 55 Low speed switching valve 56 Shift switching valve 57 Manual switching valve 58 Shift lever 59 Transmission means 60 Rotation transmission shaft 61 First link arm 62 First link arm 62 One swing arm 63 Second swing arm 64 Engagement hole 65 Side wall part 66 Spool 67 Engagement convex part 68 Engagement concave part 69 Detent member 70 Engagement groove 71 Parking lock mechanism 72a, 72b Side wall part 73 Concave part 74 Engagement Collision part 75 Engagement member 76 Oscillation center shaft 77 Torsion coil spring 78 Guide member 79 Large diameter cylindrical surface part 80 Small diameter Cylindrical surface portion 81 inclined cylindrical surface portion 82 the second link arm 83 third rocking arm 84 the compression coil spring 85 fixed cylindrical member 86 grooves

Claims (3)

回転軸の周囲にこの回転軸と同期した回転を自在に支持した1対の外側ディスク、及びこの回転軸の中間部周囲でこれら両外側ディスクの間部分にこの回転軸に対する相対回転を自在に設けられた内側ディスク、及びこの内側ディスクと上記外側ディスクとの互いに対向する側面同士の間に挟持された複数個のパワーローラ、及び変速比変更の為のアクチュエータへの油圧制御を行なう為の変速比制御弁を収納したバルブボディーを備えたトロイダル型無段変速機と、遊星歯車式変速機とを、互いに同軸に、且つ、この遊星歯車式変速機と上記トロイダル型無段変速機の回転軸及び内側ディスクとの間で動力を伝達する状態で組み合わせ、このうちのトロイダル型無段変速機の回転軸に入力軸を、上記遊星歯車式変速機の構成部材に出力軸を、それぞれ繋げると共に、動力の伝達経路を切り換えるクラッチ装置を有し、このクラッチ装置への圧油の導入状態を切り換える為の手動切換弁を上記バルブボディーに収納した無段変速装置に於いて、運転席に設けたシフトレバーの操作に基づいて上記手動切換弁の切り換え状態を切り換える為の伝達手段を構成する回転伝達軸を、上記各外側ディスクのうちの上記出力軸に近い側の外側ディスクよりもこの出力軸側で、上記遊星歯車式変速機の径方向外側に、この遊星歯車式変速機の中心軸に対し捻れの位置となる状態で設けた事を特徴とする無段変速装置。   A pair of outer disks that freely supports rotation in synchronization with the rotating shaft around the rotating shaft, and a relative rotation with respect to the rotating shaft is freely provided around the intermediate portion of the rotating shaft between the outer disks. A transmission gear ratio for controlling hydraulic pressure to the inner disk, a plurality of power rollers sandwiched between mutually facing side surfaces of the inner disk and the outer disk, and an actuator for changing the gear ratio A toroidal type continuously variable transmission having a valve body that houses a control valve and a planetary gear type transmission are coaxial with each other, and the planetary gear type transmission and the rotational shaft of the toroidal type continuously variable transmission and Combined in a state where power is transmitted to the inner disk, of which the input shaft is the rotational shaft of the toroidal type continuously variable transmission, and the output shaft is the constituent member of the planetary gear type transmission. In a continuously variable transmission having a clutch device for switching a power transmission path and a manual switching valve for switching a state of introduction of pressure oil to the clutch device, the valve body is connected to each other. The rotation transmission shaft that constitutes the transmission means for switching the switching state of the manual switching valve based on the operation of the shift lever provided on the outer disk is closer to the outer disk closer to the output shaft of the outer disks. A continuously variable transmission, characterized in that, on the output shaft side, the continuously variable transmission is provided on the radially outer side of the planetary gear type transmission in a twisted position with respect to the central axis of the planetary gear type transmission. 回転伝達軸が、遊星歯車式変速機の下端部とバルブボディーの上面との間に設けられた、請求項1に記載した無段変速装置。   The continuously variable transmission according to claim 1, wherein the rotation transmission shaft is provided between a lower end portion of the planetary gear type transmission and an upper surface of the valve body. シフトレバーの切り換え位置が駐車位置である場合に、出力軸又はこの出力軸と共に回転する部材と係合する事によりこの出力軸の回転を阻止する係合部材が、回転伝達軸の動きに基づいて、この出力軸又はこの出力軸と共に回転する部材と係脱するものである、請求項1〜2の何れか1項に記載した無段変速装置。   When the shift lever switching position is the parking position, the engagement member that prevents the rotation of the output shaft by engaging with the output shaft or a member that rotates together with the output shaft is based on the movement of the rotation transmission shaft. The continuously variable transmission according to any one of claims 1 to 2, wherein the continuously variable transmission is engaged with or disengaged from the output shaft or a member that rotates together with the output shaft.
JP2004360797A 2004-12-14 2004-12-14 Continuously variable transmission Expired - Fee Related JP4617863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360797A JP4617863B2 (en) 2004-12-14 2004-12-14 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360797A JP4617863B2 (en) 2004-12-14 2004-12-14 Continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2006170261A true JP2006170261A (en) 2006-06-29
JP2006170261A5 JP2006170261A5 (en) 2007-12-06
JP4617863B2 JP4617863B2 (en) 2011-01-26

Family

ID=36671237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360797A Expired - Fee Related JP4617863B2 (en) 2004-12-14 2004-12-14 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4617863B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388662A (en) * 2013-07-24 2013-11-13 王宪平 Lever type centrifugal force stepless automatic speed changer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814352A (en) * 1994-07-01 1996-01-16 Nissan Motor Co Ltd Friction-gear continuously variable transmission type transaxle
JP2002227999A (en) * 2001-01-29 2002-08-14 Nissan Motor Co Ltd Parking lock system for automatic transmission
JP2004211744A (en) * 2002-12-27 2004-07-29 Nsk Ltd Continuously variable transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814352A (en) * 1994-07-01 1996-01-16 Nissan Motor Co Ltd Friction-gear continuously variable transmission type transaxle
JP2002227999A (en) * 2001-01-29 2002-08-14 Nissan Motor Co Ltd Parking lock system for automatic transmission
JP2004211744A (en) * 2002-12-27 2004-07-29 Nsk Ltd Continuously variable transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388662A (en) * 2013-07-24 2013-11-13 王宪平 Lever type centrifugal force stepless automatic speed changer

Also Published As

Publication number Publication date
JP4617863B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4151607B2 (en) Belt type continuously variable transmission
JPH10184820A (en) Planetary gear mechanism
JP2007154979A (en) Toroidal type continuously variable transmission, and continuously variable transmission device
JP2012219950A (en) Continuously variable transmission
JP2008014333A (en) Automatic transmission
JP4492016B2 (en) Continuously variable transmission
JP2003314645A (en) Toroidal type continuously variable transmission and continuously variable transmission device
JP2004169719A (en) Toroidal type continuously variable transmission, and continuously variable transmission device
US5464375A (en) Friction-roller-type continuously variable transmission
JP6163827B2 (en) Vehicle parking device
JP4617863B2 (en) Continuously variable transmission
JP4479181B2 (en) Toroidal continuously variable transmission
JP6093738B2 (en) Toroidal continuously variable transmission
JP2019044862A (en) HMT structure
JP4029727B2 (en) Continuously variable transmission
JPH07198015A (en) Transmission ratio control device for troidal type continuously variable transmission
JP2002206610A (en) Continuously variable transmission
JP4882965B2 (en) Toroidal continuously variable transmission
JP2002317871A (en) Electric driving device for transmission
JP2006017145A (en) Toroidal type continuously variable transmission for four-wheel drive car
JP5834583B2 (en) Toroidal continuously variable transmission
JP4774694B2 (en) Toroidal continuously variable transmission
JP2007040486A (en) Toroidal continuously variable transmission
JP5678610B2 (en) Shift control device for continuously variable transmission
JP4329262B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees