JP2006170153A - Fuel injection device and fuel injection method - Google Patents

Fuel injection device and fuel injection method Download PDF

Info

Publication number
JP2006170153A
JP2006170153A JP2004367013A JP2004367013A JP2006170153A JP 2006170153 A JP2006170153 A JP 2006170153A JP 2004367013 A JP2004367013 A JP 2004367013A JP 2004367013 A JP2004367013 A JP 2004367013A JP 2006170153 A JP2006170153 A JP 2006170153A
Authority
JP
Japan
Prior art keywords
fuel
pressure
valve
fuel injection
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004367013A
Other languages
Japanese (ja)
Other versions
JP4241601B2 (en
Inventor
Yoshihisa Yamamoto
義久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004367013A priority Critical patent/JP4241601B2/en
Priority to DE200510060647 priority patent/DE102005060647A1/en
Publication of JP2006170153A publication Critical patent/JP2006170153A/en
Application granted granted Critical
Publication of JP4241601B2 publication Critical patent/JP4241601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0054Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/06Use of pressure wave generated by fuel inertia to open injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/006Springs assisting hydraulic closing force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection device 1 and a fuel injection method capable of increasing injection pressure without adopting a complicated structure. <P>SOLUTION: The fuel injection device 1 is provided with a fuel injection valve 2 injecting and supplying fuel accumulated in a common rail 4 to an engine, and a fuel shut off valve 3 built in a high pressure supply flow passage A for leading fuel to an injection hole form the common rail 4 and closing the high pressure supply flow passage A and opening the high pressure supply flow passage A if needed. Consequently, pressure pulsation can be generated by temporarily opening the fuel shut off valve 3 and temporarily introducing fuel to the high pressure supply passage A in a downstream side of the fuel shut off valve 3. Fuel pressure can be increased in the high pressure supply flow passage A by this pressure pulsation. Consequently, injection pressure can be increased by a simple structure having a fuel shut off valve 3 built in the high pressure supply flow passage A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エンジンに燃料を噴射供給する燃料噴射装置および燃料噴射方法に関する。   The present invention relates to a fuel injection device and a fuel injection method for injecting and supplying fuel to an engine.

〔従来の技術〕
近年、エンジンにおける燃費低減、高出力化および黒煙低減等の要求に応じて、エンジンに噴射される燃料の圧力(噴射圧力)は、ますます高圧になっている。このような噴射圧力の高圧化に対応して、例えば、ディーゼルエンジン等の直噴型エンジンでは、高圧状態で燃料を蓄圧することができるコモンレール式の燃料噴射装置が考えられ実用化されている。さらに、コモンレールに蓄圧された燃料を増圧して噴射ノズルに供給する燃料噴射装置も考えられている。
[Conventional technology]
In recent years, the pressure (injection pressure) of fuel injected into an engine has become higher and higher in response to demands such as fuel efficiency reduction, higher output, and black smoke reduction in the engine. In response to such high injection pressure, for example, in a direct injection type engine such as a diesel engine, a common rail type fuel injection device capable of accumulating fuel in a high pressure state has been considered and put into practical use. Further, a fuel injection device that boosts the fuel accumulated in the common rail and supplies it to the injection nozzle is also considered.

上記のように、噴射する燃料をさらに増圧する増圧手段として、例えば、所定の面積を有する受圧面と、この受圧面よりも小さい面積を有する加圧面とが設けられた増圧ピストンを用いるものが公知になっている(例えば、特許文献1参照)。この増圧手段によれば、コモンレールの燃料の圧力を受圧面に作用させるとともに、受圧面よりも小さい面積の加圧面で燃料を加圧することにより、燃料の圧力を増圧している。   As described above, as a pressure increasing means for further increasing the pressure of fuel to be injected, for example, a pressure increasing piston provided with a pressure receiving surface having a predetermined area and a pressure surface having an area smaller than the pressure receiving surface is used. Is known (see, for example, Patent Document 1). According to this pressure increasing means, the pressure of the fuel is increased by causing the pressure of the fuel of the common rail to act on the pressure receiving surface and pressurizing the fuel with the pressing surface having a smaller area than the pressure receiving surface.

〔従来技術の不具合〕
しかし、この増圧手段を用いる燃料噴射装置では、既存の燃料噴射弁等に加えて、増圧ピストンや復元バネ等を収容する収容室、加圧する燃料を受け入れる加圧室、加圧される燃料を受け入れる被加圧室、および各室とコモンレールや噴射ノズル等とを連結するための流路等を設けるとともに、各種の弁や絞り等を配置する必要がある。このため、燃料噴射装置の構造が極めて複雑になってしまう。
特許第2885076号公報
[Problems with conventional technology]
However, in the fuel injection device using this pressure increasing means, in addition to the existing fuel injection valve and the like, a storage chamber for storing a pressure increasing piston, a restoring spring, etc., a pressure chamber for receiving pressurized fuel, and a pressurized fuel It is necessary to provide a pressurized chamber for receiving the gas, a flow path for connecting each chamber to the common rail, the injection nozzle, and the like, and to arrange various valves and throttles. For this reason, the structure of the fuel injection device becomes extremely complicated.
Japanese Patent No. 2885076

本発明は、上記の問題点を解決するためになされたものであり、複雑な構造を採らなくても噴射圧力を増圧することができる燃料噴射装置および燃料噴射方法を提供することにある。   The present invention has been made to solve the above-described problems, and provides a fuel injection device and a fuel injection method capable of increasing the injection pressure without adopting a complicated structure.

〔請求項1の手段〕
請求項1に記載の燃料噴射装置は、弁体の移動により噴孔が開閉されて燃料を噴射するノズル、弁体の反噴孔側に背圧室を具備して背圧室の背圧が制御されて弁体を駆動するアクチュエータを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、燃料供給源から噴孔まで燃料を導くための高圧供給流路に組み込まれて、高圧供給流路を閉鎖するとともに、必要に応じて高圧供給流路を開放する燃料遮断弁とを備える。また、燃料遮断弁は、燃料供給源と高圧供給流路とが連通する開弁状態と、燃料供給源と高圧供給流路とが遮断される閉弁状態とを切り換える二方弁である。そして、燃料遮断弁を一時的に開弁し、燃料供給源から燃料を一時的に燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、燃料遮断弁よりも下流側に導かれた燃料の圧力が圧力脈動により増圧した時に噴孔を開放する。
このように、高圧供給流路に燃料遮断弁を組み込んだ簡易な構造により、噴射圧力を増圧することができる。
なお、背圧室は、ノズルにおいて、弁体の反噴孔側に形成されている。また、アクチュエータは、背圧室から燃料を排出するための背圧排出流路を開閉することで背圧を制御して弁体を駆動する。
[Means of Claim 1]
According to a first aspect of the present invention, there is provided a fuel injection device comprising: a nozzle for injecting fuel by opening and closing of an injection hole by movement of a valve element; a back pressure chamber on the side opposite to the injection hole of the valve element; A fuel injection valve having an actuator that drives the valve body under control to supply fuel supplied from a predetermined fuel supply source to the engine, and a high-pressure supply passage for guiding the fuel from the fuel supply source to the injection hole And a fuel cutoff valve that closes the high-pressure supply flow path and opens the high-pressure supply flow path as necessary. The fuel cutoff valve is a two-way valve that switches between a valve open state in which the fuel supply source and the high pressure supply flow path are in communication and a valve closed state in which the fuel supply source and the high pressure supply flow path are blocked. Then, the fuel shut-off valve is temporarily opened, pressure pulsation is generated by temporarily guiding the fuel from the fuel supply source to the downstream side of the fuel shut-off valve, and the fuel shut-off valve is led downstream of the fuel shut-off valve. When the fuel pressure is increased by pressure pulsation, the nozzle hole is opened.
Thus, the injection pressure can be increased by a simple structure in which the fuel cutoff valve is incorporated in the high-pressure supply channel.
The back pressure chamber is formed in the nozzle on the side opposite to the injection hole of the valve body. The actuator opens and closes a back pressure discharge channel for discharging fuel from the back pressure chamber to control the back pressure and drive the valve body.

〔請求項2の手段〕
請求項2に記載の燃料噴射装置では、高圧供給流路の燃料を排出するための高圧排出流路が、高圧供給流路から分岐している。
圧力脈動により燃料を増圧する場合、燃料が一時的に導かれる流路、すなわち圧力脈動を発生させる流路は、できるだけ低圧にしておくことが好ましい。そこで、上記のように、圧力脈動を発生させる流路である高圧供給流路から、燃料を排出するための高圧排出流路を分岐させれば、高圧供給流路を低圧にすることができる。
[Means of claim 2]
In the fuel injection device according to the second aspect, the high-pressure discharge channel for discharging the fuel in the high-pressure supply channel branches from the high-pressure supply channel.
When the pressure of the fuel is increased by pressure pulsation, the flow path through which the fuel is temporarily guided, that is, the flow path that generates pressure pulsation is preferably as low as possible. Therefore, as described above, if the high-pressure discharge channel for discharging the fuel is branched from the high-pressure supply channel that is a channel for generating pressure pulsation, the high-pressure supply channel can be set to a low pressure.

〔請求項3の手段〕
請求項3に記載の燃料噴射装置の高圧排出流路には、燃料の排出を規制する排出規制手段が設けられている。
これにより、燃料をノズルから噴射する等、高圧供給流路を本来の目的で用いる場合に、高圧排出流路からの燃料の排出の影響を低減することができる。
[Means of claim 3]
The high-pressure discharge flow path of the fuel injection device according to claim 3 is provided with a discharge regulating means for regulating fuel discharge.
Thereby, when using a high-pressure supply channel for the original purpose, such as injecting fuel from a nozzle, the influence of discharge of fuel from a high-pressure discharge channel can be reduced.

〔請求項4の手段〕
請求項4に記載の燃料噴射装置の排出規制手段は、高圧排出流路に設けられた絞りにより排出流量を規制する。
この手段は、排出規制手段の一形態である。
[Means of claim 4]
The discharge restricting means of the fuel injection device according to claim 4 restricts the discharge flow rate by a throttle provided in the high pressure discharge flow path.
This means is one form of the discharge regulating means.

〔請求項5の手段〕
請求項5に記載の燃料噴射装置の高圧排出流路には、大気圧よりも高い圧力が作用すると開弁する逆止弁が組み込まれている。
これにより、圧力脈動による噴射圧力の増圧目標値に応じて、大気圧よりも高い任意の圧力の値から、逆止弁の開弁圧を選択することができる。ここで、燃料が導かれる前の高圧供給流路の圧力が低いほど、圧力脈動による増圧後の噴射圧力は高くなる。このため、逆止弁の開弁圧はできるだけ低圧の方が好ましい。上記の構成によれば、例えば、逆止弁の開弁圧を、大気圧よりもごく僅かに高い程度に設定すれば、圧力脈動による増圧後の噴射圧力を高くすることができる。
[Means of claim 5]
A check valve that opens when a pressure higher than atmospheric pressure is applied is incorporated in the high-pressure discharge passage of the fuel injection device according to claim 5.
Thereby, the valve opening pressure of the check valve can be selected from an arbitrary pressure value higher than the atmospheric pressure in accordance with the target value for increasing the injection pressure due to pressure pulsation. Here, the lower the pressure in the high-pressure supply channel before the fuel is guided, the higher the injection pressure after pressure increase due to pressure pulsation. For this reason, the valve opening pressure of the check valve is preferably as low as possible. According to the above configuration, for example, if the valve opening pressure of the check valve is set to be slightly higher than the atmospheric pressure, the injection pressure after pressure increase due to pressure pulsation can be increased.

〔請求項6の手段〕
請求項6に記載の燃料噴射装置の燃料遮断弁は、弁体の移動により噴孔が開閉されて燃料を噴射するノズルと、弁体の反噴孔側に背圧室を具備して背圧室の背圧が制御されて弁体を駆動するアクチュエータとを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、燃料供給源から噴孔まで燃料を導くための高圧供給流路に組み込まれて、高圧供給流路を閉鎖するとともに、必要に応じて高圧供給流路を開放する燃料遮断弁とを備える。また、燃料遮断弁は、燃料供給源と高圧供給流路とが連通する開弁状態と、高圧供給流路と高圧供給流路の燃料を排出するための高圧排出流路とが連通する閉弁状態とを切り換える三方弁である。そして、燃料遮断弁を一時的に開弁し、燃料供給源から燃料を一時的に燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、燃料遮断弁よりも下流側に導かれた燃料の圧力が圧力脈動により増圧した時に、噴孔を開放する。
これにより、噴射終了後に三方弁を開弁状態から閉弁状態へ切り換えることで、高圧供給流路を確実に低圧にすることができる。
[Means of claim 6]
The fuel shut-off valve of the fuel injection device according to claim 6 includes a nozzle that injects fuel by opening and closing the nozzle hole by movement of the valve body, and a back pressure chamber on the side opposite to the nozzle hole of the valve body. A fuel injection valve that injects fuel supplied from a predetermined fuel supply source to the engine, and guides the fuel from the fuel supply source to the injection hole. And a fuel cutoff valve that closes the high-pressure supply channel and opens the high-pressure supply channel as necessary. The fuel shut-off valve is a closed valve in which the open state in which the fuel supply source and the high pressure supply flow path communicate with each other and the high pressure supply flow path and the high pressure discharge flow path for discharging the fuel in the high pressure supply flow path communicate with each other. It is a three-way valve that switches between states. Then, the fuel shut-off valve is temporarily opened, pressure pulsation is generated by temporarily guiding the fuel from the fuel supply source to the downstream side of the fuel shut-off valve, and the fuel shut-off valve is led downstream of the fuel shut-off valve. When the fuel pressure is increased by pressure pulsation, the nozzle hole is opened.
As a result, the high pressure supply flow path can be reliably reduced to a low pressure by switching the three-way valve from the open state to the closed state after the injection is completed.

〔請求項7の手段〕
請求項7に記載の燃料噴射装置では、背圧室へ燃料を供給するための背圧供給流路が、高圧供給流路から分岐している。
[Means of Claim 7]
In the fuel injection device according to the seventh aspect, the back pressure supply passage for supplying fuel to the back pressure chamber is branched from the high pressure supply passage.

〔請求項8の手段〕
請求項8に記載の燃料噴射装置では、背圧供給流路に、背圧室から高圧供給流路への燃料の逆流を防止する逆止弁が組み込まれている。
噴孔が閉鎖されている時は、弁体を閉孔方向に付勢する閉孔付勢力が、弁体を開孔方向に付勢する開孔付勢力よりも強くなっている。そして、開孔付勢力が閉孔付勢力よりも強くなると、弁体が開孔方向に移動して噴孔を開放する。このような弁体の作動に対し、背圧室の燃料の圧力(背圧)による付勢力は閉孔付勢力をなす。このため、噴射を停止すべき時間帯に背圧室から燃料が流出すると、弁体における付勢力のバランスが崩れ意図しない噴射が行われてしまう。そこで、上記のように、背圧供給流路に、背圧室から高圧供給流路への燃料の逆流を防止する逆止弁を組み込むことで、意図しない噴射を確実に防ぐことができる。
[Means of Claim 8]
In the fuel injection device according to the eighth aspect, the check valve for preventing the back flow of the fuel from the back pressure chamber to the high pressure supply passage is incorporated in the back pressure supply passage.
When the nozzle hole is closed, the closing biasing force that biases the valve element in the closing direction is stronger than the opening biasing force that biases the valve element in the opening direction. When the opening urging force becomes stronger than the closing urging force, the valve body moves in the opening direction to open the nozzle hole. In response to such operation of the valve body, the urging force due to the fuel pressure (back pressure) in the back pressure chamber forms a closed hole urging force. For this reason, if the fuel flows out from the back pressure chamber during the time period when the injection should be stopped, the balance of the urging force in the valve body is lost and unintended injection is performed. Therefore, as described above, unintentional injection can be reliably prevented by incorporating a check valve for preventing the backflow of fuel from the back pressure chamber to the high pressure supply channel in the back pressure supply channel.

〔請求項9の手段〕
請求項9に記載の燃料噴射装置では、背圧室へ燃料を供給するための背圧供給流路が、高圧供給流路とは別に燃料供給源から、直接、背圧室に接続されている。
これにより、噴孔から噴射される燃料を導くための高圧供給流路を経由せずに、背圧室へ燃料を供給することができる。このため、噴射されるべき燃料の一部を背圧室へ供給する必要がなくなるので、意図しない噴射圧力の低下を防止することができる。
[Means of Claim 9]
In the fuel injection device according to claim 9, the back pressure supply passage for supplying fuel to the back pressure chamber is directly connected to the back pressure chamber from the fuel supply source separately from the high pressure supply passage. .
Thereby, the fuel can be supplied to the back pressure chamber without going through the high pressure supply flow path for guiding the fuel injected from the injection hole. For this reason, it is not necessary to supply a part of the fuel to be injected to the back pressure chamber, so that an unintended drop in the injection pressure can be prevented.

〔請求項10の手段〕
請求項10に記載の燃料噴射装置では、噴孔から噴射される燃料が、弁体に対し噴孔を開放する方向に圧力を及ぼすように、高圧供給流路からノズルに供給される。また、弁体に対し噴孔を開放する方向に作用する燃料の圧力の有効受圧面積が、背圧の有効受圧面積よりも小さい。
噴射圧力は、圧力脈動によって燃料遮断弁の上流側における燃料の圧力よりも高い圧力に増圧される。よって、背圧室の燃料が高圧供給流路とは別の流路を経て燃料供給源から供給されると、閉孔方向に作用する背圧が、開孔方向に作用する噴射圧力よりも低くなる虞がある。そこで、上記のように、弁体に対し開孔方向に作用する噴射圧力の有効受圧面積を、弁体に対し閉孔方向に作用する背圧の有効受圧面積よりも小さくする。これにより、背圧による閉孔付勢力を噴射圧力による開孔付勢力よりも強くすることができるので、背圧が噴射圧力より低くても、確実に弁体を閉孔方向に付勢して噴孔を閉鎖することができる。
[Means of Claim 10]
In the fuel injection device according to the tenth aspect, the fuel injected from the injection hole is supplied to the nozzle from the high-pressure supply channel so as to exert pressure on the valve body in the direction of opening the injection hole. Further, the effective pressure receiving area of the fuel pressure acting in the direction of opening the nozzle hole with respect to the valve body is smaller than the effective pressure receiving area of the back pressure.
The injection pressure is increased by a pressure pulsation to a pressure higher than the fuel pressure upstream of the fuel cutoff valve. Therefore, when the fuel in the back pressure chamber is supplied from the fuel supply source through a flow path different from the high pressure supply flow path, the back pressure acting in the closing direction is lower than the injection pressure acting in the opening direction. There is a risk of becoming. Therefore, as described above, the effective pressure receiving area of the injection pressure acting on the valve body in the opening direction is made smaller than the effective pressure receiving area of the back pressure acting on the valve body in the closing direction. As a result, the closing biasing force due to the back pressure can be made stronger than the opening biasing force due to the injection pressure. Therefore, even if the back pressure is lower than the injection pressure, the valve body is reliably biased in the closing direction. The nozzle hole can be closed.

〔請求項11の手段〕
請求項11に記載の燃料噴射装置の燃料供給源は、燃料を高圧化して吐出する燃料噴射ポンプ、この燃料噴射ポンプから吐出された燃料を所定の圧力で蓄圧するコモンレールを有し、燃料遮断弁は、コモンレールに装着されている。
高圧供給流路において、燃料遮断弁をより上流側に組み込むほど、圧力脈動による増圧後の噴射圧力を高めることができる。そこで、上記のように燃料遮断弁をコモンレールに装着し、燃料遮断弁を高圧供給流路の最上流に相当するコモンレール近傍に組み込む。これにより、圧力脈動による増圧後の噴射圧力を高くすることができる。
[Means of Claim 11]
The fuel supply source of the fuel injection device according to claim 11 has a fuel injection pump that discharges the fuel at a high pressure, a common rail that accumulates the fuel discharged from the fuel injection pump at a predetermined pressure, and a fuel cutoff valve Is mounted on the common rail.
In the high-pressure supply channel, the injection pressure after pressure increase due to pressure pulsation can be increased as the fuel cutoff valve is incorporated further upstream. Therefore, the fuel cutoff valve is mounted on the common rail as described above, and the fuel cutoff valve is incorporated in the vicinity of the common rail corresponding to the uppermost stream of the high-pressure supply flow path. Thereby, the injection pressure after pressure increase due to pressure pulsation can be increased.

〔請求項12の手段〕
請求項12に記載の燃料噴射方法は、弁体の移動により噴孔が開閉されて燃料を噴射するノズル、弁体の反噴孔側に背圧室を具備して背圧室の背圧が制御されて弁体を駆動するアクチュエータを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、燃料供給源から噴孔まで燃料を導くための高圧供給流路に組み込まれて、高圧供給流路を閉鎖するとともに、必要に応じて高圧供給流路を開放する燃料遮断弁とを備えた燃料噴射装置を用いるものである。そして、燃料遮断弁を一時的に開弁し、燃料供給源から燃料を一時的に燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、燃料遮断弁よりも下流側に導かれた燃料の圧力が圧力脈動により増圧した時に、噴孔を開放し、所定時間経過後、アクチュエータを作動停止させ弁体により噴孔を閉鎖した後、燃料遮断弁を、再度、一時的に開弁し、圧力脈動により増圧した燃料を燃料遮断弁よりも上流側に導く。
これにより、噴射終了後、増圧された燃料を燃料供給源に回収してエネルギーロスを抑制するとともに、噴射終了後の高圧供給流路の燃料の圧力を低圧にすることができる。
[Means of Claim 12]
A fuel injection method according to a twelfth aspect of the present invention includes a nozzle that opens and closes an injection hole by movement of a valve body to inject fuel, a back pressure chamber on the side opposite to the injection hole of the valve body, and a back pressure in the back pressure chamber is reduced. A fuel injection valve having an actuator that drives the valve body under control to supply fuel supplied from a predetermined fuel supply source to the engine, and a high-pressure supply passage for guiding the fuel from the fuel supply source to the injection hole And a fuel injection device including a fuel cutoff valve that closes the high-pressure supply flow path and opens the high-pressure supply flow path as necessary. Then, the fuel shut-off valve is temporarily opened, pressure pulsation is generated by temporarily guiding the fuel from the fuel supply source to the downstream side of the fuel shut-off valve, and the fuel shut-off valve is led downstream of the fuel shut-off valve. When the fuel pressure increases due to pressure pulsation, the nozzle hole is opened, and after a predetermined time has elapsed, the actuator is deactivated and the nozzle hole is closed by the valve body, and then the fuel shut-off valve is temporarily opened again. Then, the fuel whose pressure is increased by the pressure pulsation is guided upstream of the fuel cutoff valve.
As a result, after the injection is completed, the increased pressure fuel can be recovered in the fuel supply source to suppress energy loss, and the pressure of the fuel in the high pressure supply flow path after the injection can be reduced.

最良の形態1の燃料噴射装置は、弁体の移動により噴孔が開閉されて燃料を噴射するノズル、弁体の反噴孔側に背圧室を具備して背圧室の背圧が制御されて弁体を駆動するアクチュエータを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、燃料供給源から噴孔まで燃料を導くための高圧供給流路に組み込まれて、高圧供給流路を閉鎖するとともに、必要に応じて高圧供給流路を開放する燃料遮断弁とを備える。   The fuel injection device of the best mode 1 includes a nozzle that injects fuel by opening and closing an injection hole by movement of a valve body, and a back pressure chamber on the side opposite to the injection hole of the valve body to control the back pressure of the back pressure chamber. A fuel injection valve that injects fuel supplied from a predetermined fuel supply source to the engine, and a high-pressure supply passage that guides the fuel from the fuel supply source to the injection hole. A fuel shut-off valve that is incorporated and closes the high-pressure supply flow path and opens the high-pressure supply flow path as necessary.

燃料遮断弁は、燃料供給源と高圧供給流路とが連通する開弁状態と、燃料供給源と高圧供給流路とが遮断される閉弁状態とを切り換える二方弁である。そして、燃料遮断弁を一時的に開弁し、燃料供給源から燃料を一時的に燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、燃料遮断弁よりも下流側に導かれた燃料の圧力が圧力脈動により増圧した時に、噴孔を開放する。   The fuel cutoff valve is a two-way valve that switches between a valve open state in which the fuel supply source and the high pressure supply flow path are in communication and a valve closed state in which the fuel supply source and the high pressure supply flow path are blocked. Then, the fuel shut-off valve is temporarily opened, pressure pulsation is generated by temporarily guiding the fuel from the fuel supply source to the downstream side of the fuel shut-off valve, and the fuel shut-off valve is led downstream of the fuel shut-off valve. When the fuel pressure is increased by pressure pulsation, the nozzle hole is opened.

燃料噴射装置では、高圧供給流路の燃料を排出するための高圧排出流路が、高圧供給流路から分岐している。高圧排出流路には、燃料の排出を規制する排出規制手段が設けられている。排出規制手段は、高圧排出流路に設けられた絞りにより排出流量を規制する。また、高圧排出流路には、大気圧よりも高い圧力が作用すると開弁する逆止弁が組み込まれている。   In the fuel injection device, a high-pressure discharge channel for discharging fuel in the high-pressure supply channel branches from the high-pressure supply channel. The high-pressure discharge flow path is provided with discharge restriction means for restricting fuel discharge. The discharge regulating means regulates the discharge flow rate by a throttle provided in the high pressure discharge flow path. In addition, the high-pressure discharge passage incorporates a check valve that opens when a pressure higher than atmospheric pressure is applied.

燃料噴射装置では、背圧室へ燃料を供給するための背圧供給流路が、高圧供給流路から分岐している。背圧供給流路には、背圧室から高圧供給流路への燃料の逆流を防止する逆止弁が組み込まれている。   In the fuel injection device, a back pressure supply passage for supplying fuel to the back pressure chamber branches from the high pressure supply passage. The back pressure supply channel incorporates a check valve that prevents back flow of fuel from the back pressure chamber to the high pressure supply channel.

燃料供給源は、燃料を高圧化して吐出する燃料噴射ポンプ、燃料噴射ポンプから吐出された燃料を所定の圧力で蓄圧するコモンレールを有し、燃料遮断弁は、コモンレールに装着されている。   The fuel supply source has a fuel injection pump that discharges fuel at a high pressure, a common rail that accumulates fuel discharged from the fuel injection pump at a predetermined pressure, and a fuel cutoff valve is mounted on the common rail.

最良の形態2の燃料噴射装置の燃料遮断弁は、燃料供給源と高圧供給流路とが連通する開弁状態と、高圧供給流路と高圧供給流路の燃料を排出するための高圧排出流路とが連通する閉弁状態とを切り換える三方弁である。   The fuel cut-off valve of the fuel injection device of the best mode 2 includes a valve open state in which the fuel supply source and the high pressure supply passage communicate, and a high pressure discharge flow for discharging fuel in the high pressure supply passage and the high pressure supply passage. This is a three-way valve that switches between a closed state in which the road communicates.

燃料供給源は、燃料を高圧化して吐出する燃料噴射ポンプ、この燃料噴射ポンプから吐出された燃料を所定の圧力で蓄圧するコモンレールを有し、燃料遮断弁は、コモンレールに装着されている。   The fuel supply source has a fuel injection pump that discharges the fuel at a high pressure, a common rail that accumulates the fuel discharged from the fuel injection pump at a predetermined pressure, and the fuel cutoff valve is attached to the common rail.

最良の形態3の燃料噴射装置の燃料遮断弁は、燃料供給源と高圧供給流路とが連通する開弁状態と、燃料供給源と高圧供給流路とが遮断される閉弁状態とを切り換える二方弁である。そして、燃料遮断弁を一時的に開弁し、燃料供給源から燃料を一時的に燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、燃料遮断弁よりも下流側に導かれた燃料の圧力が圧力脈動により増圧した時に、噴孔を開放する。   The fuel cutoff valve of the fuel injection device according to the best mode 3 switches between a valve open state in which the fuel supply source and the high pressure supply passage are communicated and a valve closed state in which the fuel supply source and the high pressure supply passage are shut off. It is a two-way valve. Then, the fuel shut-off valve is temporarily opened, pressure pulsation is generated by temporarily leading the fuel from the fuel supply source to the downstream side of the fuel shut-off valve, and the fuel shut-off valve is led downstream of the fuel shut-off valve. When the fuel pressure is increased by pressure pulsation, the nozzle hole is opened.

燃料噴射装置では、高圧供給流路の燃料を排出するための高圧排出流路が、高圧供給流路から分岐している。高圧排出流路には、燃料の排出を規制する排出規制手段が設けられている。排出規制手段は、高圧排出流路に設けられた絞りにより排出流量を規制する。また、高圧排出流路には、大気圧よりも高い圧力が作用すると開弁する逆止弁が組み込まれている。   In the fuel injection device, a high-pressure discharge channel for discharging fuel in the high-pressure supply channel branches from the high-pressure supply channel. The high-pressure discharge flow path is provided with discharge restriction means for restricting fuel discharge. The discharge regulating means regulates the discharge flow rate by a throttle provided in the high pressure discharge flow path. In addition, the high-pressure discharge passage incorporates a check valve that opens when a pressure higher than atmospheric pressure is applied.

燃料噴射装置では、背圧室へ燃料を供給するための背圧供給流路が、高圧供給流路とは別に燃料供給源から、直接、背圧室に接続されている。   In the fuel injection device, a back pressure supply passage for supplying fuel to the back pressure chamber is directly connected to the back pressure chamber from a fuel supply source separately from the high pressure supply passage.

燃料噴射装置では、噴孔から噴射される燃料が、弁体に対し噴孔を開放する方向に圧力を及ぼすように、高圧供給流路からノズルに供給される。また、弁体に対し噴孔を開放する方向に作用する燃料の圧力の有効受圧面積が、背圧の有効受圧面積よりも小さい。   In the fuel injection device, the fuel injected from the injection hole is supplied to the nozzle from the high-pressure supply channel so as to exert pressure on the valve body in the direction of opening the injection hole. Further, the effective pressure receiving area of the fuel pressure acting in the direction of opening the nozzle hole with respect to the valve body is smaller than the effective pressure receiving area of the back pressure.

燃料供給源は、燃料を高圧化して吐出する燃料噴射ポンプ、この燃料噴射ポンプから吐出された燃料を所定の圧力で蓄圧するコモンレールを有し、燃料遮断弁は、コモンレールに装着されている。   The fuel supply source has a fuel injection pump that discharges the fuel at a high pressure, a common rail that accumulates the fuel discharged from the fuel injection pump at a predetermined pressure, and the fuel cutoff valve is attached to the common rail.

最良の形態3の燃料噴射装置による燃料噴射方法では、燃料遮断弁を一時的に開弁し、燃料供給源から燃料を一時的に燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、燃料遮断弁よりも下流側に導かれた燃料の圧力が圧力脈動により増圧した時に、噴孔を開放する。そして、所定時間経過後、アクチュエータを作動停止させ弁体により噴孔を閉鎖した後、燃料遮断弁を、再度、一時的に開弁し、圧力脈動により増圧した燃料を燃料遮断弁よりも上流側に導く。   In the fuel injection method using the fuel injection device according to the best mode 3, the fuel cutoff valve is temporarily opened, and fuel is temporarily led from the fuel supply source to the downstream side of the fuel cutoff valve to generate pressure pulsation. When the pressure of the fuel guided downstream from the fuel shutoff valve is increased by pressure pulsation, the nozzle hole is opened. After a predetermined time has elapsed, the actuator is deactivated and the nozzle hole is closed by the valve body. Then, the fuel shut-off valve is temporarily opened again, and the fuel increased in pressure pulsation is upstream of the fuel shut-off valve. Lead to the side.

〔実施例1の構成〕
実施例1の燃料噴射装置1の構成を図1ないし図3を用いて説明する。
燃料噴射装置1は、高圧状態で燃料を蓄圧することができるコモンレール式であり、例えば、ディーゼルエンジン等の直噴型エンジン(図示せず:以下、エンジンと呼ぶ)に燃料を噴射供給するものである。
[Configuration of Example 1]
The configuration of the fuel injection device 1 according to the first embodiment will be described with reference to FIGS. 1 to 3.
The fuel injection device 1 is a common rail type capable of accumulating fuel in a high pressure state. For example, the fuel injection device 1 injects and supplies fuel to a direct injection type engine (not shown: hereinafter referred to as an engine) such as a diesel engine. is there.

燃料噴射装置1は、図1に示すように、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁2、燃料供給源から燃料噴射弁2への燃料の供給を遮断するとともに、必要に応じて開弁し燃料供給源から燃料噴射弁2への燃料の供給を可能にする燃料遮断弁3を備える。   As shown in FIG. 1, the fuel injection device 1 injects fuel supplied from a predetermined fuel supply source into the engine, and shuts off fuel supply from the fuel supply source to the fuel injection valve 2. In addition, a fuel shut-off valve 3 is provided that opens as necessary to enable fuel supply from the fuel supply source to the fuel injection valve 2.

ここで、所定の燃料供給源とは、燃料タンク(図示せず)の燃料を高圧化して吐出する燃料噴射ポンプ(図示せず)、および燃料噴射ポンプから吐出された燃料を所定の圧力で蓄圧するコモンレール4である。また、燃料噴射弁2、燃料遮断弁3および燃料噴射ポンプ等の作動は、ECU(図示せず)からの指令により電子制御されている。   Here, the predetermined fuel supply source is a fuel injection pump (not shown) that discharges the fuel in a fuel tank (not shown) at a high pressure, and accumulates the fuel discharged from the fuel injection pump at a predetermined pressure. The common rail 4 to be used. The operations of the fuel injection valve 2, the fuel cutoff valve 3, the fuel injection pump, and the like are electronically controlled by commands from an ECU (not shown).

燃料噴射弁2は、図1または図2に示すように、弁体5の移動により噴孔6を開閉することで燃料を噴射するノズル7と、噴孔6を開放する方向(開孔方向)および噴孔6を閉鎖する方向(閉孔方向)に弁体5を駆動するアクチュエータとしての噴射制御弁8とを有する。そして、ノズル7は燃料噴射弁2の本体12の下方に接続され、噴射制御弁8は本体12の上方に接続され、各々、リテーニングナット13、14により締付固定されている。また、燃料噴射弁2は、コモンレール4から燃料噴射弁2に燃料を供給するための高圧配管15、内部の圧力を低下させるため大気に開放されている低圧配管16が接続されている。   As shown in FIG. 1 or FIG. 2, the fuel injection valve 2 includes a nozzle 7 that injects fuel by opening and closing the injection hole 6 by the movement of the valve body 5, and a direction in which the injection hole 6 is opened (opening direction). And an injection control valve 8 as an actuator for driving the valve body 5 in a direction (closing direction) for closing the injection hole 6. The nozzle 7 is connected to the lower side of the main body 12 of the fuel injection valve 2, and the injection control valve 8 is connected to the upper side of the main body 12, and are fastened and fixed by retaining nuts 13 and 14, respectively. The fuel injection valve 2 is connected to a high pressure pipe 15 for supplying fuel from the common rail 4 to the fuel injection valve 2 and a low pressure pipe 16 opened to the atmosphere to reduce the internal pressure.

ノズル7には、噴孔6から噴射される燃料の供給を受ける溜まり部19と、弁体5に対し噴孔6を閉鎖する方向(閉孔方向)に圧力を及ぼす燃料の供給を受ける背圧室20が形成されている。また、溜まり部19の下方には、弁体5が着座するシート面21が設けられ、シート面21に噴孔6が開口している。溜まり部19の燃料は、弁体5に対し開孔方向に圧力を及ぼす。背圧室20は、弁体5の反噴孔側に形成されている。そして、背圧室20は、下方が弁体5により閉鎖され、その容積が拡縮自在になっている。また、背圧室20には、弁体5を、常時、閉孔方向に付勢するスプリング22が収容されている。   The nozzle 7 has a reservoir 19 that receives supply of fuel injected from the injection hole 6 and a back pressure that receives supply of fuel that exerts pressure on the valve body 5 in the direction of closing the injection hole 6 (closed hole direction). A chamber 20 is formed. A seat surface 21 on which the valve body 5 is seated is provided below the pool portion 19, and the nozzle hole 6 is opened in the seat surface 21. The fuel in the pool portion 19 exerts pressure on the valve body 5 in the opening direction. The back pressure chamber 20 is formed on the side opposite to the injection hole of the valve body 5. And the back pressure chamber 20 is closed by the valve body 5 at the bottom, and its volume can be expanded and contracted. The back pressure chamber 20 accommodates a spring 22 that constantly urges the valve body 5 in the closing direction.

噴射制御弁8は、ECUからの指令に応じて、車載電源(図示せず)から給電を受け磁気吸引力を発生させるソレノイド23、磁気吸引力により吸引されて変位する弁体24、弁体24を磁気吸引力と逆の方向に付勢するリターンスプリング25、およびボディ27等からなる。ボディ27には、弁体24により開閉される弁室28、弁室28およびボディ27の外部に開口する流路29が設けられている。   The injection control valve 8 is supplied with electric power from an in-vehicle power supply (not shown) in response to a command from the ECU, a solenoid 23 that generates a magnetic attractive force, a valve body 24 that is attracted and displaced by the magnetic attractive force, and a valve body 24. Is composed of a return spring 25 that urges the magnetic force in the direction opposite to the magnetic attractive force, a body 27, and the like. The body 27 is provided with a valve chamber 28 that is opened and closed by the valve body 24, a valve chamber 28, and a flow path 29 that opens to the outside of the body 27.

そして、ソレノイド23への通電が行われ磁気吸引力が強まると、弁体24が吸引されて弁室28の上流側を開放する。また、ソレノイド23への通電が停止され磁気吸引力が弱まると、弁体24がリターンスプリング25に付勢されて弁室28の上流側を閉鎖する。   When the solenoid 23 is energized and the magnetic attractive force is increased, the valve body 24 is attracted to open the upstream side of the valve chamber 28. When the energization of the solenoid 23 is stopped and the magnetic attractive force is weakened, the valve body 24 is urged by the return spring 25 to close the upstream side of the valve chamber 28.

また、ノズル7および本体12には、高圧配管15と溜まり部19とを連結する流路a、流路aから分岐し背圧室20に通じる流路b、背圧室20と噴射制御弁8の弁室28とを連結する流路c、噴射制御弁8の流路29と低圧配管16とを連結する流路d、流路aから分岐し流路dに接続される流路eが設けられている。   Further, the nozzle 7 and the main body 12 include a flow path a that connects the high-pressure pipe 15 and the reservoir 19, a flow path b that branches from the flow path a and communicates with the back pressure chamber 20, the back pressure chamber 20, and the injection control valve 8. A flow path c connecting the valve chamber 28, a flow path d connecting the flow path 29 of the injection control valve 8 and the low pressure pipe 16, and a flow path e branched from the flow path a and connected to the flow path d. It has been.

流路aは、高圧配管15とともに、コモンレール4から噴孔6まで燃料を導くための高圧供給流路Aをなす。   The flow path a and the high pressure pipe 15 form a high pressure supply flow path A for guiding fuel from the common rail 4 to the nozzle hole 6.

流路bは、背圧室20へ燃料を供給するための背圧供給流路Bをなす。流路bには、背圧室20への燃料の供給流量を規制する絞り34が設けられるとともに、背圧室20からの燃料の逆流を防止する逆止弁35が組み込まれている。逆止弁35は、流路bを開閉する弁部材36と、流路bを閉鎖する方向に弁部材36を付勢するスプリング37とからなる。   The flow path b forms a back pressure supply flow path B for supplying fuel to the back pressure chamber 20. The flow path b is provided with a throttle 34 for restricting the flow rate of fuel supplied to the back pressure chamber 20 and a check valve 35 for preventing back flow of fuel from the back pressure chamber 20. The check valve 35 includes a valve member 36 that opens and closes the flow path b, and a spring 37 that biases the valve member 36 in a direction to close the flow path b.

流路c、dは、低圧配管16とともに背圧室20から燃料を排出するための背圧排出流路Cをなし、噴射制御弁8により開閉される。流路cには、背圧室20からの燃料の排出流量を規制する絞り38が設けられている。なお、絞り38の有効径は、絞り34の有効径よりも大きく設定されている。このため、背圧排出流路Cが開放されると、背圧室20への供給流量よりも背圧室20からの排出流量の方が大きくなる。   The flow paths c and d form a back pressure discharge flow path C for discharging fuel from the back pressure chamber 20 together with the low pressure pipe 16, and are opened and closed by the injection control valve 8. The flow path c is provided with a throttle 38 for regulating the flow rate of fuel discharged from the back pressure chamber 20. Note that the effective diameter of the diaphragm 38 is set larger than the effective diameter of the diaphragm 34. For this reason, when the back pressure discharge channel C is opened, the discharge flow rate from the back pressure chamber 20 becomes larger than the supply flow rate to the back pressure chamber 20.

そして、背圧供給流路Bを通って背圧室20へ燃料を供給したり、背圧排出流路Cを通って背圧室20から燃料を排出したりすることで、背圧室20の燃料の圧力(背圧)を増減することができる。また、このように背圧を増減することで、弁体5を開孔方向に付勢する開孔付勢力と、弁体5を閉孔方向に付勢する閉孔付勢力との強弱を調節することができる。   Then, the fuel is supplied to the back pressure chamber 20 through the back pressure supply channel B, or the fuel is discharged from the back pressure chamber 20 through the back pressure discharge channel C. The fuel pressure (back pressure) can be increased or decreased. Further, by adjusting the back pressure in this way, the strength of the opening biasing force that biases the valve body 5 in the opening direction and the closing biasing force that biases the valve body 5 in the closing direction is adjusted. can do.

背圧排出流路Cの開閉は、噴射制御弁8の作動、作動停止により行われる。すなわち、ソレノイド23への通電が行われると弁体24が弁室28の上流側を開放し、背圧排出流路Cが開放される。また、ソレノイド23への通電が停止されると、弁体24が弁室28の上流側を閉鎖し、背圧排出流路Cが閉鎖される。   The back pressure discharge channel C is opened and closed by operating and stopping the injection control valve 8. That is, when the solenoid 23 is energized, the valve body 24 opens the upstream side of the valve chamber 28, and the back pressure discharge channel C is opened. When the energization of the solenoid 23 is stopped, the valve body 24 closes the upstream side of the valve chamber 28, and the back pressure discharge channel C is closed.

この結果、噴射制御弁8が作動すると、背圧室20から燃料が流出して背圧が低下する。このため、弁体5を付勢する付勢力は、開孔付勢力の方が閉孔付勢力よりも強くなり、弁体5は、シート面21から離座して噴孔6を開放する。また、噴射制御弁8が作動を停止すると、背圧室20へ燃料が流入して背圧が増大する。このため、弁体5を付勢する付勢力は、閉孔付勢力の方が開孔付勢力よりも強くなり、弁体5は、シート面21に着座して噴孔6を閉鎖する。   As a result, when the injection control valve 8 is operated, fuel flows out from the back pressure chamber 20 and the back pressure is reduced. For this reason, the urging force for urging the valve body 5 is stronger in the opening urging force than in the closing urging force, and the valve body 5 is separated from the seat surface 21 to open the nozzle hole 6. When the injection control valve 8 stops operating, fuel flows into the back pressure chamber 20 and the back pressure increases. For this reason, the urging force for urging the valve body 5 is stronger in the closing urging force than in the opening urging force, and the valve body 5 is seated on the seat surface 21 and closes the injection hole 6.

流路eは、流路dに接続し、その接続点よりも下流側の流路dや低圧配管16とともに、高圧供給流路Aの燃料を排出するための高圧排出流路Dをなす。流路eには、高圧供給流路Aからの燃料の排出を規制する排出規制手段としての絞り39が設けられている。そして、絞り39により排出流量を規制する。また、流路eには、大気圧よりも高い圧力が作用すると開弁する逆止弁40が組み込まれている。逆止弁40は、流路eを開閉する弁部材41と、流路eを閉鎖する方向に弁部材41を付勢するスプリング42とからなる。   The flow path e is connected to the flow path d, and forms a high pressure discharge flow path D for discharging the fuel in the high pressure supply flow path A together with the flow path d and the low pressure pipe 16 downstream from the connection point. The channel e is provided with a throttle 39 as an emission regulating means for regulating the discharge of fuel from the high pressure supply channel A. Then, the discharge flow rate is regulated by the throttle 39. The flow path e incorporates a check valve 40 that opens when a pressure higher than atmospheric pressure is applied. The check valve 40 includes a valve member 41 that opens and closes the flow path e, and a spring 42 that biases the valve member 41 in a direction to close the flow path e.

逆止弁40の開弁圧は、後記するように、圧力脈動によって、噴孔6から噴射される燃料の圧力(噴射圧力)をより高圧にするため、できるだけ低圧の方が好ましい。このため、逆止弁40の開弁圧は、大気圧よりもごく僅かに高い程度に設定されている。   As will be described later, the valve opening pressure of the check valve 40 is preferably as low as possible in order to make the pressure (injection pressure) of the fuel injected from the nozzle hole 6 higher by pressure pulsation. For this reason, the valve opening pressure of the check valve 40 is set to be slightly higher than the atmospheric pressure.

燃料遮断弁3は、コモンレール4と高圧配管15とが連通する開弁状態と、コモンレール4と高圧配管15とが遮断される閉弁状態とを切り換える二方弁である。また、燃料遮断弁3は、図3に示すように、リテーニングナット46により締付固定されてコモンレール4に装着されている。燃料遮断弁3は、ECUからの指令に応じて、車載電源から給電を受け磁気吸引力を発生させるソレノイド47、磁気吸引力により吸引されて変位する弁体48、弁体48を磁気吸引力と逆の方向に付勢するリターンスプリング49、およびボディ51等からなる。ボディ51には、弁体48の変位により遮断または連通される弁室52a、52b、この弁室52a、52bの各々に開口する流路53a、53bが設けられている。   The fuel cutoff valve 3 is a two-way valve that switches between a valve open state in which the common rail 4 and the high pressure pipe 15 communicate with each other and a valve closed state in which the common rail 4 and the high pressure pipe 15 are shut off. Further, as shown in FIG. 3, the fuel cutoff valve 3 is fastened and fixed by a retaining nut 46 and attached to the common rail 4. In response to a command from the ECU, the fuel shut-off valve 3 includes a solenoid 47 that receives power from a vehicle-mounted power source and generates a magnetic attractive force, a valve body 48 that is attracted and displaced by the magnetic attractive force, and the valve body 48 as a magnetic attractive force It consists of a return spring 49 that biases in the opposite direction, a body 51, and the like. The body 51 is provided with valve chambers 52a and 52b that are blocked or communicated by the displacement of the valve body 48, and flow paths 53a and 53b that open to the valve chambers 52a and 52b, respectively.

また、コモンレール4には、高圧の燃料が蓄圧されている蓄圧室54に開口するとともに流路53aに接続する上流側流路55、高圧配管15と流路53bとを接続する下流側流路56が設けられている。このように、燃料遮断弁3は、高圧供給流路Aの最上流端に組み込まれて、高圧供給流路Aを閉鎖するとともに、ECUからの指令に応じて高圧供給流路Aを開放する。   The common rail 4 has an upstream flow path 55 that opens to the pressure accumulation chamber 54 where high-pressure fuel is accumulated and is connected to the flow path 53a, and a downstream flow path 56 that connects the high-pressure pipe 15 and the flow path 53b. Is provided. As described above, the fuel cutoff valve 3 is incorporated at the uppermost stream end of the high-pressure supply flow path A, closes the high-pressure supply flow path A, and opens the high-pressure supply flow path A in accordance with a command from the ECU.

すなわち、ソレノイド47への通電が行われると、弁体48は、弁室52aと弁室52bとを連通する位置に変位する。また、ソレノイド47への通電が停止されると、弁体48は、弁室52aと弁室52bとを遮断する位置に変位する。   That is, when the solenoid 47 is energized, the valve body 48 is displaced to a position where the valve chamber 52a and the valve chamber 52b communicate with each other. When the energization of the solenoid 47 is stopped, the valve body 48 is displaced to a position where the valve chamber 52a and the valve chamber 52b are blocked.

この結果、燃料遮断弁3が作動すると(ソレノイド47への通電が行われると)、高圧供給流路Aはコモンレール4に対して開放され、蓄圧室54の燃料が、燃料遮断弁3よりも下流側の高圧供給流路Aに導かれる。このとき、噴孔6が閉鎖されていると、燃料の圧力は高圧供給流路Aの最下流端(すなわち、弁体5がシート面21に着座している位置)で反射される。このため、高圧供給流路Aでは圧力脈動が発生し、高圧供給流路Aの燃料の圧力の最大値は蓄圧室54の燃料の圧力(コモンレール圧)よりも高くなる。   As a result, when the fuel cutoff valve 3 is activated (when the solenoid 47 is energized), the high pressure supply passage A is opened to the common rail 4, and the fuel in the pressure accumulating chamber 54 is downstream of the fuel cutoff valve 3. To the high pressure supply channel A on the side. At this time, if the nozzle hole 6 is closed, the fuel pressure is reflected at the most downstream end of the high-pressure supply channel A (that is, the position where the valve body 5 is seated on the seat surface 21). For this reason, pressure pulsation occurs in the high-pressure supply flow path A, and the maximum value of the fuel pressure in the high-pressure supply flow path A is higher than the fuel pressure (common rail pressure) in the pressure accumulation chamber 54.

〔実施例1の噴射方法〕
実施例1の噴射方法を、図4を用いて説明する。
まず、図4(a)に示すように、ECUからの指令により、時間t1に燃料遮断弁3が一時的に開弁する。これにより、コモンレール4に蓄圧された燃料が、一時的に高圧供給流路Aに導かれる。
[Injection Method of Example 1]
The injection method of Example 1 is demonstrated using FIG.
First, as shown in FIG. 4A, the fuel cutoff valve 3 is temporarily opened at time t1 in accordance with a command from the ECU. As a result, the fuel accumulated in the common rail 4 is temporarily guided to the high-pressure supply channel A.

この結果、図4(b)に示すように、高圧供給流路Aの燃料の圧力(噴射圧力に相当する)は、圧力脈動によりコモンレール圧よりも高くなる。このように噴射圧力が、圧力脈動により増圧しコモンレール圧よりも高い時(時間t2)に、図4(c)、(d)に示すように、ECUからの指令に応じて噴孔6が開放され、エンジンへの噴射供給が始まる。そして、時間t3において、ECUからの指令に応じて噴孔6が閉鎖され、エンジンへの噴射供給が終わる。   As a result, as shown in FIG. 4B, the fuel pressure (corresponding to the injection pressure) in the high-pressure supply passage A becomes higher than the common rail pressure due to pressure pulsation. Thus, when the injection pressure is increased by pressure pulsation and is higher than the common rail pressure (time t2), as shown in FIGS. 4 (c) and 4 (d), the injection hole 6 is opened in accordance with a command from the ECU. The injection supply to the engine begins. At time t3, the nozzle hole 6 is closed in response to a command from the ECU, and the supply of injection to the engine ends.

なお、高圧供給流路Aの燃料の圧力が高くなると高圧排出流路Dの逆止弁40が開弁し、高圧供給流路Aから高圧排出流路Dへ燃料の排出が始まる。しかし、絞り39により、その排出流量が規制されるため、噴射圧力の増圧に対する影響は低く抑えられる。   When the fuel pressure in the high pressure supply passage A increases, the check valve 40 in the high pressure discharge passage D is opened, and fuel discharge from the high pressure supply passage A to the high pressure discharge passage D starts. However, since the discharge flow rate is regulated by the throttle 39, the influence on the increase in the injection pressure is kept low.

噴射終了後(すなわち、時間t3以降)も、絞り39により、高圧供給流路Aの増圧した燃料の排出流量が規制されるため、圧力脈動が残る。しかし、圧力脈動は徐々に減衰し、逆止弁40の開弁圧(大気圧にほぼ同等である)まで高圧供給流路Aの燃料の圧力は低下する。これにより、高圧供給流路Aの燃料の圧力は、次回の噴射開始までに充分に低下し、次回噴射でも圧力脈動により噴射圧力を増圧することができる。   Even after the end of injection (that is, after time t3), the pressure pulsation remains because the throttle 39 restricts the discharge flow rate of the increased pressure in the high pressure supply passage A. However, the pressure pulsation is gradually attenuated, and the fuel pressure in the high-pressure supply passage A is reduced to the valve opening pressure of the check valve 40 (which is substantially equal to the atmospheric pressure). As a result, the pressure of the fuel in the high-pressure supply flow path A is sufficiently reduced by the start of the next injection, and the injection pressure can be increased by the pressure pulsation even in the next injection.

〔実施例1の効果〕
実施例1の燃料噴射装置1は、弁体5の移動により噴孔6を開閉することで燃料を噴射するノズル7、弁体5を駆動する噴射制御弁8を有し、コモンレール4に蓄圧された燃料をエンジンに噴射供給する燃料噴射弁2と、コモンレール4から噴孔6まで燃料を導くための高圧供給流路Aに組み込まれて、高圧供給流路Aを閉鎖するとともに、必要に応じて高圧供給流路Aを開放する燃料遮断弁3とを備える。
これにより、燃料遮断弁3を一時的に開弁し、燃料を一時的に燃料遮断弁3よりも下流側の高圧供給流路Aに導くことで圧力脈動を発生させることができる。そして、この圧力脈動により、高圧供給流路Aにおいて燃料を増圧することができる。このため、高圧供給流路Aに燃料遮断弁3を組み込んだ簡易な構造により、噴射圧力を増圧することができる。
[Effect of Example 1]
The fuel injection device 1 according to the first embodiment includes a nozzle 7 that injects fuel by opening and closing an injection hole 6 by movement of a valve body 5, and an injection control valve 8 that drives the valve body 5. The fuel injection valve 2 for supplying the injected fuel to the engine and the high pressure supply passage A for guiding the fuel from the common rail 4 to the injection hole 6 are closed, the high pressure supply passage A is closed, and if necessary And a fuel cutoff valve 3 that opens the high-pressure supply channel A.
Thereby, the fuel cutoff valve 3 is temporarily opened, and the pressure pulsation can be generated by temporarily guiding the fuel to the high-pressure supply passage A on the downstream side of the fuel cutoff valve 3. The pressure pulsation can increase the fuel pressure in the high-pressure supply channel A. For this reason, the injection pressure can be increased by a simple structure in which the fuel cutoff valve 3 is incorporated in the high-pressure supply passage A.

燃料噴射装置1では、高圧供給流路Aの燃料を排出するための高圧排出流路Dが、高圧供給流路Aから分岐している。
圧力脈動により燃料を増圧する場合、燃料が一時的に導かれる流路、すなわち圧力脈動を発生させる流路は、できるだけ低圧にしておくことが好ましい。そこで、上記のように、圧力脈動を発生させる流路である高圧供給流路Aから、燃料を排出するための高圧排出流路Dを分岐させれば、高圧供給流路Aを低圧にすることができる。
In the fuel injection device 1, the high pressure discharge channel D for discharging the fuel in the high pressure supply channel A is branched from the high pressure supply channel A.
When the pressure of the fuel is increased by pressure pulsation, the flow path through which the fuel is temporarily guided, that is, the flow path that generates pressure pulsation is preferably as low as possible. Therefore, as described above, if the high-pressure discharge flow path D for discharging the fuel is branched from the high-pressure supply flow path A that is a flow path for generating pressure pulsation, the high-pressure supply flow path A is lowered. Can do.

高圧排出流路Dには、高圧供給流路Aからの燃料の排出を規制する排出規制手段としての絞り39が設けられ、絞り39により排出流量が規制されている。
これにより、増圧した燃料をノズル7から噴射する等、高圧供給流路Aを本来の目的で用いる場合に、高圧排出流路Dからの燃料の排出の影響を低減することができる。
The high pressure discharge channel D is provided with a throttle 39 as a discharge regulating means for regulating the discharge of fuel from the high pressure supply channel A, and the discharge flow rate is regulated by the throttle 39.
Thereby, when using the high pressure supply flow path A for the original purpose, such as injecting the pressure-increased fuel from the nozzle 7, the influence of the fuel discharge from the high pressure discharge flow path D can be reduced.

高圧排出流路Dには、大気圧よりもごく僅かに高い圧力が作用すると開弁する逆止弁40が組み込まれている。
圧力脈動による増圧後の高圧供給流路Aの燃料の圧力は、燃料遮断弁3の開弁前の高圧供給流路Aの燃料の圧力が低いほど高くなる。上記の構成によれば、逆止弁40の開弁圧が大気圧よりもごく僅かに高い程度に設定されているので、噴射終了後の高圧供給流路Aの燃料の圧力は、ほぼ大気圧まで低下する。このため、圧力脈動による増圧後の噴射圧力を、増圧可能な最高値に近い値まで増圧することができる。
The high-pressure discharge channel D incorporates a check valve 40 that opens when a pressure slightly higher than atmospheric pressure is applied.
The pressure of the fuel in the high pressure supply passage A after the pressure increase due to the pressure pulsation becomes higher as the fuel pressure in the high pressure supply passage A before the fuel shut-off valve 3 is opened is lower. According to the above configuration, since the valve opening pressure of the check valve 40 is set to be slightly higher than the atmospheric pressure, the pressure of the fuel in the high pressure supply passage A after the injection is almost atmospheric pressure. To fall. For this reason, the injection pressure after the pressure increase due to the pressure pulsation can be increased to a value close to the maximum value at which the pressure can be increased.

燃料噴射装置1では、弁体5に対し閉孔方向に圧力を及ぼす燃料の供給を受ける背圧室20が形成され、背圧室20へ燃料を供給するための背圧供給流路Bが、高圧供給流路Aから分岐している。そして、背圧供給流路Bには、背圧室20から高圧供給流路Aへの燃料の逆流を防止する逆止弁35が組み込まれている。
噴孔6が閉鎖されている時には、弁体5を閉孔方向に付勢する閉孔付勢力が、弁体5を開孔方向に付勢する開孔付勢力よりも強くなっている。そして、開孔付勢力が閉孔付勢力よりも強くなると、弁体5が開孔方向に移動して噴孔6を開放する。このような弁体5の作動に対し、背圧による付勢力は閉孔付勢力をなす。このため、噴射を停止すべき時間帯に背圧室20から燃料が流出すると、弁体5における付勢力のバランスが崩れ意図しない噴射が行われてしまう虞がある。そこで、背圧供給流路Bに背圧室20から高圧供給流路Aへの燃料の逆流を防止する逆止弁35を組み込むことで、意図しない噴射を確実に防ぐことができる。
In the fuel injection device 1, a back pressure chamber 20 that receives supply of fuel that exerts pressure on the valve body 5 in the closing direction is formed, and a back pressure supply flow path B for supplying fuel to the back pressure chamber 20 includes: Branches from the high-pressure supply channel A. The back pressure supply flow path B incorporates a check valve 35 that prevents back flow of fuel from the back pressure chamber 20 to the high pressure supply flow path A.
When the nozzle hole 6 is closed, the closing biasing force that biases the valve element 5 in the closing direction is stronger than the opening biasing force that biases the valve element 5 in the opening direction. When the opening urging force becomes stronger than the closing urging force, the valve body 5 moves in the opening direction to open the injection hole 6. In response to such an operation of the valve body 5, the biasing force due to the back pressure forms a closing hole biasing force. For this reason, if the fuel flows out from the back pressure chamber 20 during the time when the injection should be stopped, the balance of the urging force in the valve body 5 may be lost and unintended injection may be performed. Therefore, by incorporating a check valve 35 that prevents the backflow of fuel from the back pressure chamber 20 to the high pressure supply passage A into the back pressure supply passage B, unintended injection can be reliably prevented.

燃料遮断弁3は、コモンレール4に装着されている。
高圧供給流路Aにおいて、燃料遮断弁3をより上流側に組み込むほど、圧力脈動による増圧後の噴射圧力を高めることができる。そこで、上記のように燃料遮断弁3をコモンレール4に装着し、燃料遮断弁3を高圧供給流路Aの最上流端に相当するコモンレール4の近傍に組み込む。これにより、圧力脈動による増圧後の噴射圧力を高くすることができる。また、燃料遮断弁3を燃料噴射装置1に組み付ける作業が容易になり、燃料噴射装置1の製造工数を低減できる。
The fuel cutoff valve 3 is mounted on the common rail 4.
In the high-pressure supply channel A, the injection pressure after pressure increase due to pressure pulsation can be increased as the fuel cutoff valve 3 is incorporated further upstream. Therefore, the fuel cutoff valve 3 is mounted on the common rail 4 as described above, and the fuel cutoff valve 3 is incorporated in the vicinity of the common rail 4 corresponding to the most upstream end of the high-pressure supply flow path A. Thereby, the injection pressure after pressure increase due to pressure pulsation can be increased. Further, the work for assembling the fuel cutoff valve 3 to the fuel injection device 1 is facilitated, and the number of manufacturing steps of the fuel injection device 1 can be reduced.

実施例1の噴射方法によれば、燃料遮断弁3を一時的に開弁し、コモンレール4から燃料を一時的に高圧供給流路Aに導くことで圧力脈動を発生させ、高圧供給流路Aに導かれた燃料の圧力が圧力脈動により増圧した時に、噴孔6を開放する。
これにより、高圧供給流路Aに燃料遮断弁3を組み込んだ簡易な構造により、噴射圧力を増圧することができるとともに、増圧した燃料をエンジンに噴射供給することができる。
According to the injection method of the first embodiment, the fuel shut-off valve 3 is temporarily opened, the fuel is temporarily guided from the common rail 4 to the high-pressure supply passage A to generate pressure pulsation, and the high-pressure supply passage A When the pressure of the fuel led to is increased by pressure pulsation, the nozzle hole 6 is opened.
Thus, the injection pressure can be increased and the increased fuel can be injected and supplied to the engine with a simple structure in which the fuel cutoff valve 3 is incorporated in the high-pressure supply passage A.

〔実施例2の構成〕
実施例2の燃料噴射装置1の構成を、図5ないし図7を用いて説明する。なお、実施例1と同様の要素は、同一の符号を用いるとともに説明を省略する。
実施例2の燃料遮断弁3には、図5および図6に示すように、高圧配管15に加えて、大気に開放されている第2低圧配管58が接続されている。また、実施例2の燃料遮断弁3は、コモンレール4と高圧配管15とが連通する開弁状態と、高圧配管15と第2低圧配管58とが連通する閉弁状態とを切り換える三方弁である。
[Configuration of Example 2]
The configuration of the fuel injection device 1 according to the second embodiment will be described with reference to FIGS. In addition, the same code | symbol is used for the element similar to Example 1, and description is abbreviate | omitted.
As shown in FIGS. 5 and 6, in addition to the high-pressure pipe 15, a second low-pressure pipe 58 that is open to the atmosphere is connected to the fuel cutoff valve 3 of the second embodiment. The fuel cutoff valve 3 according to the second embodiment is a three-way valve that switches between a valve open state in which the common rail 4 and the high pressure pipe 15 communicate with each other and a valve closed state in which the high pressure pipe 15 and the second low pressure pipe 58 communicate with each other. .

実施例2のコモンレール4では、図7に示すように、上流側、下流側流路55、56に加えて、第2低圧配管58に接続される第2下流側流路59が設けられている。また、実施例2の燃料遮断弁3のボディ51には、弁体48により連通状態が切り換えられる3つの流路60、61、62が設けられている。すなわち、流路60は、コモンレール4の上流側流路55に接続するとともに弁室52aに開口し、常時、蓄圧室54に通じる。流路61は、コモンレール4の下流側流路56に接続するとともに弁室52bに開口し、常時、下流側流路56を介して高圧配管15に通じ、流路62は、コモンレール4の第2下流側流路59に接続するとともに弁室52bに開口し、常時、第2下流側流路59を介して第2低圧配管58に通じる。   In the common rail 4 of the second embodiment, as shown in FIG. 7, in addition to the upstream and downstream channels 55 and 56, a second downstream channel 59 connected to the second low-pressure pipe 58 is provided. . In addition, the body 51 of the fuel cutoff valve 3 according to the second embodiment is provided with three flow paths 60, 61 and 62 whose communication state is switched by the valve body 48. That is, the flow path 60 is connected to the upstream flow path 55 of the common rail 4 and opens to the valve chamber 52 a, and always communicates with the pressure accumulation chamber 54. The flow path 61 is connected to the downstream flow path 56 of the common rail 4 and opens to the valve chamber 52 b, and always communicates with the high-pressure pipe 15 through the downstream flow path 56, and the flow path 62 is the second of the common rail 4. It connects to the downstream flow path 59 and opens to the valve chamber 52 b, and always communicates with the second low-pressure pipe 58 via the second downstream flow path 59.

そして、ソレノイド47に通電が行われると、弁体48は、弁室52aと弁室52bとを連通する位置に変位するとともに、流路62の開口部を閉鎖する。これにより、流路60と流路61とが連通し、さらにコモンレール4と高圧配管15とが連通する。このため、燃料遮断弁3は開弁状態となる。また、ソレノイド47への通電が停止されると、弁体48は、弁室52aと弁室52bとを遮断する位置に変位するとともに、流路62の開口部を開放する。これにより、流路61と流路62とが連通し、さらに高圧配管15と第2低圧配管58とが連通する。このため、燃料遮断弁3は閉弁状態となる。   When the solenoid 47 is energized, the valve body 48 is displaced to a position where the valve chamber 52a and the valve chamber 52b communicate with each other, and the opening of the flow path 62 is closed. As a result, the flow path 60 and the flow path 61 communicate with each other, and the common rail 4 and the high-pressure pipe 15 communicate with each other. For this reason, the fuel cutoff valve 3 is opened. When the energization of the solenoid 47 is stopped, the valve body 48 is displaced to a position where the valve chamber 52a and the valve chamber 52b are blocked, and the opening of the flow path 62 is opened. As a result, the flow path 61 and the flow path 62 communicate with each other, and the high-pressure pipe 15 and the second low-pressure pipe 58 communicate with each other. For this reason, the fuel cutoff valve 3 is closed.

この結果、燃料遮断弁3が作動すると(ソレノイド47への通電が行われると)、高圧供給流路Aはコモンレール4に対して開放され、蓄圧室54の燃料が、高圧供給流路Aに導かれる。これにより、高圧供給流路Aでは圧力脈動が発生し、高圧供給流路Aの燃料の圧力の最大値はコモンレール圧よりも高くなる。また、燃料遮断弁3が作動を停止すると、高圧供給流路Aは第2低圧配菅58を介して大気に開放される。これにより、高圧供給流路Aから燃料が排出されるとともに、高圧供給流路Aの燃料の圧力は略大気圧まで低下する。   As a result, when the fuel shut-off valve 3 is actuated (when the solenoid 47 is energized), the high pressure supply passage A is opened to the common rail 4 and the fuel in the pressure accumulating chamber 54 is guided to the high pressure supply passage A. It is burned. As a result, pressure pulsation occurs in the high pressure supply passage A, and the maximum value of the fuel pressure in the high pressure supply passage A becomes higher than the common rail pressure. Further, when the operation of the fuel cutoff valve 3 is stopped, the high pressure supply passage A is opened to the atmosphere via the second low pressure layout 58. As a result, fuel is discharged from the high-pressure supply channel A, and the pressure of the fuel in the high-pressure supply channel A is reduced to approximately atmospheric pressure.

このように、実施例2では、第2低圧配管58が高圧排出流路Dをなす。このため、高圧排出流路Dをなすために設けられていた流路e(図2参照)が、実施例2では設けられていない。   Thus, in the second embodiment, the second low pressure pipe 58 forms the high pressure discharge channel D. For this reason, the flow path e (see FIG. 2) provided to form the high-pressure discharge flow path D is not provided in the second embodiment.

また、実施例2では、燃料遮断弁3が開弁状態から閉弁状態に切り換わると、直ちに、高圧供給流路Aの燃料の圧力が大気圧まで低下する。よって、噴射を停止すべき時間帯に背圧が低下しても、意図しない噴射が起きる虞はきわめて低くなる。このため、背圧供給流路Bをなす流路bに組み込まれていた逆止弁35(図2参照)が、実施例2では組み込まれていない。   Further, in the second embodiment, as soon as the fuel cutoff valve 3 is switched from the open state to the closed state, the fuel pressure in the high pressure supply passage A is reduced to atmospheric pressure. Therefore, even if the back pressure decreases during the time period when the injection should be stopped, the possibility that unintended injection will occur is extremely low. For this reason, the check valve 35 (see FIG. 2) incorporated in the flow path b forming the back pressure supply flow path B is not incorporated in the second embodiment.

〔実施例2の噴射方法〕
実施例2の噴射方法を、図8を用いて説明する。
まず、図8(a)に示すように、ECUからの指令により、時間t1に燃料遮断弁3が開弁状態になる。これにより、コモンレール4に蓄圧された燃料が、高圧供給流路Aに導かれる。
[Injection Method of Example 2]
The injection method of Example 2 is demonstrated using FIG.
First, as shown in FIG. 8A, the fuel shut-off valve 3 is opened at time t1 in accordance with a command from the ECU. As a result, the fuel accumulated in the common rail 4 is guided to the high pressure supply passage A.

この結果、図8(b)に示すように、噴射圧力は、圧力脈動によりコモンレール圧よりも高くなる。このように噴射圧力が、圧力脈動により増圧してコモンレール圧よりも高くなった時(時間t2)に、図8(c)、(d)に示すように、ECUからの指令に応じて噴孔6が開放され、エンジンへの噴射供給が始まる。そして、時間t3において、ECUからの指令に応じて噴孔6が閉鎖され、エンジンへの噴射供給が終わる。   As a result, as shown in FIG. 8B, the injection pressure becomes higher than the common rail pressure due to pressure pulsation. Thus, when the injection pressure is increased by pressure pulsation and becomes higher than the common rail pressure (time t2), as shown in FIGS. 8 (c) and 8 (d), the injection hole is in response to a command from the ECU. 6 is opened and the injection supply to the engine starts. At time t3, the nozzle hole 6 is closed in response to a command from the ECU, and the supply of injection to the engine ends.

そして、噴射終了後の時間t4に、ECUからの指令により燃料遮断弁3が閉弁状態になる。これにより、高圧供給流路Aの燃料は第2低圧配管58を介して排出される。このため、高圧供給流路Aの圧力脈動は急激に消滅し、高圧供給流路Aの燃料の圧力は略大気圧まで低下する。   Then, at time t4 after the end of injection, the fuel cutoff valve 3 is closed according to a command from the ECU. Thereby, the fuel in the high pressure supply passage A is discharged through the second low pressure pipe 58. For this reason, the pressure pulsation of the high-pressure supply channel A rapidly disappears, and the fuel pressure in the high-pressure supply channel A decreases to approximately atmospheric pressure.

〔実施例2の効果〕
実施例2の燃料噴射装置1の燃料遮断弁3は、コモンレール4と高圧配管15とが連通する開弁状態と、高圧配管15と大気に開放された第2低圧配管58とが連通する閉弁状態とを切り換える三方弁である。
これにより、噴射終了後に燃料遮断弁3を開弁状態から閉弁状態へ切り換えることで、高圧供給流路Aを確実に低圧にすることができる。
[Effect of Example 2]
The fuel cutoff valve 3 of the fuel injection device 1 according to the second embodiment is a valve closing state in which the common rail 4 and the high-pressure pipe 15 communicate with each other and the high-pressure pipe 15 and the second low-pressure pipe 58 opened to the atmosphere communicate with each other. It is a three-way valve that switches between states.
Thereby, the high-pressure supply flow path A can be reliably made into a low pressure by switching the fuel cutoff valve 3 from an open state to a closed state after completion | finish of injection.

〔実施例3の構成〕
実施例3の燃料噴射装置1の構成を、図9ないし図10を用いて説明する。なお、実施例1と同様の要素は、同一の符号を用いるとともに説明を省略する。
実施例3では、図9および図10に示すように、高圧配管15とは別に、燃料遮断弁3を経由せずに、直接、コモンレール4から燃料噴射弁2に燃料を供給するための第2高圧配管65が設けられている。また、燃料噴射弁2の本体12には、第2高圧配管65と背圧室20とを連結する流路fが設けられ、流路fは、第2高圧配管65とともに背圧供給流路Bをなす。
[Configuration of Example 3]
The configuration of the fuel injection device 1 according to the third embodiment will be described with reference to FIGS. 9 to 10. In addition, the same code | symbol is used for the element similar to Example 1, and description is abbreviate | omitted.
In the third embodiment, as shown in FIGS. 9 and 10, in addition to the high-pressure pipe 15, the second for supplying fuel directly from the common rail 4 to the fuel injection valve 2 without going through the fuel cutoff valve 3. A high pressure pipe 65 is provided. The main body 12 of the fuel injection valve 2 is provided with a flow path f that connects the second high-pressure pipe 65 and the back pressure chamber 20, and the flow path f together with the second high-pressure pipe 65 is a back pressure supply flow path B. Make.

このように、実施例3では、第2高圧配管65、流路fからなる背圧供給流路Bが、高圧配管15、流路aからなる高圧供給流路Aとは別に、コモンレール4から、直接、背圧室20に接続されている。このため、背圧供給流路Bをなすために設けられていた流路b(図2参照)が、実施例3では設けられていない。また、実施例3では、第2高圧配管65、流路fを介して、コモンレール4で蓄圧されている高圧の燃料が、常時、背圧室20に供給される。よって、背圧が低下して、意図しない噴射が起きる虞はきわめて低くなる。このため、流路bに組み込まれていた逆止弁35(図2参照)が、実施例3では組み込まれていない。   As described above, in Example 3, the back pressure supply flow path B including the second high pressure pipe 65 and the flow path f is separated from the high pressure supply flow path A including the high pressure pipe 15 and the flow path a from the common rail 4. It is directly connected to the back pressure chamber 20. For this reason, the flow path b (refer FIG. 2) provided in order to make the back pressure supply flow path B is not provided in Example 3. FIG. In the third embodiment, the high-pressure fuel accumulated in the common rail 4 is always supplied to the back pressure chamber 20 via the second high-pressure pipe 65 and the flow path f. Therefore, the possibility that unintentional injection occurs due to a decrease in back pressure is extremely low. For this reason, the check valve 35 (see FIG. 2) incorporated in the flow path b is not incorporated in the third embodiment.

また、実施例3の背圧室20は、ピストン66により下方が閉鎖されている。ピストン66は、背圧を受けて閉孔方向に付勢されるとともに弁体5に当接し、背圧を弁体5に伝達することで弁体5を閉孔方向に付勢する。なお、スプリング22は、背圧室20とは別に形成されたスプリング室67に収容されている。   Further, the back pressure chamber 20 of the third embodiment is closed at the bottom by the piston 66. The piston 66 receives the back pressure and is urged in the closing direction, contacts the valve body 5, and transmits the back pressure to the valve body 5 to urge the valve body 5 in the closing direction. The spring 22 is housed in a spring chamber 67 formed separately from the back pressure chamber 20.

また、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積は、ピストン66に対し閉孔方向に作用する背圧の有効受圧面積よりも小さい。ここで、ピストン66に対し閉孔方向に作用する背圧は、そのまま弁体5に伝達されるので、「ピストン66に対し閉孔方向に作用する噴射圧力の有効受圧面積」は、「弁体5に対し閉孔方向に作用する背圧の有効受圧面積」に等しい。よって、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積は、弁体5に対し閉孔方向に作用する背圧の有効受圧面積よりも小さい。   The effective pressure receiving area of the injection pressure acting on the valve body 5 in the opening direction is smaller than the effective pressure receiving area of the back pressure acting on the piston 66 in the closing direction. Here, since the back pressure acting on the piston 66 in the closing direction is transmitted to the valve body 5 as it is, the “effective pressure receiving area of the injection pressure acting on the piston 66 in the closing direction” is “the valve body. 5 is equal to the “effective pressure receiving area of back pressure acting in the closing direction”. Therefore, the effective pressure receiving area of the injection pressure acting on the valve body 5 in the opening direction is smaller than the effective pressure receiving area of the back pressure acting on the valve body 5 in the closing direction.

〔実施例3の噴射方法〕
実施例3の噴射方法を、図11を用いて説明する。
実施例3では、図11(c)、(d)に示すように、所定時間、噴孔6を開放して噴射を終えた後、図11(a)に示すように、時間t4において、燃料遮断弁3を、再度、一時的に開弁する。これにより、圧力脈動により増圧した残余の燃料を、燃料遮断弁3よりも上流側に導く。このため、図11(b)に示すように、時間t4以降、高圧供給流路Aの燃料の圧力はコモンレール圧よりも低い圧力に抑えられ、徐々に減衰して逆止弁40の開弁圧(大気圧にほぼ同等である)まで低下する。なお、時間t4は、高圧の反射波が燃料遮断弁3に到達する時間に略一致している。これにより、高圧の反射波をコモンレール4の側に通過させるとともに、再度、高圧供給流路Aの側に出てくることを阻止することができる。
[Injection Method of Example 3]
The injection method of Example 3 is demonstrated using FIG.
In the third embodiment, as shown in FIGS. 11C and 11D, after the injection hole 6 is opened for a predetermined time and the injection is finished, the fuel is obtained at time t4 as shown in FIG. 11A. The shut-off valve 3 is temporarily opened again. Thereby, the remaining fuel increased in pressure by the pressure pulsation is guided upstream of the fuel cutoff valve 3. For this reason, as shown in FIG. 11B, after time t4, the pressure of the fuel in the high pressure supply passage A is suppressed to a pressure lower than the common rail pressure and gradually attenuates to open the check valve 40. (It is almost equivalent to atmospheric pressure). The time t4 substantially coincides with the time for the high-pressure reflected wave to reach the fuel cutoff valve 3. As a result, it is possible to pass the high-voltage reflected wave to the common rail 4 side and to prevent it from coming out again to the high-pressure supply flow path A side.

〔実施例3の効果〕
実施例3の燃料噴射装置1では、高圧配管15とは別の第2高圧配管65がコモンレール4と燃料噴射弁2との間に組み込まれ、燃料が、直接、コモンレール4から背圧室20に供給されている。
これにより、コモンレール4から噴孔6まで燃料を導くための高圧供給流路Aを経由せずに、高圧の燃料を背圧室20に供給することができる。このため、噴射される燃料の一部を背圧室20へ供給する必要がなくなるので、意図しない噴射圧力の低下を防止することができる。
[Effect of Example 3]
In the fuel injection device 1 according to the third embodiment, a second high-pressure pipe 65 different from the high-pressure pipe 15 is incorporated between the common rail 4 and the fuel injection valve 2, and fuel is directly supplied from the common rail 4 to the back pressure chamber 20. Have been supplied.
As a result, high-pressure fuel can be supplied to the back pressure chamber 20 without going through the high-pressure supply flow path A for guiding the fuel from the common rail 4 to the nozzle hole 6. For this reason, since it is not necessary to supply a part of the injected fuel to the back pressure chamber 20, it is possible to prevent an unintended drop in the injection pressure.

燃料噴射装置1では、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積が、弁体5に対し閉孔方向に作用する背圧の有効受圧面積よりも小さい。
噴射圧力は、圧力脈動によりコモンレール圧よりも高い圧力に増圧される。よって、高圧供給流路Aとは別の流路(背圧供給流路B)を経て、コモンレール4から背圧室20に燃料が供給されると、閉孔方向に作用する背圧が、開孔方向に作用する噴射圧力よりも低くなる虞がある。そこで、上記のように、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積を、弁体5に対し閉孔方向に作用する背圧の有効受圧面積よりも小さくする。これにより、背圧による閉孔付勢力を噴射圧力による開孔付勢力よりも強くすることができる。このため、背圧が噴射圧力より低くても、弁体5を閉孔方向に付勢して噴孔6をより確実に閉鎖することができる。
In the fuel injection device 1, the effective pressure receiving area of the injection pressure acting on the valve body 5 in the opening direction is smaller than the effective pressure receiving area of the back pressure acting on the valve body 5 in the closing direction.
The injection pressure is increased to a pressure higher than the common rail pressure by pressure pulsation. Therefore, when fuel is supplied from the common rail 4 to the back pressure chamber 20 via a flow path (back pressure supply flow path B) different from the high pressure supply flow path A, the back pressure acting in the closing direction is opened. There is a possibility that it may become lower than the injection pressure acting in the hole direction. Therefore, as described above, the effective pressure receiving area of the injection pressure acting on the valve body 5 in the opening direction is made smaller than the effective pressure receiving area of the back pressure acting on the valve body 5 in the closing direction. Thereby, the closing biasing force due to the back pressure can be made stronger than the opening biasing force due to the injection pressure. For this reason, even if the back pressure is lower than the injection pressure, the valve body 5 can be urged in the closing direction to close the injection hole 6 more reliably.

実施例3の噴射方法によれば、噴射終了後、再度、燃料遮断弁3を一時的に開弁し、増圧した燃料を燃料遮断弁3よりも上流側に導く。
これにより、増圧した残余の燃料をコモンレール4に回収してエネルギーロスを抑制するとともに、噴射終了後の高圧供給流路Aの燃料の圧力を低圧にすることができる。
According to the injection method of the third embodiment, after the injection is completed, the fuel cutoff valve 3 is temporarily opened again, and the increased fuel is guided upstream of the fuel cutoff valve 3.
As a result, the increased residual fuel can be recovered in the common rail 4 to suppress energy loss, and the pressure of the fuel in the high pressure supply passage A after the injection can be reduced.

〔変形例〕
本実施例の燃料遮断弁3は、コモンレール4に装着されていたが、高圧配管15に組み込んでもよく、燃料噴射弁2に装着してもよい。
また、実施例1および実施例3では、排出規制手段として絞り39が設けられていたが、この形態に限定されず、例えば、排出流量や排出される燃料の圧力等に応じて開度を変えることができる可変開度機構を排出規制手段として設けてもよい。
また、実施例3の燃料噴射方法を実施例1および実施例2の燃料噴射装置1に適用することもできる。
また、実施例2の噴射方法でも、実施例3の噴射方法と同様に、時間t4を高圧の反射波が燃料遮断弁3に到達する時間に略一致させてもよい。
また、実施例3の燃料噴射装置1では、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積が、弁体5に対し閉孔方向に作用する背圧の有効受圧面積よりも小さくなっていたが、これに限定されない。すなわち、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積と、弁体5に対し閉孔方向に作用する背圧の有効受圧面積とが同等の大きさでもよく、弁体5に対し開孔方向に作用する噴射圧力の有効受圧面積が、弁体5に対し閉孔方向に作用する背圧の有効受圧面積よりも大きくてもよい。
[Modification]
Although the fuel cutoff valve 3 of this embodiment is mounted on the common rail 4, it may be incorporated in the high-pressure pipe 15 or mounted on the fuel injection valve 2.
In the first and third embodiments, the throttle 39 is provided as the discharge restricting means. However, the present invention is not limited to this mode. For example, the opening degree is changed according to the discharge flow rate, the pressure of the discharged fuel, and the like. A variable opening mechanism that can be used may be provided as the discharge restricting means.
Further, the fuel injection method of the third embodiment can be applied to the fuel injection device 1 of the first and second embodiments.
Also in the injection method of the second embodiment, the time t4 may be substantially coincident with the time for the high-pressure reflected wave to reach the fuel cutoff valve 3, as in the injection method of the third embodiment.
In the fuel injection device 1 according to the third embodiment, the effective pressure receiving area of the injection pressure acting on the valve body 5 in the opening direction is larger than the effective pressure receiving area of the back pressure acting on the valve body 5 in the closing direction. Although it was small, it is not limited to this. That is, the effective pressure receiving area of the injection pressure acting on the valve body 5 in the opening direction and the effective pressure receiving area of the back pressure acting on the valve body 5 in the closing direction may be the same size. On the other hand, the effective pressure receiving area of the injection pressure acting in the opening direction may be larger than the effective pressure receiving area of the back pressure acting on the valve body 5 in the closing direction.

燃料噴射装置の構成図である(実施例1)。1 is a configuration diagram of a fuel injection device (Example 1). FIG. 燃料噴射弁の構成図である(実施例1)。(Example 1) which is a block diagram of a fuel injection valve. コモンレールおよび燃料遮断弁の構成図である(実施例1)。It is a block diagram of a common rail and a fuel cutoff valve (Example 1). (a)は燃料遮断弁の開閉状態のタイムチャートであり、(b)は噴射圧力のタイムチャートであり、(c)は燃料噴射弁の開閉状態のタイムチャートであり、(d)は噴射率のタイムチャートである(実施例1)。(A) is a time chart of the open / close state of the fuel cutoff valve, (b) is a time chart of the injection pressure, (c) is a time chart of the open / close state of the fuel injection valve, and (d) is the injection rate. (Example 1). 燃料噴射装置の構成図である(実施例2)。(Example 2) which is a block diagram of a fuel-injection apparatus. 燃料噴射弁の構成図である(実施例2)。(Example 2) which is a block diagram of a fuel injection valve. コモンレールおよび燃料遮断弁の構成図である(実施例2)。(Example 2) which is a block diagram of a common rail and a fuel cutoff valve. (a)は燃料遮断弁の開閉状態のタイムチャートであり、(b)は噴射圧力のタイムチャートであり、(c)は燃料噴射弁の開閉状態のタイムチャートであり、(d)は噴射率のタイムチャートである(実施例2)。(A) is a time chart of the open / close state of the fuel cutoff valve, (b) is a time chart of the injection pressure, (c) is a time chart of the open / close state of the fuel injection valve, and (d) is the injection rate. (Example 2). 燃料噴射装置の構成図である(実施例3)。(Example 3) which is a block diagram of a fuel-injection apparatus. 燃料噴射弁の構成図である(実施例3)。(Example 3) which is a block diagram of a fuel injection valve. (a)は燃料遮断弁の開閉状態のタイムチャートであり、(b)は噴射圧力のタイムチャートであり、(c)は燃料噴射弁の開閉状態のタイムチャートであり、(d)は噴射率のタイムチャートである(実施例3)。(A) is a time chart of the open / close state of the fuel cutoff valve, (b) is a time chart of the injection pressure, (c) is a time chart of the open / close state of the fuel injection valve, and (d) is the injection rate. (Example 3).

符号の説明Explanation of symbols

1 燃料噴射装置
2 燃料噴射弁
3 燃料遮断弁
4 コモンレール(燃料供給源)
5 弁体
6 噴孔
7 ノズル
8 噴射制御弁(アクチュエータ)
20 背圧室
35 逆止弁
39 絞り(排出規制手段)
40 逆止弁
A 高圧供給流路
B 背圧供給流路
D 高圧排出流路
DESCRIPTION OF SYMBOLS 1 Fuel injection apparatus 2 Fuel injection valve 3 Fuel cutoff valve 4 Common rail (fuel supply source)
5 Valve body 6 Injection hole 7 Nozzle 8 Injection control valve (actuator)
20 Back pressure chamber 35 Check valve 39 Restriction (discharge regulation means)
40 Check valve A High pressure supply channel B Back pressure supply channel D High pressure discharge channel

Claims (12)

弁体の移動により噴孔が開閉されて燃料を噴射するノズルと、前記弁体の反噴孔側に背圧室を具備してこの背圧室の背圧が制御されて前記弁体を駆動するアクチュエータとを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、
前記燃料供給源から前記噴孔まで燃料を導くための高圧供給流路に組み込まれて、この高圧供給流路を閉鎖するとともに、必要に応じて前記高圧供給流路を開放する燃料遮断弁とを備えた燃料噴射装置において、
前記燃料遮断弁は、前記燃料供給源と前記高圧供給流路とが連通する開弁状態と、前記燃料供給源と前記高圧供給流路とが遮断される閉弁状態とを切り換える二方弁であって、
前記燃料遮断弁を一時的に開弁し、前記燃料供給源から燃料を一時的に前記燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、
前記燃料遮断弁よりも下流側に導かれた燃料の圧力が前記圧力脈動により増圧した時に、前記噴孔を開放することを特徴とする燃料噴射装置。
A nozzle that opens and closes the nozzle hole by the movement of the valve body and injects fuel, and a back pressure chamber on the side opposite to the nozzle hole of the valve body, the back pressure of the back pressure chamber is controlled to drive the valve body A fuel injection valve that injects fuel supplied from a predetermined fuel supply source to the engine;
A fuel cutoff valve that is incorporated in a high-pressure supply passage for guiding fuel from the fuel supply source to the nozzle hole, closes the high-pressure supply passage, and opens the high-pressure supply passage as necessary; In the fuel injection device provided,
The fuel shut-off valve is a two-way valve that switches between a valve open state in which the fuel supply source and the high pressure supply flow path are in communication with each other and a valve closed state in which the fuel supply source and the high pressure supply flow path are shut off. There,
The fuel shut-off valve is temporarily opened, and pressure pulsation is generated by temporarily guiding fuel from the fuel supply source to the downstream side of the fuel shut-off valve,
The fuel injection device, wherein the nozzle hole is opened when the pressure of the fuel guided downstream from the fuel cutoff valve is increased by the pressure pulsation.
請求項1に記載の燃料噴射装置において、
前記高圧供給流路の燃料を排出するための高圧排出流路が、前記高圧供給流路から分岐していることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
A fuel injection device, wherein a high-pressure discharge channel for discharging fuel in the high-pressure supply channel branches from the high-pressure supply channel.
請求項2に記載の燃料噴射装置において、
前記高圧排出流路には、燃料の排出を規制する排出規制手段が設けられていることを特徴とする燃料噴射装置。
The fuel injection device according to claim 2, wherein
The fuel injection apparatus according to claim 1, wherein the high-pressure discharge passage is provided with discharge restriction means for restricting fuel discharge.
請求項3に記載の燃料噴射装置において、
前記排出規制手段は、前記高圧排出流路に設けられた絞りにより排出流量を規制することを特徴とする燃料噴射装置。
The fuel injection device according to claim 3, wherein
The fuel injection device, wherein the discharge restricting means restricts a discharge flow rate by a throttle provided in the high pressure discharge flow path.
請求項2に記載の燃料噴射装置において、
前記高圧排出流路には、大気圧よりも高い圧力が作用すると開弁する逆止弁が組み込まれていることを特徴とする燃料噴射装置。
The fuel injection device according to claim 2, wherein
A fuel injection device, wherein a check valve that opens when a pressure higher than atmospheric pressure is applied is incorporated in the high-pressure discharge passage.
弁体の移動により噴孔が開閉されて燃料を噴射するノズルと、前記弁体の反噴孔側に背圧室を具備してこの背圧室の背圧が制御されて前記弁体を駆動するアクチュエータとを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、
前記燃料供給源から前記噴孔まで燃料を導くための高圧供給流路に組み込まれて、この高圧供給流路を閉鎖するとともに、必要に応じて前記高圧供給流路を開放する燃料遮断弁とを備えた燃料噴射装置において、
前記燃料遮断弁は、前記燃料供給源と前記高圧供給流路とが連通する開弁状態と、前記高圧供給流路と前記高圧供給流路の燃料を排出するための高圧排出流路とが連通する閉弁状態とを切り換える三方弁であって、
前記燃料遮断弁を一時的に開弁し、前記燃料供給源から燃料を一時的に前記燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、
前記燃料遮断弁よりも下流側に導かれた燃料の圧力が前記圧力脈動により増圧した時に、前記噴孔を開放することを特徴とする燃料噴射装置。
A nozzle that opens and closes the nozzle hole by the movement of the valve body and injects fuel, and a back pressure chamber on the side opposite to the nozzle hole of the valve body, the back pressure of the back pressure chamber is controlled to drive the valve body A fuel injection valve that injects fuel supplied from a predetermined fuel supply source to the engine;
A fuel cutoff valve that is incorporated in a high-pressure supply passage for guiding fuel from the fuel supply source to the nozzle hole, closes the high-pressure supply passage, and opens the high-pressure supply passage as necessary; In the fuel injection device provided,
The fuel shut-off valve communicates between a valve open state in which the fuel supply source and the high-pressure supply flow path communicate with each other and a high-pressure discharge flow path for discharging fuel in the high-pressure supply flow path. A three-way valve that switches between a closed state and a closed state,
The fuel shut-off valve is temporarily opened, and pressure pulsation is generated by temporarily guiding fuel from the fuel supply source to the downstream side of the fuel shut-off valve,
The fuel injection device, wherein the nozzle hole is opened when the pressure of the fuel guided downstream from the fuel cutoff valve is increased by the pressure pulsation.
請求項1または請求項6に記載の燃料噴射装置において、
前記背圧室へ燃料を供給するための背圧供給流路が、前記高圧供給流路から分岐していることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1 or 6,
A fuel injection device, wherein a back pressure supply passage for supplying fuel to the back pressure chamber branches from the high pressure supply passage.
請求項7に記載の燃料噴射装置において、
前記背圧供給流路には、前記背圧室から前記高圧供給流路への燃料の逆流を防止する逆止弁が組み込まれていることを特徴とする燃料噴射装置。
The fuel injection device according to claim 7, wherein
The fuel injection device according to claim 1, wherein a check valve for preventing a back flow of fuel from the back pressure chamber to the high pressure supply channel is incorporated in the back pressure supply channel.
請求項1または請求項6に記載の燃料噴射装置において、
前記背圧室へ燃料を供給するための背圧供給流路が、前記高圧供給流路とは別に前記燃料供給源から、直接、前記背圧室に接続されていることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1 or 6,
A fuel injection, wherein a back pressure supply passage for supplying fuel to the back pressure chamber is directly connected to the back pressure chamber from the fuel supply source separately from the high pressure supply passage. apparatus.
請求項9に記載の燃料噴射装置において、
前記噴孔から噴射される燃料が、前記弁体に対し前記噴孔を開放する方向に圧力を及ぼすように、前記高圧供給流路から前記ノズルに供給され、
前記弁体に対し前記噴孔を開放する方向に作用する燃料の圧力の有効受圧面積が、前記背圧の有効受圧面積よりも小さいことを特徴とする燃料噴射装置。
The fuel injection device according to claim 9, wherein
Fuel injected from the nozzle hole is supplied to the nozzle from the high-pressure supply channel so as to exert pressure on the valve body in a direction to open the nozzle hole,
The fuel injection device, wherein an effective pressure receiving area of the pressure of the fuel acting in the direction of opening the nozzle hole with respect to the valve body is smaller than an effective pressure receiving area of the back pressure.
請求項1または請求項6に記載の燃料噴射装置において、
前記燃料供給源は、燃料を高圧化して吐出する燃料噴射ポンプ、この燃料噴射ポンプから吐出された燃料を所定の圧力で蓄圧するコモンレールを有し、
前記燃料遮断弁は、前記コモンレールに装着されていることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1 or 6,
The fuel supply source has a fuel injection pump that discharges the fuel at a high pressure, a common rail that accumulates fuel discharged from the fuel injection pump at a predetermined pressure,
The fuel injection device, wherein the fuel cutoff valve is attached to the common rail.
弁体の移動により噴孔が開閉されて燃料を噴射するノズルと、前記弁体の反噴孔側に背圧室を具備してこの背圧室の背圧が制御されて前記弁体を駆動するアクチュエータとを有し、所定の燃料供給源から供給される燃料をエンジンに噴射供給する燃料噴射弁と、
前記燃料供給源から前記噴孔まで燃料を導くための高圧供給流路に組み込まれて、この高圧供給流路を閉鎖するとともに、必要に応じて前記高圧供給流路を開放する燃料遮断弁とを備えた燃料噴射装置を用いた燃料噴射方法であって、
前記燃料遮断弁を一時的に開弁し、前記燃料供給源から燃料を一時的に前記燃料遮断弁よりも下流側に導くことで圧力脈動を発生させ、
前記燃料遮断弁よりも下流側に導かれた燃料の圧力が前記圧力脈動により増圧した時に、前記噴孔を開放し、
所定時間経過後、前記アクチュエータを作動停止させ前記弁体により前記噴孔を閉鎖した後、前記燃料遮断弁を、再度、一時的に開弁し、前記圧力脈動により増圧した燃料を前記燃料遮断弁よりも上流側に導くことを特徴とする燃料噴射方法。
A nozzle that opens and closes the nozzle hole by the movement of the valve body and injects fuel, and a back pressure chamber on the side opposite to the nozzle hole of the valve body, the back pressure of the back pressure chamber is controlled to drive the valve body A fuel injection valve that injects fuel supplied from a predetermined fuel supply source to the engine;
A fuel cutoff valve that is incorporated in a high-pressure supply passage for guiding fuel from the fuel supply source to the nozzle hole, closes the high-pressure supply passage, and opens the high-pressure supply passage as necessary; A fuel injection method using the provided fuel injection device,
The fuel shut-off valve is temporarily opened, and pressure pulsation is generated by temporarily guiding fuel from the fuel supply source to the downstream side of the fuel shut-off valve,
When the pressure of the fuel guided downstream from the fuel shutoff valve is increased by the pressure pulsation, the nozzle hole is opened,
After a lapse of a predetermined time, the actuator is deactivated and the nozzle hole is closed by the valve body. Then, the fuel shut-off valve is temporarily opened again, and the fuel increased in pressure by the pressure pulsation is shut off from the fuel. A fuel injection method, wherein the fuel injection method is guided upstream of the valve.
JP2004367013A 2004-12-20 2004-12-20 Fuel injection device and fuel injection method Expired - Fee Related JP4241601B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004367013A JP4241601B2 (en) 2004-12-20 2004-12-20 Fuel injection device and fuel injection method
DE200510060647 DE102005060647A1 (en) 2004-12-20 2005-12-19 Fuel injecting equipment for internal combustion engine has fuel injecting valve with nozzle which is supplied by a predetermined source of fuel supply and injecting hole is provided to inject fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367013A JP4241601B2 (en) 2004-12-20 2004-12-20 Fuel injection device and fuel injection method

Publications (2)

Publication Number Publication Date
JP2006170153A true JP2006170153A (en) 2006-06-29
JP4241601B2 JP4241601B2 (en) 2009-03-18

Family

ID=36571356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367013A Expired - Fee Related JP4241601B2 (en) 2004-12-20 2004-12-20 Fuel injection device and fuel injection method

Country Status (2)

Country Link
JP (1) JP4241601B2 (en)
DE (1) DE102005060647A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000423A1 (en) 2007-02-28 2008-09-04 Denso Corp., Kariya Automotive fuel injection assembly uses back-pressure on needle valve opening to raise injection pressure
JP2010159734A (en) * 2009-01-12 2010-07-22 Denso Corp Fuel injection valve
JP2012197678A (en) * 2011-03-18 2012-10-18 Denso Corp Injector
JP2012202408A (en) * 2011-03-24 2012-10-22 Omt Officine Meccaniche Torino Spa Electronically-controlled fuel injector for large diesel engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412969B2 (en) 2006-03-13 2008-08-19 Sturman Industries, Inc. Direct needle control fuel injectors and methods
FR2915774B1 (en) * 2007-05-04 2009-07-17 Peugeot Citroen Automobiles Sa LOW PRESSURE INJECTION SYSTEM
US7717359B2 (en) 2007-05-09 2010-05-18 Sturman Digital Systems, Llc Multiple intensifier injectors with positive needle control and methods of injection
DE102007047152A1 (en) * 2007-10-02 2009-04-09 Robert Bosch Gmbh Injector with an annulus separate anchor space
US20100012745A1 (en) 2008-07-15 2010-01-21 Sturman Digital Systems, Llc Fuel Injectors with Intensified Fuel Storage and Methods of Operating an Engine Therewith
DE102012012420A1 (en) * 2012-06-25 2014-01-02 L'orange Gmbh Injector and fuel injection device with such
US9181890B2 (en) 2012-11-19 2015-11-10 Sturman Digital Systems, Llc Methods of operation of fuel injectors with intensified fuel storage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000423A1 (en) 2007-02-28 2008-09-04 Denso Corp., Kariya Automotive fuel injection assembly uses back-pressure on needle valve opening to raise injection pressure
JP2010159734A (en) * 2009-01-12 2010-07-22 Denso Corp Fuel injection valve
JP2012197678A (en) * 2011-03-18 2012-10-18 Denso Corp Injector
JP2012202408A (en) * 2011-03-24 2012-10-22 Omt Officine Meccaniche Torino Spa Electronically-controlled fuel injector for large diesel engine

Also Published As

Publication number Publication date
DE102005060647A1 (en) 2006-06-22
JP4241601B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4245639B2 (en) Fuel injection valve for internal combustion engine
JP2005524795A (en) Fuel injection system
JP4008351B2 (en) Pump system with high pressure throttle
JP4241601B2 (en) Fuel injection device and fuel injection method
JP4142634B2 (en) Fuel injector
JP2006307860A (en) Injection nozzle
JP2005531726A (en) Fuel injection system
JP3555588B2 (en) Common rail fuel injector
JP4134979B2 (en) Fuel injection device for internal combustion engine
WO2006033469A1 (en) Fuel injection device
JP4107277B2 (en) Fuel injection device for internal combustion engine
JP2005083237A (en) Injector for internal combustion engine
JP2005320904A (en) Fuel injection valve
JP4337732B2 (en) Fuel injection method
CZ20014193A3 (en) Method and apparatus for influencing injection pressure characteristic in vehicle injection systems
JP4329704B2 (en) Fuel injection device
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
JP4623930B2 (en) Common rail fuel injection system for automobiles
JP4415962B2 (en) Injector
JP2006161678A (en) Fuel injection nozzle, fuel injection valve and fuel injection device
JP4407655B2 (en) Injector
JP2007024016A (en) Fuel injection valve
JP2007040160A (en) Fuel injection device for internal combustion engine
US7451743B2 (en) Fuel injection system with accumulator fill valve assembly
JP4548406B2 (en) Three-way switching valve and injector provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees