JP2006164873A - Non-aqueous electrolytic solution secondary battery - Google Patents

Non-aqueous electrolytic solution secondary battery Download PDF

Info

Publication number
JP2006164873A
JP2006164873A JP2004357850A JP2004357850A JP2006164873A JP 2006164873 A JP2006164873 A JP 2006164873A JP 2004357850 A JP2004357850 A JP 2004357850A JP 2004357850 A JP2004357850 A JP 2004357850A JP 2006164873 A JP2006164873 A JP 2006164873A
Authority
JP
Japan
Prior art keywords
porous
layer
heat
battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004357850A
Other languages
Japanese (ja)
Other versions
JP4910287B2 (en
Inventor
Shinji Kasamatsu
真治 笠松
Kensuke Nagura
健祐 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004357850A priority Critical patent/JP4910287B2/en
Publication of JP2006164873A publication Critical patent/JP2006164873A/en
Application granted granted Critical
Publication of JP4910287B2 publication Critical patent/JP4910287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution in which an injection property of the electrolytic solution in a manufacturing process is high, which is superior in a high-temperature storage property, and of which the safety is high by improving electrolytic solution retaining force. <P>SOLUTION: A separator is composed of at least three layers of a heat-resistant porous resin layer, a porous polyethylene layer, and a porous polypropylene layer, and by arranging so that a positive electrode be opposed to the porous polypropylene layer and a negative electrode be opposed to the heat-resistant porous resin layer, a void balance in an electrode group is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非水電解液二次電池のセパレータに関し、より詳しくは安全性と性能および生産性との並立が図れるセパレータの構造に関する。   The present invention relates to a separator for a non-aqueous electrolyte secondary battery, and more particularly to a separator structure that can achieve safety, performance, and productivity.

リチウムイオン二次電池に代表される非水電解液二次電池は、エネルギー密度が大きいという利点を有する一方、異常時の安全性に課題を有する。このため用いられる多孔質ポリオレフィンセパレータは、通常時に正負極間を電気的に絶縁させる役目の他に、外部短絡による過剰電流などにより電池温度が著しく上昇した場合、セパレータが軟化・目詰まりしてイオン伝導性が消失し、電池機能を停止させるという機能(以下、シャットダウンと称す)を有する。ただしシャットダウン後も電池の温度が上昇した場合、セパレータが溶融して正負極間が短絡する(以下、メルトダウンと称す)。このシャットダウンとメルトダウンとは相反する関係にあり、例えばシャットダウンを強化するために熱溶融性を高めると、メルトダウン温度が低くなるという課題があった。   A non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has an advantage of high energy density, but has a problem in safety in an abnormal state. For this reason, the porous polyolefin separator used is not only for electrically insulating the positive and negative electrodes during normal operation, but also when the battery temperature rises significantly due to excess current due to an external short circuit, the separator softens and becomes clogged. The conductivity is lost and the battery function is stopped (hereinafter referred to as shutdown). However, when the temperature of the battery rises even after shutdown, the separator melts and the positive and negative electrodes are short-circuited (hereinafter referred to as meltdown). The shutdown and the meltdown are in a contradictory relationship. For example, when the heat melting property is increased to enhance the shutdown, there is a problem that the meltdown temperature is lowered.

この課題を解決するために、異なる機能を持つ複合膜からなるセパレータが多数提案されてきた。例として、ポリイミド、ポリアミドイミド、アラミドなどからなる耐熱多孔質層と、ポリエチレンなどからなるシャットダウン層からなる複合膜を構成し、上記耐熱多孔質層を正極側に配置して正極活物質の過熱に対応する方法(例えば、特許文献1)や、逆に負極側に配置してこの層の経時的な機能の低下に対応する方法(例えば、特許文献2)が提案されている。
特開2000―100408号公報 特開2001−266949号公報
In order to solve this problem, many separators made of composite films having different functions have been proposed. As an example, a composite film consisting of a heat-resistant porous layer made of polyimide, polyamideimide, aramid, etc. and a shutdown layer made of polyethylene or the like is constructed, and the heat-resistant porous layer is arranged on the positive electrode side to overheat the positive electrode active material. Corresponding methods (for example, Patent Document 1) and conversely methods (for example, Patent Document 2) that are arranged on the negative electrode side and cope with the deterioration of the function of this layer over time have been proposed.
Japanese Patent Laid-Open No. 2000-100408 JP 2001-266949 A

しかしながら耐熱多孔質層はセパレータの製造過程(延伸加工など)において、空隙率が低くなる傾向を有する。一方、正極は高容量化や電子伝導性確保の観点から、空隙率が低く(高密度に)なるように設計されることが多い。したがって特許文献1のように耐熱多孔質層と高密度な正極が組み合わさると、正極側の電解液保持力が極端に低下し、製造工程における電解液注入時に生産性が低下するという課題があった。   However, the heat-resistant porous layer tends to have a low porosity in the manufacturing process (stretching process, etc.) of the separator. On the other hand, the positive electrode is often designed to have a low porosity (high density) from the viewpoint of increasing the capacity and ensuring electronic conductivity. Therefore, when the heat-resistant porous layer and the high-density positive electrode are combined as in Patent Document 1, the electrolyte holding power on the positive electrode side is extremely lowered, and the productivity is lowered when the electrolyte is injected in the manufacturing process. It was.

また特許文献2のように耐熱多孔質層を負極側に対向させた場合、特許文献1のような課題は回避できるが、シャットダウン層として一般的なポリエチレンは正極の充電電位下で高温に晒されると顕著に劣化するため、正極側にポリエチレンを配置すると高温保存特性が低下する傾向があった。この対策としてポリエチレンに換えてポリプロピレンを用いた場合、シャットダウン温度が高いことから過熱安全性が不十分となる課題があった。   Further, when the heat-resistant porous layer is opposed to the negative electrode side as in Patent Document 2, the problem as in Patent Document 1 can be avoided, but general polyethylene as a shutdown layer is exposed to a high temperature under the charging potential of the positive electrode. Therefore, when polyethylene is disposed on the positive electrode side, the high-temperature storage characteristics tend to decrease. As a countermeasure, when polypropylene is used instead of polyethylene, there is a problem that the overheat safety is insufficient because the shutdown temperature is high.

本発明はこれらの課題に鑑みてなされたものであり、高い電解液保持力を有し、かつ高温保存特性に優れた、高安全型非水電解液二次電池を供給することを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to provide a highly safe non-aqueous electrolyte secondary battery that has high electrolyte solution retention and excellent high-temperature storage characteristics. .

上述した課題を解決するため、本発明の非水電解液二次電池は、セパレータが耐熱多孔質樹脂層、多孔質ポリエチレン層および多孔質ポリプロピレン層の少なくとも三層からなり、正極が多孔質ポリプロピレン層と対向し、負極が耐熱多孔質樹脂層と対向することを特徴とする。   In order to solve the above-described problems, the non-aqueous electrolyte secondary battery of the present invention has a separator comprising at least three layers of a heat-resistant porous resin layer, a porous polyethylene layer and a porous polypropylene layer, and a positive electrode being a porous polypropylene layer. And the negative electrode is opposed to the heat resistant porous resin layer.

比較的空隙率が低い耐熱多孔質樹脂層を、比較的空隙率が高い負極側に配置することにより、正負極およびセパレータの電解液保持力が均一となるため、電解液注入工程の生産性が向上する。また正極電位に晒される箇所に多孔質ポリプロピレン層を配置し、その内側に多孔質ポリエチレン層を配置することにより、高温保存特性を向上しつつ、所望の温度でシャットダウン機能を発揮させることができる。   By disposing the heat-resistant porous resin layer with a relatively low porosity on the negative electrode side with a relatively high porosity, the electrolyte holding power of the positive and negative electrodes and the separator becomes uniform, so the productivity of the electrolyte injection process is improved. improves. In addition, by disposing a porous polypropylene layer at a location exposed to the positive electrode potential and disposing a porous polyethylene layer inside thereof, the shutdown function can be exhibited at a desired temperature while improving the high-temperature storage characteristics.

本発明により、従来のセパレータが有していた諸々の課題が解決されるので、高温保存特性および安全性に優れた非水電解液二次電池を、高い生産性のもと提供することが可能となる。   The present invention solves various problems that conventional separators have, so it is possible to provide a non-aqueous electrolyte secondary battery excellent in high-temperature storage characteristics and safety with high productivity. It becomes.

以下、本発明を実施するための最良の形態について、詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明の骨子は、正負極間に配置されるセパレータを、耐熱多孔質樹脂層、多孔質ポリエチレン層および多孔質ポリプロピレン層の少なくとも三層からなるものとし、正極側には多孔質プロピレン層を、負極側には耐熱多孔質樹脂層を配置させることにある。   The gist of the present invention is that the separator disposed between the positive and negative electrodes is composed of at least three layers of a heat-resistant porous resin layer, a porous polyethylene layer and a porous polypropylene layer, and a porous propylene layer on the positive electrode side, A heat-resistant porous resin layer is disposed on the negative electrode side.

負極側に配置される耐熱多孔質樹脂としては、アメリカ材料試験協会の試験法ASTM−D648、1.82MPaでの荷重たわみ温度測定にて求められる熱変形温度が260℃以上の耐熱性樹脂を用いることが望ましい。ここで耐熱性とはガラス転移点と融点が十分高く、化学変化を伴う熱分解開始温度が十分高いことを意味しており、機械的強度により耐熱性を定義するため、熱変形温度として荷重たわみ温度を用いている。この熱変形温度が高いほど、熱収縮などが生じた際もセパレータ形状を維持しやすいものといえる。この熱変形温度が260℃以上の場合、電池過熱時の蓄熱により電池温度がさらに上昇した場合(通常180℃程度)でも、十分に高い熱安定性を発揮することができる。このような耐熱多孔質樹脂としてはアラミド、ポリアミドイミド、ポリイミド、ポリフェニレンサルファイド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリアリレート、ポリエーテルニトリル、ポリエーテルエーテルケトン、ポリベンゾイミダゾールなどを挙げることができる。中でもアラミド、ポリアミドイミド、ポリイミドについては、電解液保持力および耐熱性が極めて高い多孔質樹脂層を形成できる観点から好ましい。   As the heat-resistant porous resin disposed on the negative electrode side, a heat-resistant resin having a heat distortion temperature of 260 ° C. or higher obtained by measuring the deflection temperature under load at 1.82 MPa, test method ASTM-D648 of the American Society for Testing Materials is used. It is desirable. Here, heat resistance means that the glass transition point and melting point are sufficiently high, and the thermal decomposition starting temperature accompanied by chemical change is sufficiently high. Temperature is used. It can be said that the higher the heat distortion temperature, the easier it is to maintain the separator shape even when heat shrinkage occurs. When this heat distortion temperature is 260 ° C. or higher, sufficiently high thermal stability can be exhibited even when the battery temperature further rises due to heat storage during battery overheating (usually about 180 ° C.). Examples of such heat-resistant porous resin include aramid, polyamideimide, polyimide, polyphenylene sulfide, polyetherimide, polyethylene terephthalate, polyarylate, polyether nitrile, polyether ether ketone, polybenzimidazole and the like. Among these, aramid, polyamideimide, and polyimide are preferable from the viewpoint of forming a porous resin layer having extremely high electrolytic solution holding power and heat resistance.

この耐熱多孔質樹脂層は負極側に配置する必要がある。この空隙率が低い層を、正極(空隙率が低くなるよう設計されている)と対向するように配置した場合、正負極およびセパレータからなる電極群の空隙分布が不均一になる。すなわち、正極側は総じて空隙が少なく、負極側は総じて空隙が多くなるため、電解液を注入した際に正極側で電解液の含浸が滞ることにより、電極群全体に電解液を含浸させるのに時間を要することになる。   This heat-resistant porous resin layer needs to be disposed on the negative electrode side. When this low porosity layer is disposed so as to face the positive electrode (designed to have a low porosity), the void distribution of the electrode group consisting of the positive and negative electrodes and the separator becomes non-uniform. That is, since the positive electrode side generally has few voids and the negative electrode side generally has many voids, the electrolyte solution is impregnated on the positive electrode side when the electrolyte solution is injected, so that the entire electrode group is impregnated with the electrolyte solution. It will take time.

耐熱多孔質樹脂層の厚みは、特に限定されないが、内部短絡安全の確保と電気容量のバランスから、1〜16μmが好ましく、2〜10μmであることがより好ましい。1μm未満の場合、高温環境下において耐熱多孔質樹脂層が多孔質ポリエチレン層および多孔質ポリプロピレン層の熱収縮を抑止する効果が低くなる。また16μmを超える場合、空隙率の低い(イオン伝導性の低い)耐熱多孔質樹脂層の影響によってインピーダンスが上昇し、充放電特性が若干ながら低下する。さらには耐熱多孔質樹脂層の空隙率は、リチウムイオンが十分移動できる観点から、20〜70%であることが好ましい。   The thickness of the heat-resistant porous resin layer is not particularly limited, but is preferably 1 to 16 μm and more preferably 2 to 10 μm from the viewpoint of ensuring internal short circuit safety and electric capacity. When the thickness is less than 1 μm, the heat-resistant porous resin layer has a low effect of suppressing heat shrinkage of the porous polyethylene layer and the porous polypropylene layer in a high temperature environment. On the other hand, when the thickness exceeds 16 μm, the impedance increases due to the influence of the heat-resistant porous resin layer having a low porosity (low ion conductivity), and the charge / discharge characteristics are slightly decreased. Furthermore, the porosity of the heat-resistant porous resin layer is preferably 20 to 70% from the viewpoint that lithium ions can sufficiently move.

残る2層(多孔質ポリエチレン層および多孔質ポリプロピレン層)のうち、正極側に配置するのは多孔質ポリプロピレン層であるのが好ましい。多孔質ポリエチレン層はシャットダウン温度が適切で安全性が高い一方、正極充電電位下での安定性に劣るため、長時間高温下に晒した場合、電解液の消費を伴う分解が起こると考えられる。よって正極側には
多孔質ポリプロピレン層を配置し、その内側に多孔質ポリエチレン層を設けることにより、高温保存特性を損なうことなく、シャットダウン機能を発揮させることが可能となる。これら多孔質ポリエチレン層および多孔質ポリプレピレン層の孔径は、イオン伝導性と機械的強度を両立させる観点から、0.01〜10μmであることが好ましい。
Of the remaining two layers (the porous polyethylene layer and the porous polypropylene layer), the porous polypropylene layer is preferably disposed on the positive electrode side. While the porous polyethylene layer has an appropriate shutdown temperature and high safety, it is inferior in stability under the positive electrode charging potential. Therefore, when exposed to a high temperature for a long time, it is considered that decomposition accompanied by consumption of the electrolytic solution occurs. Therefore, by disposing a porous polypropylene layer on the positive electrode side and providing a porous polyethylene layer on the inside thereof, the shutdown function can be exhibited without impairing the high-temperature storage characteristics. The pore diameters of these porous polyethylene layer and porous polypropylene layer are preferably 0.01 to 10 μm from the viewpoint of achieving both ion conductivity and mechanical strength.

上述した耐熱多孔質樹脂層、多孔質ポリエチレン層および多孔質ポリプロピレン層の少なくとも三層からなるセパレータの総厚みは、特に限定されないが、各種安全性や電池特性、さらには電池設計容量を総合的に勘案すれば、5〜35μmであることが好ましい。   The total thickness of the separator composed of at least three layers of the above-mentioned heat resistant porous resin layer, porous polyethylene layer and porous polypropylene layer is not particularly limited, but comprehensively considers various safety, battery characteristics, and battery design capacity. In consideration, it is preferably 5 to 35 μm.

これらの積層構造は、多孔質ポリエチレン層および多孔質ポリプロピレン層を基材として、耐熱多孔質樹脂層を基材上に形成することで実現できる。例えば耐熱多孔質樹脂としてアラミドを用いる場合、N−メチルピロリドン(以下、NMPと略記)などの極性溶媒に溶かした後、上記基材上に塗着することにより作製することができる。ここでアラミド溶液に無機酸化物フィラーを添加することにより、耐熱性の非常に高い塗着層を形成させることができる。無機酸化物フィラーとしては、例えばアルミナ、ゼオライト、窒化珪素、炭化珪素などの無機多孔質材料などを選択するのが好ましい。   These laminated structures can be realized by forming a heat-resistant porous resin layer on a base material using the porous polyethylene layer and the porous polypropylene layer as the base material. For example, when aramid is used as the heat-resistant porous resin, it can be prepared by dissolving it in a polar solvent such as N-methylpyrrolidone (hereinafter abbreviated as NMP) and then applying it onto the substrate. Here, by adding an inorganic oxide filler to the aramid solution, a coating layer having extremely high heat resistance can be formed. As the inorganic oxide filler, for example, an inorganic porous material such as alumina, zeolite, silicon nitride, or silicon carbide is preferably selected.

また耐熱多孔質樹脂としてポリイミドを用いる場合、前駆体であるポリアミド酸溶液を流延したのち、延伸加工によって多孔質薄膜を作製し、これを上記基材と熱ロールなどで一体化させることによって作製できる。ここで耐熱多孔質樹脂層の空隙率は、延伸加工条件を変化させることにより制御が可能である。   When polyimide is used as the heat-resistant porous resin, it is prepared by casting a polyamic acid solution, which is a precursor, and then creating a porous thin film by stretching, and then integrating the substrate with a heat roll or the like. it can. Here, the porosity of the heat resistant porous resin layer can be controlled by changing the stretching process conditions.

正極については、活物質としてコバルト酸リチウムおよびその変性体(アルミニウムやマグネシウムを共晶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルトやマンガン置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。結着剤としてはポリテトラフルオロエチレン、変性アクリロニトリルゴム粒子(日本ゼオン株式会社製BM−500B(商品名)など)を増粘効果のあるカルボキシメチルセルロース(以下、CMCと略記)、ポリエチレンオキシド、可溶性変性アクリロニトリルゴム(日本ゼオン株式会社製BM−720H(商品名)など)と組み合わせても良く、また単一で結着性・増粘性の双方を有するポリ弗化ビニリデン(以下、PVDFと略記)およびその変性体を単独または組み合わせて用いても良い。導電剤としてはアセチレンブラック・ケッチェンブラック・各種グラファイトを単独あるいは組み合わせて用いて良い。   For positive electrodes, lithium cobaltate and its modified products (such as those obtained by eutectic aluminum or magnesium), lithium nickelate and its modified products (such as those in which nickel is partially substituted with cobalt or manganese), manganese Examples thereof include composite oxides such as lithium acid and modified products thereof. As the binder, polytetrafluoroethylene, modified acrylonitrile rubber particles (such as BM-500B (trade name) manufactured by Nippon Zeon Co., Ltd.), carboxymethylcellulose (hereinafter abbreviated as CMC) having a thickening effect, polyethylene oxide, soluble modification It may be combined with acrylonitrile rubber (such as BM-720H (trade name) manufactured by Nippon Zeon Co., Ltd.), and is a single polyvinylidene fluoride (hereinafter abbreviated as PVDF) having both binding properties and thickening and its The modified products may be used alone or in combination. As the conductive agent, acetylene black, ketjen black, and various graphites may be used alone or in combination.

負極については、活物質として各種天然黒鉛および人造黒鉛・シリサイドなどのシリコン系複合材料・スズ、アルミニウム、亜鉛、マグネシウムから選ばれる少なくとも一種を含むリチウム合金・および各種合金組成材料を用いることができる。結着剤としてはPVDFおよびその変性体をはじめ各種樹脂材料を用いることができるが、前述のように過充電安全性向上の観点から、たとえば、スチレン−ブタジエン共重合体(以下、SBRと略記)およびその変性体とCMC等のセルロース系樹脂との混合水溶性結着剤などを使用するのがより好ましい。   For the negative electrode, various natural graphites and silicon-based composite materials such as artificial graphite and silicide, lithium alloys containing at least one selected from tin, aluminum, zinc, and magnesium, and various alloy composition materials can be used as the active material. As the binder, various resin materials such as PVDF and modified products thereof can be used. From the viewpoint of improving the overcharge safety as described above, for example, a styrene-butadiene copolymer (hereinafter abbreviated as SBR). It is more preferable to use a mixed water-soluble binder between the modified product and a cellulose resin such as CMC.

電解液については、塩としてLiPF6およびLiBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)を単独および組み合わせて用いることができる。また正負極上に良好な皮膜を形成させたりするために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体等を用いることも可能である。 For the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as a salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) can be used alone or in combination as a solvent. In order to form a good film on the positive and negative electrodes, vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof can be used.

以下、本発明を実施例に基づいて具体的に説明するが、ここで述べる内容は本発明の例
示に過ぎず、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, the content described here is only the illustration of this invention, and this invention is not limited to these.

(実施例1)
(a)正極の作製
正極活物質としてコバルト酸リチウム3kgと、正極結着剤として呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)1kgと、導電剤としてアセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤塗料を調製した。この塗料を正極集電体である厚み15μmのアルミニウム箔の両面に、正極リードの接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、活物質層密度(活物質重量/合剤層体積)が3.3g/cm3の正極合剤層を形成した。この際、アルミニウム箔および正極合剤層からなる極板の厚みを160μmに制御した。その後、円筒型電池(直径18mm、長さ65mm)の電池缶に挿入可能な幅に極板をスリットし、正極のフープを得た。
(b)負極の作製
負極活物質として人造黒鉛3kgと、負極結着剤として日本ゼオン(株)製の「BM−400B(商品名)」(スチレン−ブタジエン共重合体の変性体を40重量%含む水性分散液)75gと、増粘剤としてCMCを30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤塗料を調製した。この塗料を負極集電体である厚さ10μmの銅箔の両面に、負極リード接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、活物質層密度(活物質重量/合剤層体積)が1.4g/cm3の負極合剤層を形成した。この際、銅箔および負極合剤層からなる極板の厚みを180μmに制御した。その後、上述した円筒型電池の電池缶に挿入可能な幅に極板をスリットし、負極のフープを得た。
(c)セパレータの作製
厚み8μmの多孔質ポリエチレン薄膜と厚み8μmの多孔質ポリプロピレン薄膜を重ね合わせ、熱ロールで圧延することで多孔質ポリエチレン−多孔質ポリプロピレン積層膜を得た。さらに耐熱多孔質樹脂層として、アラミド樹脂(熱変形温度(試験法ASTM−D648、1.82MPaでの荷重たわみ温度):320℃以上)からなる層を基材上に形成した。
Example 1
(A) Production of positive electrode 3 kg of lithium cobaltate as a positive electrode active material, 1 kg of “# 1320 (trade name)” (NMP solution containing 12% by weight of PVDF) manufactured by Kureha Chemical Co., Ltd. as a positive electrode binder, Acetylene black 90 g as an agent and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture paint. This paint was applied to both sides of a 15 μm thick aluminum foil as a positive electrode current collector, excluding the connecting portion of the positive electrode lead, and the dried coating film was rolled with a roller to obtain an active material layer density (active material weight / A positive electrode mixture layer having a mixture layer volume) of 3.3 g / cm 3 was formed. Under the present circumstances, the thickness of the electrode plate which consists of aluminum foil and a positive mix layer was controlled to 160 micrometers. Thereafter, the electrode plate was slit to a width that could be inserted into a cylindrical battery (diameter 18 mm, length 65 mm) battery can to obtain a positive electrode hoop.
(B) Production of Negative Electrode 3 kg of artificial graphite as the negative electrode active material and “BM-400B (trade name)” manufactured by Nippon Zeon Co., Ltd. as the negative electrode binder (40% by weight of a modified styrene-butadiene copolymer) An aqueous dispersion containing 75 g, 30 g of CMC as a thickener, and an appropriate amount of water were stirred with a double-arm kneader to prepare a negative electrode mixture paint. This paint was applied to both sides of a 10 μm thick copper foil as a negative electrode current collector, excluding the negative electrode lead connection portion, and the dried coating film was rolled with a roller to obtain an active material layer density (active material weight / A negative electrode mixture layer having a mixture layer volume) of 1.4 g / cm 3 was formed. Under the present circumstances, the thickness of the electrode plate which consists of copper foil and a negative mix layer was controlled to 180 micrometers. Thereafter, the electrode plate was slit to a width that could be inserted into the battery can of the cylindrical battery described above to obtain a negative electrode hoop.
(C) Production of separator A porous polyethylene thin film having a thickness of 8 μm and a porous polypropylene thin film having a thickness of 8 μm were overlapped and rolled with a hot roll to obtain a porous polyethylene-porous polypropylene laminated film. Further, as the heat-resistant porous resin layer, a layer made of an aramid resin (thermal deformation temperature (test method ASTM-D648, deflection temperature under load at 1.82 MPa): 320 ° C. or higher) was formed on the substrate.

以下にアラミド樹脂層の形成法を示す。NMP100重量部に対し、乾燥した無水塩化カルシウムを6.5重量部添加し、反応槽内で加温して完全に溶解した。この塩化カルシウム添加NMP溶液を常温に戻した後、パラフェニレンジアミンを3.2重量部添加し、完全に溶解した。この後反応槽を20℃の恒温槽に入れ、テレフタル酸ジクロライド5.8重量部を、1時間をかけて滴下し、重合反応によりポリパラフェニレンテレフタルアミド(以下、PPTAと略記)を合成した。その後、恒温槽内で1時間放置し、反応終了後に真空槽に入れ替え、減圧下で30分撹拌して脱気した。得られた重合液を、さらに塩化カルシウム添加NMP溶液にて希釈し、PPTA濃度が1.4重量%のアラミド樹脂のNMP溶解液を調整した。このようにして得られたアラミド樹脂のNMP溶解液を、塗布面を多孔質ポリエチレン層側として、バーコーターにより薄くコートし、80℃の熱風(風速0.5m/秒)にて乾燥し、積層膜を得た。その後、この積層膜を純水で十分に水洗して塩化カルシウムを除去しつつアラミド樹脂層を多孔質化し、乾燥した。これにより総厚みが20μmのアラミド−多孔質ポリエチレン−多孔質ポリプロピレン積層膜を作製した。
(d)非水電解液の調製
ECとDMCとEMCとを体積比2:3:3で含む非水溶媒の混合物に、LiPF6を1mol/Lの濃度で溶解した後、VCを非水電解液100重量部あたり3重量部添加し、非水電解液を調整した。
(e)電池の作製
上述の正負極、セパレータおよび非水電解液を用いて、以下の要領で円筒型電池を作製
した。まず、正極と負極とをそれぞれ所定の長さに切断し、正極リード接続部には正極リードの一端を、負極リード接続部には負極リードの一端をそれぞれ接続した。その後、積層セパレータにおけるアラミド樹脂を負極側、多孔質ポリプロピレンを正極側となるように正負極を配置して捲回し、最外周がセパレータで覆われた円柱状の電極群を構成した。この電極群を上部絶縁リングと下部絶縁リングで挟み、電池缶に収容した。次いで、上記の非水電解液5gを電池缶内に注入した後133Paに減圧し、電極群表面に電解液の残渣が確認されなくなるまで放置し、電極群に電解液を含浸させた。
The method for forming the aramid resin layer is shown below. 6.5 parts by weight of dry anhydrous calcium chloride was added to 100 parts by weight of NMP and heated in a reaction vessel to completely dissolve. After this calcium chloride-added NMP solution was returned to room temperature, 3.2 parts by weight of paraphenylenediamine was added and completely dissolved. Thereafter, the reaction vessel was placed in a constant temperature bath at 20 ° C., 5.8 parts by weight of terephthalic acid dichloride was added dropwise over 1 hour, and polyparaphenylene terephthalamide (hereinafter abbreviated as PPTA) was synthesized by a polymerization reaction. Then, it was left for 1 hour in a thermostatic chamber, replaced with a vacuum chamber after the reaction was completed, and degassed by stirring for 30 minutes under reduced pressure. The obtained polymerization solution was further diluted with a calcium chloride-added NMP solution to prepare an NMP solution of an aramid resin having a PPTA concentration of 1.4% by weight. The NMP solution of the aramid resin thus obtained was coated thinly with a bar coater with the coated surface as the porous polyethylene layer side, dried with hot air at 80 ° C. (wind speed 0.5 m / sec), and laminated. A membrane was obtained. Thereafter, the laminated film was sufficiently washed with pure water to remove the calcium chloride, and the aramid resin layer was made porous and dried. Thereby, an aramid-porous polyethylene-porous polypropylene laminated film having a total thickness of 20 μm was produced.
(D) Preparation of non-aqueous electrolyte After dissolving LiPF 6 at a concentration of 1 mol / L in a mixture of non-aqueous solvent containing EC, DMC and EMC at a volume ratio of 2: 3: 3, VC was non-aqueous electrolyzed. A non-aqueous electrolyte was prepared by adding 3 parts by weight per 100 parts by weight of the liquid.
(E) Production of Battery A cylindrical battery was produced in the following manner using the above-described positive and negative electrodes, separator, and non-aqueous electrolyte. First, the positive electrode and the negative electrode were each cut to a predetermined length, and one end of the positive electrode lead was connected to the positive electrode lead connection portion, and one end of the negative electrode lead was connected to the negative electrode lead connection portion. Thereafter, the positive and negative electrodes were arranged and wound so that the aramid resin in the laminated separator was on the negative electrode side and the porous polypropylene was on the positive electrode side, and a cylindrical electrode group with the outermost periphery covered with the separator was formed. This electrode group was sandwiched between an upper insulating ring and a lower insulating ring and accommodated in a battery can. Next, 5 g of the above non-aqueous electrolyte solution was poured into the battery can, and then the pressure was reduced to 133 Pa. The electrode group surface was left until no electrolyte residue was observed, and the electrode group was impregnated with the electrolyte solution.

その後、正極リードを電池蓋の裏面に、負極リードを電池缶の内底面にそれぞれ溶接し、最後に周縁に絶縁パッキンが配された電池蓋で電池缶の開口部を塞ぎ、理論容量2Ahの円筒型リチウムイオン二次電池を作製した。これを実施例1の電池とする。   After that, the positive electrode lead is welded to the back surface of the battery lid and the negative electrode lead is welded to the inner bottom surface of the battery can. Finally, the opening of the battery can is closed with the battery lid having the insulating packing on the periphery. Type lithium ion secondary battery was produced. This is referred to as the battery of Example 1.

(実施例2)
実施例1の多孔質ポリエチレン−多孔質ポリプロピレン積層膜(セパレータ前駆体)に対し、耐熱多孔質樹脂層として、ポリイミド樹脂(試験法ASTM−D648(1.82MPa)での荷重たわみ温度(熱変形温度):360℃以上)を用いた。
(Example 2)
With respect to the porous polyethylene-porous polypropylene laminated film (separator precursor) of Example 1, as a heat-resistant porous resin layer, a deflection temperature under load (thermal deformation temperature) with a polyimide resin (test method ASTM-D648 (1.82 MPa)) ): 360 ° C. or higher).

以下にポリイミド樹脂層の形成法を示す。前駆体であるポリアミド酸溶液を流延したのち、延伸加工にて多孔質薄膜を作製した。この薄膜を300℃に加熱して脱水イミド化を行い、厚み6μmのポリイミド樹脂からなる多孔質層を得た。この後、ポリイミド樹脂層を多孔質ポリエチレン層側に重ねあわせ、80℃の熱ロールで圧延することで積層膜を作製し、総厚み22μmのポリイミド−多孔質ポリエチレン−多孔質ポリプロピレン積層膜を得た。この他は実施例1と同様に作製した電池を、実施例2の電池とする。   The formation method of a polyimide resin layer is shown below. After casting the precursor polyamic acid solution, a porous thin film was prepared by stretching. This thin film was heated to 300 ° C. to perform dehydration imidation to obtain a porous layer made of a polyimide resin having a thickness of 6 μm. Thereafter, the polyimide resin layer was superposed on the porous polyethylene layer side and rolled with a hot roll at 80 ° C. to produce a laminated film, and a polyimide-porous polyethylene-porous polypropylene laminated film having a total thickness of 22 μm was obtained. . The battery manufactured in the same manner as in Example 1 is referred to as the battery of Example 2.

(実施例3)
実施例1の多孔質ポリエチレン−多孔質ポリプロピレン積層膜(セパレータ前駆体)に対し、耐熱多孔質樹脂層として、ポリアミドイミド樹脂(試験法ASTM−D648(1.82MPa)での荷重たわみ温度(熱変形温度):278℃以上)を用いた。
(Example 3)
With respect to the porous polyethylene-porous polypropylene laminated film (separator precursor) of Example 1, as a heat-resistant porous resin layer, a deflection temperature under load (thermal deformation) with a polyamide-imide resin (test method ASTM-D648 (1.82 MPa)) Temperature): 278 ° C. or higher).

以下にポリアミドイミド樹脂層の形成法を示す。無水トリメリット酸モノクロライドとジアミンをNMP溶媒中で室温にて混合し、ポリアミド酸のNMP溶液とした。このポリアミド酸のNMP溶液を、塗布面を多孔質ポリエチレン層側として、バーコーターにより薄くコートし、水洗により溶媒除去した後、80℃の熱風(風速0.5m/秒)にてポリアミドイミドとなるよう脱水閉環させ、総厚みが20μmのポリアミドイミド−多孔質ポリエチレン−多孔質プロピレン積膜層を得た。この他は実施例1と同様に作製した電池を、実施例3の電池とする。   The method for forming the polyamideimide resin layer is shown below. Trimellitic anhydride monochloride and diamine were mixed in an NMP solvent at room temperature to obtain an NMP solution of polyamic acid. This polyamic acid NMP solution is coated on the porous polyethylene layer side thinly with a bar coater, and after removing the solvent by washing with water, it becomes polyamidoimide with hot air at 80 ° C. (wind speed 0.5 m / sec). Thus, dehydration and ring closure were carried out to obtain a polyamideimide-porous polyethylene-porous propylene film layer having a total thickness of 20 μm. The battery manufactured in the same manner as in Example 1 is referred to as the battery of Example 3.

(実施例4)
実施例1で用いたアラミド樹脂−NMP溶液に平均粒径0.1μmのアルミナ粒子をアラミド樹脂固形分100重量部に対して250重量部加えた以外は実施例1と同様に作製した電池を、実施例4の電池とする。
Example 4
A battery produced in the same manner as in Example 1 except that 250 parts by weight of alumina particles having an average particle size of 0.1 μm was added to 100 parts by weight of aramid resin solid content in the aramid resin-NMP solution used in Example 1, The battery of Example 4 is assumed.

(実施例5)
実施例1では、多孔質ポリエチレン−多孔質ポリプロピレンの2層からなる積層膜をセパレータ前駆体としたのに対し、厚み6μmの多孔質ポリエチレン膜の両側に厚み6μmの多孔質ポリプロピレン膜を重ね合わせ、熱ロールで圧延することで厚み18μmの多孔質ポリプロピレン−多孔質ポリエチレン−多孔質ポリプロピレンの3層からなる積層膜を作製し、これをセパレータ前駆体とした以外は実施例1と同様に作製した電池を、実施例5の電池とする。
(Example 5)
In Example 1, while a laminated film composed of two layers of porous polyethylene and porous polypropylene was used as a separator precursor, a porous polypropylene film having a thickness of 6 μm was superimposed on both sides of a porous polyethylene film having a thickness of 6 μm, A battery produced in the same manner as in Example 1 except that a laminated film composed of three layers of porous polypropylene-porous polyethylene-porous polypropylene having a thickness of 18 μm was produced by rolling with a hot roll, and this was used as a separator precursor. Is the battery of Example 5.

(実施例6)
実施例1の多孔質ポリエチレン−多孔質ポリプロピレン積層膜(セパレータ前駆体)に対し、耐熱多孔質樹脂層として、ポリフェニレンサルファイド樹脂を用いた。
(Example 6)
For the porous polyethylene-porous polypropylene laminate film (separator precursor) of Example 1, polyphenylene sulfide resin was used as the heat-resistant porous resin layer.

以下にポリフェニレンサルファイド樹脂層の形成法を示す。1−クロロナフタレンにポリフェニレンサルファイド延伸糸の短繊維(東レ(株)製「トルコン」(単糸繊度0.9デニール、繊維長6mm、試験法ASTM−D648(1.82MPa)での荷重たわみ温度(熱変形温度):260℃以上))を280℃で溶解させ、フィラーとしてメディアン径0.3μmのアルミナを添加して十分に攪拌した溶液を、210℃のガラス板上にバーコーターで塗布し、250℃の乾燥炉中で乾燥処理を3時間行い、茶褐色膜を得た。この茶褐色膜をN,N,−ジメチルホルムアミドとメタノールで順次洗浄後、純水洗浄を行って多孔質膜を得た。この後、ポリイミド樹脂層を多孔質ポリエチレン層側に重ねあわせ、80℃の熱ロールで圧延することで総厚み23μmのポリフェニレンサルファイド−多孔質ポリエチレン−多孔質ポリプロピレン積層膜を得た。この他は実施例1と同様に作製した電池を、実施例6の電池とする。   The formation method of a polyphenylene sulfide resin layer is shown below. 1-chloronaphthalene and polyphenylene sulfide short fiber ("Torcon" manufactured by Toray Industries, Inc. (single yarn fineness 0.9 denier, fiber length 6 mm, deflection temperature under load test method ASTM-D648 (1.82 MPa) ( Thermal deformation temperature): 260 ° C. or higher)) was dissolved at 280 ° C., and a well-stirred solution with addition of alumina having a median diameter of 0.3 μm as a filler was applied onto a glass plate at 210 ° C. with a bar coater, A drying treatment was performed in a drying furnace at 250 ° C. for 3 hours to obtain a brown film. The brown film was washed sequentially with N, N, -dimethylformamide and methanol, and then washed with pure water to obtain a porous film. Thereafter, the polyimide resin layer was superposed on the porous polyethylene layer side and rolled with a hot roll at 80 ° C. to obtain a polyphenylene sulfide-porous polyethylene-porous polypropylene laminated film having a total thickness of 23 μm. A battery manufactured in the same manner as in Example 1 is referred to as the battery of Example 6.

(実施例7)
実施例1の多孔質ポリエチレン−多孔質ポリプロピレン積層膜(セパレータ前駆体)に対し、耐熱多孔質樹脂層として、ポリエーテルイミド樹脂(試験法ASTM−D648(1.82MPa)での荷重たわみ温度(熱変形温度):190℃以上)を用いた。
(Example 7)
With respect to the porous polyethylene-porous polypropylene laminated film (separator precursor) of Example 1, as a heat-resistant porous resin layer, a deflection temperature under load (heat at a test method ASTM-D648 (1.82 MPa)) Deformation temperature): 190 ° C. or higher) was used.

以下にポリエーテルイミド樹脂層の形成法を示す。2,2,3,3−テトラカルボキシジフェニレンエーテル二無水物とジアミンをNMP溶媒中で室温にて混合して溶液を作製した。このNMP溶液を、塗布面を多孔質ポリエチレン層側とし、バーコーターにより薄くコートし、水洗により溶媒除去した後、120℃の熱風(風速0.5m/秒)にてポリエーテルイミドとなるよう脱水させ、総厚みが20μmのポリエーテルイミド−多孔質ポリエチレン−多孔質ポリプロピレン積膜層を得た。この他は実施例1と同様に作製した電池を、実施例7の電池とする。   The method for forming the polyetherimide resin layer is shown below. 2,2,3,3-Tetracarboxydiphenylene ether dianhydride and diamine were mixed in NMP solvent at room temperature to prepare a solution. This NMP solution is coated on the porous polyethylene layer side, thinly coated with a bar coater, solvent removed by washing with water, and dehydrated to become polyetherimide with hot air at 120 ° C. (wind speed 0.5 m / sec). Thus, a polyetherimide-porous polyethylene-porous polypropylene film layer having a total thickness of 20 μm was obtained. A battery manufactured in the same manner as in Example 1 is referred to as the battery of Example 7.

(実施例8)
実施例1の多孔質ポリエチレン−多孔質ポリプロピレン積層膜(セパレータ前駆体)に対し、耐熱多孔質樹脂層として、ポリアリレート樹脂(試験法ASTM−D648(1.82MPa)での荷重たわみ温度(熱変形温度):175℃以上)を用いた。
(Example 8)
With respect to the porous polyethylene-porous polypropylene laminate film (separator precursor) of Example 1, as a heat-resistant porous resin layer, a deflection temperature under load (thermal deformation) with a polyarylate resin (test method ASTM-D648 (1.82 MPa)) Temperature): 175 ° C. or higher).

以下にポリアリレート樹脂層の形成法を示す。アルカリ水溶液に溶解したビスフェノールAと、有機溶媒としてハロゲン化炭化水素を用いて溶解したテレ/イソ混合フタル酸クロリドを常温で反応させ有機溶媒相にポリアリレートを合成させた。このポリアリレート分散ハロゲン化炭化水素溶液を用いて、塗布面を多孔質ポリエチレン層側として、バーコーターにより薄くコートし、トルエン洗浄液により溶媒除去した後に80℃の熱風(風速0.5m/秒)にて乾燥させ、総厚みが20μmのポリアリレート−多孔質ポリエチレン−多孔質ポリプロピレン積膜層を得た。この他は実施例1と同様に作製した電池を、実施例8の電池とする。   The method for forming the polyarylate resin layer is shown below. Biaryphenol A dissolved in an alkaline aqueous solution and tele / iso mixed phthalic acid chloride dissolved using a halogenated hydrocarbon as an organic solvent were reacted at room temperature to synthesize polyarylate in the organic solvent phase. Using this polyarylate-dispersed halogenated hydrocarbon solution, the coated surface is the porous polyethylene layer side, thinly coated with a bar coater, and after removing the solvent with a toluene washing solution, heated to 80 ° C. with hot air (wind speed 0.5 m / sec) And dried to obtain a polyarylate-porous polyethylene-porous polypropylene laminate film layer having a total thickness of 20 μm. A battery manufactured in the same manner as in Example 1 is referred to as the battery of Example 8.

(比較例1)
厚み20μmの多孔質ポリエチレン膜をセパレータとして用いた以外は実施例1と同様に作製した電池を、比較例1の電池とする。
(Comparative Example 1)
A battery produced in the same manner as in Example 1 except that a porous polyethylene film having a thickness of 20 μm was used as a separator is referred to as a battery of Comparative Example 1.

(比較例2)
実施例1と同様のアラミド樹脂のNMP溶解液を作製し、これを厚み16μmの多孔質ポリエチレン膜上に塗布し、20μmの複合膜を作製してセパレータとした以外は実施例
1と同様に作製した電池を、比較例2の電池とする。
(Comparative Example 2)
An NMP solution of an aramid resin similar to that in Example 1 was prepared and applied onto a porous polyethylene film having a thickness of 16 μm, and a composite film having a thickness of 20 μm was prepared to form a separator. This battery is referred to as the battery of Comparative Example 2.

(比較例3)
比較例2にて作製したセパレータを、正負極逆側に配置して捲回した以外は比較例2と同様に作製した電池を、比較例3の電池とする。
(Comparative Example 3)
A battery produced in the same manner as in Comparative Example 2 except that the separator produced in Comparative Example 2 was placed on the opposite side of the positive and negative electrodes and wound was used as the battery of Comparative Example 3.

(比較例4)
比較例3におけるポリオレフィン膜を、ポリエチレンからポリプロピレンとした以外は比較例3と同様に作製した電池を、比較例4の電池とする。
(Comparative Example 4)
A battery produced in the same manner as in Comparative Example 3 except that the polyolefin film in Comparative Example 3 was changed from polyethylene to polypropylene was referred to as the battery of Comparative Example 4.

(比較例5)
実施例1にて作製したセパレータを、正負極逆側に配置して捲回した以外は実施例1と同様に作製した電池を、比較例5の電池とする。
(Comparative Example 5)
A battery produced in the same manner as in Example 1 except that the separator produced in Example 1 was placed on the opposite side of the positive and negative electrodes and wound was used as the battery of Comparative Example 5.

(比較例6)
厚み12μmの多孔質ポリエチレン薄膜上の両面に、実施例1と同様のアラミド樹脂のNMP溶解液を塗布し、20μmの複合膜を作製してセパレータとした以外は実施例1と同様に作製した電池を、比較例6の電池とする。
(Comparative Example 6)
A battery produced in the same manner as in Example 1 except that an aramid resin NMP solution similar to that in Example 1 was applied to both surfaces of a 12 μm thick porous polyethylene thin film to produce a 20 μm composite film as a separator. Is the battery of Comparative Example 6.

得られた電池に対し、以下の評価を行った。   The following evaluation was performed with respect to the obtained battery.

(i)電解液注液時間
電池の製造過程において、非水電解液を電池缶内に注入した後、電極群表面に電解液の残渣が確認されなくなるまでに要した放置時間を記録した。
(I) Electrolyte solution injection time In the battery manufacturing process, after injecting the non-aqueous electrolyte into the battery can, the standing time required until no electrolyte residue was observed on the surface of the electrode group was recorded.

(ii)加熱安全性試験
以下の(1)(2)の条件に沿って2度の予備充放電を行い、充電状態にて45℃環境下で7日間保存した。その後、20℃環境下で、以下の充放電を行った。
(Ii) Heating safety test Preliminary charge / discharge was performed twice according to the following conditions (1) and (2), and the battery was stored in a charged state in a 45 ° C environment for 7 days. Then, the following charging / discharging was performed in a 20 degreeC environment.

(1)定電流放電:400mA(終止電圧3V)
(2)定電流充電:1400mA(終止電圧4.2V)
(3)定電圧充電:4.2V(終止電流100mA)
(4)定電流放電:2000mA(終止電圧3V)
(5)定電流充電:1400mA(終止電圧4.2V)
(6)定電圧充電:4.2V(終止電流100mA)
(6)の後、各電池を150℃の槽に設置し、電池表面の到達最高温度を測定した。
(1) Constant current discharge: 400 mA (end voltage 3 V)
(2) Constant current charge: 1400 mA (end voltage 4.2 V)
(3) Constant voltage charging: 4.2 V (end current 100 mA)
(4) Constant current discharge: 2000 mA (final voltage 3 V)
(5) Constant current charging: 1400 mA (end voltage 4.2 V)
(6) Constant voltage charging: 4.2 V (end current 100 mA)
After (6), each battery was placed in a tank at 150 ° C., and the maximum temperature reached on the battery surface was measured.

(iii)外部短絡試験
上記(ii)の(1)〜(6)を行った後、各電池を外部回路抵抗50mΩで外部短絡させ、電池表面の到達最高温度を測定した。
(Iii) External short circuit test After performing (1) to (6) in (ii) above, each battery was externally short-circuited with an external circuit resistance of 50 mΩ, and the maximum temperature reached on the battery surface was measured.

(iv)高温保存試験
上記(ii)の(1)〜(6)を行った後、各電池を100℃の槽に設置し、4時間保存した。その後、2000mAにて定電流放電を行い、その放電容量を、保存前の(4)の容量との比として求めた。
(Iv) High-temperature storage test After performing (1) to (6) in (ii) above, each battery was placed in a 100 ° C bath and stored for 4 hours. Thereafter, constant current discharge was performed at 2000 mA, and the discharge capacity was determined as a ratio with the capacity of (4) before storage.

以上のように作製した試験電池の評価結果を(表1)に示す。   The evaluation results of the test battery produced as described above are shown in (Table 1).

電解液注液時間に関しては、正極側に耐熱多孔質樹脂であるアラミドを配したもの(比較例2、5および6)が10分以上と長時間を要しているのに比べ、その他の実施例および比較例では注液時間が短縮されている。中でも耐熱多孔質樹脂がアラミド(実施例1)、ポリイミド(実施例2)およびポリアミドイミド(実施例3)は、ポリエチレン単層セパレータ(比較例1)と遜色のない電解液含浸性を示している。 Regarding the time for injecting the electrolytic solution, the case where the aramid which is a heat-resistant porous resin is arranged on the positive electrode side (Comparative Examples 2, 5 and 6) requires 10 minutes or more and takes a long time. In the example and the comparative example, the injection time is shortened. Among them, the heat-resistant porous resin is aramid (Example 1), polyimide (Example 2), and polyamideimide (Example 3) exhibiting an electrolyte solution impregnation comparable to that of a polyethylene single-layer separator (Comparative Example 1). .

加熱試験に関しては、ポリエチレン単層セパレータ(比較例1)が耐熱性の低さゆえ、過熱を阻止できていないのに対し、耐熱多孔質樹脂層を活用したその他の実施例および比較例では過熱が抑止されている。この効果は高温下においても耐熱多孔質樹脂層がセパレータの熱収縮を抑制し、正負極の短絡を抑止したことが原因と考えられる。中でも熱変形温度が260℃以上の耐熱多孔質樹脂(アラミド、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイド)を用いた実施例1〜6は、熱変形温度が260℃未満のポリエーテルイミド、ポリアリレートを用いた場合よりも最高温度が低く抑えられている。   Regarding the heating test, the polyethylene single-layer separator (Comparative Example 1) has low heat resistance, and thus cannot be prevented from overheating, whereas in other Examples and Comparative Examples using the heat-resistant porous resin layer, overheating is not possible. Suppressed. This effect is considered due to the fact that the heat-resistant porous resin layer suppresses the thermal contraction of the separator and suppresses the short circuit between the positive and negative electrodes even at high temperatures. In particular, Examples 1 to 6 using a heat-resistant porous resin (aramid, polyimide, polyamideimide, polyphenylene sulfide) having a heat deformation temperature of 260 ° C. or higher use polyetherimide and polyarylate having a heat deformation temperature of less than 260 ° C. The maximum temperature is kept lower than if it were.

外部短絡試験に関しては、多孔質ポリエチレン層がないもの(比較例4)がシャットダウンの作動が遅れて過熱を起こしているのに対し、多孔質ポリエチレン層を有するその他の実施例および比較例では過熱が抑止されており、多孔質ポリエチレン層のシャットダウン効果が高いことが明らかになっている。   Regarding the external short circuit test, the sample without the porous polyethylene layer (Comparative Example 4) was overheated due to the delay of the shutdown operation, whereas the other examples and comparative examples having the porous polyethylene layer were overheated. It has been found that the shutdown effect of the porous polyethylene layer is high.

高温保存試験である100℃4h保存後の回復特性に関しては、多孔質ポリエチレン層を正極側に配したもの(比較例1および3)の回復率が低いのに対し、多孔質ポリエチレン層を正極側に配さないようにしたその他の実施例および比較例では、高い回復率を示している。上述したように多孔質ポリエチレン層は正極充電電位下での安定性に劣るため、長時間高温下に晒した場合、電解液の消費を伴う分解が起こると考えられる。   Regarding recovery characteristics after storage at 100 ° C. for 4 hours, which is a high temperature storage test, the recovery rate of the porous polyethylene layer arranged on the positive electrode side (Comparative Examples 1 and 3) is low, whereas the porous polyethylene layer is on the positive electrode side. In other examples and comparative examples which are not arranged in the above, a high recovery rate is shown. As described above, since the porous polyethylene layer is inferior in stability under the positive electrode charging potential, it is considered that decomposition accompanying consumption of the electrolytic solution occurs when the porous polyethylene layer is exposed to a high temperature for a long time.

以上の全ての結果を勘案し、本発明のセパレータは、耐熱多孔質樹脂層、多孔質ポリエチレン層および多孔質ポリプロピレン層を必須要素とし、正極側には多孔質プロピレン層を、負極側には耐熱多孔質樹脂層を配置させる必要があることがわかる。   Considering all the above results, the separator of the present invention has a heat resistant porous resin layer, a porous polyethylene layer and a porous polypropylene layer as essential elements, a porous propylene layer on the positive electrode side, and a heat resistance on the negative electrode side. It turns out that it is necessary to arrange | position a porous resin layer.

また耐熱多孔質樹脂層の厚みによる影響を調査するため、実施例1において耐熱多孔質樹脂層の厚みを2、4、8、10μmとしたセパレータについて同様の試作電池を作製し
、同様の評価を行ったところ、加熱試験安全性、外部短絡安全性、高温保存特性、電解液含浸性に基づく生産性のいずれの評価結果も満足できる優れた電池が得られることがわかった。
Further, in order to investigate the influence of the thickness of the heat resistant porous resin layer, a similar prototype battery was prepared for the separator having the heat resistant porous resin layer thickness of 2, 4, 8, 10 μm in Example 1, and the same evaluation was performed. When it did, it turned out that the outstanding battery which can satisfy | fill all the evaluation results of productivity based on heating test safety | security, external short circuit safety | security, high temperature storage characteristics, and electrolyte solution impregnation property is obtained.

本発明は、可燃性の有機系非水溶媒からなる電解液を用いるリチウムイオン二次電池において、その安全性を向上しつつ特性が維持できるので、この電池系の展開用途全般において有効である。

In the lithium ion secondary battery using an electrolytic solution composed of a flammable organic non-aqueous solvent, the characteristics can be maintained while improving the safety, and therefore, the present invention is effective in general application of the battery system.

Claims (3)

正極と、負極と、非水電解液と、セパレータとを備えた非水電解液二次電池であって、前記セパレータは耐熱多孔質樹脂層、多孔質ポリエチレン層および多孔質ポリプロピレン層の少なくとも三層が積層されたものであり、
前記正極は前記多孔質ポリプロピレン層と対向し、前記負極は前記耐熱多孔質樹脂層と対向することを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, wherein the separator is at least three layers of a heat-resistant porous resin layer, a porous polyethylene layer, and a porous polypropylene layer Are stacked,
The non-aqueous electrolyte secondary battery, wherein the positive electrode faces the porous polypropylene layer, and the negative electrode faces the heat-resistant porous resin layer.
前記耐熱多孔質層は、アメリカ材料試験協会の試験法ASTM−D648、1.82MPaでの荷重たわみ温度測定にて求められる熱変形温度が260℃以上の耐熱性樹脂からなることを特徴とする、請求項1記載の非水電解液二次電池。   The heat-resistant porous layer is made of a heat-resistant resin having a heat deformation temperature of 260 ° C. or higher obtained by measuring the deflection temperature under load at 1.82 MPa, test method ASTM-D648 of the American Society for Testing Materials. The nonaqueous electrolyte secondary battery according to claim 1. 前記耐熱性樹脂は、ポリイミド、アラミドおよびポリアミドイミドのいずれかからなることを特徴とする、請求項2記載の非水電解液二次電池。

The non-aqueous electrolyte secondary battery according to claim 2, wherein the heat-resistant resin is made of any one of polyimide, aramid, and polyamideimide.

JP2004357850A 2004-12-10 2004-12-10 Non-aqueous electrolyte secondary battery Active JP4910287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357850A JP4910287B2 (en) 2004-12-10 2004-12-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357850A JP4910287B2 (en) 2004-12-10 2004-12-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006164873A true JP2006164873A (en) 2006-06-22
JP4910287B2 JP4910287B2 (en) 2012-04-04

Family

ID=36666623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357850A Active JP4910287B2 (en) 2004-12-10 2004-12-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4910287B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125827A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008186707A (en) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd Separator for electrochemical element
JP2008204788A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009009801A (en) * 2007-06-27 2009-01-15 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method
WO2010110403A1 (en) * 2009-03-23 2010-09-30 住友化学株式会社 Lithium composite metal oxide and positive electrode active material
JP2010267447A (en) * 2009-05-13 2010-11-25 Sharp Corp Nonaqueous electrolyte secondary battery
JP2010282789A (en) * 2009-06-03 2010-12-16 Sharp Corp Nonaqueous electrolyte secondary battery
WO2011013300A1 (en) * 2009-07-31 2011-02-03 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2011055731A1 (en) * 2009-11-06 2011-05-12 住友化学株式会社 Laminated film and nonaqueous electrolyte secondary battery
WO2012070154A1 (en) * 2010-11-26 2012-05-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN102569703A (en) * 2012-02-01 2012-07-11 天津市捷威动力工业有限公司 Diaphragm and lithium ion battery applying diaphragm
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
KR101349420B1 (en) 2010-12-01 2014-01-16 에스케이씨코오롱피아이 주식회사 The pore multi-layer film and the method of it
WO2017130574A1 (en) * 2016-01-25 2017-08-03 株式会社ダイセル Secondary battery
JP2019040876A (en) * 2010-08-02 2019-03-14 セルガード エルエルシー Rechargeable lithium ion battery separator and method of use thereof
JP2019117800A (en) * 2011-09-26 2019-07-18 住友化学株式会社 Laminate and secondary battery member
WO2020137562A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2020137561A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN111834586A (en) * 2019-04-16 2020-10-27 住友化学株式会社 Porous layer and laminated separator for nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266949A (en) * 2000-03-17 2001-09-28 Sumitomo Chem Co Ltd Lithium ion secondary battery
JP2003197172A (en) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004353048A (en) * 2003-05-29 2004-12-16 Ebara Corp Plating device, and plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266949A (en) * 2000-03-17 2001-09-28 Sumitomo Chem Co Ltd Lithium ion secondary battery
JP2003197172A (en) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004353048A (en) * 2003-05-29 2004-12-16 Ebara Corp Plating device, and plating method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299612A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2007125827A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8404377B2 (en) 2006-04-28 2013-03-26 Panasonic Corporation Separator for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2008186707A (en) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd Separator for electrochemical element
US8399127B2 (en) 2007-02-20 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2008204788A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009009801A (en) * 2007-06-27 2009-01-15 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
WO2010110403A1 (en) * 2009-03-23 2010-09-30 住友化学株式会社 Lithium composite metal oxide and positive electrode active material
JP2010251289A (en) * 2009-03-23 2010-11-04 Sumitomo Chemical Co Ltd Lithium compound metal oxide and positive electrode active material
US9147905B2 (en) 2009-03-23 2015-09-29 Sumitomo Chemical Company, Limited Lithium composite metal oxide and positive electrode active material
KR101754431B1 (en) 2009-03-23 2017-07-05 스미또모 가가꾸 가부시키가이샤 Lithium composite metal oxide and positive electrode active material
JP2010267447A (en) * 2009-05-13 2010-11-25 Sharp Corp Nonaqueous electrolyte secondary battery
JP2010282789A (en) * 2009-06-03 2010-12-16 Sharp Corp Nonaqueous electrolyte secondary battery
WO2011013300A1 (en) * 2009-07-31 2011-02-03 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2011055731A1 (en) * 2009-11-06 2011-05-12 住友化学株式会社 Laminated film and nonaqueous electrolyte secondary battery
JP7213922B2 (en) 2010-08-02 2023-01-27 セルガード エルエルシー Lithium ion rechargeable battery separator and method of use
JP2021170535A (en) * 2010-08-02 2021-10-28 セルガード エルエルシー Lithium ion rechargeable battery separator and method for usage
JP2019040876A (en) * 2010-08-02 2019-03-14 セルガード エルエルシー Rechargeable lithium ion battery separator and method of use thereof
KR101529408B1 (en) * 2010-11-26 2015-06-16 도요타지도샤가부시키가이샤 Non-aqueous electrolyte secondary battery
CN107316969B (en) * 2010-11-26 2020-04-21 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN107316969A (en) * 2010-11-26 2017-11-03 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery
WO2012070154A1 (en) * 2010-11-26 2012-05-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US10777799B2 (en) 2010-11-26 2020-09-15 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP5618165B2 (en) * 2010-11-26 2014-11-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR101349420B1 (en) 2010-12-01 2014-01-16 에스케이씨코오롱피아이 주식회사 The pore multi-layer film and the method of it
JP2019117800A (en) * 2011-09-26 2019-07-18 住友化学株式会社 Laminate and secondary battery member
CN102569703A (en) * 2012-02-01 2012-07-11 天津市捷威动力工业有限公司 Diaphragm and lithium ion battery applying diaphragm
JPWO2017130574A1 (en) * 2016-01-25 2018-12-20 株式会社ダイセル Secondary battery
WO2017130574A1 (en) * 2016-01-25 2017-08-03 株式会社ダイセル Secondary battery
CN108496263B (en) * 2016-01-25 2022-05-17 株式会社大赛璐 Secondary battery
CN108496263A (en) * 2016-01-25 2018-09-04 株式会社大赛璐 Secondary cell
WO2020137562A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2020137561A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP7474965B2 (en) 2018-12-26 2024-04-26 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP7474966B2 (en) 2018-12-26 2024-04-26 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN111834586A (en) * 2019-04-16 2020-10-27 住友化学株式会社 Porous layer and laminated separator for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4910287B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4933270B2 (en) Separator and non-aqueous electrolyte secondary battery using the same
JP4910287B2 (en) Non-aqueous electrolyte secondary battery
JP5432417B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US10193117B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2007324073A (en) Lithium secondary battery, its separator and its manufacturing method
KR20070069188A (en) Lithium secondary battery
JP5837437B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101602867B1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP6016038B2 (en) Nonaqueous electrolyte secondary battery
JP4988972B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2017082258A1 (en) Separator for non-aqueous secondary cell, and non-aqueous secondary cell
JP5614597B2 (en) Nonaqueous electrolyte secondary battery
JP2012221741A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020059803A1 (en) Secondary battery
JP4952314B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery equipped with the same
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2008041606A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2018155287A1 (en) Porous film, secondary battery separator and secondary battery
JP2009135540A (en) Nonaqueous lithium power storage element and manufacturing method
JP6083289B2 (en) Lithium ion secondary battery
WO2012120579A1 (en) Nonaqueous electrolyte secondary battery
JP7107382B2 (en) secondary battery
JP6072595B2 (en) Non-aqueous secondary battery
WO2020059802A1 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4910287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3