JP2006164828A - Fuel cell system and method for specifying fuel leakage point - Google Patents

Fuel cell system and method for specifying fuel leakage point Download PDF

Info

Publication number
JP2006164828A
JP2006164828A JP2004356583A JP2004356583A JP2006164828A JP 2006164828 A JP2006164828 A JP 2006164828A JP 2004356583 A JP2004356583 A JP 2004356583A JP 2004356583 A JP2004356583 A JP 2004356583A JP 2006164828 A JP2006164828 A JP 2006164828A
Authority
JP
Japan
Prior art keywords
pressure
fuel
detection
fuel cell
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004356583A
Other languages
Japanese (ja)
Inventor
Osamu Yumita
修 弓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004356583A priority Critical patent/JP2006164828A/en
Publication of JP2006164828A publication Critical patent/JP2006164828A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect the leakage of fuel gas and specify a leakage point even if great leakage such as the breakage of a fuel supply system occurs during steady operation. <P>SOLUTION: Pressures are detected at a plurality of points of the fuel supply system 1 during the steady operation. The leakage point is specified between a pressure sensor P6 positioned in the uppermost stream of the fuel supply system 1 out of detection points in each of which a detected value is below first fail pressure (approximate atmosphere pressure), and a pressure sensor P5 positioned in the upstream of the pressure sensor P6 where the detected value is below second fail pressure (a regulation value of a regulator Reg 5). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システム及びその燃料漏れ箇所の特定方法に関し、特に、定常運転中に燃料供給系の破損等大きな漏れが生じた時でも、燃料ガスの漏れ検知及び漏れ箇所の特定が可能な技術に関する。   The present invention relates to a fuel cell system and a method for identifying a fuel leak point thereof, and in particular, even when a large leak such as a breakage of a fuel supply system occurs during steady operation, a fuel gas leak can be detected and a leak point can be identified. Regarding technology.

近年、燃料ガスと空気中の酸素との電気化学反応により発電を行う燃料電池を動力源とする燃料電池搭載車両の開発が行われている。この種車両に搭載される燃料電池システムにおいては、特に運転中に燃料ガスの漏れを正確に検知することが非常に重要である。かかる要請に応えるべく、特許文献1には、燃料電池の電気負荷が閾値よりも小さいときに燃料電池の出力電流を遮断し、このときの燃料電池を含む燃料ガス供給循環系の閉空間における圧力状態に基づいて、該閉空間における燃料ガスのガス漏れを検知する技術が開示されている。
特開2003−308866号公報
2. Description of the Related Art In recent years, development of fuel cell-equipped vehicles using a fuel cell that generates power by an electrochemical reaction between fuel gas and oxygen in the air as a power source has been performed. In a fuel cell system mounted on this type of vehicle, it is very important to accurately detect leakage of fuel gas, particularly during operation. In order to meet such a demand, Patent Document 1 discloses that when the electric load of the fuel cell is smaller than a threshold value, the output current of the fuel cell is cut off, and the pressure in the closed space of the fuel gas supply circulation system including the fuel cell at this time is disclosed. A technique for detecting a gas leak of fuel gas in the closed space based on a state is disclosed.
JP 2003-308866 A

この特許文献1では、微小な漏れを検知するものであるため、燃料電池の出力電流が小さい時に発電を止めてガス漏れ検知を行う。つまり、車両制動時等に発電を止めてガス漏れ検知を行うので、定常運転中に燃料供給循環系に破損等の大きな漏れが生じた時には、漏れの検知及び漏れ箇所の特定は困難である。   In this patent document 1, since a minute leak is detected, when the output current of the fuel cell is small, the power generation is stopped and the gas leak is detected. In other words, since power generation is stopped during vehicle braking or the like and gas leak detection is performed, it is difficult to detect leaks and identify leak locations when a large leak such as damage occurs in the fuel supply circulation system during steady operation.

そこで、本発明は、定常運転中に燃料供給系の破損等大きな漏れが生じた時でも、燃料ガスの漏れ検知と漏れ箇所の特定が可能な燃料電池システム及び漏れ箇所の特定方法を提供することを目的とする。   Therefore, the present invention provides a fuel cell system capable of detecting a leak of fuel gas and specifying a leak location even when a large leak such as a damage of a fuel supply system occurs during steady operation, and a leak location specifying method. With the goal.

燃料供給源からの燃料ガスを調圧して燃料電池に供給する燃料供給系に、例えば配管破断が生じた場合には、その破断箇所は大気開放されるので、破断箇所よりも下流に位置する圧力検出手段は、定常運転中であっても大気圧(ゲージ圧)を示す。ここで、破断箇所の下流に調圧弁等の調圧手段が設けられている場合であっても、少なくとも破断箇所−調圧手段間に位置する圧力検出手段については、大気圧を示す。   In the fuel supply system that regulates the fuel gas from the fuel supply source and supplies it to the fuel cell, for example, when a pipe break occurs, the break point is opened to the atmosphere, so the pressure located downstream from the break point The detection means indicates the atmospheric pressure (gauge pressure) even during steady operation. Here, even when a pressure regulating means such as a pressure regulating valve is provided downstream of the breakage point, at least the pressure detection means located between the breakage point and the pressure regulation means indicates atmospheric pressure.

一方、破断箇所よりも上流に位置する圧力検出手段のうち、当該圧力検出手段と破断箇所との間に調圧手段が設けられている場合には、当該圧力検出手段は定常運転時の調圧値よりも低い圧力を示すものの、大気圧を示すことはない。   On the other hand, when the pressure detecting means is provided between the pressure detecting means and the rupture location among the pressure detection means located upstream from the rupture location, the pressure detection means performs the pressure adjustment during the steady operation. Although the pressure is lower than the value, it does not indicate atmospheric pressure.

したがって、例えば、第1の所定値として大気圧あるいはそれに近い圧力を設定する一方で、第2の所定値として定常運転時の調圧値あるいはそれに近い圧力を設定した場合には、第1の所定値を下回った圧力検出手段のうち燃料供給系の最上流に位置する圧力検出手段Aと、該圧力検出手段Aよりも上流に位置する圧力検出手段であってその出力が第2の所定値を下回った圧力検出手段Bとの間に、漏れ箇所が存在することになる。   Therefore, for example, when the atmospheric pressure or a pressure close thereto is set as the first predetermined value, while the pressure adjustment value during steady operation or a pressure close thereto is set as the second predetermined value, the first predetermined value is set. The pressure detection means A located in the uppermost stream of the fuel supply system among the pressure detection means below the value, and the pressure detection means located upstream from the pressure detection means A, the output of which is a second predetermined value. There will be a leakage point between the pressure detection means B and the pressure.

そこで、本発明の燃料電池システムは、燃料供給源からの燃料ガスを調圧して燃料電池に供給する燃料供給系と、該燃料供給系に設けられた複数の圧力検出手段と、これら圧力検出手段の出力が第1及び第2の所定値(ただし、第1の所定値<第2の所定値)を下回ったか否かを定常運転中に判定する判定手段と、前記第1の所定値を下回った圧力検出手段のうち燃料供給系の最上流に位置する圧力検出手段Aと、該圧力検出手段Aよりも上流に位置する圧力検出手段であってその出力が前記第2の所定値を下回った圧力検出手段Bとの間を漏れ箇所として特定する特定手段と、を備える構成を採用した。   Therefore, the fuel cell system of the present invention includes a fuel supply system that regulates fuel gas from a fuel supply source and supplies the fuel gas to the fuel cell, a plurality of pressure detection means provided in the fuel supply system, and these pressure detection means Determining means for determining whether or not the output of the output is below the first and second predetermined values (where the first predetermined value is less than the second predetermined value) during steady operation, and below the first predetermined value Among the pressure detection means, the pressure detection means A located in the uppermost stream of the fuel supply system, and the pressure detection means located upstream of the pressure detection means A, the output of which falls below the second predetermined value The structure provided with the specific means which pinpoints between the pressure detection means B as a leak location was employ | adopted.

かかる構成において、前記特定手段は、前記圧力検出手段Aの出力が略大気圧を示している場合に、当該圧力検出手段Aと前記圧力検出手段Bとの間を破断箇所として特定してもよい。   In this configuration, when the output of the pressure detection means A indicates a substantially atmospheric pressure, the specifying means may specify a portion between the pressure detection means A and the pressure detection means B as a breakage point. .

また、本発明の燃料電池システムにおける燃料漏れ箇所の特定方法は、定常運転中に燃料供給系の複数箇所にて圧力を検出し、その検出値が第1の所定値を下回った検出箇所のうち燃料供給系の最上流に位置する検出箇所Aと、該検出箇所Aよりも上流に位置する検出箇所であってそこでの検出値が第2の所定値(ただし、第1の所定値<第2の所定値)を下回った検出箇所Bとの間を漏れ箇所として特定する構成を採用した。   In addition, the method for identifying a fuel leak location in the fuel cell system according to the present invention detects pressure at a plurality of locations in the fuel supply system during steady operation, and the detected value falls below a first predetermined value. A detection location A located at the uppermost stream of the fuel supply system, and a detection location located upstream from the detection location A, where the detected value is a second predetermined value (however, the first predetermined value <the second A configuration is adopted in which the gap between the detection point B and the detection point B that falls below the predetermined value is specified as a leak point.

かかる構成においては、前記検出箇所Aでの検出値が略大気圧を示している場合には、当該検出箇所Aと前記検出箇所Bとの間を破断箇所として特定してもよい。   In such a configuration, when the detection value at the detection location A indicates substantially atmospheric pressure, a portion between the detection location A and the detection location B may be specified as a fracture location.

本発明によれば、定常運転中に燃料供給系の破損等大きな漏れが生じた時でも、燃料供給系に閉空間を形成することなく、燃料ガス漏れの早期検知及びガス漏れ箇所の早期特定が可能となる。   According to the present invention, even when a large leak such as damage to the fuel supply system occurs during steady operation, early detection of the fuel gas leak and early identification of the gas leak location can be performed without forming a closed space in the fuel supply system. It becomes possible.

<第1の実施形態>
図1に第1の実施形態に係る燃料電池システムのシステム構成図を示す。この燃料電池システムは、燃料電池車両の車載発電システムに適用可能である他、例えば定置用発電システムへの適用も可能である。
<First Embodiment>
FIG. 1 shows a system configuration diagram of a fuel cell system according to the first embodiment. This fuel cell system can be applied to an in-vehicle power generation system of a fuel cell vehicle, and can also be applied to, for example, a stationary power generation system.

同図に示すように、この燃料電池システムは、燃料電池スタック10に燃料ガスとしての水素ガスを供給するための系統、空気を供給するための系統2、及び燃料電池スタック10を冷却するための系統(不図示)を備えて構成されている。   As shown in the figure, this fuel cell system includes a system for supplying hydrogen gas as a fuel gas to the fuel cell stack 10, a system 2 for supplying air, and a system for cooling the fuel cell stack 10. A system (not shown) is provided.

燃料電池スタック10は、水素ガス、空気、冷却水の流路を有するセパレータと、一対のセパレータで挟み込まれたMEA(Membrane Electrode Assembly)とから構成されるセルとを複数積層したスタック構造を備えている。   The fuel cell stack 10 includes a stack structure in which a plurality of cells including a separator having a flow path of hydrogen gas, air, and cooling water and a MEA (Membrane Electrode Assembly) sandwiched between a pair of separators are stacked. Yes.

燃料電池スタック10に水素ガスを供給するための燃料供給系1は、水素ガスの供給源から順に、並設された複数(4本)の水素タンク(燃料供給源)11、水素タンク11と燃料電池スタック10とを連通する配管1a、主止弁SV1〜4、主止弁SV1〜4−調圧弁Reg1〜4間の管路圧力を検出する圧力センサ(圧力検出手段)P1〜4、調圧弁Reg1〜4、調圧弁Reg1〜4−調圧弁Reg5間の管路圧力を検出する圧力センサ(圧力検出手段)P5、調圧弁Reg5、調圧弁Reg5−調圧弁Reg6間の管路圧力を検出する圧力センサ(圧力検出手段)P6、調圧弁Reg6、調圧弁Reg6−燃料電池スタック10間の管路圧力を検出する圧力センサ(圧力検出手段)P7、制御部(判定手段、特定手段)20等を備えている。   A fuel supply system 1 for supplying hydrogen gas to the fuel cell stack 10 includes a plurality of (four) hydrogen tanks (fuel supply sources) 11, a hydrogen tank 11 and a fuel arranged in order from the hydrogen gas supply source. Piping 1a communicating with the battery stack 10, main stop valves SV1 to 4, pressure sensors (pressure detection means) P1 to P4 for detecting the line pressure between the main stop valves SV1 to 4 and the pressure regulating valves Reg1 to 4, pressure regulating valves A pressure sensor (pressure detecting means) P5 for detecting a line pressure between Reg1 to Reg4 and pressure regulating valves Reg1 to 4 to pressure regulating valve Reg5, a pressure for detecting a line pressure between pressure regulating valve Reg5, pressure regulating valve Reg5 and pressure regulating valve Reg6 A sensor (pressure detecting means) P6, a pressure regulating valve Reg6, a pressure regulating valve Reg6, a pressure sensor (pressure detecting means) P7 for detecting a pipe pressure between the fuel cell stack 10, a control unit (determining means, specifying means) 20 and the like are provided. There.

水素タンク11は、高圧水素タンクであるが、高圧水素タンクに代えて、水素吸蔵合金を用いた水素タンク、改質ガスによる水素供給機構、液体水素タンクから水素を供給するタンク、液化ガス燃料を貯蔵するタンク等を適用可能である。   The hydrogen tank 11 is a high-pressure hydrogen tank. Instead of the high-pressure hydrogen tank, a hydrogen tank using a hydrogen storage alloy, a hydrogen supply mechanism using a reformed gas, a tank for supplying hydrogen from a liquid hydrogen tank, a liquefied gas fuel A storage tank or the like is applicable.

主止弁SV1〜4は、各水素タンク11からの水素ガス供給の有無を制御する。調圧弁Reg1〜4はタンク内圧力を所定の高圧(例えば、3Mpa)に減圧し、調圧弁Reg5はこの高圧に減圧された水素ガスを中圧(例えば、1Mpa)に減圧し、調圧弁Reg6はこの中圧に減圧された水素ガスを低圧(例えば、0.2MPa)に減圧する。   The main stop valves SV1 to SV4 control whether or not hydrogen gas is supplied from each hydrogen tank 11. The pressure regulating valves Reg1 to 4 reduce the internal pressure of the tank to a predetermined high pressure (for example, 3 Mpa), the pressure regulating valve Reg5 reduces the hydrogen gas reduced to the high pressure to a medium pressure (for example, 1 Mpa), and the pressure regulating valve Reg6 The hydrogen gas reduced to the intermediate pressure is reduced to a low pressure (for example, 0.2 MPa).

燃料電池スタック10に空気を供給する系統2は、図1では図示を省略しているが、外気を浄化して燃料電池システムに取り入れるエアクリーナ、取り入れられた空気を制御部20の制御に従って圧縮し供給する空気量や空気圧を変更するコンプレッサ、圧縮された空気に対し、空気オフガスと水分の交換を行って適度な湿度を加える加湿器等を備えており、燃料電池スタック10の冷却系は、ラジエタ、ファン、及び冷却ポンプを備えている。   The system 2 for supplying air to the fuel cell stack 10 is not shown in FIG. 1, but is an air cleaner that purifies the outside air and takes it into the fuel cell system, and compresses and supplies the taken-in air according to the control of the control unit 20. A compressor that changes the amount of air and air pressure, a humidifier that adds air to the compressed air by exchanging air off-gas and moisture, and the cooling system of the fuel cell stack 10 includes a radiator, A fan and a cooling pump are provided.

制御部20は、ECU等の公知のコンピュータシステムであり、コンプレッサ等各種補機類の駆動量を決定する制御信号を出力したり、燃料供給系1の各所に配設された圧力センサP1〜P7からの検出信号に基づき、各主止弁SV1〜4及び調圧弁Reg1〜6の開閉を制御する制御信号を出力する他、後に説明する手順(図2)に従い、定常運転中に燃料供給系1における水素ガスの漏れ検知と漏れ箇所を特定する処理を実行する。   The control unit 20 is a known computer system such as an ECU, and outputs a control signal for determining the driving amount of various auxiliary devices such as a compressor, or pressure sensors P1 to P7 disposed at various locations in the fuel supply system 1. In addition to outputting control signals for controlling the opening and closing of the main stop valves SV1 to SV4 and the pressure regulating valves Reg1 to 6 based on the detection signals from the fuel supply system 1 during steady operation according to the procedure (FIG. 2) described later. Detecting hydrogen gas leaks and identifying the location of the leak.

つまり、本実施形態の制御部20は、圧力センサP1〜7の出力が第1のフェール圧力(第1の所定値)P_fail1及び第2のフェール圧力(第2の所定値)P_fail2(ただし、第1のフェール圧力P_fail1<第2のフェール圧力P_fail2)を下回ったか否かを定常運転中に判定する判定手段として機能する他、第1のフェール圧力P_fail1を下回った圧力センサP1〜7のうち燃料供給系1の最上流に位置する圧力センサP1〜7と、該圧力センサP1〜7よりも上流に位置する圧力センサP1〜7であってその出力が第2のフェール圧力P_fail2を下回った圧力センサP1〜7との間を漏れ箇所として特定する特定手段としても機能する。   That is, the control unit 20 of the present embodiment is configured such that the outputs of the pressure sensors P1 to P7 are the first fail pressure (first predetermined value) P_fail1 and the second fail pressure (second predetermined value) P_fail2 (however, In addition to functioning as a determination means that determines whether or not the failure pressure P_fail1 <the second failure pressure P_fail2) is lower than the first failure pressure P_fail1), fuel is supplied from the pressure sensors P1 to P7 that are lower than the first failure pressure P_fail1. Pressure sensors P1 to P7 located at the uppermost stream of the system 1, and pressure sensors P1 to P1 to 7 located upstream from the pressure sensors P1 to P7 whose output is lower than the second fail pressure P_fail2 It also functions as a specifying means for specifying between 7 and 7 as a leak point.

なお、「定常運転中」とは、少なくとも燃料供給系1に閉区間が形成されてない状態をいい、水素ガスが燃料電池スタック10に継続的に供給されている状態である。   “During steady operation” means a state in which at least the closed section is not formed in the fuel supply system 1, and is a state in which hydrogen gas is continuously supplied to the fuel cell stack 10.

次に、図2のフローチャートを参照しながら、この燃料電池システムにおいて定常運転中に実行される、燃料供給系1における水素ガスの漏れ検知と漏れ箇所を特定するための処理の一例について説明する。ただし、ここでは図1に示すように、調圧弁Reg5−調圧弁Reg6間に配管破断が生じている場合について説明する。なお、図2に示す処理は、所定周期毎あるいは所定イベントの発生に対応して実行される。   Next, an example of a process for detecting leakage of hydrogen gas in the fuel supply system 1 and specifying a leakage location, which is executed during steady operation in the fuel cell system, will be described with reference to the flowchart of FIG. However, here, as shown in FIG. 1, a case will be described in which a pipe breakage occurs between the pressure regulating valve Reg5 and the pressure regulating valve Reg6. Note that the processing shown in FIG. 2 is executed at predetermined intervals or in response to occurrence of a predetermined event.

まず、ステップS1において、調圧弁Reg1〜4−調圧弁Reg5間の管路圧力P5と、調圧弁Reg5−調圧弁Reg6間の管路圧力P6と、調圧弁Reg6−燃料電池スタック10間の管路圧力P7を、それぞれ圧力センサP5,P6,P7にて検出する。続くステップS3では、圧力センサP5〜7の出力、つまり管路圧力P5〜7に基づいて、燃料供給系1における水素ガスの漏れ検知を行う。   First, in step S1, the line pressure P5 between the pressure regulating valves Reg1-4 and the pressure regulating valve Reg5, the line pressure P6 between the pressure regulating valve Reg5 and the pressure regulating valve Reg6, and the line between the pressure regulating valve Reg6 and the fuel cell stack 10 The pressure P7 is detected by pressure sensors P5, P6, and P7, respectively. In the subsequent step S3, hydrogen gas leakage detection in the fuel supply system 1 is performed based on the outputs of the pressure sensors P5 to 7, that is, the pipeline pressures P5 to P7.

具体的には、各管路圧力P5〜P7が第1のフェール圧力P_failを下回っているか否かを判定する。第1のフェール圧力P_failは、検知及び特定したいガス漏れの規模、言い換えれば、破損の程度に応じて適宜設定される。本実施形態では、配管破断によるガス漏れの検知及び漏れ箇所の特定を行うので、第1のフェール圧力P_failは、例えば略ゲージ圧(大気圧)に設定される。   Specifically, it is determined whether or not each of the pipe pressures P5 to P7 is lower than the first fail pressure P_fail. The first fail pressure P_fail is appropriately set according to the scale of gas leakage to be detected and specified, in other words, the degree of breakage. In the present embodiment, since the detection of the gas leak due to the pipe breakage and the specification of the leak location are performed, the first fail pressure P_fail is set to, for example, a substantially gauge pressure (atmospheric pressure).

本処理例では、図1に示すように、調圧弁Reg5−調圧弁Reg6間の配管であって、さらに圧力センサP6よりも上流位置にて配管破断が生じている。その破断箇所は大気開放されているので、少なくとも、破断箇所よりも下流かつ調圧弁Reg6よりも上流に位置する圧力センサP6については、定常運転中であっても略ゲージ圧を示すことになる。   In the present processing example, as shown in FIG. 1, the pipe is broken between the pressure regulating valve Reg5 and the pressure regulating valve Reg6, and further upstream of the pressure sensor P6. Since the broken portion is open to the atmosphere, at least the pressure sensor P6 located downstream from the broken portion and upstream from the pressure regulating valve Reg6 exhibits a substantially gauge pressure even during steady operation.

一方、破断箇所よりも上流側においては、圧力センサP5と破断箇所との間に調圧弁Reg5が介在しているので、配管破断による圧力低下の影響は少ない。したがって、圧力センサP5は、定常運転時における調圧弁Reg5の調圧値よりも若干低い圧力を示すものの、大気圧近くまで低下することはない。つまり、通常運転時の調圧値を第2のフェール圧力P_fail2とすると、調圧弁Reg5−調圧弁Reg1〜4間は、「第1のフェール圧力P_fail1<管路圧力P5<第2のフェール圧力P_fail2」の状態になっている。   On the other hand, since the pressure regulating valve Reg5 is interposed between the pressure sensor P5 and the rupture location on the upstream side of the rupture location, the influence of the pressure drop due to the piping rupture is small. Therefore, the pressure sensor P5 shows a pressure slightly lower than the pressure regulation value of the pressure regulation valve Reg5 during steady operation, but does not drop to near atmospheric pressure. That is, assuming that the pressure adjustment value during normal operation is the second fail pressure P_fail2, between the pressure regulating valve Reg5 and the pressure regulating valves Reg1 to 4, "first fail pressure P_fail1 <pipe pressure P5 <second fail pressure P_fail2". "Is in the state.

また、破断箇所と圧力センサP1〜P4との間には、調圧弁Reg5に加えて調圧弁Reg1〜4も介在しているので、主止弁SV1〜4−調圧弁Reg1〜4間への配管破断による圧力低下の影響は更に少ない。したがって、主止弁SV1〜4−調圧弁Reg1〜4間は、「第2のフェール圧力P_fail2<管路圧力P1〜4」の状態になっている。   In addition to the pressure regulating valve Reg5, the pressure regulating valves Reg1 to 4 are also interposed between the breakage points and the pressure sensors P1 to P4. Therefore, piping between the main stop valves SV1 to 4 and the pressure regulating valves Reg1 to Reg4. The effect of pressure drop due to breakage is even less. Therefore, between the main stop valves SV1-4 and the pressure regulating valves Reg1-4, the state of "second fail pressure P_fail2 <pipe pressure P1-4" is established.

以上より、第1のフェール圧力P_failを下回った圧力センサのうち、燃料供給系1の最上流に位置する圧力センサは、圧力センサP6となる。また、この圧力センサP6よりも上流に位置する圧力センサであってその出力が第2のフェール圧力P_fail2を下回った圧力センサは、圧力センサP5となる。かかる結果に基づき、圧力センサP5−圧力センサP6間にて水素ガス漏れを生じていることが特定される(ステップS5)。   From the above, among the pressure sensors that have fallen below the first fail pressure P_fail, the pressure sensor located at the uppermost stream of the fuel supply system 1 is the pressure sensor P6. A pressure sensor located upstream of the pressure sensor P6 and whose output is below the second fail pressure P_fail2 is a pressure sensor P5. Based on this result, it is specified that hydrogen gas leaks between the pressure sensor P5 and the pressure sensor P6 (step S5).

しかる後、制御部20は、主止弁SV1〜4を遮断し(ステップS7)、燃料電池スタック10への水素ガス供給を止める。   Thereafter, the control unit 20 shuts off the main stop valves SV1 to SV4 (step S7), and stops the supply of hydrogen gas to the fuel cell stack 10.

調圧弁Reg1〜4−調圧弁Reg5間の配管、調圧弁Reg5−燃料電池スタック1間の配管についても、上記と同様にして、水素ガス漏れの検知及び漏れ箇所の特定が可能である。   As for the piping between the pressure regulating valves Reg1 to 4-regulating valve Reg5 and the piping between the pressure regulating valve Reg5 and the fuel cell stack 1, hydrogen gas leakage can be detected and the location of the leakage can be specified.

以上説明したとおり、本実施形態の燃料電池システムによれば、定常運転中に燃料供給系1の配管破断等大きな漏れが生じた時でも、燃料供給系1に閉空間を形成することなく、燃料ガス漏れの早期検知及びガス漏れ箇所の早期特定が可能となる。   As described above, according to the fuel cell system of this embodiment, even when a large leak such as a pipe breakage of the fuel supply system 1 occurs during steady operation, the fuel supply system 1 does not form a closed space. Early detection of gas leaks and early identification of gas leak locations are possible.

<他の実施形態>
本発明は、上記実施形態(図1)のような、複数の水素タンク11に対してそれと同数の調圧弁Reg1〜4を備えた燃料電池システムへの適用に限定されるわけではない。例えば、図3に示すように、複数(同図では2つ)の水素タンク11に対して1つの調圧弁Reg1,Reg3を備えた燃料電池システムへの適用も可能である。さらに、主止弁SV1〜4と調圧弁Reg1〜4の位置関係を逆にしてもよい。
<Other embodiments>
The present invention is not limited to application to a fuel cell system provided with the same number of pressure regulating valves Reg1 to Regulating a plurality of hydrogen tanks 11 as in the above embodiment (FIG. 1). For example, as shown in FIG. 3, the present invention can also be applied to a fuel cell system provided with a single pressure regulating valve Reg1, Reg3 for a plurality (two in the figure) of hydrogen tanks 11. Further, the positional relationship between the main stop valves SV1 to SV4 and the pressure regulating valves Reg1 to Reg4 may be reversed.

また、上記実施形態では、圧力センサP1〜7を主止弁SV1−調圧弁Reg1〜4間、調圧弁Reg1〜4−調圧弁Reg5間、調圧弁Reg5−調圧弁Reg6間、及び調圧弁Reg6−燃料電池スタック10間の配管に各1つ設けた構成となっているが、これらの配管に複数の圧力センサを設けてもよい。   In the above embodiment, the pressure sensors P1 to P7 are connected between the main stop valve SV1 to the pressure regulating valve Reg1 to 4, the pressure regulating valve Reg1 to 4 to the pressure regulating valve Reg5, the pressure regulating valve Reg5 to the pressure regulating valve Reg6, and the pressure regulating valve Reg6. Although one pipe is provided between the fuel cell stacks 10, a plurality of pressure sensors may be provided on these pipes.

例えば、図1の圧力センサ6と破断箇所との間に圧力センサ(説明の便宜上、以下、「圧力センサP10」という。)を設けた場合には、該圧力センサP10もゲージ圧を示すので、第1のフェール圧力P_fail1を下回った圧力センサP6,P10は複数存在する。そのうち燃料供給系1の最上流に位置する圧力センサは、圧力センサP10となる。かかる場合には、燃料供給系1の圧力センサP10−圧力センサP5間に漏れ箇所が特定されるので、漏れ箇所をより狭い範囲に絞り込むことが可能となる。   For example, when a pressure sensor (hereinafter referred to as “pressure sensor P10” for convenience of explanation) is provided between the pressure sensor 6 of FIG. 1 and the breakage point, the pressure sensor P10 also indicates a gauge pressure. There are a plurality of pressure sensors P6 and P10 that are below the first fail pressure P_fail1. Among them, the pressure sensor located at the uppermost stream of the fuel supply system 1 is the pressure sensor P10. In such a case, since the leak location is specified between the pressure sensor P10 and the pressure sensor P5 of the fuel supply system 1, it is possible to narrow the leak location to a narrower range.

本発明の第1の実施形態に係る燃料電池システムの構成を示す構成図。1 is a configuration diagram showing a configuration of a fuel cell system according to a first embodiment of the present invention. 同燃料電池システムの定常運転中に実行される、燃料供給系における水素ガスの漏れ検知と漏れ箇所を特定する処理を示すフローチャート。The flowchart which shows the process which identifies the leak detection of the hydrogen gas in a fuel supply system, and a leak location performed during the steady operation of the fuel cell system. 本発明の他の実施形態に係る燃料電池システムの構成を示す構成図。The block diagram which shows the structure of the fuel cell system which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1…燃料供給系、10…燃料電池スタック(燃料電池)、11…水素タンク(燃料供給源)、20…制御部(判定手段、特定手段)、P1〜P7…圧力センサ(圧力検出手段)、Reg1〜6…調圧弁   DESCRIPTION OF SYMBOLS 1 ... Fuel supply system, 10 ... Fuel cell stack (fuel cell), 11 ... Hydrogen tank (fuel supply source), 20 ... Control part (determination means, identification means), P1-P7 ... Pressure sensor (pressure detection means), Reg1-6 ... Pressure regulating valve

Claims (4)

燃料供給源からの燃料ガスを調圧して燃料電池に供給する燃料供給系と、
該燃料供給系に設けられた複数の圧力検出手段と、
これら圧力検出手段の出力が第1及び第2の所定値(ただし、第1の所定値<第2の所定値)を下回ったか否かを定常運転中に判定する判定手段と、
前記第1の所定値を下回った圧力検出手段のうち燃料供給系の最上流に位置する圧力検出手段Aと、該圧力検出手段Aよりも上流に位置する圧力検出手段であってその出力が前記第2の所定値を下回った圧力検出手段Bとの間を漏れ箇所として特定する特定手段と、
を備える燃料電池システム。
A fuel supply system that regulates fuel gas from a fuel supply source and supplies the fuel gas to the fuel cell;
A plurality of pressure detection means provided in the fuel supply system;
Determination means for determining whether or not the output of these pressure detection means is below the first and second predetermined values (however, the first predetermined value <the second predetermined value) during steady operation;
Among the pressure detection means below the first predetermined value, the pressure detection means A located in the uppermost stream of the fuel supply system, and the pressure detection means located upstream from the pressure detection means A, the output of which is A specifying means for specifying a leak point between the pressure detection means B and a pressure below the second predetermined value;
A fuel cell system comprising:
前記特定手段は、前記圧力検出手段Aの出力が略大気圧を示している場合に、当該圧力検出手段Aと前記圧力検出手段Bとの間を破断箇所として特定する請求項1に記載の燃料電池システム。   2. The fuel according to claim 1, wherein when the output of the pressure detection means A indicates a substantially atmospheric pressure, the specifying means specifies a portion between the pressure detection means A and the pressure detection means B as a breakage point. Battery system. 定常運転中に燃料供給系の複数箇所にて圧力を検出し、
その検出値が第1の所定値を下回った検出箇所のうち燃料供給系の最上流に位置する検出箇所Aと、該検出箇所Aよりも上流に位置する検出箇所であってそこでの検出値が第2の所定値(ただし、第1の所定値<第2の所定値)を下回った検出箇所Bとの間を漏れ箇所として特定する燃料電池システムにおける燃料漏れ箇所の特定方法。
During steady operation, the pressure is detected at multiple points in the fuel supply system.
Among the detection points where the detection value is lower than the first predetermined value, the detection point A is located in the uppermost stream of the fuel supply system, and the detection point is located upstream from the detection point A. The detection value there is A method for identifying a fuel leak location in a fuel cell system, wherein a leak location is specified between a detection location B that falls below a second predetermined value (where the first predetermined value is less than a second predetermined value).
前記検出箇所Aでの検出値が略大気圧を示している場合には、当該検出箇所Aと前記検出箇所Bとの間を破断箇所として特定する請求項3に記載の燃料電池システムにおける燃料漏れ箇所の特定方法。   The fuel leak in the fuel cell system according to claim 3, wherein when the detection value at the detection location A indicates substantially atmospheric pressure, a portion between the detection location A and the detection location B is specified as a fracture location. How to identify the location.
JP2004356583A 2004-12-09 2004-12-09 Fuel cell system and method for specifying fuel leakage point Pending JP2006164828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356583A JP2006164828A (en) 2004-12-09 2004-12-09 Fuel cell system and method for specifying fuel leakage point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356583A JP2006164828A (en) 2004-12-09 2004-12-09 Fuel cell system and method for specifying fuel leakage point

Publications (1)

Publication Number Publication Date
JP2006164828A true JP2006164828A (en) 2006-06-22

Family

ID=36666587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356583A Pending JP2006164828A (en) 2004-12-09 2004-12-09 Fuel cell system and method for specifying fuel leakage point

Country Status (1)

Country Link
JP (1) JP2006164828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093888A (en) * 2007-10-05 2009-04-30 Honda Motor Co Ltd Fuel cell system
JP5190561B2 (en) * 2010-12-13 2013-04-24 パナソニック株式会社 Power generation system and operation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093888A (en) * 2007-10-05 2009-04-30 Honda Motor Co Ltd Fuel cell system
JP5190561B2 (en) * 2010-12-13 2013-04-24 パナソニック株式会社 Power generation system and operation method thereof

Similar Documents

Publication Publication Date Title
JP5070685B2 (en) Fuel cell system, gas leak detection device and gas leak detection method
JP5099285B2 (en) Fuel supply device
JP4636336B2 (en) Exhaust valve failure diagnosis device
US8211581B2 (en) Control apparatus and control method for fuel cell
JP4941730B2 (en) Fuel supply device and vehicle
JP4883360B2 (en) Fuel cell system
WO2005088756A1 (en) Device and method for detecting gas leakage
JP4739849B2 (en) Fuel cell system
WO2005088757A1 (en) Fuel cell system and method for controlling same
JP2006344492A (en) Fuel cell system
WO2005096428A1 (en) Fuel cell system and method of controlling the same
JP2007280671A (en) Gas fuel system and its abnormality detection method
JP2008077955A (en) Fuel battery system
JP2006294447A (en) Fault determination apparatus
JP2009093953A (en) Fuel cell system, and starting method for fuel cell
JP5082790B2 (en) Fuel cell system
JP2006164828A (en) Fuel cell system and method for specifying fuel leakage point
JP2006310046A (en) Hydrogen circulation amount control device and hydrogen circulation amount control method for fuel cell
JP2007005266A (en) Fuel cell system and its gas leak detection method
JP5115685B2 (en) Fuel cell system and method for stopping operation
JP4998695B2 (en) Fuel cell system
JP5309558B2 (en) Fuel cell system
JP4211000B2 (en) Gas leak judgment device
JP4645805B2 (en) Fuel cell system
JP2008262875A (en) Fuel cell system and output diagnosis method of fuel cell