JP2006164728A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006164728A
JP2006164728A JP2004354023A JP2004354023A JP2006164728A JP 2006164728 A JP2006164728 A JP 2006164728A JP 2004354023 A JP2004354023 A JP 2004354023A JP 2004354023 A JP2004354023 A JP 2004354023A JP 2006164728 A JP2006164728 A JP 2006164728A
Authority
JP
Japan
Prior art keywords
water
fuel cell
amount
air
operating pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004354023A
Other languages
Japanese (ja)
Inventor
Akihiro Sakakida
明宏 榊田
Akihiro Asai
明寛 浅井
Tsutomu Yamazaki
努 山崎
Kazuhiro Kageyama
和弘 影山
Sei Hoshi
聖 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004354023A priority Critical patent/JP2006164728A/en
Publication of JP2006164728A publication Critical patent/JP2006164728A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the air temperature and humidity of a fuel cell appropriately in a fuel cell system in which a humidifying means is provided on the upstream side of an air pressure means and water is injected to the air pressure means or the vicinity thereof. <P>SOLUTION: A map (Fig. 6) collectively indicating a required load (air flow rate), operating pressure, a characteristic curve of the air pressure means, and a fuel cell required humidification satisfaction line that is a representative line in a range in which a water volume supplied by the humidifying means and a water volume supplied by water injection satisfy a required water volume for the fuel cell is prepared based on the required water volume for the fuel cell, the water volume supplied by the humidifying means and the water volume supplied by water injection for controlling air ejected from the air pressure means to attain a predetermined temperature and humidity depending on the operating conditions. Then, the operating pressure of the fuel cell is set to a point set on the fuel cell required humidification satisfaction line and near a high efficiency line of the air pressure means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池の排気を利用して吸入空気を加湿する加湿手段を空気圧送手段の上流側に備えるとともに、空気圧送手段又はその近傍に水噴射を行う燃料電池システムに関する。   The present invention relates to a fuel cell system that includes a humidifying unit that humidifies intake air using exhaust gas from a fuel cell on the upstream side of a pneumatic feeding unit, and performs water injection at or near the pneumatic feeding unit.

燃料電池システムとして、吸入したガスを圧送する加給装置(空気圧送手段)の上流側に被加湿ガスを加湿する加湿装置(加湿手段)を配置するようにしたものがある(特許文献1)。このように、加湿手段を空気圧送手段の上流側に配置することにより、加湿手段を空気圧送手段の下流側に配置した場合に比べて、加湿手段を通過する被加湿ガスの流速を速めることができる(加湿効率が向上する)ので、加湿手段及び空気圧送手段の小型化が図れるという利点がある。
特開2001−216986号公報
As a fuel cell system, there is a fuel cell system in which a humidifier (humidifier) that humidifies a humidified gas is disposed upstream of a supply device (pneumatic feeder) that pumps inhaled gas (Patent Document 1). Thus, by arranging the humidifying means on the upstream side of the pneumatic feeding means, the flow rate of the humidified gas passing through the humidifying means can be increased compared to the case where the humidifying means is arranged on the downstream side of the pneumatic feeding means. Since it is possible (humidification efficiency is improved), there is an advantage that the humidification means and the pneumatic feeding means can be downsized.
JP 2001-216986 A

ところで、特に車両用の燃料電池システムにあっては、その設置スペース等の問題から加湿手段等のさらなる小型化が要求されている。
そのため、空気圧送手段の上流側に配置した加湿手段をより小型化するとともに小型化に伴う不足分を水噴射により補うようにした燃料電池システムが提案されており、このような燃料電池システムにおいて、燃料電池の発電効率を高く維持すべく、燃料電池へ供給される空気の温度及び湿度を適切に制御する技術が望まれていた。
By the way, especially in the fuel cell system for vehicles, further miniaturization of a humidifying means etc. is requested | required from problems, such as the installation space.
Therefore, a fuel cell system has been proposed in which the humidifying means arranged on the upstream side of the pneumatic feeding means is further miniaturized and the shortage due to the miniaturization is compensated by water injection. In such a fuel cell system, In order to maintain high power generation efficiency of the fuel cell, a technique for appropriately controlling the temperature and humidity of air supplied to the fuel cell has been desired.

本発明は、かかる実情に鑑みなされたもので、加湿手段と水噴霧とにより吸入空気を加湿する構成の燃料電池システムにおいて、燃料電池に供給する空気の温度と湿度を適切に制御することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to appropriately control the temperature and humidity of air supplied to a fuel cell in a fuel cell system configured to humidify intake air by a humidifying means and water spray. And

このため、本発明は、吸入空気を加湿する加湿手段を、燃料電池へ空気を圧送する空気圧送手段の上流側に配置するとともに、前記空気圧送手段又はその近傍に水を噴射する水噴射手段を有する燃料電池システムにおいて、燃料電池に供給される空気流量、燃料電池の運転圧力及び吸入空気の状態に応じた燃料電池の要求水量を算出する要求水量算出手段と、燃料電池に供給される空気流量、燃料電池の運転圧力、吸入空気の状態及び燃料電池の排気の状態に応じた加湿手段の燃料電池への供給水量を算出する加湿手段供給水量算出手段と、空気圧送手段から吐出される空気を所定の温度及び湿度にするために、燃料電池に供給される空気流量、燃料電池の運転圧力、吸入空気の状態及び燃料電池の排気の状態に応じた水噴射手段の噴射供給水量を算出する噴射供給水量算出手段と、燃料電池に供給される空気流量、吸入空気の状態及び燃料電池の排気の状態に応じて、加湿手段の供給水量と水噴射手段の噴射供給水量とを合算した総供給水量が燃料電池の要求水量範囲内となるように燃料電池の運転圧力を設定する運転圧力設定手段と、を備えたことを特徴とする。   Therefore, the present invention provides a humidifying means for humidifying the intake air on the upstream side of the pneumatic feeding means for feeding air to the fuel cell, and a water injection means for jetting water to the pneumatic feeding means or the vicinity thereof. In the fuel cell system, a required water amount calculating means for calculating a required water amount of the fuel cell in accordance with an air flow rate supplied to the fuel cell, an operating pressure of the fuel cell, and an intake air state, and an air flow rate supplied to the fuel cell A humidifying means supply water amount calculating means for calculating the amount of water supplied to the fuel cell of the humidifying means according to the operating pressure of the fuel cell, the state of the intake air and the exhaust state of the fuel cell, and the air discharged from the pneumatic feeding means Injection supply of water injection means according to the flow rate of air supplied to the fuel cell, the operating pressure of the fuel cell, the state of intake air and the state of exhaust of the fuel cell in order to achieve a predetermined temperature and humidity The amount of water supplied to the fuel cell, the amount of water supplied to the fuel cell, the state of the intake air, and the state of the exhaust of the fuel cell And an operating pressure setting means for setting the operating pressure of the fuel cell so that the total amount of supplied water is within the required water amount range of the fuel cell.

本発明によると、燃料電池の排気を利用して吸入空気を加湿する加湿手段を空気圧送手段の上流側に備えるとともに、空気圧送手段又はその近傍に水噴射を行う燃料電池システムにおいて、システムの運転状況に応じて、加湿手段及び水噴射によって燃料電池に供給する空気を適切な温度及び湿度とするために必要な噴射供給量を確保できる燃料電池の運転圧力を設定できるので、常に燃料電池の空気温度及び湿度を適切に制御して発電効率を高く維持できる。   According to the present invention, in a fuel cell system in which humidifying means for humidifying intake air using exhaust gas from a fuel cell is provided on the upstream side of the pneumatic feeding means, and water injection is performed at or near the pneumatic feeding means, the operation of the system is performed. Depending on the situation, the fuel cell operating pressure can be set so as to ensure the amount of fuel supplied by the humidifying means and water injection to ensure that the air supplied to the fuel cell has an appropriate temperature and humidity. The power generation efficiency can be kept high by appropriately controlling the temperature and humidity.

以下、本発明の実施形態を図に基づいて説明する。
図1は、本発明の一実施形態に係る車両用の燃料電池システムの構成を模式的に示したものである。図1に示すように、本実施形態に係る燃料電池システムは、発電手段としての燃料電池スタック(以下、単に「燃料電池」という)1と、この燃料電池1の酸素極(正極)に酸化剤としての空気(酸素)を供給するための空気供給通路10と、燃料電池1の排出空気(排気)を放出するための空気排出通路20と、燃料電池1の水素極(負極)に燃料としての水素を水素タンク31から供給するための水素供給通路30と、燃料電池1内で使いきらない水素を再び水素供給側に戻す水素循環通路40と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows the configuration of a fuel cell system for a vehicle according to an embodiment of the present invention. As shown in FIG. 1, the fuel cell system according to the present embodiment includes a fuel cell stack (hereinafter simply referred to as “fuel cell”) 1 as power generation means, and an oxidant on the oxygen electrode (positive electrode) of the fuel cell 1. As an air supply passage 10 for supplying air (oxygen), an air discharge passage 20 for discharging exhaust air (exhaust gas) of the fuel cell 1, and a hydrogen electrode (negative electrode) of the fuel cell 1 as fuel A hydrogen supply passage 30 for supplying hydrogen from the hydrogen tank 31 and a hydrogen circulation passage 40 for returning hydrogen not used in the fuel cell 1 to the hydrogen supply side again are provided.

燃料電池1には、冷却水が流通する冷却水通路2が設けられている。この冷却水通路2に流れる冷却水の流量等は冷却水供給装置(本発明に係る冷却手段に相当する)3によって調整される。冷却水供給装置3は、例えば燃料電池1の温度又は冷却水温度に基づいて冷却水の流量等を調整し、発電中に生じる熱を効率的に除去する。
空気供給通路10には、吸入空気を圧送する圧縮機(本発明に係る空気圧送手段に相当する)11、空気供給通路10を開閉する供給通路開閉弁12が設けられている。この供給通路開閉弁12の開度を制御することで燃料電池1に供給される空気量が調整される。また、一般に、燃料電池1の固体高分子膜は潤湿状態に保たれている必要があることから、吸入空気を加湿する加湿器50(供給側50a,排出側50b)が設けられる。この加湿器(本発明に係る加湿手段に相当する)50は、例えば中空糸を使用して燃料電池1の排気(中の水分)を利用して吸入空気を加湿するものであり、図に示すように圧縮機11の上流側で吸入空気を加湿する。
The fuel cell 1 is provided with a cooling water passage 2 through which cooling water flows. The flow rate or the like of the cooling water flowing through the cooling water passage 2 is adjusted by a cooling water supply device (corresponding to the cooling means according to the present invention) 3. The cooling water supply device 3 adjusts the flow rate of the cooling water based on the temperature of the fuel cell 1 or the cooling water temperature, for example, and efficiently removes heat generated during power generation.
The air supply passage 10 is provided with a compressor (corresponding to pneumatic supply means according to the present invention) 11 for pumping intake air and a supply passage opening / closing valve 12 for opening and closing the air supply passage 10. The amount of air supplied to the fuel cell 1 is adjusted by controlling the opening degree of the supply passage opening / closing valve 12. In general, since the solid polymer membrane of the fuel cell 1 needs to be kept in a humid state, a humidifier 50 (supply side 50a, discharge side 50b) for humidifying the intake air is provided. This humidifier (corresponding to the humidifying means according to the present invention) 50 humidifies the intake air using, for example, a hollow fiber using exhaust (water content) of the fuel cell 1 and is shown in the figure. Thus, the intake air is humidified on the upstream side of the compressor 11.

さらに、加湿器50による加湿を補助するとともに圧縮機11から吐出される高温空気を冷却するために、圧縮器11(又は圧縮機11の近傍)に水を霧状にして噴射し吸入空気の加湿及び冷却を行う水噴射弁(本発明に係る水噴射手段に相当する)55が設けられている。なお、この水噴射弁55には、後述する貯水タンク62内に蓄えられた水が供給される。   Further, in order to assist humidification by the humidifier 50 and cool the high-temperature air discharged from the compressor 11, water is sprayed into the compressor 11 (or in the vicinity of the compressor 11) as a mist to humidify the intake air. In addition, a water injection valve (corresponding to the water injection means according to the present invention) 55 for performing cooling is provided. The water injection valve 55 is supplied with water stored in a water storage tank 62 described later.

圧縮機11には、図示しないエアクリーナによりゴミ等が除去されて、加湿器50によって加湿された空気が流入する。そして、圧縮機11から吐出される所定の圧力の空気(圧縮空気)が供給通路開閉弁12を介して燃料電池1(の酸素極)に供給される。
ここで、空気供給通路10において、圧縮機11の上流側で吸入空気を加湿するようにしたのは、燃料電池1の排気を利用して吸入空気を加湿する場合には、該排気と吸入空気との間にある程度の温度差及び圧力差が必要となるところ、圧縮機11を加湿器50の上流側に配置してしまうと、吸入空気が圧縮機11によって圧縮されて温度、圧力が上昇してしまうため、燃料電池の排気との間に十分な温度差及び圧力差を確保することが難しくなること等を考慮したものである。
Dust and the like are removed by an air cleaner (not shown) and air humidified by the humidifier 50 flows into the compressor 11. Then, air of a predetermined pressure (compressed air) discharged from the compressor 11 is supplied to the fuel cell 1 (the oxygen electrode thereof) via the supply passage opening / closing valve 12.
Here, in the air supply passage 10, the intake air is humidified on the upstream side of the compressor 11 when the intake air is humidified using the exhaust gas of the fuel cell 1. However, if the compressor 11 is disposed upstream of the humidifier 50, the intake air is compressed by the compressor 11 and the temperature and pressure rise. Therefore, it is considered that it is difficult to ensure a sufficient temperature difference and pressure difference with the exhaust of the fuel cell.

空気排出通路20には、燃料電池1の排気から水分を回収する水回収装置(本発明に係る水回収手段に相当する)60、燃料電池1上流側の空気圧力を制御するための空気圧力制御弁21が設けられている。なお、図に示すように、燃料電池1の排気は、この空気排出通路20を介して加湿器50(排気側50b)に導入されるようになっている。
水回収装置60は、例えば気液分離器から構成されており、空気排出通路20において加湿器50(排出側50b)の下流側に設けられている。そして、加湿器50(排出側50b)を通過して除湿された燃料電池1の排気から水分を回収する。この水回収装置60で回収された水は、水回収通路61を介して貯水タンク(本発明に係る貯水手段に相当する)62に蓄えられる。
In the air discharge passage 20, a water recovery device (corresponding to the water recovery means according to the present invention) 60 for recovering moisture from the exhaust of the fuel cell 1, an air pressure control for controlling the air pressure upstream of the fuel cell 1. A valve 21 is provided. As shown in the figure, the exhaust of the fuel cell 1 is introduced into the humidifier 50 (exhaust side 50b) via the air discharge passage 20.
The water recovery device 60 is composed of, for example, a gas-liquid separator, and is provided in the air discharge passage 20 on the downstream side of the humidifier 50 (discharge side 50b). Then, moisture is collected from the exhaust gas of the fuel cell 1 that has passed through the humidifier 50 (discharge side 50b) and has been dehumidified. The water recovered by the water recovery device 60 is stored in a water storage tank (corresponding to the water storage means according to the present invention) 62 through a water recovery passage 61.

貯水タンク62と前述の水噴射弁55とは水供給通路63を介して接続されている。この水供給通路63には、貯水タンク62に蓄えられた水を圧送するウォータポンプ(水圧送手段)64、圧送された水を所定の水圧に調整する水圧調整器(水圧調整手段)65が設けられている。なお、水圧調整器65で発生する余剰水は、水還流通路66を介して貯水タンク62へと戻されるようになっている。   The water storage tank 62 and the water injection valve 55 are connected via a water supply passage 63. The water supply passage 63 is provided with a water pump (water pressure feeding means) 64 that pumps the water stored in the water storage tank 62 and a water pressure regulator (water pressure adjusting means) 65 that adjusts the pumped water to a predetermined water pressure. It has been. The surplus water generated by the water pressure regulator 65 is returned to the water storage tank 62 via the water recirculation passage 66.

また、本実施形態に係る燃料供給システムは、空気供給通路10において圧縮機11の下流側(より具体的には、圧縮機11と供給通路開閉弁12との間)で分岐して加湿器50(供給側50a)上流側に接続する第1空気還流通路70と、同じく空気供給通路10において圧縮機11の下流側(圧縮機11と空気通路開閉弁12との間)で分岐して加湿器50(供給側50a)と圧縮機11との間に接続する第2空気還流通路80と、空気排出通路20において加湿器50(排出側50b)の上流側で分岐して加湿器50(排出側50b)の下流側に接続する(すなわち、加湿器50(排出側50b)をバイパスする)加湿器バイパス通路(バイパス通路)90とを備えている。   In addition, the fuel supply system according to the present embodiment branches in the air supply passage 10 on the downstream side of the compressor 11 (more specifically, between the compressor 11 and the supply passage opening / closing valve 12), and the humidifier 50. (Supply side 50a) The first air recirculation passage 70 connected to the upstream side, and the air supply passage 10 also branches downstream of the compressor 11 (between the compressor 11 and the air passage opening / closing valve 12) and a humidifier. 50 (supply side 50a) and the second air recirculation passage 80 connected between the compressor 11 and the air discharge passage 20 branch upstream of the humidifier 50 (discharge side 50b), and the humidifier 50 (discharge side). And a humidifier bypass passage (bypass passage) 90 connected to the downstream side of 50b) (that is, bypassing the humidifier 50 (discharge side 50b)).

第1空気還流通路70には、該第1空気還流通路70を開閉する第1通路開閉弁71が設けられている。この第1通路開閉弁41を開くと、圧縮機11から吐出された空気の全部又は一部が第1空気還流通路70を介して加湿器50(吸入側50a)の上流側へと戻されることになる。
第2空気還流通路80には、該第2空気還流通路80を開閉する第2通路開閉弁81、該第2通路開閉弁81の下流側に設けられた蓄圧装置82及び該蓄圧装置82の圧力を開放するための圧力開放弁83が設けられている。上記第2通路開閉弁81を開くと、圧縮機11から吐出された空気の全部又は一部が蓄圧装置82へと供給され、この蓄圧装置82に蓄えられる。その後、圧力開閉弁83を開くと、蓄圧装置82に蓄えられた空気が加湿器50(吸入側50a)の下流側へと戻されることになる。
The first air recirculation passage 70 is provided with a first passage on-off valve 71 that opens and closes the first air recirculation passage 70. When the first passage opening / closing valve 41 is opened, all or part of the air discharged from the compressor 11 is returned to the upstream side of the humidifier 50 (suction side 50a) via the first air recirculation passage 70. become.
The second air recirculation passage 80 includes a second passage on-off valve 81 that opens and closes the second air recirculation passage 80, a pressure accumulator 82 provided on the downstream side of the second passage on-off valve 81, and a pressure of the pressure accumulator 82. A pressure release valve 83 is provided for opening the valve. When the second passage opening / closing valve 81 is opened, all or part of the air discharged from the compressor 11 is supplied to the pressure accumulator 82 and stored in the pressure accumulator 82. Thereafter, when the pressure on-off valve 83 is opened, the air stored in the pressure accumulating device 82 is returned to the downstream side of the humidifier 50 (suction side 50a).

加湿器バイパス通路90には、該加湿器バイパス通路90を開閉するバイパス通路開閉弁91が設けられている。ここで、通常、加湿器50(排出側50b)内よりも加湿器バイパス通路9の方が通路(流路)抵抗が小さいことから、バイパス通路開閉弁91を開くことによって、燃料電池1の排気(の大部分)は、加湿器50(排出側50b)を経由せずに放出されることになる。   The humidifier bypass passage 90 is provided with a bypass passage on-off valve 91 that opens and closes the humidifier bypass passage 90. Here, since the humidifier bypass passage 9 normally has a smaller passage (flow path) resistance than in the humidifier 50 (discharge side 50b), the exhaust of the fuel cell 1 is opened by opening the bypass passage on-off valve 91. (The majority) is discharged without going through the humidifier 50 (discharge side 50b).

このように、第1空気還流通路70、第2空気還流通路80及び加湿器バイパス通路90等を備えることにより、例えば、システム始動時においては、圧縮機11から吐出された(高温)空気を第1空気還流通路70によって加湿器50の上流側に還流させることにより、加湿器50の暖機を行って始動性を向上させることができる。
また、システム停止時においては、燃料電池1の排気を加湿器バイパス通路90により放出させるとともに圧縮機11から吐出された(高温)空気を第2空気還流通路80により還流させることにより、加湿器50内及び配管内の水分を除去できる。さらに、第1通路開閉弁71を「閉」、供給通路開閉弁12を「閉」、第2通路開閉弁91を「開」として圧縮機11から吐出された(高温)空気を蓄圧装置82内に蓄えるようにし、圧縮機11を停止した後に圧力開放弁83を開放することにより、蓄圧装置82に蓄えられた空気が加湿器50を通って(逆流して)大気へと放出され、加湿器50内及びその上流側の配管内の水分を除去できる。これにより、システム停止中(保管時)にシステム内が凍結することを防止できる。
Thus, by providing the first air recirculation passage 70, the second air recirculation passage 80, the humidifier bypass passage 90, and the like, for example, at the time of starting the system, the (high-temperature) air discharged from the compressor 11 is the first By recirculating to the upstream side of the humidifier 50 by the 1 air recirculation passage 70, the humidifier 50 can be warmed up and the startability can be improved.
Further, when the system is stopped, the exhaust of the fuel cell 1 is discharged through the humidifier bypass passage 90 and the (high temperature) air discharged from the compressor 11 is recirculated through the second air recirculation passage 80, thereby the humidifier 50. Moisture inside and inside the pipe can be removed. Furthermore, the first passage opening / closing valve 71 is “closed”, the supply passage opening / closing valve 12 is “closed”, and the second passage opening / closing valve 91 is “open”, and the (high temperature) air discharged from the compressor 11 is stored in the pressure accumulator 82. By opening the pressure release valve 83 after stopping the compressor 11, the air stored in the pressure accumulator 82 is released (returned back) to the atmosphere through the humidifier 50, and the humidifier Moisture in the pipe 50 on the upstream side thereof can be removed. As a result, the system can be prevented from freezing while the system is stopped (during storage).

上記の冷却水供給装置3、圧縮機11、供給通路開閉弁12、空気圧力調整弁21、水噴射弁55、ウォータポンプ64、第1通路開閉弁71、第2通路開閉弁81、圧力開放弁83及びバイパス通路開閉弁91等の動作は、図示しないコントロールユニットによって制御される。
このコントロールユニットには、空気供給通路10の加湿器50(吸入側50a)の上流側の空気温度(すなわち、吸入空気の温度)を検出する第1温度センサ(温度検出手段)101、吸入空気の圧力を検出する第1圧力センサ102、吸入空気の湿度を検出する第1湿度センサ103、燃料電池1の下流側の空気温度(すなわち、燃料電池1の排気の温度)を検出する第3温度センサ104、燃料電池1からの排気の圧力を検出する第3圧力センサ105、燃料電池1からの排気の湿度を検出する第3湿度センサ106、貯水タンク62内の水量(水位)を検出する水量センサ107、運転者によるアクセル操作量を検出するアクセル開度センサ(図示省略)等からの検出信号が入力されている。なお、第1温度センサ101、第1圧力センサ102及び第1湿度センサ103が本発明に係る吸入空気状態検出手段に相当し、第2温度センサ104、第2圧力センサ105及び第2湿度センサ106が本発明に係る排気状態検出手段に相当する。また、水量センサ107が本発明に係る水量検出手段に相当する。
The cooling water supply device 3, the compressor 11, the supply passage opening / closing valve 12, the air pressure adjusting valve 21, the water injection valve 55, the water pump 64, the first passage opening / closing valve 71, the second passage opening / closing valve 81, and the pressure release valve. The operations of 83 and the bypass passage opening / closing valve 91 are controlled by a control unit (not shown).
The control unit includes a first temperature sensor (temperature detection means) 101 for detecting the air temperature upstream of the humidifier 50 (suction side 50a) of the air supply passage 10 (ie, the temperature of the intake air), A first pressure sensor 102 that detects pressure, a first humidity sensor 103 that detects the humidity of intake air, and a third temperature sensor that detects the air temperature downstream of the fuel cell 1 (ie, the temperature of the exhaust gas of the fuel cell 1). 104, a third pressure sensor 105 for detecting the pressure of the exhaust from the fuel cell 1, a third humidity sensor 106 for detecting the humidity of the exhaust from the fuel cell 1, and a water amount sensor for detecting the amount of water (water level) in the water storage tank 62 107, a detection signal from an accelerator opening sensor (not shown) for detecting the amount of accelerator operation by the driver is input. The first temperature sensor 101, the first pressure sensor 102, and the first humidity sensor 103 correspond to the intake air state detection means according to the present invention, and the second temperature sensor 104, the second pressure sensor 105, and the second humidity sensor 106. Corresponds to the exhaust state detection means according to the present invention. Further, the water amount sensor 107 corresponds to the water amount detecting means according to the present invention.

ここで、本実施形態に係る車両用の燃料電池システムの運転(圧力)制御について説明する。
まず、図2は、要求負荷(すなわち、燃料電池1に供給される空気流量)と燃料電池1の運転圧力とに応じた燃料電池1の要求水量(加湿要求)を示すマップ例(以下、「燃料電池要求水量マップ」という)である。この燃料電池要求水量マップに示されるように、燃料電池1の要求水量は、通常、空気流量が多く運転圧力が低いと多くなり、空気流量が少なく運転圧力が高いと少なくなる傾向にある。本実施形態では、かかる燃料電池要求水量マップを吸入空気の状態(温度、圧力、湿度)毎に作成してあり、該マップの参照処理により要求負荷(空気流量)と運転圧力と吸入空気の状態とに応じた燃料電池1の要求水量(適切な供給水量)の範囲を求めることが可能である。なお、かかる燃料電池要求水量マップの参照処理が本発明に係る「要求水量算出手段」に相当する。
Here, operation (pressure) control of the vehicle fuel cell system according to the present embodiment will be described.
First, FIG. 2 shows an example of a map (hereinafter referred to as “humidity request”) indicating the required water amount (humidification request) of the fuel cell 1 according to the required load (that is, the air flow rate supplied to the fuel cell 1) and the operating pressure of the fuel cell 1. Fuel cell required water amount map ”). As shown in the fuel cell required water amount map, the required water amount of the fuel cell 1 usually increases when the air flow rate is high and the operating pressure is low, and tends to decrease when the air flow rate is low and the operating pressure is high. In the present embodiment, such a fuel cell required water amount map is created for each intake air state (temperature, pressure, humidity), and the required load (air flow rate), operating pressure, and intake air state are obtained by referring to the map. It is possible to obtain the range of the required water amount (appropriate supply water amount) of the fuel cell 1 according to the above. The fuel cell required water amount map reference process corresponds to the “required water amount calculating means” according to the present invention.

図3は、要求負荷と燃料電池1の運転圧力とに応じた加湿器50の性能(加湿器50による供給水量)を示すマップ例(以下、「加湿器供給水量マップ」という)である。この加湿器供給水量マップに示されるように、加湿器50による供給水量(加湿性能)は、通常、空気流量が多く運転圧力が高いと多くなり、空気流量が少なく運転圧力が低いと少なくなる傾向にある。本実施形態では、かかる加湿器供給水量マップを吸入空気の状態(温度、圧力、湿度)及び燃料電池1の排気の状態(温度、圧力、湿度)毎に作成してあり、該マップの参照処理により要求負荷(空気流量)と運転圧力と吸入空気(加湿器50の供給側50aに入力される空気)の状態と燃料電池1の排気(加湿器50の排出側50bに入力される空気)の状態とに応じた加湿器50の加湿性能、すなわち、加湿器50によって燃料電池1へ供給される水量を求めることが可能である。なお、かかる加湿器供給水量マップの参照処理が本発明に係る「加湿手段供給水量算出手段」に相当する。   FIG. 3 is a map example (hereinafter referred to as “humidifier supply water amount map”) showing the performance of the humidifier 50 (the amount of water supplied by the humidifier 50) according to the required load and the operating pressure of the fuel cell 1. As shown in this humidifier supply water amount map, the supply water amount (humidification performance) by the humidifier 50 usually increases when the air flow rate is high and the operation pressure is high, and tends to decrease when the air flow rate is low and the operation pressure is low. It is in. In the present embodiment, such a humidifier supply water amount map is created for each state of intake air (temperature, pressure, humidity) and exhaust state of the fuel cell 1 (temperature, pressure, humidity). Of the required load (air flow rate), operating pressure, intake air (air input to the supply side 50a of the humidifier 50) and exhaust of the fuel cell 1 (air input to the discharge side 50b of the humidifier 50). It is possible to determine the humidifying performance of the humidifier 50 according to the state, that is, the amount of water supplied to the fuel cell 1 by the humidifier 50. The reference processing of the humidifier supply water amount map corresponds to the “humidification means supply water amount calculation means” according to the present invention.

図4は、要求負荷と燃料電池1の運転圧力とに応じた水噴射供給量(水噴射弁55による供給水量)を示すマップ例(以下、「水噴射供給水量マップ」という)である。この水噴射供給水量マップに示されるように、水噴射弁55による供給水量は、通常、空気流量が多く運転圧力が高いと多く必要とされ、空気流量が少なく運転圧力が低いと少なくて済むという傾向がある。本実施形態では、かかる水噴射供給水量マップを吸入空気の状態(温度、圧力、湿度)及び燃料電池1の排気の状態(温度、圧力、湿度)毎に作成してあり、該マップの参照処理により要求負荷(運転者のアクセル操作量)と燃料圧力と吸入空気の状態と燃料電池1の排気の状態とに応じた噴射供給水量、すなわち、水噴射弁55から噴射することにより燃料電池1に供給される(すべき)水量を求めることが可能である。   FIG. 4 is a map example (hereinafter referred to as a “water injection supply water amount map”) showing a water injection supply amount (a supply water amount by the water injection valve 55) according to the required load and the operating pressure of the fuel cell 1. As shown in this water injection supply water amount map, the amount of water supplied by the water injection valve 55 is usually required when the air flow rate is high and the operating pressure is high, and is low when the air flow rate is low and the operating pressure is low. Tend. In the present embodiment, such a water injection supply water amount map is created for each state of intake air (temperature, pressure, humidity) and exhaust state of the fuel cell 1 (temperature, pressure, humidity). Therefore, the fuel supply to the fuel cell 1 is injected from the water injection valve 55 according to the required load (the amount of accelerator operation by the driver), the fuel pressure, the intake air state, and the exhaust state of the fuel cell 1. It is possible to determine the amount of water to be supplied.

加湿器50の供給側50aに入力される空気、すなわち吸入空気(外気)の状態(温度、圧力、湿度)と、加湿器50の排出側50bに入力される空気、すなわち燃料電池1の排気の状態(温度、圧力、湿度)とから圧縮機11吸入側の空気の状態が予測でき、圧縮機11吸入側の空気の状態が予測できれば圧縮機11から吐出される空気の状態も予測できる。そして、上記噴射供給水量マップは、圧縮機11から吐出される空気が燃料電池1に供給される空気として適切な温度・湿度となるような噴射供給水量を設定するものであり、この噴射供給水量を水噴射弁55から噴射することにより、圧縮機11から吐出される空気が冷却・加湿され、燃料電池1の空気温度及び湿度を適切に制御できる。   The state (temperature, pressure, humidity) of the air input to the supply side 50 a of the humidifier 50, that is, the intake air (outside air), and the air input to the discharge side 50 b of the humidifier 50, that is, the exhaust of the fuel cell 1. The state of air on the suction side of the compressor 11 can be predicted from the state (temperature, pressure, humidity). If the state of air on the suction side of the compressor 11 can be predicted, the state of air discharged from the compressor 11 can also be predicted. The injection supply water amount map sets the injection supply water amount so that the air discharged from the compressor 11 has an appropriate temperature and humidity as the air supplied to the fuel cell 1, and this injection supply water amount Is injected from the water injection valve 55, the air discharged from the compressor 11 is cooled and humidified, and the air temperature and humidity of the fuel cell 1 can be appropriately controlled.

ここで、本実施形態においては、吸入空気及び燃料電池1の排気の状態(温度、圧力、湿度)を用いて水噴射弁55による噴射供給水量を求める構成としているが、これに代えて、圧縮機11の吸入側(加湿器50により加湿された)空気の状態(温度、圧力、湿度)又は圧縮機11から吐出される空気の状態(温度、圧力、湿度)を検出し、この検出結果を用いるように構成してもよい。なお、かかる水噴射供給水量マップの参照処理が本発明に係る「噴射供給水量算出手段」に相当する。   Here, in the present embodiment, the amount of water supplied by the water injection valve 55 is obtained using the intake air and the exhaust state of the fuel cell 1 (temperature, pressure, humidity). The state (temperature, pressure, humidity) of the air (humidified by the humidifier 50) of the machine 11 (temperature, pressure, humidity) or the state of the air discharged from the compressor 11 (temperature, pressure, humidity) is detected. You may comprise so that it may be used. In addition, the reference process of this water injection supply water amount map corresponds to the “injection supply water amount calculation means” according to the present invention.

また、図4において「水不足範囲」と記した領域は、圧縮機11から吐出される空気温度が高温となってその冷却には多量の水が必要とされることから、水回収装置60の能力を超えてしまう領域、すなわち、水噴射弁55から必要な量の水を噴射することができない(又はそのおそれのある)領域のことである。したがって、圧縮機11から吐出される空気を冷却して燃料電池1の空気温度を適切に制御するためには、「水不足範囲」を避けるように運転圧力が設定する必要があるが、これについては後述する。   Further, in the area indicated as “water shortage range” in FIG. 4, since the temperature of the air discharged from the compressor 11 becomes high and a large amount of water is required for cooling, the capacity of the water recovery device 60 That is, it is a region where a necessary amount of water cannot be injected from the water injection valve 55 (or there is a possibility of that). Therefore, in order to cool the air discharged from the compressor 11 and appropriately control the air temperature of the fuel cell 1, it is necessary to set the operating pressure so as to avoid the “water shortage range”. It will be described later.

図5は、要求負荷と燃料電池1の運転圧力とに応じた燃料電池1への総供給水量(加湿器50の供給水量+水噴射弁55の噴射供給量)を示すマップ例(以下、「総供給水量マップ」という)である。この総供給水量マップは、加湿器供給水量マップ(図3)と水噴射供給水量マップ(図4)とに基づいて、吸入空気の状態(温度、圧力、湿度)及び燃料電池1の排気の状態(温度、圧力、湿度)毎に作成することができる。本実施形態では、この総供給水量マップを作成してあり、該マップの参照処理により要求負荷(運転者にアクセル操作量)と運転圧力と吸入空気の状態と燃料電池1の排気の状態とに応じた燃料電池1への総供給水量を求めることが可能である。   FIG. 5 is a map example showing the total amount of water supplied to the fuel cell 1 according to the required load and the operating pressure of the fuel cell 1 (the amount of water supplied by the humidifier 50 + the amount of water supplied by the water injection valve 55) (hereinafter, “ Total water supply map ”). This total supply water amount map is based on the humidifier supply water amount map (FIG. 3) and the water injection supply water amount map (FIG. 4), and the state of intake air (temperature, pressure, humidity) and the state of exhaust of the fuel cell 1 It can be created for each (temperature, pressure, humidity). In the present embodiment, this total supply water amount map is created, and by referring to the map, the required load (accelerator operation amount for the driver), operating pressure, intake air state, and exhaust state of the fuel cell 1 are changed. It is possible to determine the total amount of water supplied to the corresponding fuel cell 1.

図6は、要求負荷と燃料電池1の運転圧力に応じた圧縮機11の回転毎の特性曲線と燃料電池要求加湿満足線とを示したマップ例(以下、「運転圧力設定マップ」という)である。この運転圧力設定マップは、燃料電池要求水量マップ(図2)、加湿器供給水量マップ(図3)及び水噴射供給水量マップ(図4)を基に、又は、燃料電池要求水量マップ(図2)及び総供給水量マップ(図5)を基に吸入空気の状態(温度、圧力、湿度)及び燃料電池1の排気の状態(温度、圧力、湿度)毎に作成できる。ここで、燃料電池要求加湿満足線とは、要求負荷に応じた燃料電池1の要求水量の範囲(図2)を要求負荷に応じた総供給水量(図5参照)で満足できる範囲の代表線のことである。   FIG. 6 is a map example (hereinafter referred to as “operating pressure setting map”) showing a characteristic curve for each rotation of the compressor 11 and a fuel cell required humidification satisfaction line according to the required load and the operating pressure of the fuel cell 1. is there. This operating pressure setting map is based on the fuel cell required water amount map (FIG. 2), the humidifier supply water amount map (FIG. 3), and the water injection supply water amount map (FIG. 4), or the fuel cell required water amount map (FIG. 2). ) And the total supply water amount map (FIG. 5), and can be created for each state of intake air (temperature, pressure, humidity) and exhaust state of fuel cell 1 (temperature, pressure, humidity). Here, the fuel cell required humidification satisfaction line is a representative line of a range in which the range of the required water amount of the fuel cell 1 according to the required load (FIG. 2) can be satisfied with the total supplied water amount (see FIG. 5) according to the required load. That is.

したがって、要求負荷と吸入空気の状態と燃料電池1の排気の状態とに基づいて、かかる運転圧力設定マップを参照し、燃料電池1の運転圧力を上記燃料電池要求加湿満足線上に設定するようにすれば、燃料電池1の入口温度及び湿度を適切に制御できることになるのであるが、圧縮機11としては、燃料電池1の運転圧力が圧縮機11の特性曲線上の高効率点を結んだ線(高効率線)上に設定されるのが望ましいことになる。   Therefore, the operating pressure setting map is referred to based on the required load, the intake air state, and the exhaust state of the fuel cell 1, and the operating pressure of the fuel cell 1 is set on the fuel cell required humidification satisfaction line. Then, the inlet temperature and humidity of the fuel cell 1 can be appropriately controlled. As the compressor 11, the operating pressure of the fuel cell 1 is a line connecting the high efficiency points on the characteristic curve of the compressor 11. It is desirable to set it on (high efficiency line).

そこで、本実施形態においては、燃料電池要求加湿満足線上で、かつ高効率線に近づけるように燃料電池1の運転圧力を設定する。これにより、圧縮機11を高効率で運転しつつ燃料電池1の空気温度と湿度を適切に制御することができ、システム全体として高効率な運転を実現できる。なお、かかる運転圧力設定マップの参照処理が本発明に係る「運転圧力設定手段」に相当する。   Therefore, in the present embodiment, the operating pressure of the fuel cell 1 is set to be close to the high efficiency line on the fuel cell required humidification satisfaction line. Thereby, the air temperature and humidity of the fuel cell 1 can be appropriately controlled while operating the compressor 11 with high efficiency, and high-efficiency operation as a whole system can be realized. It should be noted that the reference processing of the operating pressure setting map corresponds to “operating pressure setting means” according to the present invention.

ところで、燃料電池要求加湿満足線上であっても、水不足範囲内又はその近傍での運転が連続すると水不足となってしまうおそれがある。そこで、本実施形態では、水不足が予測される場合、具体的には、貯水タンク62内の水量が所定量以下となった場合や貯水タンク62内の水量予測を行ってその結果が所定量以下となった場合等には、冷却水供給装置3を制御して燃料電池1の冷却水を増量させることで、水回収装置60での水回収量を増加させるようにしている。   By the way, even if it is on the fuel cell required humidification satisfaction line, there is a risk of water shortage if operation is continued in or near the water shortage range. Therefore, in this embodiment, when water shortage is predicted, specifically, when the amount of water in the water storage tank 62 becomes a predetermined amount or less, or when the amount of water in the water storage tank 62 is predicted, the result is less than the predetermined amount. In such a case, the amount of water recovered in the water recovery device 60 is increased by controlling the cooling water supply device 3 to increase the amount of cooling water in the fuel cell 1.

図7は、以上説明した本実施形態(第1実施形態)に係る燃料電池システムの運転(圧力)制御を示すフローチャートである。
S1では、第1温度センサ101、第1圧力センサ102、第1湿度センサ103の検出信号に基づき、吸入空気の温度、圧力、湿度を読込む。
S2では、第2温度センサ104、第2圧力センサ105、第2湿度センサ106の検出信号に基づき、燃料電池1の排気の温度、圧力、湿度を読込む。
FIG. 7 is a flowchart showing the operation (pressure) control of the fuel cell system according to this embodiment (first embodiment) described above.
In S <b> 1, the temperature, pressure, and humidity of the intake air are read based on detection signals from the first temperature sensor 101, the first pressure sensor 102, and the first humidity sensor 103.
In S2, the temperature, pressure, and humidity of the exhaust gas from the fuel cell 1 are read based on detection signals from the second temperature sensor 104, the second pressure sensor 105, and the second humidity sensor 106.

S3では、アクセル開度センサの検出信号に基づき要求負荷を読込む。
S4では、読込んだ要求負荷に基づいて、あらかじめ作成された要求負荷−必要空気量マップ(図示省略)等を参照して必要空気量を求める。
S5では、必要空気量、吸入空気の温度、圧力、湿度及び燃料電池1の排気の温度、圧力、湿度に基づいて、図6のマップを参照して、燃料電池1の運転圧力を上記燃料電池要求加湿満足線上に設定する。
In S3, the required load is read based on the detection signal of the accelerator opening sensor.
In S4, the required air amount is obtained by referring to a previously prepared required load-necessary air amount map (not shown) based on the read required load.
In S5, the operating pressure of the fuel cell 1 is determined based on the required air amount, the intake air temperature, pressure, humidity, and the exhaust temperature, pressure, humidity of the fuel cell 1 with reference to the map of FIG. Set on the required humidification satisfaction line.

S6では、設定した運転圧力と必要空気量とに基づいて圧縮機11の回転数及び供給通路開閉弁12の開度を設定する。
S7では、吸入空気の温度、圧力、湿度及び燃料電池1の排気の温度、圧力、湿度に基づいて、水噴射供給水量マップ(図4)を参照して噴射供給水量を設定する。
S8では、設定した圧縮機11の回転数、供給通路開閉弁12の開度となるように圧縮機11及び供給通路開閉弁12を制御し、設定した噴射供給水量を噴射するように水噴射弁55を開弁駆動する。
In S6, the rotation speed of the compressor 11 and the opening degree of the supply passage opening / closing valve 12 are set based on the set operating pressure and the required air amount.
In S7, the injection supply water amount is set with reference to the water injection supply water amount map (FIG. 4) based on the temperature, pressure and humidity of the intake air and the temperature, pressure and humidity of the exhaust of the fuel cell 1.
In S8, the compressor 11 and the supply passage opening / closing valve 12 are controlled so that the rotation speed of the compressor 11 and the opening degree of the supply passage opening / closing valve 12 are set, and the water injection valve is injected so as to inject the set injection supply water amount. 55 is opened.

S9では、水量センサ107の検出信号に基づいて、貯水タンク62内の水量を検出する。なお、検出した貯水タンク62内の水量、水回収装置60による水回収量(の予測値)及び噴射供給水量等から貯水タンク62内の水量の変化を予測して、予測水量を検出するようにしてもよい。
S10では、検出した貯水タンク62内の水量(又は予測水量)が所定量以下であるか否か、すなわち、水不足が予測されるか否かを判定する。貯水タンク62内の水量(予測水量)が所定量以下であればS11に進む。一方、貯水タンク62内の水量(予測水量)が所定量を上回っていれば本フローを終了する。
In S9, the amount of water in the water storage tank 62 is detected based on the detection signal of the water amount sensor 107. The predicted water amount is detected by predicting the change in the water amount in the water storage tank 62 from the detected water amount in the water storage tank 62, the amount of water recovered by the water recovery device 60 (predicted value thereof), the amount of injected supply water, and the like. May be.
In S10, it is determined whether or not the detected water amount (or predicted water amount) in the water storage tank 62 is equal to or less than a predetermined amount, that is, whether or not water shortage is predicted. If the amount of water in the water storage tank 62 (predicted amount of water) is less than or equal to the predetermined amount, the process proceeds to S11. On the other hand, if the amount of water in the water storage tank 62 (predicted amount of water) exceeds a predetermined amount, this flow ends.

S11では、冷却水供給装置3を制御して冷却水通路2を流通する冷却水量を増加させる。これにより、燃料電池1の温度が低下することになるので、水回収装置60での水回収量が増加し水不足を解消する。
以上説明した実施形態によると、燃料電池1に供給される空気流量、燃料電池の運転圧力及び吸入空気の状態に応じた燃料電池1の要求水量を算出する(算出できる)燃料電池要求水量マップ(図2)と、燃料電池1に供給される空気流量、燃料電池1の運転圧力、吸入空気の状態及び燃料電池1の排気の状態に応じた加湿器50の加湿性能(燃料電池1への供給水量)を算出する(算出できる)加湿器供給水量マップ(図3)と、圧縮機11から吐出される空気を所定温度・湿度とするために、燃料電池1に供給される空気流量、燃料電池1の運転圧力、吸入空気の状態及び燃料電池の排気の状態に応じた水噴射弁55の噴射供給水量を算出する(算出できる)水噴射供給水量マップ(図4)とを作成し、これらのマップを基に、燃料電池1に供給される空気流量、吸入空気の状態及び燃料電池1の排気の状態に応じた、前記加湿供給水量(図3)と前記噴射供給水量(図4)とを合算した総供給水量(図5)が燃料電池1の要求水量範囲(図2)内となる燃料電池要求加湿満足線が設定された運転圧力設定マップ(図6)を作成する。そして、燃料電池1に供給される空気流量、吸入空気の状態及び燃料電池1の排気の状態に基づいて運転圧力設定マップ(図6)を参照して、燃料電池1の運転圧力を上記燃料電池要求加湿満足線上に設定する。これにより、システムの運転状況に応じて、圧縮機11から吐出される高温空気に対して適切な水噴射が行える運転圧力を設定することができるので、燃料電池1に適切な温度及び湿度の空気を安定して供給できる。これにより、燃料電池1の発電効率を常に高く維持できる。
In S <b> 11, the amount of cooling water flowing through the cooling water passage 2 is increased by controlling the cooling water supply device 3. As a result, the temperature of the fuel cell 1 is lowered, so that the water recovery amount in the water recovery device 60 is increased and the water shortage is eliminated.
According to the embodiment described above, the fuel cell required water amount map (which can calculate) the required water amount of the fuel cell 1 corresponding to the flow rate of air supplied to the fuel cell 1, the operating pressure of the fuel cell, and the state of intake air (which can be calculated). 2) and the humidification performance of the humidifier 50 according to the flow rate of air supplied to the fuel cell 1, the operating pressure of the fuel cell 1, the state of intake air and the state of exhaust of the fuel cell 1 (supply to the fuel cell 1). A humidifier supply water amount map (FIG. 3) for calculating (amount of water) and a flow rate of air supplied to the fuel cell 1 in order to set the air discharged from the compressor 11 to a predetermined temperature and humidity. A water injection supply water amount map (FIG. 4) that calculates (calculates) the injection supply water amount of the water injection valve 55 according to the operating pressure of 1, the state of intake air, and the exhaust state of the fuel cell is created. Fuel cell based on the map The total amount of supplied water (FIG. 5) that is the sum of the humidified supply water amount (FIG. 3) and the injected supply water amount (FIG. 4) in accordance with the flow rate of air supplied, the state of intake air, and the exhaust state of the fuel cell 1 ) Is created in the operating pressure setting map (FIG. 6) in which the fuel cell required humidification satisfaction line is set within the required water amount range of the fuel cell 1 (FIG. 2). The operating pressure of the fuel cell 1 is determined by referring to the operating pressure setting map (FIG. 6) based on the flow rate of air supplied to the fuel cell 1, the state of intake air, and the exhaust state of the fuel cell 1. Set on the required humidification satisfaction line. As a result, it is possible to set an operating pressure at which appropriate water injection can be performed on the high-temperature air discharged from the compressor 11 in accordance with the operating state of the system. Can be supplied stably. Thereby, the power generation efficiency of the fuel cell 1 can always be kept high.

また、燃料電池要求加湿満足線上で、かつ圧縮機11の高効率線に近づけるように運転圧力を設定するようにしたから、システム全体としてより高効率な運転を実現できる。
さらに、貯水タンク62内の水量(又は予測水量)が所定量以下となったときは水不足のおそれがあると判断して、燃料電池1の冷却水量を増加させるので水回収装置60による水回収量が増加して水不足を解消できる。これにより、圧縮機11の高温化や燃料電池1の発電効率の低下を防止できる。
Further, since the operation pressure is set so as to be close to the fuel cell required humidification satisfaction line and close to the high efficiency line of the compressor 11, more efficient operation can be realized as the entire system.
Further, when the amount of water in the water storage tank 62 (or the predicted amount of water) is less than or equal to a predetermined amount, it is determined that there is a risk of water shortage, and the amount of cooling water in the fuel cell 1 is increased. Increases the water shortage. Thereby, the high temperature of the compressor 11 and the fall of the power generation efficiency of the fuel cell 1 can be prevented.

図8は、別の実施形態に係る燃料電池システムの運転(圧力)制御の別の方法を示すフローチャートである。この実施形態は、上記第1実施形態(図7)に対して、さらに水噴射供給水量を低減させることにより、水不足を早期に解消しつつ少ない水量で燃料電池1の空気温度と湿度を適切に制御するようにしている。具体的には、水不足が予測される場合には、燃料電池1の冷却水量を増加させて水回収量を増加させるとともに、例えば図6中に示すように、a1→a2→a3→a4→a5のように運転圧力を低下させることにより噴射供給水量を低減させる。   FIG. 8 is a flowchart showing another method of operation (pressure) control of the fuel cell system according to another embodiment. This embodiment appropriately reduces the air temperature and humidity of the fuel cell 1 with a small amount of water while eliminating the water shortage at an early stage by further reducing the amount of water jet supplied water compared to the first embodiment (FIG. 7). I try to control it. Specifically, when water shortage is predicted, the cooling water amount of the fuel cell 1 is increased to increase the water recovery amount, and for example, as shown in FIG. 6, a1 → a2 → a3 → a4 → a5 As described above, the amount of injected supply water is reduced by lowering the operating pressure.

図8において、S101〜S104は図7のS1〜S4と同じである。
S105では、必要空気量、吸入空気の温度、圧力、湿度及び燃料電池1の排気の温度、圧力、湿度に基づいて、図6のマップを参照して、燃料電池要求加湿満足線上の運転圧力を読込む。
S106では、運転圧力低下補正フラグF1が設定されているか否かを判定する。運転圧力低下補正フラグが設定されていれば(F1=1であれば)S107に進み、設定されていなければ(F1=0であれば)S109に進む。運転圧力低下補正フラグは、後述するS116において水不足が予測される場合に設定される。
In FIG. 8, S101 to S104 are the same as S1 to S4 of FIG.
In S105, the operating pressure on the fuel cell required humidification satisfaction line is determined with reference to the map of FIG. 6 based on the required air amount, intake air temperature, pressure, humidity, and exhaust temperature, pressure, humidity of the fuel cell 1. Read.
In S106, it is determined whether or not the operating pressure drop correction flag F1 is set. If the operating pressure drop correction flag is set (if F1 = 1), the process proceeds to S107, and if not set (if F1 = 0), the process proceeds to S109. The operating pressure drop correction flag is set when water shortage is predicted in S116 described later.

S107では、S105で設定された燃料電池1の運転圧力を低下させる。具体的には、上述したように、設定された運転圧力が図6中のa1であればa2に、a2であればa3に、a3であればa4に、・・・というように運転圧力を低下させる。
S108では、低下させた運転圧力を燃料電池1の運転圧力として設定する。
S109では、S105で読込んだ運転圧力を燃料電池1の運転圧力として設定する。
In S107, the operating pressure of the fuel cell 1 set in S105 is reduced. Specifically, as described above, if the set operating pressure is a1 in FIG. 6, the operating pressure is set to a2, if it is a2, a3 if it is a3, a4 if it is a3, and so on. Reduce.
In S108, the reduced operating pressure is set as the operating pressure of the fuel cell 1.
In S109, the operating pressure read in S105 is set as the operating pressure of the fuel cell 1.

S110では、必要空気量、S108又はS109で設定した運転圧力に基づいて、圧縮機11の回転数及び供給通路開閉弁12の開度を設定する。
S111では、吸入空気の温度、圧力、湿度及び燃料電池1の排気の温度、圧力、湿度に基づいて、水噴射供給水量マップ(図4)を参照して水噴射量を設定する。
S112では、設定した圧縮機11の回転数、供給通路開閉弁12の開度となるように圧縮機11及び供給通路開閉弁12を制御し、設定した水噴射量を噴射するように水噴射弁55を開弁駆動する。
In S110, the rotation speed of the compressor 11 and the opening degree of the supply passage opening / closing valve 12 are set based on the required air amount and the operating pressure set in S108 or S109.
In S111, the water injection amount is set with reference to the water injection supply water amount map (FIG. 4) based on the temperature, pressure, and humidity of the intake air and the temperature, pressure, and humidity of the exhaust of the fuel cell 1.
In S112, the compressor 11 and the supply passage opening / closing valve 12 are controlled so that the rotation speed of the compressor 11 and the opening degree of the supply passage opening / closing valve 12 are set, and the water injection valve is injected so as to inject the set water injection amount. 55 is opened.

S113では、図7のS9と同様、水量センサ110の検出信号に基づいて、貯水タンク62内の水量を検出する。なお、検出した貯水タンク62内の水量、水回収装置60による水回収量(の予測値)及び噴射供給水量等から貯水タンク62内の水量の変化を予測して、予測水量を検出するようにしてもよい。
S114では、検出した貯水タンク62内の水量(又は予測水量)が所定量以下であるか否か、すなわち、水不足が予測されるか否かを判定する。貯水タンク62内の水量(予測水量)が所定量以下であればS115に進む。一方、貯水タンク62内の水量(予測水量)が所定量を上回っていればS117に進み、運転圧力補正フラグを解除して(F1=0として)本フローを終了する。
In S113, the amount of water in the water storage tank 62 is detected based on the detection signal of the water amount sensor 110 as in S9 of FIG. The predicted water amount is detected by predicting the change in the water amount in the water storage tank 62 from the detected water amount in the water storage tank 62, the amount of water recovered by the water recovery device 60 (predicted value thereof), the amount of injected supply water, and the like. May be.
In S114, it is determined whether or not the detected water amount (or predicted water amount) in the water storage tank 62 is equal to or less than a predetermined amount, that is, whether or not water shortage is predicted. If the amount of water in the water storage tank 62 (predicted amount of water) is below a predetermined amount, the process proceeds to S115. On the other hand, if the water amount (predicted water amount) in the water storage tank 62 exceeds the predetermined amount, the process proceeds to S117, the operating pressure correction flag is canceled (F1 = 0), and this flow is ended.

S115では、冷却水供給装置3を制御して冷却水通路2を流通する冷却水量を増加させる。これにより、燃料電池1の温度が低下することになるので、水回収装置60での水回収量が増加し水不足を解消する。
S116では、運転圧力低下補正フラグを設定する(F1=1とする)。この運転圧力低下補正フラグが設定されることにより、次回の制御における運転圧力設定時に運転圧力が低めに設定されることになり(S106〜S108)、噴射供給水量が低減される。
In S115, the cooling water supply device 3 is controlled to increase the amount of cooling water flowing through the cooling water passage 2. As a result, the temperature of the fuel cell 1 is lowered, so that the water recovery amount in the water recovery device 60 is increased and the water shortage is eliminated.
In S116, an operating pressure drop correction flag is set (F1 = 1). By setting the operating pressure drop correction flag, the operating pressure is set lower when the operating pressure is set in the next control (S106 to S108), and the amount of injected supply water is reduced.

この実施形態によると、貯水タンク62内の水量(又は予測水量)が所定量以下となったときは水不足のおそれがあると判断して、燃料電池1の冷却水量を増加させるとともに運転圧力を低下させるので、水回収装置60による水回収量の増加と噴射供給水量の低減とによって、より速やかに水不足を解消できる。また、運転圧力を低下させることにより、少ない水噴射量であっても燃料電池1の空気温度及び湿度を適切に制御することができる。なお、この実施形態において水回収量を増加させる部分を省略して構成してもよい。   According to this embodiment, when the amount of water (or predicted amount of water) in the water storage tank 62 falls below a predetermined amount, it is determined that there is a risk of water shortage, and the cooling water amount of the fuel cell 1 is increased and the operating pressure is decreased. Therefore, the shortage of water can be solved more quickly by increasing the amount of water recovered by the water recovery device 60 and reducing the amount of jet supply water. Further, by reducing the operating pressure, the air temperature and humidity of the fuel cell 1 can be appropriately controlled even with a small water injection amount. In this embodiment, the portion for increasing the water recovery amount may be omitted.

本発明の実施形態に係る燃料電池システムの模式的に示した図である。1 is a diagram schematically illustrating a fuel cell system according to an embodiment of the present invention. 燃料電池の要求水量(加湿要求)を示すマップ例である。It is an example map which shows the request | requirement water amount (humidification request | requirement) of a fuel cell. 加湿器の性能(加湿器による供給水量)を示すマップ例である。It is an example of a map which shows the performance (the amount of water supplied by a humidifier) of a humidifier. 噴射供給水量(水噴射による供給水量)を示すマップ例である。It is an example of a map which shows the amount of injection supply water (the amount of supply water by water injection). 総供給水量(加湿器及び水噴射による供給水量)を示すマップ例である。It is an example of a map which shows the total supply water amount (the supply water amount by a humidifier and water injection). 燃料電池の運転圧力を設定する際に参照するマップ例である。It is an example of a map referred when setting the operating pressure of a fuel cell. 実施形態に係る燃料電池システムの運転制御を示すフローチャートである。It is a flowchart which shows the operation control of the fuel cell system which concerns on embodiment. 別の実施形態に係る燃料電池のシステムの運転制御を示すフローチャート(1)である。It is a flowchart (1) which shows the operation control of the system of the fuel cell which concerns on another embodiment. 別の実施形態に係る燃料電池のシステムの運転制御を示すフローチャート(2)である。It is a flowchart (2) which shows the operation control of the system of the fuel cell which concerns on another embodiment.

符号の説明Explanation of symbols

1…燃料電池、2…冷却水通路、3…冷却水供給装置(冷却手段)、10…空気供給通路、11…圧縮機(空気圧送手段)、12…供給通路開閉弁、20…空気排出通路、30…水素供給通路、40…水素循環通路、50…加湿器(加湿手段)、55…水噴射弁、60…水回収装置、62…貯水タンク、101,104…温度センサ、102,105…圧力センサ、103,106…湿度センサ、107…水量センサ
DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Cooling water passage, 3 ... Cooling water supply apparatus (cooling means), 10 ... Air supply passage, 11 ... Compressor (pneumatic feeding means), 12 ... Supply passage opening / closing valve, 20 ... Air discharge passage , 30 ... Hydrogen supply passage, 40 ... Hydrogen circulation passage, 50 ... Humidifier (humidification means), 55 ... Water injection valve, 60 ... Water recovery device, 62 ... Water storage tank, 101, 104 ... Temperature sensor, 102, 105 ... Pressure sensor, 103, 106 ... Humidity sensor, 107 ... Water volume sensor

Claims (5)

吸入空気を加湿する加湿手段を、燃料電池へ空気を圧送する空気圧送手段の上流側に配置するとともに、前記空気圧送手段又はその近傍に水を噴射する水噴射手段を有する燃料電池システムにおいて、
前記吸入空気の状態を検出する吸入空気状態検出手段と、
前記燃料電池の排気の状態を検出する排気状態検出手段と、
前記燃料電池に供給される空気流量、前記燃料電池の運転圧力及び前記吸入空気の状態に応じた前記燃料電池の要求水量を算出する要求水量算出手段と、
前記燃料電池に供給される空気流量、前記燃料電池の運転圧力、前記吸入空気の状態及び前記燃料電池の排気の状態に応じた前記加湿手段の前記燃料電池への供給水量を算出する加湿手段供給水量算出手段と、
前記空気圧送手段から吐出される空気を所定の温度及び湿度にするために、前記燃料電池に供給される空気流量、前記燃料電池の運転圧力、前記吸入空気の状態及び前記燃料電池の排気の状態に応じた前記水噴射手段の噴射供給水量を算出する噴射供給水量算出手段と、
前記燃料電池に供給される空気流量、前記吸入空気の状態及び前記燃料電池の排気の状態に応じて、前記加湿手段の供給水量と前記水噴射手段の噴射供給水量とを合算した総供給水量が前記燃料電池の要求水量範囲内となるように前記燃料電池の運転圧力を設定する運転圧力設定手段と、
を備えたことを特徴とする燃料電池システム。
In the fuel cell system, the humidifying means for humidifying the intake air is disposed on the upstream side of the pneumatic feeding means for pumping the air to the fuel cell, and the water feeding means for jetting water to the pneumatic feeding means or the vicinity thereof.
Intake air state detection means for detecting the state of the intake air;
An exhaust state detecting means for detecting an exhaust state of the fuel cell;
A required water amount calculating means for calculating a required water amount of the fuel cell in accordance with a flow rate of air supplied to the fuel cell, an operating pressure of the fuel cell, and a state of the intake air;
Humidifying means supply for calculating the amount of water supplied to the fuel cell by the humidifying means according to the flow rate of air supplied to the fuel cell, the operating pressure of the fuel cell, the state of the intake air, and the exhaust state of the fuel cell Water amount calculation means;
In order to set the air discharged from the pneumatic feeding means to a predetermined temperature and humidity, the flow rate of air supplied to the fuel cell, the operating pressure of the fuel cell, the state of the intake air, and the state of exhaust of the fuel cell An injection supply water amount calculation means for calculating an injection supply water amount of the water injection means according to
According to the flow rate of air supplied to the fuel cell, the state of the intake air, and the exhaust state of the fuel cell, the total supply water amount is the sum of the supply water amount of the humidifying means and the injection supply water amount of the water injection means. An operating pressure setting means for setting an operating pressure of the fuel cell so as to be within a required water amount range of the fuel cell;
A fuel cell system comprising:
前記運転圧力設定手段は、前記空気圧送手段の特性曲線上で高効率点を結んだ高効率線の近傍となるように前記燃料電池の運転圧力を設定することを特徴とする請求項1記載の燃料電池システム。   2. The operating pressure of the fuel cell according to claim 1, wherein the operating pressure setting means sets the operating pressure of the fuel cell so as to be in the vicinity of a high efficiency line connecting high efficiency points on a characteristic curve of the pneumatic feeding means. Fuel cell system. 前記燃料電池の排気から水を回収する水回収手段と、
前記水回収手段により回収した水を蓄える貯水手段と、
前記貯水手段に蓄えらた水量を検出する水量検出手段と、を備え、
前記水量検出手段により検出した水量が所定量以下のときは、前記水回収手段による水回収量を増加させることを特徴とする請求項1又は請求項2記載の燃料電池システム。
Water recovery means for recovering water from the exhaust of the fuel cell;
Water storage means for storing water recovered by the water recovery means;
Water amount detection means for detecting the amount of water stored in the water storage means,
3. The fuel cell system according to claim 1, wherein when the amount of water detected by the water amount detection unit is equal to or less than a predetermined amount, the amount of water recovered by the water recovery unit is increased.
前記燃料電池に冷却水を供給して発電中に生じる熱を除去する冷却手段を備え、
前記水量検出手段により検出した水量が所定量以下のときは、前記燃料電池に供給する冷却水の流量を増加することを特徴とする請求項3記載の燃料電池システム。
A cooling means for removing heat generated during power generation by supplying cooling water to the fuel cell;
4. The fuel cell system according to claim 3, wherein when the amount of water detected by the water amount detection means is less than or equal to a predetermined amount, the flow rate of cooling water supplied to the fuel cell is increased.
前記燃料電池の排気から水を回収する水回収手段と、
前記水回収手段により回収した水を蓄える貯水手段と、
前記貯水手段に蓄えらた水量を検出する水量検出手段と、を備え、
前記水量検出手段により検出した水量が所定量以下のときは、前記燃料電池の運転圧力を低下させることを特徴とする請求項1〜4のいずれか1つに記載の燃料電池システム。
Water recovery means for recovering water from the exhaust of the fuel cell;
Water storage means for storing water recovered by the water recovery means;
Water amount detection means for detecting the amount of water stored in the water storage means,
The fuel cell system according to any one of claims 1 to 4, wherein when the amount of water detected by the water amount detection means is equal to or less than a predetermined amount, the operating pressure of the fuel cell is reduced.
JP2004354023A 2004-12-07 2004-12-07 Fuel cell system Pending JP2006164728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354023A JP2006164728A (en) 2004-12-07 2004-12-07 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354023A JP2006164728A (en) 2004-12-07 2004-12-07 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006164728A true JP2006164728A (en) 2006-06-22

Family

ID=36666496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354023A Pending JP2006164728A (en) 2004-12-07 2004-12-07 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2006164728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170927A (en) * 2009-01-26 2010-08-05 Honda Motor Co Ltd Fuel cell system
JP2011216236A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Fuel cell system including water injection means
JP2019079650A (en) * 2017-10-23 2019-05-23 株式会社デンソー Fuel cell system for vehicle
JP2021051955A (en) * 2019-09-26 2021-04-01 アイシン精機株式会社 Fuel cell system
CN113921982A (en) * 2021-09-29 2022-01-11 潍柴动力股份有限公司 Fuel cell vehicle exhaust device and control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170927A (en) * 2009-01-26 2010-08-05 Honda Motor Co Ltd Fuel cell system
JP2011216236A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Fuel cell system including water injection means
US8748048B2 (en) 2010-03-31 2014-06-10 Honda Motor Co., Ltd. Fuel cell system including water injection device and return passage bypassing compressor
JP2019079650A (en) * 2017-10-23 2019-05-23 株式会社デンソー Fuel cell system for vehicle
JP2021051955A (en) * 2019-09-26 2021-04-01 アイシン精機株式会社 Fuel cell system
JP7279599B2 (en) 2019-09-26 2023-05-23 株式会社アイシン fuel cell system
CN113921982A (en) * 2021-09-29 2022-01-11 潍柴动力股份有限公司 Fuel cell vehicle exhaust device and control method
CN113921982B (en) * 2021-09-29 2023-10-20 潍柴动力股份有限公司 Exhaust device of fuel cell vehicle and control method

Similar Documents

Publication Publication Date Title
US6696192B2 (en) Fuel cell system
JP5324522B2 (en) Fuel cell system
CA2592053A1 (en) Alkaline fuel cell system
US10784526B2 (en) Fuel cell vehicle and control method of fuel cell vehicle
JP6258379B2 (en) Control method of fuel cell system
US11322760B2 (en) Fuel cell system and method for controlling fuel cell system
US8748048B2 (en) Fuel cell system including water injection device and return passage bypassing compressor
CN109390612B (en) Fuel cell system and control method thereof
JP2002246045A (en) Fuel cell system
JP4844352B2 (en) Control device for fuel cell system
JP2007287540A (en) Fuel cell system, and vehicle mounted with fuel cell system
JP2006164728A (en) Fuel cell system
JP2003178778A (en) Fuel cell system
JP2006100101A (en) Fuel cell system and its control method as well as vehicle
JP2007184136A (en) Fuel cell system
JP5407662B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2009224179A (en) Fuel cell system
JP2005079006A (en) Fuel cell system
JP7137436B2 (en) fuel cell system
JP2007311087A (en) Fuel cell system, and ion removal method in cooling system in the same
JP2005353425A (en) Fuel cell system
KR100986385B1 (en) Device and method for controlling APS of fuel cell system
US8273501B2 (en) System and method for hydrating a proton exchange membrane fuel cell
JP2006040713A (en) Humidifying device for fuel cell
JP5103851B2 (en) Fuel cell system