JP2006162369A - Dual-wavelength ir image processing method - Google Patents

Dual-wavelength ir image processing method Download PDF

Info

Publication number
JP2006162369A
JP2006162369A JP2004352501A JP2004352501A JP2006162369A JP 2006162369 A JP2006162369 A JP 2006162369A JP 2004352501 A JP2004352501 A JP 2004352501A JP 2004352501 A JP2004352501 A JP 2004352501A JP 2006162369 A JP2006162369 A JP 2006162369A
Authority
JP
Japan
Prior art keywords
wavelength
target
infrared
distance
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004352501A
Other languages
Japanese (ja)
Other versions
JP4016113B2 (en
Inventor
Hisahiro Okamura
壽洋 岡村
Mitsuhiro Nagashima
満宏 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP2004352501A priority Critical patent/JP4016113B2/en
Publication of JP2006162369A publication Critical patent/JP2006162369A/en
Application granted granted Critical
Publication of JP4016113B2 publication Critical patent/JP4016113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of processing dual-wavelength IR images, capable of correctly obtaining the temperature of a target or temperature distribution of the target, by utilizing the IR rays of two wavelength regions if the the ratio of decay-rate of the two-wave length band IR rays, even if the decay-rates and the distance to the target are not known. <P>SOLUTION: By processing the dual-wavelength operations of each pixel or each pixel group of the target 1 photographed by the dual-wavelength IR camera 3 with the dual-wavelength IR image processing means 6, the temperature distribution of the target 1 can be calculated by making the ratio of the atmospheric attenuation ratios of the IR rays k<SB>1</SB>, k<SB>2</SB>be a certain known value, even if the distance to the target 1 and each atmospheric attenuation-ratio of the two wavelength IR rays k<SB>1</SB>, k<SB>2</SB>are not known. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、距離が不明な目標から放射され、大気を伝搬して減衰した2波長赤外線を2波長赤外線カメラで撮像し、2波長赤外線画像処理を行うことで、1波長では不可能な、目標の正確な温度分布を求めることが可能な2波長赤外線画像処理方法に関するものである。   In the present invention, a two-wavelength infrared camera radiated from a target whose distance is unknown, propagated through the atmosphere and attenuated is picked up by a two-wavelength infrared camera, and a two-wavelength infrared image processing is performed. The present invention relates to a two-wavelength infrared image processing method capable of obtaining an accurate temperature distribution.

一般的に、赤外線画像センサを用いて赤外線放射率が既知の目標の温度分布を測定するためには、目標からの赤外線を赤外線センサで捉え、センサの各画素が捉えた目標の赤外線放射量を測定するとともに、大気の減衰率及び目標までの距離から赤外線の減衰量を算出し、測定した赤外線放射量にその減衰量を加算して、目標の放出する正確な赤外線放射量から目標の温度分布を求めなければならない。つまり、大気の赤外線減衰率及び目標までの距離が既知でなければ、目標の温度分布を正確に測定することができない。   In general, in order to measure the temperature distribution of a target whose infrared emissivity is known using an infrared image sensor, the infrared radiation from the target is captured by the infrared sensor, and the target infrared radiation amount captured by each pixel of the sensor is measured. In addition to measuring, calculate the infrared attenuation from the atmospheric attenuation rate and the distance to the target, add the attenuation to the measured infrared radiation, and calculate the target temperature distribution from the accurate infrared radiation emitted by the target. Have to ask. In other words, unless the atmospheric infrared attenuation rate and the distance to the target are known, the target temperature distribution cannot be measured accurately.

しかしながら、野外測定においては、大気の赤外線減衰率及び目標までの距離を正確に求めることが困難な場合が多く、その場合には、赤外線減衰率及び目標までの距離を概略値に設定することで、目標の温度を測定していた。しかしながら、この方法では誤差が大きく目標の温度並びに温度分布を正確に求めることは困難であった。   However, in field measurements, it is often difficult to accurately determine the infrared attenuation rate of the atmosphere and the distance to the target. In that case, the infrared attenuation rate and the distance to the target are set to approximate values. Was measuring the target temperature. However, this method has a large error and it is difficult to accurately obtain the target temperature and temperature distribution.

なお、2波長赤外線画像を取得する装置としては、下記特許文献1などが知られているが、距離が不明な目標から放射された2波長赤外線の画像処理により、目標の正確な温度分布を求めることを目的としたものは見当たらない。   The following Patent Document 1 is known as an apparatus for acquiring a two-wavelength infrared image, and an accurate temperature distribution of the target is obtained by image processing of the two-wavelength infrared light emitted from a target whose distance is unknown. I don't see anything that aims to.

特開平9−166400号公報「2波長分離光学系による2波長赤外線画像ホーミング装置」Japanese Patent Application Laid-Open No. 9-166400 “2-wavelength infrared image homing apparatus using a two-wavelength separation optical system”

本発明は、上記の様な課題を解決するためになされたものであり、異なった2波長帯域の赤外線を用いることで、大気の赤外線減衰率及び目標までの距離が不明であっても、2波長赤外線帯域の減衰率の比が既知であれば、目標の温度、さらには温度分布を正確に求めることが可能な2波長赤外線画像処理方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. By using infrared rays of two different wavelength bands, the infrared ray attenuation rate in the atmosphere and the distance to the target are unknown. It is an object of the present invention to provide a two-wavelength infrared image processing method capable of accurately obtaining a target temperature and further a temperature distribution if the ratio of the attenuation rate in the wavelength infrared band is known.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明に係る2波長赤外線画像処理方法は、2波長赤外線カメラで撮像した目標画像の画素又は画素群毎に2波長演算処理を行うことにより、目標までの距離及び2波長それぞれの赤外線大気減衰率が不明でも、前記2波長の赤外線大気減衰率の比を一定の既知の値として、前記目標の温度分布を算出することを特徴としている。   In order to achieve the above object, a two-wavelength infrared image processing method according to the present invention performs a two-wavelength calculation process for each pixel or pixel group of a target image imaged by a two-wavelength infrared camera, so Even if the infrared atmospheric attenuation rate of each of the two wavelengths is unknown, the target temperature distribution is calculated with the ratio of the infrared atmospheric attenuation rates of the two wavelengths as a constant known value.

また、前記2波長演算処理において、前記2波長のうちの少なくとも一方の赤外線大気減衰率が既知である場合、前記目標までの距離を算出する構成とすることが可能である。   In the two-wavelength calculation process, when the infrared atmospheric attenuation rate of at least one of the two wavelengths is known, the distance to the target can be calculated.

本発明に係る2波長赤外線画像処理方法によれば、目標までの距離が不明で、かつ大気の赤外線減衰率が不明であっても2波長の赤外線帯域のそれぞれの大気の減衰率の比が既知であれば、2波長赤外線カメラで撮像した目標の各画素毎(又は各画素群毎)に温度を求めることにより、目標の温度分布を正確に求めることができる。また大気の減衰率が既知の場合は、目標までの距離を求めることも可能である。   According to the two-wavelength infrared image processing method of the present invention, even if the distance to the target is unknown and the infrared attenuation rate of the atmosphere is unknown, the ratio of the atmospheric attenuation rates of the two-wavelength infrared bands is known. Then, the target temperature distribution can be accurately obtained by obtaining the temperature for each target pixel (or each pixel group) imaged by the two-wavelength infrared camera. If the atmospheric attenuation rate is known, the distance to the target can be obtained.

以下、本発明を実施するための最良の形態として、2波長赤外線画像処理方法の実施の形態を図面に従って説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a two-wavelength infrared image processing method will be described with reference to the drawings as the best mode for carrying out the present invention.

図1及び図2は本発明に係る2波長赤外線画像処理方法の実施の形態であって、図1は目標1から放射された2波長帯域の赤外線4,5が、大気2により減衰を受け、2波長赤外線カメラ3に入射されるときの説明図、図2は目標1から放射された直後と赤外線カメラ3に入射する直前の2波長の赤外線4,5の放射強度を示す説明図である。なお、説明を簡略化するために目標1の赤外線放射率を1(黒体)と仮定する。また、2波長赤外線カメラ3は2波長帯域の赤外線画像を同一画角、同一画素数で取得するものである。2波長赤外線カメラ3の後段には、該カメラ3からの出力画像を取り込んで、2波長赤外線カメラのそれぞれの帯域における対応画素毎に(2波長出力画像のそれぞれの対応画素毎に)それぞれの出力値と2波長赤外線の大気減衰率の比から、目標の温度分布(画素に対応した目標部分の温度)を求める2波長演算処理手段6が設けられている。   1 and 2 show an embodiment of a two-wavelength infrared image processing method according to the present invention. FIG. 1 shows that infrared waves 4 and 5 in a two-wavelength band emitted from a target 1 are attenuated by the atmosphere 2. FIG. 2 is an explanatory diagram showing the radiant intensity of two wavelengths of infrared rays 4 and 5 immediately after being emitted from the target 1 and immediately before being incident on the infrared camera 3. In order to simplify the explanation, it is assumed that the infrared emissivity of the target 1 is 1 (black body). The two-wavelength infrared camera 3 acquires infrared images in two wavelength bands with the same angle of view and the same number of pixels. The output image from the camera 3 is captured in the subsequent stage of the two-wavelength infrared camera 3 and output for each corresponding pixel in each band of the two-wavelength infrared camera (for each corresponding pixel of the two-wavelength output image). A two-wavelength arithmetic processing means 6 is provided for obtaining a target temperature distribution (temperature of the target portion corresponding to the pixel) from the ratio between the value and the atmospheric attenuation rate of the two-wavelength infrared rays.

図1において目標1から波長λ01の赤外線4及び波長λ23の赤外線5が放射されているものとする。それぞれの赤外線は、伝搬距離Lだけ伝搬し、2波長赤外線カメラ3で検出するものとする。大気2を伝搬中に、それぞれの大気減衰率k及びkにより、赤外線が減衰するものとする。 In FIG. 1, it is assumed that infrared rays 4 having a wavelength λ01 and infrared rays 5 having a wavelength λ23 are emitted from a target 1. Each infrared ray is propagated by a propagation distance L and is detected by the two-wavelength infrared camera 3. It is assumed that infrared rays are attenuated during propagation through the atmosphere 2 by the respective atmospheric attenuation rates k 1 and k 2 .

図2に減衰前後の赤外線放射強度を示す。Aを目標1から放射された直後の波長λ01の赤外線放射強度、Aを目標1から放射された直後の波長λ23の赤外線放射強度、Sを大気伝搬後の減衰した2波長赤外線カメラ3に入射する直前の波長λ01の赤外線放射強度、Sを大気伝搬後の減衰した2波長赤外線カメラ3に入射する直前の波長λ23の赤外線放射強度とする。 FIG. 2 shows the infrared radiation intensity before and after attenuation. Infrared radiation intensity of the wavelength λ01 immediately emitted to A 1 from the target 1, A infrared radiation intensity of the two wavelengths λ23 immediately after being emitted from the target 1, S 1 2-wavelength infrared camera 3 attenuated after air propagating infrared radiation intensity of the wavelength λ01 immediately before entering the S 2 to the infrared radiation intensity of the wavelengths λ23 just before entering the two-wavelength infrared camera 3 attenuated after atmospheric propagation in.

大気が同一温湿度で均一と仮定すれば、減衰率k及びkは一定であり、赤外線が距離Lだけ伝搬したとすると、(1)式及び(2)式が成立する。

Figure 2006162369

Figure 2006162369

(1)式及び(2)式は赤外線放射強度が大気中を指数関数的に減少することを示している。 Assuming that the atmosphere is uniform at the same temperature and humidity, the attenuation rates k 1 and k 2 are constant, and assuming that the infrared rays have propagated by the distance L, equations (1) and (2) are established.
Figure 2006162369

Figure 2006162369

Equations (1) and (2) indicate that the infrared radiation intensity decreases exponentially in the atmosphere.

(1)式及び(2)式における減衰率kとkの比をaとおくと

Figure 2006162369

(1)式、(2)式、(3)式から伝搬距離L、減衰率k、kを消去すると
Figure 2006162369
If the ratio of the attenuation rates k 1 and k 2 in Equations (1) and (2) is a,
Figure 2006162369

When the propagation distance L and attenuation factors k 1 and k 2 are deleted from the equations (1), (2) and (3)
Figure 2006162369

(4)式において、2波長赤外線カメラに入射する直前の赤外線放射強度S、Sは2波長赤外線カメラを用いて測定可能な値である。また(3)式の減衰率k及びkは大気の状態(温度・湿度等)で変動する値であるが、それぞれの変動率は経験的に等しいと考えられるため、その比aは一定の既知の値と考えられる。そこで

Figure 2006162369

Sを(5)式のように定義するとSは観測値であり、既知である。そこで(4)式は
Figure 2006162369

とおくことができる。 In the equation (4), the infrared radiation intensity S 1 and S 2 immediately before entering the two-wavelength infrared camera are values that can be measured using the two-wavelength infrared camera. In addition, the attenuation rates k 1 and k 2 in equation (3) are values that vary depending on the atmospheric conditions (temperature, humidity, etc.), but since the respective rates of variation are considered to be empirically equal, the ratio a is constant. Is considered a known value. Therefore
Figure 2006162369

If S is defined as in equation (5), S is an observed value and is known. So equation (4) is
Figure 2006162369

It can be said.

次に2波長赤外線カメラ3の感度を図3の様に仮定する。2波長赤外線カメラにおいて、短波長側の感度は波長λ0〜λ1の範囲にある。また長波長側の感度は波長λ2〜λ3の範囲にある。この波長範囲において、それぞれの赤外線大気減衰率k、kは一定とする(変動する場合は、平均をとる)。また波長λに対する赤外線カメラの感度をw(λ)とする。目標温度をT(絶対温度)とおくと、大気減衰が無い場合(L=0)の2波長赤外線カメラが測定する赤外線放射強度は、それぞれA及びAと一致するので、プランクの式から、

Figure 2006162369

Figure 2006162369
Next, the sensitivity of the two-wavelength infrared camera 3 is assumed as shown in FIG. In the two-wavelength infrared camera, the sensitivity on the short wavelength side is in the range of wavelengths λ0 to λ1. The sensitivity on the long wavelength side is in the range of wavelengths λ2 to λ3. In this wavelength range, the respective infrared atmospheric attenuation rates k 1 and k 2 are constant (when they vary, an average is taken). The sensitivity of the infrared camera with respect to the wavelength λ is w (λ). If the target temperature is T (absolute temperature), the infrared radiation intensity measured by the two-wavelength infrared camera when there is no atmospheric attenuation (L = 0) matches A 1 and A 2 respectively. ,
Figure 2006162369

Figure 2006162369

(7)式及び(8)式を計算の簡略化のためTの多項式で近似すると、

Figure 2006162369

Figure 2006162369

ここで、A及びAはそれぞれm1次数(m1:正整数)、m2次数(m2:正整数)のTの多項式関数となるが、(9)式及び(10)式の係数a及びbは、実験室内(L=0と見なすことができる)で温度Tを変えながら目標を2波長赤外線カメラで撮像し、その時の温度に対応するA及びAを測定し、最小二乗法から決定することができる。またm1及びm2は十分満足な近似が可能な値として設定するものとする。 When formulas (7) and (8) are approximated with a polynomial of T for simplification of calculation,
Figure 2006162369

Figure 2006162369

Here, A 1 and A 2 are polynomial functions of T of m1 order (m1: positive integer) and m2 order (m2: positive integer), respectively, and the coefficients a i and (9) and (10) b j is an image of a target with a two-wavelength infrared camera while changing the temperature T in the laboratory (which can be regarded as L = 0), and measures A 1 and A 2 corresponding to the temperature at that time, and the least square method Can be determined from In addition, m1 and m2 are set as values that allow sufficiently satisfactory approximation.

(9)式及び(10)式を(6)式に代入すると

Figure 2006162369

(11)式において、a、b、a、Sは既知であるから、(11)式は非線形方程式を解くためのアルゴリズムとして知られるニュートン法または二分法を用いて目標温度Tに関して解くことができる。つまり、目標を撮像した2波長赤外線カメラの2波長出力画像における対応する画素同士の出力値を処理することにより、目標の正確な温度分布(各画素に対応した目標部分の温度)を求めることができる。 Substituting Equation (9) and Equation (10) into Equation (6)
Figure 2006162369

In equation (11), a i , b j , a, and S are known, so equation (11) is solved for target temperature T using Newton's method or bisection method known as an algorithm for solving nonlinear equations. Can do. That is, by processing the output values of the corresponding pixels in the two-wavelength output image of the two-wavelength infrared camera that images the target, the target accurate temperature distribution (the temperature of the target portion corresponding to each pixel) can be obtained. it can.

なお、目標の赤外線放射率εが既知であり1より小さい場合は、プランクの式等を用いて黒体の温度から目標の温度に容易に換算することができる。   If the target infrared emissivity ε is known and smaller than 1, the black body temperature can be easily converted to the target temperature using Planck's equation or the like.

図1及び図2の実施の形態においては、2波長演算処理手段6が2波長赤外線カメラ3の観測値S、Sを取り込み、(5),(6),(11)式を演算することで、目標画像の画素毎に目標温度Tを求めることができる。なお、1画素毎に目標温度Tを演算する代わりに、隣接する複数画素を1つの画素群と考えて、画素群毎に目標温度Tを演算するようにしてもよい。 In the embodiment of FIGS. 1 and 2, the two-wavelength calculation processing means 6 takes in the observation values S 1 and S 2 of the two-wavelength infrared camera 3 and calculates the equations (5), (6), and (11). Thus, the target temperature T can be obtained for each pixel of the target image. Instead of calculating the target temperature T for each pixel, a plurality of adjacent pixels may be considered as one pixel group, and the target temperature T may be calculated for each pixel group.

以上の方法で目標温度Tを求めることができるが、(9)式からAが求まり、kが大気伝搬中一定で既知であれば、(1)式を変形して、

Figure 2006162369

(12)式から目標までの距離Lを求めることができる。本実施の形態においては、2波長演算処理手段6で減衰率kを既知として(12)式を演算することで距離Lを得ることができる。なお、減衰率kが既知であれば、A,S,kの代わりにA,S,kを用いて距離Lを求めることができる。 Although it is possible to obtain the target temperature T by the above method, (9) A 1 is obtained in decreasing expression, k 1 is equal known in air propagation constant, by modifying the equation (1),
Figure 2006162369

The distance L to the target can be obtained from the equation (12). In the present embodiment, the distance L can be obtained by calculating the equation (12) with the attenuation factor k 1 known by the two-wavelength calculation processing means 6. If the attenuation rate k 2 is known, the distance L can be obtained using A 2 , S 2 , k 2 instead of A 1 , S 1 , k 1 .

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) 2波長赤外線カメラ3で撮像した目標画像の画素又は画素群毎に、2波長演算処理手段6によって2波長演算処理(観測値S、Sを用いた(5),(6),(11)式の演算)を行うことにより、目標1までの距離L及び2波長それぞれの赤外線大気減衰率k,kが不明でも、前記2波長の赤外線大気減衰率の比aを一定の既知の値として、目標1の温度分布を算出することが可能である。 (1) For each pixel or pixel group of the target image captured by the two-wavelength infrared camera 3, the two-wavelength calculation processing means 6 performs two-wavelength calculation processing (using observed values S 1 and S 2 (5), (6) , (11) calculation), even if the distance L to the target 1 and the infrared atmospheric attenuation rates k 1 and k 2 of the two wavelengths are unknown, the ratio a of the infrared atmospheric attenuation rates of the two wavelengths is constant. As a known value, it is possible to calculate the temperature distribution of the target 1.

(2) 前記2波長演算処理において、前記2波長のうちの少なくとも一方の赤外線大気減衰率k又はkが既知である場合、目標1までの距離Lを算出することが可能である。 (2) In the two-wavelength operation processing, if the at least one of the infrared atmospheric attenuation factor of two wavelengths k 1 or k 2 are known, it is possible to calculate the distance L to the target 1.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る2波長赤外線画像処理方法の実施の形態であって、目標から放射された2波長帯域の赤外線が、大気により減衰を受け、2波長赤外線カメラに入射される場合の説明図である。FIG. 2 is an explanatory diagram of an embodiment of a two-wavelength infrared image processing method according to the present invention, in which infrared rays in a two-wavelength band emitted from a target are attenuated by the atmosphere and incident on a two-wavelength infrared camera . 本実施の形態において、目標から放射された直後と赤外線カメラに入射する直前の2波長の赤外線の放射強度を示す説明図である。In this Embodiment, it is explanatory drawing which shows the infrared radiation intensity | strength of two wavelengths immediately after radiating | emitting from a target and immediately before injecting into an infrared camera. 2波長赤外線カメラのそれぞれの波長帯域における感度曲線を示すグラフである。It is a graph which shows the sensitivity curve in each wavelength band of a 2 wavelength infrared camera.

符号の説明Explanation of symbols

1 目標
2 大気
3 2波長赤外線カメラ
4,5 赤外線
6 2波長演算処理手段
L 伝搬距離
DESCRIPTION OF SYMBOLS 1 Target 2 Air | atmosphere 3 2 wavelength infrared camera 4,5 Infrared 6 2 wavelength arithmetic processing means L Propagation distance

Claims (2)

2波長赤外線カメラで撮像した目標画像の画素又は画素群毎に2波長演算処理を行うことにより、目標までの距離及び2波長それぞれの赤外線大気減衰率が不明でも、前記2波長の赤外線大気減衰率の比を一定の既知の値として、前記目標の温度分布を算出することを特徴とする2波長赤外線画像処理方法。   Even if the distance to the target and the infrared atmospheric attenuation for each of the two wavelengths are unknown by performing the two-wavelength calculation processing for each pixel or pixel group of the target image captured by the two-wavelength infrared camera, the infrared atmospheric attenuation of the two wavelengths is unknown. A two-wavelength infrared image processing method, characterized in that the target temperature distribution is calculated with a ratio of a constant and a known value. 前記2波長演算処理において、前記2波長のうちの少なくとも一方の赤外線大気減衰率が既知である場合、前記目標までの距離を算出する請求項1記載の2波長赤外線画像処理方法。   2. The two-wavelength infrared image processing method according to claim 1, wherein, in the two-wavelength calculation process, when the infrared atmospheric attenuation rate of at least one of the two wavelengths is known, the distance to the target is calculated.
JP2004352501A 2004-12-06 2004-12-06 Two-wavelength infrared image processing method Active JP4016113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352501A JP4016113B2 (en) 2004-12-06 2004-12-06 Two-wavelength infrared image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352501A JP4016113B2 (en) 2004-12-06 2004-12-06 Two-wavelength infrared image processing method

Publications (2)

Publication Number Publication Date
JP2006162369A true JP2006162369A (en) 2006-06-22
JP4016113B2 JP4016113B2 (en) 2007-12-05

Family

ID=36664558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352501A Active JP4016113B2 (en) 2004-12-06 2004-12-06 Two-wavelength infrared image processing method

Country Status (1)

Country Link
JP (1) JP4016113B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095374A (en) * 2017-11-27 2019-06-20 シャープ株式会社 Detector, detector correction method, calibration method, and detector device
JP7393322B2 (en) 2020-12-17 2023-12-06 Jfeテクノリサーチ株式会社 Temperature measurement device, temperature measurement method and atmospheric measurement system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579082B (en) * 2020-05-09 2021-07-30 上海交通大学 Automatic error compensation method for infrared thermal imaging temperature measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095374A (en) * 2017-11-27 2019-06-20 シャープ株式会社 Detector, detector correction method, calibration method, and detector device
JP7393322B2 (en) 2020-12-17 2023-12-06 Jfeテクノリサーチ株式会社 Temperature measurement device, temperature measurement method and atmospheric measurement system

Also Published As

Publication number Publication date
JP4016113B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
CN108981822B (en) Reflected light elimination method for temperature deformation synchronous measurement
US9109885B2 (en) Optical sensor and sensing method using the same
Fu et al. Measurement performance of an optical CCD-based pyrometer system
JP2010127739A (en) Spectral sensitivity characteristic measurement apparatus and spectral sensitivity characteristic measurement method
JP6314798B2 (en) Surface defect detection method and surface defect detection apparatus
JP2007510152A (en) Infrared camera methods, uses and systems for determining the risk of condensation
US20150355030A1 (en) Equipment and method for intensity-temperature transformation of imaging system
JP2016033489A5 (en)
KR101867715B1 (en) Temperature measurement apparatus for tap hole of blast furnace
JP2007192579A (en) Temperature measuring device and method
US9516243B2 (en) Method and system for emissivity determination
JP2008268106A (en) Method of measuring temperature information
JP4016113B2 (en) Two-wavelength infrared image processing method
JP5956935B2 (en) Image processing method and image processing apparatus
JP4901246B2 (en) Spectral luminance distribution estimation system and method
JP4257436B2 (en) Infrared dual wavelength processing method
Clayburn et al. Method for monitoring GaAs photocathode heat cleaning temperature
JP2012008058A (en) Temperature measurement device
JP2002214047A (en) Measuring method and device for temperature distribution
JP2002303553A (en) Method and device for measuring temperature distribution
JP5077093B2 (en) Round bar number counting device and round bar number counting method
CN107631798A (en) The wavelength scaling method and system of push-broom type imaging spectrometer
KR20040010172A (en) Emissivity distribution measuring method and apparatus
JP2007174113A (en) Obstacle detection system and obstacle detection method
JP2001272278A (en) Imaging system and method for measuring temperature using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350