JP2006162197A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006162197A
JP2006162197A JP2004356951A JP2004356951A JP2006162197A JP 2006162197 A JP2006162197 A JP 2006162197A JP 2004356951 A JP2004356951 A JP 2004356951A JP 2004356951 A JP2004356951 A JP 2004356951A JP 2006162197 A JP2006162197 A JP 2006162197A
Authority
JP
Japan
Prior art keywords
indoor
air
air conditioner
throttle mechanism
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004356951A
Other languages
Japanese (ja)
Other versions
JP4555671B2 (en
Inventor
Katsuhiro Shimizu
克浩 清水
Hiroko Hongo
裕子 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004356951A priority Critical patent/JP4555671B2/en
Publication of JP2006162197A publication Critical patent/JP2006162197A/en
Application granted granted Critical
Publication of JP4555671B2 publication Critical patent/JP4555671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a healthy air conditioner capable of improving amenity. <P>SOLUTION: In this air conditioner having a cooling cycle and provided with a throttle mechanism of variable throttling quantity on the way of a flow channel of an indoor heat exchanger, the operation is performed in a state that the throttle mechanism is transferred to a minimum flow rate side in a case of air conditioning load where a compressor is intermittently operated so far as a set state of the throttle mechanism is kept, in a normal cooling operation where the throttle mechanism is set to a maximum flow rate side and the air conditioner is operated in the cooling cycle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は空気調和機に係り、特に室内熱交換器の流路途中に設けられた絞り量可変の絞り機構を備え、冷房サイクルでの断続特性を回避し、安定した連続運転を行う空気調和機に関する。   The present invention relates to an air conditioner, and in particular, an air conditioner that includes a throttle mechanism with a variable throttle amount provided in the middle of a flow path of an indoor heat exchanger, avoids intermittent characteristics in a cooling cycle, and performs stable continuous operation. About.

従来、低負荷時の冷房運転では、室内温度が低下して行き最小能力を下回る空調負荷条件になると圧縮機を停止し、再び温度が上昇すると運転を再開するといった断続運転をしていた。その結果、室温は±1℃以上、湿度も±5%程度のハンチングが生じ、ユーザーにとって快適性に欠けるものであった。また最小能力をあまり低減できない圧縮機が使用されている空気調和機において、断続運転した場合、圧縮機ON時に冷気が床面に落ち込み、最小能力を低減できる圧縮機が使用されている空気調和機における連続運転に比べ、足下の冷えが顕著となり、健康面での不具合もあった。   Conventionally, in a cooling operation at a low load, the compressor is stopped when the air temperature load condition falls below the minimum capacity due to a decrease in the room temperature, and the operation is restarted when the temperature rises again. As a result, hunting occurs at room temperature of ± 1 ° C. or higher and humidity of about ± 5%, which is not comfortable for the user. Also, in an air conditioner that uses a compressor that cannot reduce the minimum capacity so much, when the compressor is turned on, cold air falls to the floor when the compressor is turned on, and an air conditioner that uses a compressor that can reduce the minimum capacity Compared to continuous driving in Japan, cold feet were noticeable and there were health problems.

なお、特許文献1には、室内熱交換器の流路途中に絞り量可変の絞り機構を設け、この絞り機構を用いて再熱除湿を行い、快適性を向上させた空気調和機が提案されているが、これは、室内へ冷却除湿した空気を室内の温度と等温度で吹き出すことが示されているのみで、圧縮機の運転との関係については示されていない。
特開2004−108618号公報
Patent Document 1 proposes an air conditioner in which a throttle mechanism with a variable throttle amount is provided in the middle of the flow path of the indoor heat exchanger, and reheat dehumidification is performed using this throttle mechanism to improve comfort. However, this only shows that the air cooled and dehumidified into the room is blown out at the same temperature as the room temperature, and does not show the relationship with the operation of the compressor.
JP 2004-108618 A

本発明は上述した事情を考慮してなされたもので、快適性が向上し健康的な空気調和機を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide a healthy air conditioner with improved comfort.

上述した目的を達成するため、本発明に係る空気調和機は、能力可変の圧縮機、室外熱交換器、室外側絞り機構、室内熱交換器を配管接続すると共に、室内熱交換器の流路途中に絞り量可変の室内側絞り機構を設置した冷凍サイクルを有する空気調和機において、前記室内側絞り機構を最大流量側に設定し、前記冷房サイクルで運転する通常冷房運転時、圧縮機の最小能力を下回る空調負荷条件と判定した場合に、前記室内側絞り機構を最小流量側に移行させた状態で運転を行なう運転モードを備えたことを特徴とする。   In order to achieve the above-described object, an air conditioner according to the present invention includes a variable capacity compressor, an outdoor heat exchanger, an outdoor throttle mechanism, and an indoor heat exchanger connected by piping, and a flow path of the indoor heat exchanger. In an air conditioner having a refrigeration cycle in which an indoor throttle mechanism with a variable throttle amount is installed in the middle, the indoor throttle mechanism is set to the maximum flow rate side, and during normal cooling operation that operates in the cooling cycle, the minimum of the compressor When it is determined that the air conditioning load condition is lower than the capacity, an operation mode is provided in which the operation is performed in a state in which the indoor throttle mechanism is shifted to the minimum flow rate side.

本発明に係る空気調和機によれば、快適性が向上し健康的な空気調和機を提供することができる。   According to the air conditioner according to the present invention, comfort can be improved and a healthy air conditioner can be provided.

以下、本発明に係る空気調和機の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of an air conditioner according to the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係る空気調和機の概念図である。   FIG. 1 is a conceptual diagram of an air conditioner according to an embodiment of the present invention.

図1に示すように、本実施形態に係る空気調和機1の冷凍サイクル2は、圧縮機3、四方弁4、室外空気との熱交換を行う室外熱交換器5、この室外熱交換器5からの液冷媒を絞り減圧する電子膨張弁などで構成する室外側絞り機構6、室内空気と熱交換を行う第1室内熱交換器7および第2室内熱交換器8、この第1室内熱交換器7と第2室内熱交換器8の間に介在した開放と絞りを切換可能な室内側絞り機構9が配管接続されている。なお、この室内側絞り機構9は、冷房サイクルにおいて、通常冷房運転時には、最大流量側である全開、再熱除湿運転時には最小流量側である絞り状態に切換る構成であり、通常閉弁時に弁と弁座の隙間などで絞り機能を行なう構成での開閉弁、キャピラリチューブと開閉弁を並列接続させた構成、あるいは絞り開度が連続的に変化可能な電子膨張弁などが使用され、弁を開閉することで最大流量側と最小流量側とを切り換える構成となっている。   As shown in FIG. 1, the refrigeration cycle 2 of the air conditioner 1 according to this embodiment includes a compressor 3, a four-way valve 4, an outdoor heat exchanger 5 that performs heat exchange with outdoor air, and the outdoor heat exchanger 5. An outdoor expansion mechanism 6 composed of an electronic expansion valve that squeezes and depressurizes the liquid refrigerant from the first, a first indoor heat exchanger 7 and a second indoor heat exchanger 8 that exchange heat with room air, and this first room heat exchange. An indoor throttle mechanism 9 that can be switched between open and throttle interposed between the heat exchanger 7 and the second indoor heat exchanger 8 is connected by piping. In the cooling cycle, the indoor throttle mechanism 9 is configured to switch to a fully open state on the maximum flow rate side during normal cooling operation, and to a throttle state on the minimum flow rate side during reheat dehumidifying operation. An on-off valve with a configuration that performs a throttling function between the valve seat and the valve seat, a configuration in which a capillary tube and an on-off valve are connected in parallel, or an electronic expansion valve whose throttle opening can be continuously changed is used. The maximum flow rate side and the minimum flow rate side are switched by opening and closing.

また、図2に示すように、空気調和機1には制御装置10が設けられ、この制御装置10によりインバータ装置11を介して圧縮機3の回転制御を行い、さらに、両絞り機構6、9、室外熱交換器5に送風する室外送風機12、両室内熱交換器7、8に送風する室内送風機13が制御され、さらに、室内温度センサー14等必要なセンサーが接続されている。   As shown in FIG. 2, the air conditioner 1 is provided with a control device 10, which controls the rotation of the compressor 3 through the inverter device 11. Further, the throttle mechanisms 6, 9 are controlled. The outdoor fan 12 that blows air to the outdoor heat exchanger 5 and the indoor fan 13 that blows air to the indoor heat exchangers 7 and 8 are controlled, and necessary sensors such as the indoor temperature sensor 14 are connected.

図1において、室外側絞り機構6を最小流量側にし室内側絞り機構9を最大絞り側にした通常運転時における冷房サイクルの冷房除湿運転を説明する。圧縮機3で圧縮された冷媒は、四方弁4を介して室外熱交換器5に送られ、室外空気と熱交換した後室外側絞り機構6で減圧され、第1室内熱交換器7に送られて蒸発され、室内側絞り機構9を通過して第2室内熱交換器8に送られ蒸発する。このため、室内空気は、第1室内熱交換器7および第2室内熱交換器8で冷却、除湿されるため、室内の高湿空気は、冷却除湿されて室内に送風される冷房運転が行なわれる。   In FIG. 1, the cooling / dehumidifying operation of the cooling cycle in the normal operation with the outdoor throttle mechanism 6 on the minimum flow rate side and the indoor throttle mechanism 9 on the maximum throttle side will be described. The refrigerant compressed by the compressor 3 is sent to the outdoor heat exchanger 5 through the four-way valve 4, decompressed by the rear outdoor throttle mechanism 6 that exchanges heat with the outdoor air, and sent to the first indoor heat exchanger 7. Then, it evaporates, passes through the indoor throttle mechanism 9, is sent to the second indoor heat exchanger 8, and evaporates. For this reason, since the indoor air is cooled and dehumidified by the first indoor heat exchanger 7 and the second indoor heat exchanger 8, the indoor humid air is cooled and dehumidified, and the cooling operation is performed in which the air is blown into the room. It is.

図1及び図3に、室外側絞り機構6を最大流量側にし室内側絞り機構9を最小流量側にした通常の再熱除湿運転を示す。圧縮機3で圧縮された冷媒は、四方弁4を介して室外熱交換器5に送られ、室外空気と熱交換した後室外側絞り機構6で減圧されずに第1室内熱交換器7に送られ凝縮され、室内側絞り機構9で減圧されて第2室内熱交換器8に送られ蒸発する。このとき、例えば第1室内熱交換器7の温度は35℃、第2熱交換器8の温度は12℃になる。このため、室内空気は、第1室内熱交換器7で加熱され、第2室内熱交換器8で冷却、除湿されるため、たとえば室内の吸込空気温度24℃の高湿空気は、22℃の低湿空気で吹出される再熱除湿運転が行なわれる。通常、この再熱除湿は、室内に空気を循環させて室内の除湿を行なう運転に適用される。   1 and 3 show a normal reheat dehumidifying operation in which the outdoor throttle mechanism 6 is set to the maximum flow rate side and the indoor throttle mechanism 9 is set to the minimum flow rate side. The refrigerant compressed by the compressor 3 is sent to the outdoor heat exchanger 5 through the four-way valve 4 and exchanges heat with the outdoor air. It is sent and condensed, depressurized by the indoor side throttle mechanism 9, sent to the second indoor heat exchanger 8 and evaporated. At this time, for example, the temperature of the first indoor heat exchanger 7 is 35 ° C., and the temperature of the second heat exchanger 8 is 12 ° C. For this reason, since indoor air is heated with the 1st indoor heat exchanger 7, and is cooled and dehumidified with the 2nd indoor heat exchanger 8, for example, the high humidity air whose indoor intake air temperature is 24 degreeC is 22 degreeC. A reheat dehumidification operation is performed with low humidity air. Usually, this reheat dehumidification is applied to the operation of dehumidifying the room by circulating air in the room.

また、図1及び図4には、前記通常の冷房運転時において、低能力運転時の運転制御を示す。空気調和機1は室外側絞り機構6を所定の最小流量側に絞り、室内側絞り機構9を最小流量側に絞る。冷房サイクル運転時には、室外送風機12の回転制御、室外側絞り機構6の開度制御も行われる。圧縮機3で圧縮された冷媒は、四方弁4を介して室外熱交換器5に送られ、室外空気と熱交換した後室外側絞り機構6で減圧され、第1室内熱交換器7に送られるが、室内側絞り機構9で減圧されるため、第1室内熱交換器7での冷媒は、蒸発されずに第2室内熱交換器8に送られ、ここで蒸発する。このため、第1室内熱交換器7は、中間圧となるため、第1室内熱交換器7の温度は24℃、第2熱交換器8は10℃程度になる。このような運転では、吹出口から送風される空気をショートサーキットにより室内側に送らずに吸込み側に戻す内部循環方式で、低能力運転を行なうことが出来、室内には、送風空気が送られないため、室内温度の低下を抑えることが出来ると共に、冷凍サイクルの運転継続を維持できる。   1 and 4 show operation control during low-capacity operation during the normal cooling operation. The air conditioner 1 throttles the outdoor throttle mechanism 6 to a predetermined minimum flow rate side, and throttles the indoor throttle mechanism 9 to the minimum flow rate side. During the cooling cycle operation, the rotation control of the outdoor fan 12 and the opening degree control of the outdoor throttle mechanism 6 are also performed. The refrigerant compressed by the compressor 3 is sent to the outdoor heat exchanger 5 through the four-way valve 4, decompressed by the rear outdoor throttle mechanism 6 that exchanges heat with the outdoor air, and sent to the first indoor heat exchanger 7. However, since the pressure is reduced by the indoor side throttle mechanism 9, the refrigerant in the first indoor heat exchanger 7 is sent to the second indoor heat exchanger 8 without being evaporated, and is evaporated here. For this reason, since the 1st indoor heat exchanger 7 becomes an intermediate pressure, the temperature of the 1st indoor heat exchanger 7 will be about 24 degreeC, and the 2nd heat exchanger 8 will be about 10 degreeC. In such an operation, low-performance operation can be performed by an internal circulation system in which air blown from the outlet is returned to the suction side without being sent to the indoor side by a short circuit, and blown air is sent into the room. Therefore, it is possible to suppress a decrease in the room temperature and to maintain the refrigeration cycle operation.

リモコン15からは、ユーザーの操作によりユーザーが希望する運転モード及び室内温度値が出力されるようになっている。   The remote controller 15 outputs an operation mode and a room temperature value desired by the user by a user operation.

さらに、図5に示すように、空気調和機1の室内機21は、室内機本体22を有し、この室内機本体22にはその前面部22aに前面吸込口23aが、上面部22bに上面吸込口23bが各々設けられ、さらに、前面部22aの下部には吹出口24が設けられている。また、室内機本体22内には、両吸込口23a、23bと吹出口24を連通するように送風路25が形成されており、この送風路25内に両吸込口23a、23bと対向して第1室内熱交換器7と、室内側絞り機構9と、第2室内熱交換器8が配置され、さらに、この両室内熱交換器7、8の後流側には室内送風機13が配置されている。   Furthermore, as shown in FIG. 5, the indoor unit 21 of the air conditioner 1 has an indoor unit main body 22. The indoor unit main body 22 has a front surface inlet 22a on the front surface portion 22a and an upper surface on the upper surface portion 22b. A suction port 23b is provided, and a blower port 24 is provided below the front surface portion 22a. Further, an air passage 25 is formed in the indoor unit body 22 so as to communicate both the suction ports 23a, 23b and the air outlet 24, and the air passage 25 faces the both air suction ports 23a, 23b. A first indoor heat exchanger 7, an indoor throttle mechanism 9, and a second indoor heat exchanger 8 are disposed, and an indoor blower 13 is disposed on the downstream side of the indoor heat exchangers 7 and 8. ing.

また、吹出口24には熱交換空気の上下方向の風向を設定する吹出用の上側ルーバ27a、下側ルーバ27bが設けられている。また、室内機本体22の前面部22aには、室内機本体22の前面を構成する前面パネル22cが前後方向に可動自在に取付けられており、この前面パネル22cは平滑面をなし、制御モータ(図示せず)を備えリンク機構を用いて、前面吸込口23aの閉成及び開放を行うようになっており、前面吸込口23aに当接させた状態で、その下端部22c1が吹出口24の上側前面側を覆う位置に延出するようになっている。   The blower outlet 24 is provided with a blower upper louver 27a and a lower louver 27b for setting the air direction in the vertical direction of the heat exchange air. Further, a front panel 22c constituting the front surface of the indoor unit body 22 is attached to the front part 22a of the indoor unit body 22 so as to be movable in the front-rear direction. The front panel 22c has a smooth surface, and has a control motor ( The front suction port 23a is closed and opened using a link mechanism with a link mechanism, and the lower end portion 22c1 of the blower outlet 24 is in contact with the front suction port 23a. It extends to a position covering the upper front side.

これにより、室内機21は図5に示すように、前面パネル22cを前面吸込口23aに当接させて閉じると共に、下端部22c1を吹出口24の上側前面側を覆うように延出して位置させ、かつ、下側ルーバ27bを垂下状態にした前面パネル全閉モードと、図6に示すように、前面パネル22cを前面吸込口23aより前方斜め上方に大きく移動させ、下端部22c1を吹出口24より上方に位置させ、かつ、両ルーバ27a、27bを前方方向に傾斜状態にした前面パネル全開モードと、図7に示すように、前面パネル22cを前面吸込口23aより前方に全開モードより小さく移動させた半開状態とし、前面下端部22c1を吹出口24の上側前面側を覆うように延出して位置させ、かつ、上ルーバ27aを前方上方向に傾斜、下ルーバ27bを水平状態にして、吹出口35を半分遮蔽した前面パネル半開モードを実現する。   As a result, as shown in FIG. 5, the indoor unit 21 closes the front panel 22c by contacting the front suction port 23a and extends the lower end portion 22c1 so as to cover the upper front side of the air outlet 24. In addition, the front panel fully closed mode in which the lower louver 27b is in the suspended state, and as shown in FIG. 6, the front panel 22c is largely moved forward and obliquely upward from the front suction port 23a, and the lower end portion 22c1 is moved to the outlet 24 The front panel full open mode in which the louvers 27a and 27b are inclined forward and the front panel 22c is moved forward from the front suction port 23a and smaller than the full open mode, as shown in FIG. The front lower end portion 22c1 is extended and positioned so as to cover the upper front side of the air outlet 24, and the upper louver 27a is inclined forward and upward. 27b and in the horizontal state, to realize the front panel half-opened mode shielded half outlet 35.

図5に示す前面パネル全閉モードにあっては、室内機21からの空調空気は下方にのみ吹き出され、図6に示す前面パネル全開モードでは、空調空気は前方水平方向にのみ吹き出され、図7に示す前面パネル半開モードでは、空調空気を前面パネル33cの裏側及び表面側の表面に沿って流し、吹き出した空気を室内空間に送風することなく再度吸い込む内部循環気流方式となる。   In the front panel fully closed mode shown in FIG. 5, the conditioned air from the indoor unit 21 is blown only downward, and in the front panel fully opened mode shown in FIG. 6, the conditioned air is blown only in the front horizontal direction. In the front panel half-open mode shown in FIG. 7, an internal circulation air flow method is adopted in which conditioned air is caused to flow along the back and front surfaces of the front panel 33 c and the blown air is sucked again without blowing into the indoor space.

上記のような空気調和機の冷房サイクル運転において、必要冷房能力の変化に応じて、以下のような制御がなされる。   In the cooling cycle operation of the air conditioner as described above, the following control is performed according to a change in the required cooling capacity.

図8に示す運転モードの説明図に示すように、例えば、図6に示す前面パネル全開モードで通常気流、室内側絞り機構9が最大流量側のゾーンAの冷房運転で運転していると、必要冷房能力が小さくなるにつれて、圧縮機回転数を順次減じ、ゾーンAの最小圧縮機回転数Anでの運転より小さな空調負荷になった場合には、室内側絞り機構9を最大流量側から最小流量側のゾーンBに変化させる。   As shown in the explanatory diagram of the operation mode shown in FIG. 8, for example, in the front panel fully open mode shown in FIG. 6, when the normal air flow and the indoor throttle mechanism 9 are operating in the cooling operation of the zone A on the maximum flow rate side, As the required cooling capacity decreases, the compressor rotational speed is decreased sequentially, and when the air conditioning load becomes smaller than the operation at the minimum compressor rotational speed An in zone A, the indoor throttle mechanism 9 is minimized from the maximum flow rate side. Change to zone B on the flow rate side.

この時、ゾーンBの圧縮機最小BnHzは次式を満足する。   At this time, the minimum compressor BnHz in zone B satisfies the following equation.

[数1]
圧縮機最小AnHz ≦ 圧縮機最小BnHz < 圧縮機定格Hz/2
[Equation 1]
Compressor minimum AnHz ≤ Compressor minimum BnHz <Compressor rating Hz / 2

また、室内設定温度、室内温度センサーに基づき、室外送風機12及び室外機絞り機構6を調整する。   Further, the outdoor fan 12 and the outdoor unit throttle mechanism 6 are adjusted based on the indoor set temperature and the indoor temperature sensor.

さらに、空調負荷が小さい場合には、空気流を図7に示す前面パネル半開モードの内部循環気流方式に切り換え、図4に示すようなゾーンCの運転とする。   Further, when the air conditioning load is small, the air flow is switched to the internal circulation air flow method in the front panel half-open mode shown in FIG. 7, and the operation in the zone C as shown in FIG.

また、ゾーンB、Cを採用するか否かは、リモコンの専用ボタン例えばやさしい気流ボタンにより切換可能にしてなる。   Further, whether or not to adopt zones B and C can be switched by a dedicated button on the remote controller, for example, a gentle airflow button.

このような制御を行なうことにより、ゾーンA(従来圧縮機の周波数可変範囲)〜ゾーンD(圧縮機OFF)まで、能力的に間断なく繋ぐことが可能となり、連続運転性が確保される。   By performing such control, it is possible to connect the zone A (conventional compressor frequency variable range) to the zone D (compressor OFF) without any interruption, and continuous operation is ensured.

室内側絞り機構9による絞り量制御と内部循環気流を採用することによって、必要冷房能力が小さくなるにつれて、最大流量側かつ通常気流での冷房運転から、最小流量側かつ通常気流での冷房運転へ、さらに、最小流量側かつ内部循環気流での冷房運転へと変化させることにより、図8に示す冷房A→冷房Bでは冷房能力抑制(室内温度低下抑制)により冷えすぎを防止し、冷房B→冷房Cでは室内機外へ吐出する気流を抑制でき、空気流による肌寒さを防止することで、体感冷房能力の連続性を向上させることができる。また、図8のゾーンB、Cでの従来例と本実施例との比較からもわかるように、従来の冷房運転ではでは、ゾーンAとゾーンDでの運転、即ち空調負荷に対し比較的大容量の冷房運転と停止の繰り返しによる運転で、比較的空調負荷の小さいゾーンB、Cでの運転は行われていなかったため、この領域での温度変動、運転時の冷たい空気の流れによる居住者の体表面の熱が奪われ、肌寒さや、足元が冷えるといった弊害を生じていたが、ゾーンB、Cでの低能力での運転継続により、居住域への冷気の落ち込みや室内温湿度の変動を抑制できるために、足下の冷えを防止でき、快適で健康的な空間を提供できる。また、圧縮機最小回転数での冷房能力が高い場合においても、同一の圧縮機回転数において、供給冷房能力を抑制した連続運転が可能となり、圧縮機断続運転での室内温度変動による不快な環境を回避でき、快適性が向上する。   By adopting the throttle amount control by the indoor throttle mechanism 9 and the internal circulation air flow, the cooling operation from the maximum flow rate side and the normal air flow is changed to the cooling operation at the minimum flow rate side and the normal air flow as the required cooling capacity decreases. Further, by changing to the cooling operation with the minimum flow rate side and the internal circulation airflow, the cooling A → cooling B shown in FIG. In the cooling C, the airflow discharged to the outside of the indoor unit can be suppressed, and the continuity of the sensory cooling ability can be improved by preventing the chill due to the airflow. Further, as can be seen from the comparison between the conventional example in zones B and C in FIG. 8 and the present embodiment, in the conventional cooling operation, the operation in zone A and zone D, that is, the air conditioning load is relatively large. Due to the repeated cooling and operation of the capacity, the operation in zones B and C with relatively small air conditioning load was not performed. Therefore, the temperature fluctuation in this region and the occupant's flow due to the cold air flow during operation Heat from the body surface was taken away, causing chills and cold feet, but due to continued low-capacity operation in Zones B and C, cool air dropped into the living area and fluctuations in room temperature and humidity Therefore, it is possible to prevent the feet from getting cold and provide a comfortable and healthy space. In addition, even when the cooling capacity at the minimum compressor speed is high, continuous operation with the supplied cooling capacity suppressed at the same compressor speed is possible, and an uncomfortable environment due to indoor temperature fluctuations during intermittent compressor operation. Can be avoided and comfort is improved.

また、本実施形態の空気調和機において、冷房運転中に室内側絞り機構9の絞り状態の切り換え制御をリモコン14により行なえるようになっているので、絞り最大側は省エネルギーに優れ、絞り最小側は快適性に優れ、ユーザーが自分の意志で選択できる効果がある。また、最小流量側に設定した冷房運転における圧縮機最大回転数を、通常冷房定格能力時の圧縮機回転数の半分以下、さらには圧縮機最小回転数と等しくすることにより、図9からもわかるように、消費電力の低減を図ることができる。   In the air conditioner of the present embodiment, the control of switching the throttle state of the indoor throttle mechanism 9 can be performed by the remote controller 14 during the cooling operation, so that the maximum throttle side is excellent in energy saving and the minimum throttle side. Is excellent in comfort and has the effect that the user can choose at his own will. Further, FIG. 9 also shows that the maximum compressor speed in the cooling operation set to the minimum flow rate side is equal to or less than half the compressor speed at the normal cooling rated capacity, and further equal to the minimum compressor speed. As described above, power consumption can be reduced.

なお、室内側絞り機構9は、無段階絞りあるいは価格を考量して2段階切り換えのものが用いられる。室内側絞り機構9が無段階絞りでない場合は、最小流量側に設定した冷房運転での圧縮機最小回転数を、前記最大流量側での圧縮機最小回転数よりも大きくすることにより、信頼性が確保できる。   As the indoor-side diaphragm mechanism 9, a stepless diaphragm or a two-stage switching mechanism that takes into consideration the price is used. When the indoor side throttle mechanism 9 is not a stepless throttle, reliability is improved by making the minimum compressor rotation speed in the cooling operation set to the minimum flow rate side larger than the minimum compressor rotation speed on the maximum flow rate side. Can be secured.

また、最小流量側に設定した冷房サイクルにおいて、設定温度と目標温度との偏差に基づく冷房能力調整は、室外送風機12の回転数制御と、第1室内熱交換器7と室外熱交換器5の間に設置された室外機絞り機構6の絞り量制御により行なわれることにより、圧縮機回転数を変えることなく、冷房能力を抑制でき、連続運転性を確保できる。   In the cooling cycle set to the minimum flow rate side, the cooling capacity adjustment based on the deviation between the set temperature and the target temperature is performed by controlling the rotational speed of the outdoor blower 12, the first indoor heat exchanger 7, and the outdoor heat exchanger 5. By performing the throttle amount control of the outdoor unit throttle mechanism 6 installed therebetween, the cooling capacity can be suppressed and the continuous operation can be ensured without changing the compressor rotation speed.

また、空気調和機は、睡眠中に、快適な睡眠状態を維持できるよう室内の温度状態を変化させる就寝モード運転を行なえる機能を備える。   In addition, the air conditioner has a function of performing a sleep mode operation that changes the indoor temperature state so that a comfortable sleep state can be maintained during sleep.

これは、室内温度を、就寝モード制御開始時から就寝モード制御終了までの間の室温変化特性曲線が前記就寝モード制御開始前のユーザー設定温度から室内温度が一旦漸減する漸減領域とその後制御終了時まで室内温度が漸増する漸増領域を有するように制御するものであり、あらかじめ記憶された就寝モード制御パターンに基づき就寝モード運転開始から就寝モード運転終了までの室内温度を変化させるように室内の空調運転を行なう。   This is because the room temperature change characteristic curve between the start of sleep mode control and the end of sleep mode control is a gradually decreasing region where the room temperature gradually decreases from the user set temperature before the start of sleep mode control, and after the end of control. The room air-conditioning operation is controlled so as to change the room temperature from the start of the sleep mode operation to the end of the sleep mode operation based on the sleep mode control pattern stored in advance. To do.

この就寝モード運転の設定は、リモコン15を用いて行なわれる。すなわち、リモコンに設けられた就寝モード設定スイッチ(図示せず)の操作で、室温温度とその継続時間を予め決められた就寝モードを設定したときに、これに応じて、室内側絞り機構9の絞り量が制御されることにより、睡眠中の軽負荷での温度変動を抑制し、±1℃内の正確な空調をすることで、入眠時の発汗抑制や入眠促進、起床時の体温上昇を促す効果が得られる。   The setting of the sleep mode operation is performed using the remote controller 15. That is, when the sleep mode setting switch (not shown) provided on the remote controller is operated to set the sleep mode in which the room temperature and the duration thereof are determined in advance, the indoor side diaphragm mechanism 9 is set accordingly. By controlling the amount of throttling, temperature fluctuations at light loads during sleep are suppressed, and accurate air conditioning within ± 1 ° C reduces sweating during sleep, promotes sleep, and increases body temperature when waking up An encouraging effect is obtained.

上述のように本実施形態の空気調和機によれば、快適性が向上し健康的空気調和が実現される。   As described above, according to the air conditioner of the present embodiment, comfort is improved and healthy air conditioning is realized.

本発明に係る空気調和機に用いられる冷凍サイクルの概念図。The conceptual diagram of the refrigerating cycle used for the air conditioner which concerns on this invention. 本発明に係る空気調和機に用いられる制御回路の概念図。The conceptual diagram of the control circuit used for the air conditioner which concerns on this invention. 本発明に係る空気調和機の再熱除湿運転状態を示す概念図。The conceptual diagram which shows the reheat dehumidification driving | running state of the air conditioner which concerns on this invention. 本発明に係る空気調和機の絞り機構最小流量側の冷房運転状態を示す概念図。The conceptual diagram which shows the air_conditioning | cooling operation state of the throttle mechanism minimum flow rate side of the air conditioner which concerns on this invention. 本発明に係る空気調和機の室内機の前面パネル全閉モードの縦断面図。The longitudinal cross-sectional view of the front panel full-close mode of the indoor unit of the air conditioner which concerns on this invention. 本発明に係る空気調和機の室内機の前面パネル全開モードの縦断面図。The longitudinal cross-sectional view of the front panel full open mode of the indoor unit of the air conditioner which concerns on this invention. 本発明に係る空気調和機の室内機の前面パネル半開モードの縦断面図。The longitudinal cross-sectional view of the front panel half-open mode of the indoor unit of the air conditioner which concerns on this invention. 本発明に係る空気調和機の運転モードの説明図。Explanatory drawing of the operation mode of the air conditioner which concerns on this invention. 本発明に係る空気調和機の除湿量と消費電力の関係を示す図。The figure which shows the relationship between the dehumidification amount of the air conditioner which concerns on this invention, and power consumption.

符号の説明Explanation of symbols

1…空気調和機、2…冷凍サイクル、3…圧縮機、4…四方弁、5…室外熱交換器、6…室外側絞り機構、7…第1室内熱交換器、8…第2室内熱交換器、9…室内側絞り機構、10…制御装置、11…インバータ装置、12…室外送風機、13…室内送風機、15…リモコン、21…室内機、22…室内機本体、22a…前面部、22b…上面部、22c…前面パネル、22c1…下端部、23a…前面吸込口、23b…上面吸込口、24…吹出口、27a…上側ルーバ、27b…下側ルーバ。   DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Refrigeration cycle, 3 ... Compressor, 4 ... Four-way valve, 5 ... Outdoor heat exchanger, 6 ... Outdoor throttle mechanism, 7 ... 1st indoor heat exchanger, 8 ... 2nd indoor heat Exchanger, 9 ... Indoor side throttle mechanism, 10 ... Control device, 11 ... Inverter device, 12 ... Outdoor fan, 13 ... Indoor fan, 15 ... Remote control, 21 ... Indoor unit, 22 ... Indoor unit body, 22a ... Front part, 22b ... Upper surface portion, 22c ... Front panel, 22c1 ... Lower end portion, 23a ... Front suction port, 23b ... Upper surface suction port, 24 ... Air outlet, 27a ... Upper louver, 27b ... Lower louver.

Claims (4)

能力可変の圧縮機、室外熱交換器、室外側絞り機構、室内熱交換器を配管接続すると共に、室内熱交換器の流路途中に絞り量可変の室内側絞り機構を設置した冷凍サイクルを有する空気調和機において、前記室内側絞り機構を最大流量側に設定して運転する通常冷房運転時、圧縮機の最小能力を下回る空調負荷条件と判定した場合に、前記室内側絞り機構を最小流量側に移行させた状態で運転を行なう運転モードを備えたことを特徴とする空気調和機。 The compressor has a variable capacity, an outdoor heat exchanger, an outdoor throttle mechanism, and an indoor heat exchanger, and has a refrigeration cycle in which an indoor throttle mechanism with a variable throttle amount is installed in the middle of the flow path of the indoor heat exchanger. In an air conditioner, when it is determined that the air conditioning load condition is lower than the minimum capacity of the compressor during normal cooling operation in which the indoor throttle mechanism is set to the maximum flow rate side, the indoor throttle mechanism is set to the minimum flow rate side. An air conditioner comprising an operation mode in which operation is performed in a state in which the air conditioner is shifted to. 前記室内側絞り機構の最小流量側に設定した運転モードにおける圧縮機最大回転数を、通常冷房定格能力時の最大回転数の半分以下とする制御手段を備えたことを特徴とする請求項1に記載の空気調和機。 2. The control unit according to claim 1, further comprising a control unit configured to set a maximum compressor rotational speed in an operation mode set on the minimum flow rate side of the indoor throttle mechanism to half or less of a maximum rotational speed at a normal cooling rated capacity. The air conditioner described. 就寝モード制御開始時から就寝モード制御終了までの間の室温変化特性曲線が設定温度から室内温度が一旦漸減する漸減領域とその後制御終了時まで室内温度が漸増する漸増領域を有するように制御する就寝モード制御パターンを備え、就寝モードの設定を行えるスイッチにより就寝モードを設定したとき、前記絞り機構の絞り量が制御される運転モードが設定されることを特徴とする請求項1に記載の空気調和機。 Sleeping control is performed so that the room temperature change characteristic curve from the start of sleep mode control to the end of sleep mode control has a gradually decreasing region where the room temperature gradually decreases from the set temperature and then a gradually increasing region where the room temperature gradually increases until the end of control. The air conditioning according to claim 1, wherein when the sleep mode is set by a switch having a mode control pattern and capable of setting the sleep mode, an operation mode in which a throttle amount of the throttle mechanism is controlled is set. Machine. 空気調和機の室内機前面に吸込口が、前面下部に吹出口が設けられ、室内機内部に室内熱交換器、室内側絞り機構と室内送風機が配置されると共に、前記吹出口より吹き出した空気を直接吸込口に吸い込ませる循環気流方式を採用したもので、必要冷房能力が小さくなるにつれて、前記最大流量側かつ通常気流での冷房運転から、前記最小流量側かつ通常気流での冷房運転へ、さらに、前記最小流量側かつ前記内部循環気流での冷房運転へと変化させることを特徴とする請求項1に記載の空気調和機。 An air inlet is provided at the front of the indoor unit of the air conditioner, and an air outlet is provided at the lower part of the front. An indoor heat exchanger, an indoor throttle mechanism, and an indoor fan are disposed inside the indoor unit, and the air blown out from the air outlet As the required cooling capacity is reduced, from the cooling operation at the maximum flow rate side and the normal air flow to the cooling operation at the minimum flow rate side and the normal air flow, as the required cooling capacity is reduced. The air conditioner according to claim 1, wherein the air conditioner is further changed to a cooling operation at the minimum flow rate side and the internal circulation airflow.
JP2004356951A 2004-12-09 2004-12-09 Air conditioner Expired - Fee Related JP4555671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356951A JP4555671B2 (en) 2004-12-09 2004-12-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356951A JP4555671B2 (en) 2004-12-09 2004-12-09 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006162197A true JP2006162197A (en) 2006-06-22
JP4555671B2 JP4555671B2 (en) 2010-10-06

Family

ID=36664405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356951A Expired - Fee Related JP4555671B2 (en) 2004-12-09 2004-12-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP4555671B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667354A (en) * 2009-09-28 2012-09-12 东芝开利株式会社 Air conditioner
KR101317980B1 (en) * 2008-09-24 2013-10-14 도시바 캐리어 가부시키가이샤 Air conditioner
WO2019225066A1 (en) * 2018-05-21 2019-11-28 パナソニックIpマネジメント株式会社 Air conditioner
JP2020070985A (en) * 2018-10-31 2020-05-07 ダイキン工業株式会社 Air conditioner
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180140A (en) * 1992-12-11 1994-06-28 Toshiba Corp Air-conditioner
JPH0771804A (en) * 1993-09-02 1995-03-17 Hitachi Ltd Air conditioner
JPH0996433A (en) * 1995-09-29 1997-04-08 Toshiba Corp Air conditioner
JP2002221373A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Method for controlling operation of air conditioner
JP2003254583A (en) * 2002-02-28 2003-09-10 Toshiba Kyaria Kk Air conditioner
JP2004093066A (en) * 2002-09-03 2004-03-25 Toshiba Kyaria Kk Air conditioner
JP2004108618A (en) * 2002-09-13 2004-04-08 Toshiba Kyaria Kk Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180140A (en) * 1992-12-11 1994-06-28 Toshiba Corp Air-conditioner
JPH0771804A (en) * 1993-09-02 1995-03-17 Hitachi Ltd Air conditioner
JPH0996433A (en) * 1995-09-29 1997-04-08 Toshiba Corp Air conditioner
JP2002221373A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Method for controlling operation of air conditioner
JP2003254583A (en) * 2002-02-28 2003-09-10 Toshiba Kyaria Kk Air conditioner
JP2004093066A (en) * 2002-09-03 2004-03-25 Toshiba Kyaria Kk Air conditioner
JP2004108618A (en) * 2002-09-13 2004-04-08 Toshiba Kyaria Kk Air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317980B1 (en) * 2008-09-24 2013-10-14 도시바 캐리어 가부시키가이샤 Air conditioner
US9010137B2 (en) 2008-09-24 2015-04-21 Toshiba Carrier Corporation Air conditioner
CN102667354A (en) * 2009-09-28 2012-09-12 东芝开利株式会社 Air conditioner
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019225066A1 (en) * 2018-05-21 2019-11-28 パナソニックIpマネジメント株式会社 Air conditioner
JP2019203606A (en) * 2018-05-21 2019-11-28 パナソニックIpマネジメント株式会社 Air conditioner
EP3798528A4 (en) * 2018-05-21 2021-07-14 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
CN112136007A (en) * 2018-05-21 2020-12-25 松下知识产权经营株式会社 Air conditioner
JP2020070985A (en) * 2018-10-31 2020-05-07 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP4555671B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4555671B2 (en) Air conditioner
JP4668769B2 (en) Air conditioner
JP2006317142A (en) Vane controlling method for ceiling type air conditioner
JP6906311B2 (en) Air conditioner
KR101679840B1 (en) Method for air conditioner
JP2001280663A (en) Air conditioner and method for controlling it
JP2001280669A (en) Refrigerating cycle device
JP2002089933A (en) Controller for air conditioner
JP2006162168A (en) Air conditioner
JP2004116977A (en) Air conditioner
CN111351190A (en) Method for controlling air conditioner, indoor unit of air conditioner and non-temporary computer storage medium
WO2017187480A1 (en) Air conditioner
JP6108066B2 (en) Air conditioner for vehicles
JP4619983B2 (en) Air conditioner
JP2000272335A (en) Air conditioner for vehicle
JPH0755234A (en) Air conditioner
JP2005016830A (en) Air-conditioner
JP2000337687A (en) Air-conditioner
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
KR20070060870A (en) Apparatus for controlling operating mode in refrigerator
JP4972022B2 (en) Air conditioning apparatus and control method thereof
KR100393777B1 (en) Dehumidifying operation control method for air conditioner
JP2006112700A (en) Dehumidifying operation control method of air conditioner
JPH07294021A (en) Heat pump type cooling dehumidifying equipment
JP2003254583A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees