JP2006161583A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2006161583A
JP2006161583A JP2004350526A JP2004350526A JP2006161583A JP 2006161583 A JP2006161583 A JP 2006161583A JP 2004350526 A JP2004350526 A JP 2004350526A JP 2004350526 A JP2004350526 A JP 2004350526A JP 2006161583 A JP2006161583 A JP 2006161583A
Authority
JP
Japan
Prior art keywords
compression ratio
internal combustion
combustion engine
control
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004350526A
Other languages
Japanese (ja)
Other versions
JP4403958B2 (en
Inventor
Hiroshi Oba
大羽  拓
Hiroshi Iwano
岩野  浩
Kenji Ota
健司 太田
Shinobu Kamata
忍 釜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004350526A priority Critical patent/JP4403958B2/en
Publication of JP2006161583A publication Critical patent/JP2006161583A/en
Application granted granted Critical
Publication of JP4403958B2 publication Critical patent/JP4403958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of avoiding problems such as knocking of an engine or the like upon failure of a variable compression ratio mechanism. <P>SOLUTION: An abnormality determination part B51 determines whether there is an abnormality in the variable compression ratio mechanism 102 or not, and if there is an abnormality, determines what kind of an abnormality failure it is. A calculating part B52 calculates compression ratio eε for control in an abnormal time, using a detected compression ratio ε1 and the determination result in B51. In B53, when it is determined there is an abnormality in the variable compression ratio mechanism 102, the compression ratio eε calculated in B52 is selected as a compression ratio ε for control, and when no abnormality is detected in the variable compression ratio mechanism 102, the detected compression ratio ε1 is selected as the compression ratio ε for control. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

一般的に圧縮比をあげるとエンジンの熱効率が向上することが知られている。しかし、圧縮比を上げすぎるとノッキング(異常燃焼)が発生するため、特に高負荷領域ではあまり圧縮比を上げることができない。そのため、圧縮比を可変とし得るエンジンにおいて、目標圧縮比を低負荷域で大きく、高負荷域で小さく設定することで、ノッキングを発生させずに燃料消費率を向上させようとする手法が特許文献1等により従来から知られている。   It is generally known that increasing the compression ratio improves the thermal efficiency of the engine. However, if the compression ratio is increased too much, knocking (abnormal combustion) occurs, so that the compression ratio cannot be increased much particularly in a high load region. Therefore, in an engine in which the compression ratio can be made variable, a technique for improving the fuel consumption rate without causing knocking by setting the target compression ratio large in the low load region and small in the high load region is disclosed in Patent Literature. Conventionally known by 1 etc.

また、特許文献2には、内燃機関の圧縮比を可変するいわゆる可変圧縮比機構の故障を検知する手法が開示されている。
特開平7−229431号公報 特開2001−182571号公報
Patent Document 2 discloses a technique for detecting a failure of a so-called variable compression ratio mechanism that varies the compression ratio of an internal combustion engine.
JP 7-229431 A JP 2001-182571 A

しかしながら、特許文献2においては、圧縮比を可変する可変圧縮比機構が何らかの理由で故障した場合、実際の圧縮比と検出した圧縮比との間に乖離が生じ、空気量制御や点火時期制御が適切に行われなくなり、ノッキングが頻繁に発生してしまう虞がある。   However, in Patent Document 2, when the variable compression ratio mechanism that changes the compression ratio fails for some reason, a deviation occurs between the actual compression ratio and the detected compression ratio, and air amount control and ignition timing control are performed. There is a risk that knocking may occur frequently due to failure to perform properly.

そこで、本発明は、圧縮比操作が可能な可変圧縮比機構を備えたエンジンにおいて、可変圧縮比機構の故障時に、エンジンのノッキング等の問題を回避することを主たる狙いとしている。   Therefore, the main object of the present invention is to avoid problems such as engine knocking when the variable compression ratio mechanism fails in an engine having a variable compression ratio mechanism capable of operating the compression ratio.

本発明は、機関運転状態に応じて機関圧縮比を変更する可変圧縮比機構を備え、可変圧縮比機構は、機関圧縮比を検出する圧縮比検出手段を有するものであって、圧縮比検出手段で検出された検出圧縮比を用いて内燃機関の各種制御を行う内燃機関の制御装置において、可変圧縮比機構の異常の有無を判定する異常判定手段を有し、可変圧縮比機構に異常があると判定された際には、圧縮比検出手段で検出された検出圧縮比に所定値を上乗せした異常時制御用圧縮比を用いて内燃機関の各種制御を行うことを特徴としている。   The present invention includes a variable compression ratio mechanism that changes an engine compression ratio according to an engine operating state, and the variable compression ratio mechanism includes a compression ratio detection unit that detects an engine compression ratio, and the compression ratio detection unit The control apparatus for an internal combustion engine that performs various controls of the internal combustion engine using the detected compression ratio detected in step 1 has abnormality determination means for determining whether or not the variable compression ratio mechanism is abnormal, and the variable compression ratio mechanism is abnormal Is determined, the control of the internal combustion engine is performed using an abnormal control compression ratio obtained by adding a predetermined value to the detected compression ratio detected by the compression ratio detecting means.

本発明によれば、可変圧縮比機構に異常が生じた場合には、異常時制御用圧縮比を用いて内燃機関の各種制御が行われるので、ノッキングの発生や、極端な燃費な悪化及び運転性低下を回避することができる。   According to the present invention, when an abnormality occurs in the variable compression ratio mechanism, various types of control of the internal combustion engine are performed using the compression ratio for abnormality control, so that knocking occurs, extreme fuel consumption deterioration and operation Deterioration can be avoided.

本発明の一実施形態を図面に基づいて詳細に説明する。   An embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る内燃機関の制御装置のシステム構成の概略を示す説明図である。内燃機関は、機関運転状態に応じて機関圧縮比を変更する可変圧縮比機構102を備えている。この可変圧縮比機構102は、基本的には、エンジンコントロールユニット(以下、ECUと記す)31で機関運転状態に応じて演算された目標圧縮比tεとなるように制御されている。   FIG. 1 is an explanatory diagram showing an outline of a system configuration of a control device for an internal combustion engine according to the present invention. The internal combustion engine includes a variable compression ratio mechanism 102 that changes the engine compression ratio according to the engine operating state. The variable compression ratio mechanism 102 is basically controlled by an engine control unit (hereinafter referred to as ECU) 31 so as to have a target compression ratio tε calculated according to the engine operating state.

まず、可変圧縮比機構102について説明する。クランクシャフト51は、複数のジャーナル部52とクランクピン部53とを備えており、シリンダブロック50の主軸受に、ジャーナル部52が回転自在に支持されている。クランクピン部53は、ジャーナル部52から所定量偏心しており、ロアリンク54が回転自在に連結されている。   First, the variable compression ratio mechanism 102 will be described. The crankshaft 51 includes a plurality of journal portions 52 and a crankpin portion 53, and the journal portion 52 is rotatably supported by the main bearing of the cylinder block 50. The crankpin portion 53 is eccentric by a predetermined amount from the journal portion 52, and a lower link 54 is rotatably connected thereto.

ロアリンク54は、左右の2部材に分割可能に構成されているとともに、略中央の連結孔に上記クランクピン部53が嵌合している。   The lower link 54 is configured to be divided into two members on the left and right sides, and the crank pin portion 53 is fitted in a substantially central connecting hole.

アッパリンク55は、下端側が連結ピン56によりロアリンク54の一端に回動可能に連結され、上端側がピストンピン57によりピストン58に回動可能に連結されている。ピストン58は、燃焼圧力を受け、シリンダブロック50のシリンダ59内を往復動する。尚、シリンダ59の上部には、図示せぬ吸気弁および排気弁が配置されている。   The upper link 55 has a lower end side rotatably connected to one end of the lower link 54 by a connecting pin 56 and an upper end side rotatably connected to a piston 58 by a piston pin 57. The piston 58 receives the combustion pressure and reciprocates in the cylinder 59 of the cylinder block 50. Note that an intake valve and an exhaust valve (not shown) are disposed on the upper portion of the cylinder 59.

コントロールリンク60は、上端側が連結ピン61によりロアリンク54の他端に回動可能に連結され、下端側が制御軸62を介して機関本体の一部となるシリンダブロック50の下部に回動可能に連結されている。詳しくは、制御軸62は、回転可能に機関本体に支持されているとともに、その回転中心から偏心している偏心カム部62aを有し、この偏心カム部62aにコントロールリンク60下端部が回転可能に嵌合している。   The control link 60 is pivotably connected at its upper end side to the other end of the lower link 54 by a connecting pin 61, and its lower end side can be pivoted to the lower part of the cylinder block 50 that forms part of the engine body via the control shaft 62. It is connected. Specifically, the control shaft 62 is rotatably supported by the engine body and has an eccentric cam portion 62a that is eccentric from the center of rotation, and the lower end portion of the control link 60 is rotatable on the eccentric cam portion 62a. It is mated.

制御軸62は、ECU31からの制御信号(目標圧縮比tεに相当)に基づき、電動モータを用いた圧縮比制御アクチュエータ63によって回動位置が制御される。   The rotation position of the control shaft 62 is controlled by a compression ratio control actuator 63 using an electric motor based on a control signal (corresponding to the target compression ratio tε) from the ECU 31.

また、制御軸62には、その回動位置を検出する位置検出センサ32が設けられている。この位置検出センサ32の検出信号は、ECU31に入力されており、位置検出センサ32の検出信号に基づいてECU31内で可変圧縮比機構102の現在の機関圧縮比(検出圧縮比ε1)が演算されている。つまり、位置検出センサ32と、位置検出センサ32のセンサ検出値を基に可変圧縮比機構102の現在の機関圧縮比を演算するECU31内の演算プログラムと、によって機関圧縮比(検出圧縮比ε1)を検出する圧縮比検出手段が構成されている。尚、図1中の33はノックセンサである。   Further, the control shaft 62 is provided with a position detection sensor 32 for detecting the rotation position. The detection signal of the position detection sensor 32 is input to the ECU 31, and the current engine compression ratio (detection compression ratio ε1) of the variable compression ratio mechanism 102 is calculated in the ECU 31 based on the detection signal of the position detection sensor 32. ing. That is, the engine compression ratio (detection compression ratio ε1) is determined by the position detection sensor 32 and a calculation program in the ECU 31 that calculates the current engine compression ratio of the variable compression ratio mechanism 102 based on the sensor detection value of the position detection sensor 32. A compression ratio detecting means for detecting is provided. In addition, 33 in FIG. 1 is a knock sensor.

上記のような複リンク式ピストン−クランク機構を用いた可変圧縮比機構102においては、制御軸62が圧縮比制御アクチュエータ63によって回動されると、偏心カム部62aの中心位置、特に、機関本体に対する相対位置が変化する。これにより、コントロールリンク60の下端の揺動支持位置が変化する。そして、コントロールリンク60の揺動支持位置が変化すると、ピストン58の行程が変化し、ピストン上死点(TDC)におけるピストンの位置が高くなったり低くなったりする。これにより、機関圧縮比を変えることが可能となる。   In the variable compression ratio mechanism 102 using the multi-link type piston-crank mechanism as described above, when the control shaft 62 is rotated by the compression ratio control actuator 63, the center position of the eccentric cam portion 62a, particularly the engine main body. The relative position with respect to changes. Thereby, the rocking | fluctuation support position of the lower end of the control link 60 changes. When the swing support position of the control link 60 changes, the stroke of the piston 58 changes, and the position of the piston at the piston top dead center (TDC) increases or decreases. This makes it possible to change the engine compression ratio.

可変圧縮比機構102の制御に用いられる目標圧縮比tεは、ECU31内で演算されている。図2は及び図3は、この目標圧縮比tεの演算手順をブロック線図とフローチャートでそれぞれ示したものである。   A target compression ratio tε used for control of the variable compression ratio mechanism 102 is calculated in the ECU 31. 2 and 3 show the calculation procedure of the target compression ratio tε in a block diagram and a flowchart, respectively.

まず、アクセル開度APOとエンジン回転数Neとから要求負荷となる目標トルクtT1を求める(図2のB11、図3のS11)。次に、この目標トルクtT1とエンジン回転数Neとから可変圧縮比機構102の目標圧縮比tεを求める(図2のB12、図3のS12)。目標圧縮比tεは、具体的には、図4に示すようなマップを用いて求められる。また、この目標圧縮比tεは、図5に示すように、エンジン回転数を一定とすれば、目標トルクtT1が大きくなるにつれて小さくなるよう設定されるものである。   First, a target torque tT1 as a required load is obtained from the accelerator opening APO and the engine speed Ne (B11 in FIG. 2, S11 in FIG. 3). Next, the target compression ratio tε of the variable compression ratio mechanism 102 is obtained from the target torque tT1 and the engine speed Ne (B12 in FIG. 2 and S12 in FIG. 3). Specifically, the target compression ratio tε is obtained using a map as shown in FIG. Further, as shown in FIG. 5, the target compression ratio tε is set so as to decrease as the target torque tT1 increases if the engine speed is constant.

図6は、可変圧縮比機構102の圧縮比制御アクチュエータ63の制御の手順を示すブロック線図である。   FIG. 6 is a block diagram showing a control procedure of the compression ratio control actuator 63 of the variable compression ratio mechanism 102.

可変圧縮比機構102の検出圧縮比ε1は、位置検出センサ32のセンサ検出値を単位変換し(B21)、可変圧縮比機構102で実現可能な最大圧縮比から最小圧縮比までの上下限処理を施す(B22)ことによって演算される。そして、検出圧縮比ε1と目標圧縮比tεとの差分に応じて圧縮比制御アクチュエータ63への制御指令値が決定されている(B23)。   The detection compression ratio ε1 of the variable compression ratio mechanism 102 converts the sensor detection value of the position detection sensor 32 into units (B21), and performs upper and lower limit processing from the maximum compression ratio to the minimum compression ratio that can be realized by the variable compression ratio mechanism 102. It is calculated by applying (B22). Then, a control command value to the compression ratio control actuator 63 is determined according to the difference between the detected compression ratio ε1 and the target compression ratio tε (B23).

また、ECU31は、可変圧縮比機構102で設定された圧縮比に基づいて、目標スロットル開度、点火時期等のエンジンの各種制御を実施している。   Further, the ECU 31 performs various controls of the engine such as the target throttle opening degree and the ignition timing based on the compression ratio set by the variable compression ratio mechanism 102.

図7は、ECU31で行われる目標スロットル開度の演算手順を示すブロック線図である。   FIG. 7 is a block diagram showing a calculation procedure of the target throttle opening performed by the ECU 31.

要求負荷演算部であるB31では、アクセル開度APOとエンジン回転数Neに応じて目標トルクtT1を演算する。具体的には、例えば、アクセル開度APOとエンジン回転数Neとに応じて目標トルクtT1が割り付けられたマップを用いて、目標トルクtT1を演算する。   In B31 which is a required load calculation unit, the target torque tT1 is calculated according to the accelerator opening APO and the engine speed Ne. Specifically, for example, the target torque tT1 is calculated using a map in which the target torque tT1 is assigned according to the accelerator opening APO and the engine speed Ne.

B32では、目標トルクtT1とエンジン回転数Neに応じて要求空気量rPを演算する。具体的には、例えば、目標トルクtT1とエンジン回転数Neとに応じて要求空気量rPが割り付けられたマップを用いて、要求空気量rPを演算する。   In B32, the required air amount rP is calculated according to the target torque tT1 and the engine speed Ne. Specifically, for example, the required air amount rP is calculated using a map in which the required air amount rP is assigned according to the target torque tT1 and the engine speed Ne.

B33では、制御用圧縮比ε(詳細は後述)に応じてノッキングを回避可能な空気量である上限空気量tPmaxを演算する。この上限空気量tPmaxは、例えば、制御用圧縮比εと上限空気量tPmaxとが割り付けられたマップを用いて演算される。尚、上限空気量tPmaxは、制御用圧縮比εが小さいほど大きくなるよう設定されるものである。   In B33, an upper limit air amount tPmax, which is an air amount capable of avoiding knocking, is calculated according to the control compression ratio ε (details will be described later). The upper limit air amount tPmax is calculated using, for example, a map in which the control compression ratio ε and the upper limit air amount tPmax are allocated. The upper limit air amount tPmax is set so as to increase as the control compression ratio ε decreases.

B34では、B32で演算された要求空気量rPと、B33で演算された上限空気量tPmaxの大小を比較し、小さい方を目標空気量tPとする。   In B34, the required air amount rP calculated in B32 and the upper limit air amount tPmax calculated in B33 are compared, and the smaller one is set as the target air amount tP.

B35では、目標空気量tPを実現可能なスロットル開度を目標スロットル開度とする。尚、図7において、B32〜B35が目標スロットル開度演算部となる。   In B35, the throttle opening that can realize the target air amount tP is set as the target throttle opening. In FIG. 7, B32 to B35 are the target throttle opening calculation unit.

図8は、ECU31で行われる点火時期の演算手順を示すブロック線図である。エンジン負荷演算部であるB41では、エアフローメータの出力値とエンジン回転数Neを用いてエンジン負荷Tを演算する。具体的には、例えば、エアフローメータの出力値とエンジン回転数Neとに応じてエンジン負荷が割り付けられたマップを用いて、エンジン負荷Tを演算する。   FIG. 8 is a block diagram showing a calculation procedure of the ignition timing performed by the ECU 31. In B41 which is an engine load calculation unit, the engine load T is calculated using the output value of the air flow meter and the engine speed Ne. Specifically, for example, the engine load T is calculated using a map in which the engine load is assigned according to the output value of the air flow meter and the engine speed Ne.

そして、点火時期演算部であるB42において、B41で演算されたエンジン負荷Tと、エンジン回転数Neと、制御用圧縮比εと、を用いて要求点火時期を演算する。この要求点火時期は、例えば、制御用圧縮比ε毎に、エンジン負荷Tとエンジン回転数Neとが割り付けられた複数のマップを用いて演算される。   Then, in the ignition timing calculation unit B42, the required ignition timing is calculated using the engine load T calculated in B41, the engine speed Ne, and the control compression ratio ε. The required ignition timing is calculated using, for example, a plurality of maps in which the engine load T and the engine speed Ne are assigned for each control compression ratio ε.

図9は、上述した制御用圧縮比εの演算手順の概略を示すブロック線図である。この制御用圧縮比εは、可変圧縮比機構102の異常の有無に応じて決定されるものである。   FIG. 9 is a block diagram showing an outline of the calculation procedure of the control compression ratio ε described above. This control compression ratio ε is determined according to whether or not the variable compression ratio mechanism 102 is abnormal.

可変圧縮比機構異常判定部であるB51では、可変圧縮比機構102に異常があるかないか、また異常が有る場合にはどうのような異常であるのかを判定する。すなわち、B51では、可変圧縮比機構102の異常の有無及び異常の種類を判別する。   The variable compression ratio mechanism abnormality determination unit B51 determines whether or not there is an abnormality in the variable compression ratio mechanism 102 and, if there is an abnormality, how it is abnormal. That is, in B51, the presence / absence and type of abnormality of the variable compression ratio mechanism 102 is determined.

異常時制御用圧縮比演算部であるB52では、検出圧縮比ε1とB51での判定結果とを用いて、異常時制御用圧縮比eεを演算する。   In B52 which is the control ratio calculation unit for abnormal control, the control ratio eε for abnormal control is calculated using the detected compression ratio ε1 and the determination result in B51.

B53では、検出圧縮比ε1と異常時制御用圧縮比eεのどちらを制御用圧縮比εと用いるかを決定する。すなわち、B53では、可変圧縮比機構102に異常があると判定された際には、B52で演算された異常時制御用圧縮比eεを制御用圧縮比εとして選択し、可変圧縮比機構102に異常がない場合には、検出圧縮比ε1を制御用圧縮比εとして選択する。   In B53, it is determined which one of the detected compression ratio ε1 and the abnormal control compression ratio eε is used as the control compression ratio ε. That is, in B53, when it is determined that there is an abnormality in the variable compression ratio mechanism 102, the abnormal-time control compression ratio eε calculated in B52 is selected as the control compression ratio ε, and the variable compression ratio mechanism 102 is selected. If there is no abnormality, the detection compression ratio ε1 is selected as the control compression ratio ε.

図10は、上述した図9の可変圧縮比機構異常判定部(B51)内で行われる演算手順を具体的に示すブロック線図である。   FIG. 10 is a block diagram specifically showing a calculation procedure performed in the variable compression ratio mechanism abnormality determination unit (B51) of FIG. 9 described above.

アクチュエータ駆動電流時間演算手段であるB61では、圧縮比制御アクチュエータ63を流れるアクチュエータ駆動電流が、予め設定された所定値よりも大きい値に連続してなっている時間、すなわち駆動電流大時間Imaxtimeを計測する。換言すれば、アクチュエータ駆動電流が連続して大となっている時間を計測する。   In B61 which is an actuator drive current time calculation means, a time during which the actuator drive current flowing through the compression ratio control actuator 63 is continuously larger than a predetermined value, that is, a drive current large time Imaxtime is measured. To do. In other words, the time during which the actuator drive current continuously increases is measured.

圧縮比ズレ量演算手段であるB62では、検出圧縮比ε1と目標圧縮比tεとの偏差であるΔεを演算する。   In B62 which is a compression ratio deviation amount calculation means, Δε which is a deviation between the detected compression ratio ε1 and the target compression ratio tε is calculated.

圧縮比ズレ時間演算手段であるB63では、B62で演算されたΔεが予め設定された所定値よりも大きい値に連続してなっている時間、すなわち検出圧縮比ε1と目標圧縮比tεとの偏差Δεが大となっている時間Δtimeを計測する。   In B63 which is a compression ratio deviation time calculation means, a time during which Δε calculated in B62 is continuously larger than a predetermined value, that is, a deviation between the detected compression ratio ε1 and the target compression ratio tε. The time Δtime during which Δε is large is measured.

ノッキング頻度演算手段であるB64では、ノックセンサ33からの信号に基づいて、ノッキングの発生頻度を演算する。   In B64, which is a knocking frequency calculating means, the occurrence frequency of knocking is calculated based on the signal from the knock sensor 33.

可変圧縮比機構異常判定手段であるB65では、B61、B63及びB64からの入力に基づいて、予備判別フラグfNG1、fNG2及びfNG3のフラグ判定を実施する。具体的は、駆動電流大時間Imaxtimeが予め設定された所定値よりも大きい場合には、予備判別フラグであるfNG1を「1」とし、所定値以下の場合にはfNG1を「0」とする。Δεが予め設定された所定値よりも大きい場合には、予備判別フラグであるfNG2を「1」とし、所定値以下の場合にはfNG2を「0」とする。そして、ノッキングの発生頻度が予め設定された所定値より大きい場合には、予備判別フラグであるfNG3を「1」とし、所定値以下の場合にはfNG3を「0」とする。   In B65 which is a variable compression ratio mechanism abnormality determination means, preliminary determination flags fNG1, fNG2 and fNG3 are determined based on inputs from B61, B63 and B64. Specifically, when the large drive current time Imaxtime is larger than a predetermined value, the preliminary determination flag fNG1 is set to “1”, and when it is equal to or less than the predetermined value, fNG1 is set to “0”. When Δε is larger than a predetermined value set in advance, fNG2 that is a preliminary determination flag is set to “1”, and when it is equal to or less than a predetermined value, fNG2 is set to “0”. When the occurrence frequency of knocking is larger than a predetermined value set in advance, the preliminary determination flag fNG3 is set to “1”, and when it is equal to or lower than the predetermined value, fNG3 is set to “0”.

故障モード判定手段であるB66では、予備判別フラグfNG1、fNG2及びfNG3を用いて、可変圧縮比機構102の故障モード(詳細は後述)を推定し、故障モードに対応した判別フラグFNG(詳細は後述)を出力する。   In B66 which is a failure mode determination means, a failure mode (details will be described later) of the variable compression ratio mechanism 102 is estimated using the preliminary determination flags fNG1, fNG2 and fNG3, and a determination flag FNG corresponding to the failure mode (details will be described later). ) Is output.

図11は、予備判別フラグfNG1、fNG2及びfNG3と推定される故障モードとの相関関係をまとめたものである。   FIG. 11 summarizes the correlation between the preliminary determination flags fNG1, fNG2, and fNG3 and the estimated failure mode.

予備判別フラグfNG1、fNG2及びfNG3が全て「0」の場合には、可変圧縮比機構102に異常はなく正常と判定され、判別フラグFNGを「0」とする。   When the preliminary determination flags fNG1, fNG2, and fNG3 are all “0”, it is determined that the variable compression ratio mechanism 102 is normal and there is no abnormality, and the determination flag FNG is set to “0”.

予備判別フラグfNG1が「1」、fNG2及びfNG3が「0」の場合には、可変圧縮比機構102に機械的な固着が生じて圧縮比の変更操作が出来ないメカ固着による異常と判定され、判別フラグFNGを「1」とする。尚、このメカ固着という概念は、本明細書においては、断線等による圧縮比制御用アクチュエータ63の動作不良により圧縮比の変更操作が出来ない場合を含むものとする。   When the preliminary determination flag fNG1 is “1”, and fNG2 and fNG3 are “0”, it is determined that the variable compression ratio mechanism 102 is mechanically fixed, and it is determined that the compression ratio is not changed, and the abnormality is caused by mechanical fixation. The determination flag FNG is set to “1”. In this specification, the concept of mechanical fixation includes a case where the compression ratio cannot be changed due to malfunction of the compression ratio control actuator 63 due to disconnection or the like.

予備判別フラグfNG1及びfNG3が「0」、fNG2が「1」の場合には、位置検出センサ32の断線により検出圧縮比ε1が可変圧縮比機構102の最小圧縮比になっている異常(センサ断線による異常)と判定され、判別フラグFNGを「2」とする。   When the preliminary determination flags fNG1 and fNG3 are “0” and fNG2 is “1”, the detection compression ratio ε1 is the minimum compression ratio of the variable compression ratio mechanism 102 due to the disconnection of the position detection sensor 32 (sensor disconnection). Abnormality), and the determination flag FNG is set to “2”.

予備判別フラグfNG1及びfNG2が「0」、fNG3が「1」の場合には、経年変化により位置検出センサ33の出力レンジが変化した、いわゆるセンサドリフトによる異常と判定され、判別フラグFNGを「3」とする。尚、位置検出センサ33のセンサドリフトは、厳密に言えば、検出圧縮比ε1が低圧縮側にずれた場合のみ検出可能である。   When the preliminary determination flags fNG1 and fNG2 are “0” and fNG3 is “1”, it is determined that the output range of the position detection sensor 33 has changed due to aging, so-called abnormality due to sensor drift, and the determination flag FNG is set to “3”. " Strictly speaking, the sensor drift of the position detection sensor 33 can be detected only when the detection compression ratio ε1 is shifted to the low compression side.

予備判別フラグfNG1及びfNG2が「1」、fNG3が「0」の場合には、上述したメカ固着による異常と判定され、判別フラグFNGを「1」とする。   When the preliminary determination flags fNG1 and fNG2 are “1” and fNG3 is “0”, it is determined that there is an abnormality due to the mechanical fixation described above, and the determination flag FNG is set to “1”.

予備判別フラグfNG1及びfNG3が「1」、fNG2が「0」の場合には、上述したセンサドリフトによる異常と判定され、判別フラグFNGを「3」とする。   When the preliminary determination flags fNG1 and fNG3 are “1” and fNG2 is “0”, it is determined that there is an abnormality due to the sensor drift described above, and the determination flag FNG is set to “3”.

予備判別フラグfNG1が「0」、fNG2及びfNG3が「1」の場合には、位置検出センサ33の断線による異常と判定され、判別フラグFNGを「2」とする。   When the preliminary determination flag fNG1 is “0”, and fNG2 and fNG3 are “1”, it is determined that the position detection sensor 33 is abnormal, and the determination flag FNG is set to “2”.

予備判別フラグfNG1、fNG2及びfNG3が全て「1」の場合には、位置検出センサ33の断線による異常と判定され、判別フラグFNGを「2」とする。   When the preliminary determination flags fNG1, fNG2, and fNG3 are all “1”, it is determined that there is an abnormality due to disconnection of the position detection sensor 33, and the determination flag FNG is set to “2”.

図12は、上述した可変圧縮比機構異常判定手段(図10におけるB65)内で行われる演算手順を具体的に示すフローチャートである。   FIG. 12 is a flowchart specifically showing a calculation procedure performed in the above-described variable compression ratio mechanism abnormality determining means (B65 in FIG. 10).

S21では、駆動電流大時間が予め設定された所定値よりも大きいか否かを判定し、大きい場合にはS22に進んで予備判別フラグfNG1を「1」とし、そうでない場合には予備判別フラグfNG1を「0」とした状態でS23へ進む。   In S21, it is determined whether or not the large drive current time is greater than a predetermined value set in advance. If the drive current is large, the process proceeds to S22, where the preliminary determination flag fNG1 is set to “1”. The process proceeds to S23 with fNG1 set to “0”.

S23では、Δtimeが予め設定された所定値よりも大きいか否かを判定し、大きい場合にはS24に進んで予備判別フラグfNG2を「1」とし、そうでない場合には予備判別フラグfNG2を「0」とした状態でS25へ進む。   In S23, it is determined whether or not Δtime is larger than a predetermined value set in advance. If it is larger, the process proceeds to S24, where the preliminary determination flag fNG2 is set to “1”, otherwise, the preliminary determination flag fNG2 is set to “1”. In the state of “0”, the process proceeds to S25.

S25では、ノッキングの発生頻度が予め設定された所定値よりも大きいか否かを判定し、大きい場合にはS26へ進んで予備判別フラグfNG3を「1」とし、そうでない場合には予備判別フラグfNG3を「0」とした状態で終了する。   In S25, it is determined whether or not the occurrence frequency of knocking is larger than a predetermined value set in advance. If it is larger, the process proceeds to S26, and the preliminary determination flag fNG3 is set to “1”. The process ends with fNG3 set to “0”.

図13は、上述した図9の異常時制御用圧縮比演算部(B52)内で行われる演算手順を具体的に示すブロック線図である。   FIG. 13 is a block diagram specifically illustrating a calculation procedure performed in the above-described abnormality control compression ratio calculation unit (B52) of FIG.

圧縮比上乗せ量演算手段であるB71では、上述した判別フラグFNGとノッキング強度(ノックセンサのセンサ出力信号の大きさ)等に応じて、検出圧縮比εに上乗せさせる圧縮比上乗せ量を決定する。   In B71, which is a compression ratio extra amount calculating means, a compression ratio extra amount to be added to the detected compression ratio ε is determined in accordance with the above-described determination flag FNG, knocking strength (magnitude of the sensor output signal of the knock sensor), and the like.

具体的には、判別フラグFNGが「1」の場合には、圧縮比上乗せ量をゼロとする。判別フラグFNGが「2」の場合には、可変圧縮比機構102で実現可能な最大圧縮比と最小圧縮比との差分を圧縮比上乗せ量とする。判別フラグFNGが「3」の場合には、上述したセンサドリフトによる実際の圧縮比(実圧縮比)に対しての検出圧縮比ε1のズレ量を圧縮比上乗せ量とする。このズレ量は、例えば、ノッキング強度との相関を予め実験適合等により求めてマップ化しておくことで演算される。図14に、判別フラグFNGに応じた圧縮比上乗せ量をまとめた説明図を示す。   Specifically, when the determination flag FNG is “1”, the compression ratio addition amount is set to zero. When the determination flag FNG is “2”, the difference between the maximum compression ratio and the minimum compression ratio that can be realized by the variable compression ratio mechanism 102 is used as the compression ratio addition amount. When the determination flag FNG is “3”, the deviation amount of the detected compression ratio ε1 with respect to the actual compression ratio (actual compression ratio) due to the sensor drift described above is set as the compression ratio addition amount. This amount of deviation is calculated, for example, by obtaining a correlation with the knocking intensity in advance by experimental adaptation or the like and mapping it. FIG. 14 is an explanatory diagram summarizing the amount of compression ratio addition according to the determination flag FNG.

上述した本願発明の実施形態においては、内燃機関の各種制御に用いられる制御用圧縮比εが、可変圧縮比機構102の異常の有無に応じて決定される。   In the embodiment of the present invention described above, the control compression ratio ε used for various controls of the internal combustion engine is determined according to whether or not the variable compression ratio mechanism 102 is abnormal.

制御用圧縮比εとして常に検出圧縮比ε1を用いた場合、位置検出センサ33が断線すると検出圧縮比1εが最小圧縮比となってしまい、目標圧縮比tεが検出圧縮比ε1に対して大きな値となって、圧縮比制御アクチュエータ63は圧縮比を上げる方向に制御される。つまり、図15に示すように、検出圧縮比εが小さい値で動かなくなった場合、圧縮比制御アクチュエータ63は、圧縮比を上げる方向に制御されるため、可変圧縮比機構102の実際の圧縮比(実圧縮比)は高い値になっている可能性が高い。そのため、このような状態で、検出圧縮比ε1を制御用圧縮比εとして使用すると、実際の圧縮比(実圧縮比)と検出圧縮比ε1との間に乖離が生じ、空気量制御や点火時期制御等が適切に行われなくなり、高負荷域でノッキングが発生し易くなる。   When the detection compression ratio ε1 is always used as the control compression ratio ε, when the position detection sensor 33 is disconnected, the detection compression ratio 1ε becomes the minimum compression ratio, and the target compression ratio tε is larger than the detection compression ratio ε1. Thus, the compression ratio control actuator 63 is controlled to increase the compression ratio. That is, as shown in FIG. 15, when the detected compression ratio ε stops moving at a small value, the compression ratio control actuator 63 is controlled to increase the compression ratio, so that the actual compression ratio of the variable compression ratio mechanism 102 is increased. The (actual compression ratio) is likely to be a high value. Therefore, when the detected compression ratio ε1 is used as the control compression ratio ε in such a state, a deviation occurs between the actual compression ratio (actual compression ratio) and the detected compression ratio ε1, and air amount control or ignition timing is generated. Control or the like is not appropriately performed, and knocking is likely to occur in a high load range.

しかしながら、本実施形態においては、位置検出センサ33が断線したと推定される場合(FNG=2)には、図16に示すように、検出圧縮比ε1に対して可変圧縮比機構102で実現可能な最大圧縮比と最小圧縮比との差分を加算した値を制御用圧縮比εとして用いている。すなわち、制御用圧縮比εが可変圧縮比機構102で実現し得る最大圧縮比に設定される。そのため、制御用圧縮比εを用いた各種制御が最大圧縮比相当で実施されることになり、空気量制御では最大空気量が絞られ、点火時期制御ではリタード側に設定がなされるため、確実にノッキングの発生を回避することができる。   However, in this embodiment, when it is estimated that the position detection sensor 33 is disconnected (FNG = 2), the variable compression ratio mechanism 102 can be realized with respect to the detection compression ratio ε1, as shown in FIG. A value obtained by adding the difference between the maximum compression ratio and the minimum compression ratio is used as the control compression ratio ε. That is, the control compression ratio ε is set to the maximum compression ratio that can be realized by the variable compression ratio mechanism 102. Therefore, various controls using the control compression ratio ε are performed at the maximum compression ratio, the maximum air amount is reduced in the air amount control, and the retard side is set in the ignition timing control. The occurrence of knocking can be avoided.

位置検出センサ33が上述したセンサドリフト状態となっており、検出圧縮比ε1が実際の圧縮比(実圧縮比)に対して小さめな値となっていると推定される場合(FNG=3)には、図17に示すように、検出圧縮比ε1に、実際の圧縮比(実圧縮比)に対する検出圧縮比ε1のズレ量を圧縮比上乗せしたものを制御用圧縮比εとして用いる。そのため、空気量制御では最大空気量が絞られ、点火時期制御ではリタード側に設定がなされるため、確実にノッキングの発生を回避することができる。また、制御用圧縮比εを用いた各種制御が実際の圧縮比(実圧縮比)により近い状態で実施されることになるため、燃費や最高出力の低下を最低限に抑えることができる。   When the position detection sensor 33 is in the sensor drift state described above, and the detected compression ratio ε1 is estimated to be a smaller value than the actual compression ratio (actual compression ratio) (FNG = 3). As shown in FIG. 17, the control compression ratio ε1 is obtained by adding the amount of deviation of the detection compression ratio ε1 to the actual compression ratio (actual compression ratio) to the compression ratio. For this reason, the maximum air amount is reduced in the air amount control and the retard side is set in the ignition timing control, so that the occurrence of knocking can be reliably avoided. In addition, since various controls using the control compression ratio ε are performed in a state closer to the actual compression ratio (actual compression ratio), it is possible to minimize the reduction in fuel consumption and maximum output.

圧縮比可変機構102が故障して圧縮比の可変操作ができないと推定される場合(FNG=1)には、図18に示すように、可変圧縮比機構102による圧縮比可変操作を禁止し、圧縮比を固定して、実圧縮比ε1を制御用圧縮比εとして用いる。すなわち、目標圧縮比tεによる可変圧縮比機構102の操作を行わない。そのため、圧縮比制御アクチュエータ63の操作量を減らすことが可能となり、消費エネルギーの低減を図ることができる。尚、判別フラグFNGが「1」の場合、検出圧縮比ε1と目標圧縮比tεとの間には差がないため、圧縮比の上乗せを行わずともノッキングの発生は回避できる。   When it is estimated that the compression ratio variable mechanism 102 fails and the compression ratio cannot be varied (FNG = 1), as shown in FIG. 18, the variable compression ratio mechanism 102 is prohibited from performing the variable compression ratio operation. The compression ratio is fixed, and the actual compression ratio ε1 is used as the control compression ratio ε. That is, the variable compression ratio mechanism 102 is not operated with the target compression ratio tε. Therefore, the amount of operation of the compression ratio control actuator 63 can be reduced, and the energy consumption can be reduced. When the determination flag FNG is “1”, there is no difference between the detected compression ratio ε1 and the target compression ratio tε, so that knocking can be avoided without adding the compression ratio.

尚、上述した実施形態においては、判別フラグFNGが「1」の場合に制御用圧縮比εとして検出圧縮比ε1を用いているが、制御用圧縮比εとして可変圧縮比機構102で実現可能な最大圧縮比や検出圧縮比ε1にノッキング強度に応じて所定値を上乗せした値を用いることも可能である(図19を参照)。そして、判別フラグFNGが「2」の場合に制御用圧縮比εとして可変圧縮比機構102で実現可能な最大圧縮比を用いているが、制御用圧縮比εとして検出圧縮比ε1にノッキング強度に応じて所定値を上乗せした値を用いることも可能である(図19を参照)。また、判別フラグFNGが「3」の場合に制御用圧縮比εとして検出圧縮比ε1にノッキング強度に応じて所定値を上乗せした値を用いているが、制御用圧縮比εとして可変圧縮比機構102で実現可能な最大圧縮比を用いることも可能である(図19を参照)。   In the above-described embodiment, the detection compression ratio ε1 is used as the control compression ratio ε when the determination flag FNG is “1”, but the control compression ratio ε can be realized by the variable compression ratio mechanism 102. It is also possible to use a value obtained by adding a predetermined value to the maximum compression ratio or the detected compression ratio ε1 according to the knocking strength (see FIG. 19). When the determination flag FNG is “2”, the maximum compression ratio that can be realized by the variable compression ratio mechanism 102 is used as the control compression ratio ε, but the control compression ratio ε is knocked to the detected compression ratio ε1. Accordingly, a value obtained by adding a predetermined value can be used (see FIG. 19). Further, when the determination flag FNG is “3”, a value obtained by adding a predetermined value according to the knocking strength to the detected compression ratio ε1 is used as the control compression ratio ε, but the variable compression ratio mechanism is used as the control compression ratio ε. It is also possible to use the maximum compression ratio achievable with 102 (see FIG. 19).

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) 機関運転状態に応じて機関圧縮比を変更する可変圧縮比機構を備え、可変圧縮比機構は、機関圧縮比を検出する圧縮比検出手段を有するものであって、
圧縮比検出手段で検出された検出圧縮比を用いて内燃機関の各種制御を行う内燃機関の制御装置において、可変圧縮比機構の異常の有無を判定する異常判定手段を有し、可変圧縮比機構に異常があると判定された際には、圧縮比検出手段で検出された検出圧縮比に所定値を上乗せした異常時制御用圧縮比を用いて内燃機関の各種制御を行う。これによって、可変圧縮比機構に異常が生じた場合には、異常時制御用圧縮比を用いて内燃機関の各種制御が行われるので、ノッキングの発生や、極端な燃費な悪化及び運転性低下を回避することができる。
(1) A variable compression ratio mechanism that changes the engine compression ratio according to the engine operating state is provided, and the variable compression ratio mechanism has compression ratio detection means for detecting the engine compression ratio,
A control apparatus for an internal combustion engine that performs various controls of the internal combustion engine using the detected compression ratio detected by the compression ratio detection means, and has an abnormality determination means for determining whether there is an abnormality in the variable compression ratio mechanism, and the variable compression ratio mechanism When it is determined that there is an abnormality in the engine, various controls of the internal combustion engine are performed using a compression ratio for abnormal control that is obtained by adding a predetermined value to the detected compression ratio detected by the compression ratio detecting means. As a result, when an abnormality occurs in the variable compression ratio mechanism, various controls of the internal combustion engine are performed using the compression ratio for abnormal control, so that knocking, extreme deterioration in fuel consumption, and drivability decrease are prevented. It can be avoided.

(2) 上記(1)に記載の内燃機関の制御装置において、異常時制御用圧縮比は、可変圧縮比機構が実現可能な最大圧縮比である。   (2) In the control device for an internal combustion engine according to (1), the compression ratio for abnormal control is a maximum compression ratio that can be realized by the variable compression ratio mechanism.

(3) 上記(1)に記載の内燃機関の制御装置において、異常判定手段は、可変圧縮比機構の異常の種類を判別可能なものであって、検出圧縮比に上乗せされる所定値は、故障の種類に応じて設定されている。   (3) In the control device for an internal combustion engine according to (1), the abnormality determination unit can determine the type of abnormality of the variable compression ratio mechanism, and the predetermined value added to the detected compression ratio is: It is set according to the type of failure.

これによって、可変圧縮比機構の故障モードに応じた異常時制御用圧縮比を用いて内燃機関の各種制御が行われるので、ノッキングの発生や、極端な燃費な悪化及び運転性低下を一層効果的に回避することができる。   As a result, various controls of the internal combustion engine are performed using the compression ratio for abnormal control according to the failure mode of the variable compression ratio mechanism, so that knocking, extreme deterioration in fuel consumption, and drivability deterioration are more effective. Can be avoided.

(4) 上記(3)に記載の内燃機関の制御装置において、異常判定手段により内燃機関の実際の圧縮比と検出圧縮比との偏差が大きいと推定される異常時には、異常時制御用圧縮比を可変圧縮比機構が実現可能な最大圧縮比とする。これによって、異常時制御用圧縮比を用いた内燃機関の各種制御が最大圧縮比相当で実施されることになり、空気量制御では最大空気量が絞られ、点火時期制御ではリタード側に設定がなされるため、確実にノッキングの発生を回避することができる。また、可変圧縮比機構の故障に起因して内燃機関全体の性能が悪化してしまうことを回避できる。   (4) In the control device for an internal combustion engine according to (3), when the abnormality is determined to be large by the abnormality determination unit, the deviation between the actual compression ratio and the detected compression ratio of the internal combustion engine is large. Is the maximum compression ratio that can be realized by the variable compression ratio mechanism. As a result, various controls of the internal combustion engine using the compression ratio for abnormal control are performed at the equivalent of the maximum compression ratio, the maximum air amount is reduced in the air amount control, and set to the retard side in the ignition timing control. Thus, knocking can be reliably avoided. Moreover, it can avoid that the performance of the whole internal combustion engine deteriorates due to the failure of the variable compression ratio mechanism.

(5) 上記(3)または(4)に記載の内燃機関の制御装置において、内燃機関のノッキングを検出するノッキング検出手段を有し、異常判定手段により内燃機関の実際の圧縮比と検出圧縮比との偏差が小さいと推定されるにも関わらずノッキングが発生する異常時には、検出圧縮比に上乗せされる所定値がノッキングの強度に応じて決定される。これによって、異常時制御用圧縮比は検出圧縮比よりも大きな値となるため、空気量制御では最大空気量が絞られ、点火時期制御ではリタード側に設定がなされ、確実にノッキングの発生を回避することができる。   (5) The control apparatus for an internal combustion engine according to (3) or (4), further including knocking detection means for detecting knocking of the internal combustion engine, wherein the actual determination ratio and the detected compression ratio of the internal combustion engine are detected by the abnormality determination means. At the time of an abnormality in which knocking occurs even though it is estimated that the deviation is small, a predetermined value to be added to the detected compression ratio is determined according to the knocking strength. As a result, the compression ratio for abnormal control becomes larger than the detected compression ratio, so the maximum air amount is throttled in the air amount control, and set to the retard side in the ignition timing control, so that knocking is reliably avoided. can do.

(6) 上記(3)〜(5)のいずれかに記載の内燃機関の制御装置において、異常判定手段により内燃機関の実際の圧縮比と検出圧縮比との偏差がほとんどないと推定されるにも関わらず可変圧縮比機構による圧縮比可変操作が不可能な異常時には、可変圧縮比機構による圧縮比可変操作を禁止し、検出圧縮比を異常時制御用圧縮比とする。これによって、消費エネルギーの低減を図ることができる。   (6) In the control apparatus for an internal combustion engine according to any one of the above (3) to (5), it is estimated that the deviation between the actual compression ratio and the detected compression ratio of the internal combustion engine is hardly caused by the abnormality determination means. In spite of this, when the compression ratio variable operation by the variable compression ratio mechanism is not possible, the compression ratio variable operation by the variable compression ratio mechanism is prohibited, and the detected compression ratio is set as the control compression ratio for abnormal control. Thereby, energy consumption can be reduced.

本発明に係る内燃機関の制御装置のシステム構成の概略を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the outline of the system configuration | structure of the control apparatus of the internal combustion engine which concerns on this invention. 目標圧縮比tεの演算手順を示すブロック線図。The block diagram which shows the calculation procedure of target compression ratio t (epsilon). 目標圧縮比tεの演算手順を示すフローチャート。The flowchart which shows the calculation procedure of target compression ratio t (epsilon). 目標圧縮比tε算出用のマップ図。The map figure for target compression ratio tε calculation. 目標圧縮比tε算出用のマップ図。The map figure for target compression ratio tε calculation. 圧縮比制御アクチュエータの制御の手順を示すブロック線図。The block diagram which shows the procedure of control of a compression ratio control actuator. 目標スロットル開度の演算手順を示すブロック線図。The block diagram which shows the calculation procedure of target throttle opening. 点火時期の演算手順を示すブロック線図。The block diagram which shows the calculation procedure of ignition timing. 制御用圧縮比εの演算手順の概略を示すブロック線図。The block diagram which shows the outline of the calculation procedure of compression ratio (epsilon) for control. 図9の可変圧縮比機構異常判定部(B51)内で行われる演算手順を具体的に示すブロック線図。The block diagram which shows concretely the calculation procedure performed within the variable compression ratio mechanism abnormality determination part (B51) of FIG. 予備判別フラグfNG1、fNG2及びfNG3と推定される故障モードとの相関関係を示す説明図。Explanatory drawing which shows the correlation with the failure mode estimated with the preliminary | backup discrimination | determination flags fNG1, fNG2, and fNG3. 図10の可変圧縮比機構異常判定手段(B65)内で行われる演算手順を具体的に示すフローチャート。The flowchart which shows concretely the calculation procedure performed within the variable compression ratio mechanism abnormality determination means (B65) of FIG. 図9の異常時制御用圧縮比演算部(B52)内で行われる演算手順を具体的に示すブロック線図。The block diagram which shows concretely the calculation procedure performed within the compression ratio calculation part (B52) for control at the time of abnormality of FIG. 判別フラグFNGに応じた圧縮比上乗せ量をまとめた説明図。Explanatory drawing which put together the compression ratio addition amount according to the determination flag FNG. 制御用圧縮比εとして常に検出圧縮比ε1を用いた際に、検出圧縮比εが小さい値で動かなくなった場合のアクセル開度、各種圧縮比及びトルクの変化の一例を示すタイミングチャート。9 is a timing chart showing an example of changes in accelerator opening, various compression ratios, and torque when the detected compression ratio ε1 is always used as the control compression ratio ε and the detected compression ratio ε stops moving at a small value. FNG=2の場合のアクセル開度、各種圧縮比及びトルクの変化の一例を示すタイミングチャート。The timing chart which shows an example of the accelerator opening degree in the case of FNG = 2, various compression ratios, and the change of a torque. FNG=3の場合のアクセル開度、各種圧縮比及びトルクの変化の一例を示すタイミングチャート。The timing chart which shows an example of the accelerator opening degree in the case of FNG = 3, various compression ratios, and the change of a torque. FNG=1の場合のアクセル開度、各種圧縮比及びトルクの変化の一例を示すタイミングチャート。The timing chart which shows an example of the change of the accelerator opening degree in the case of FNG = 1, various compression ratios, and torque. 故障モードに対応して設定される制御用圧縮比εの設定可能例をまとめた説明図。Explanatory drawing which summarized the setting example of the control compression ratio (epsilon) set corresponding to a failure mode.

符号の説明Explanation of symbols

31…エンジンコントロールユニット
32…位置検出センサ
63…圧縮比制御アクチュエータ
102…可変圧縮比機構
DESCRIPTION OF SYMBOLS 31 ... Engine control unit 32 ... Position detection sensor 63 ... Compression ratio control actuator 102 ... Variable compression ratio mechanism

Claims (6)

機関運転状態に応じて機関圧縮比を変更する可変圧縮比機構を備え、可変圧縮比機構は、機関圧縮比を検出する圧縮比検出手段を有するものであって、
圧縮比検出手段で検出された検出圧縮比を用いて内燃機関の各種制御を行う内燃機関の制御装置において、
可変圧縮比機構の異常の有無を判定する異常判定手段を有し、可変圧縮比機構に異常があると判定された際には、圧縮比検出手段で検出された検出圧縮比に所定値を上乗せした異常時制御用圧縮比を用いて内燃機関の各種制御を行うことを特徴とする内燃機関の制御装置。
A variable compression ratio mechanism that changes the engine compression ratio according to the engine operating state, and the variable compression ratio mechanism has compression ratio detection means for detecting the engine compression ratio;
In a control device for an internal combustion engine that performs various controls of the internal combustion engine using the detected compression ratio detected by the compression ratio detection means,
There is an abnormality determining means for determining whether there is an abnormality in the variable compression ratio mechanism, and when it is determined that there is an abnormality in the variable compression ratio mechanism, a predetermined value is added to the detected compression ratio detected by the compression ratio detecting means. A control apparatus for an internal combustion engine, which performs various controls of the internal combustion engine using the abnormal compression control ratio.
異常時制御用圧縮比は、可変圧縮比機構が実現可能な最大圧縮比であることを特徴とする請求項1に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1, wherein the compression ratio for abnormal control is a maximum compression ratio that can be realized by the variable compression ratio mechanism. 異常判定手段は、可変圧縮比機構の異常の種類を判別可能なものであって、検出圧縮比に上乗せされる所定値は、故障の種類に応じて設定されていることを特徴とする請求項1に記載の内燃機関の制御装置。   The abnormality determination means is capable of determining the type of abnormality of the variable compression ratio mechanism, and the predetermined value added to the detected compression ratio is set according to the type of failure. 2. A control device for an internal combustion engine according to 1. 異常判定手段により内燃機関の実際の圧縮比と検出圧縮比との偏差が大きいと推定される異常時には、異常時制御用圧縮比を可変圧縮比機構が実現可能な最大圧縮比とすることを特徴とする請求項3に記載の内燃機関の制御装置。   In the case of an abnormality in which the deviation between the actual compression ratio and the detected compression ratio of the internal combustion engine is estimated to be large by the abnormality determination means, the compression ratio for abnormal control is set to the maximum compression ratio that can be realized by the variable compression ratio mechanism. The control apparatus for an internal combustion engine according to claim 3. 内燃機関のノッキングを検出するノッキング検出手段を有し、
異常判定手段により内燃機関の実際の圧縮比と検出圧縮比との偏差が小さいと推定されるにも関わらずノッキングが発生する異常時には、検出圧縮比に上乗せされる所定値がノッキングの強度に応じて決定されることを特徴とする請求項3または4に記載の内燃機関の制御装置。
Having knocking detection means for detecting knocking of the internal combustion engine,
In the event of an abnormality in which knocking occurs despite the fact that the deviation between the actual compression ratio of the internal combustion engine and the detected compression ratio is estimated to be small by the abnormality determination means, the predetermined value added to the detected compression ratio depends on the knocking strength. The control apparatus for an internal combustion engine according to claim 3 or 4, wherein the control apparatus is determined as follows.
異常判定手段により内燃機関の実際の圧縮比と検出圧縮比との偏差がほとんどないと推定されるにも関わらず可変圧縮比機構による圧縮比可変操作が不可能な異常時には、可変圧縮比機構による圧縮比可変操作を禁止し、検出圧縮比を異常時制御用圧縮比とすることを特徴とする請求項3〜5のいずれかに記載の内燃機関の制御装置。   When the abnormality determination means estimates that there is almost no deviation between the actual compression ratio and the detected compression ratio of the internal combustion engine, the variable compression ratio mechanism is used when the variable compression ratio mechanism cannot be operated. 6. The control apparatus for an internal combustion engine according to claim 3, wherein the compression ratio variable operation is prohibited, and the detected compression ratio is set to a compression ratio for abnormal control.
JP2004350526A 2004-12-03 2004-12-03 Control device for internal combustion engine Active JP4403958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350526A JP4403958B2 (en) 2004-12-03 2004-12-03 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350526A JP4403958B2 (en) 2004-12-03 2004-12-03 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006161583A true JP2006161583A (en) 2006-06-22
JP4403958B2 JP4403958B2 (en) 2010-01-27

Family

ID=36663896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350526A Active JP4403958B2 (en) 2004-12-03 2004-12-03 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4403958B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024859A (en) * 2008-07-15 2010-02-04 Toyota Motor Corp Variable compression ratio internal combustion engine and method for judging abnormality of variable compression ratio mechanism
JP2010031787A (en) * 2008-07-30 2010-02-12 Toyota Motor Corp Control device for variable compression ratio internal combustion engine
WO2010061484A1 (en) * 2008-11-25 2010-06-03 トヨタ自動車株式会社 Control device for internal combustion engine
WO2010064329A1 (en) 2008-12-03 2010-06-10 トヨタ自動車株式会社 Engine system control device
JP2012132464A (en) * 2012-02-27 2012-07-12 Toyota Motor Corp Internal combustion engine
US8656701B2 (en) 2007-11-07 2014-02-25 Toyota Jidosha Kabushiki Kaisha Control device
WO2014046141A1 (en) * 2012-09-21 2014-03-27 日立オートモティブシステムズ株式会社 Control device for internal combustion engines
WO2015141037A1 (en) * 2014-03-20 2015-09-24 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
WO2018164097A1 (en) * 2017-03-09 2018-09-13 日立オートモティブシステムズ株式会社 Control device for internal combustion engine and control method for variable mechanism for internal combustion engine
CN108779720A (en) * 2016-03-11 2018-11-09 日产自动车株式会社 The control method of internal combustion engine and the control device of internal combustion engine
WO2019043860A1 (en) * 2017-08-31 2019-03-07 日産自動車株式会社 Control method and control device for internal combustion engine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656701B2 (en) 2007-11-07 2014-02-25 Toyota Jidosha Kabushiki Kaisha Control device
JP2010024859A (en) * 2008-07-15 2010-02-04 Toyota Motor Corp Variable compression ratio internal combustion engine and method for judging abnormality of variable compression ratio mechanism
JP2010031787A (en) * 2008-07-30 2010-02-12 Toyota Motor Corp Control device for variable compression ratio internal combustion engine
WO2010061484A1 (en) * 2008-11-25 2010-06-03 トヨタ自動車株式会社 Control device for internal combustion engine
JP5146536B2 (en) * 2008-11-25 2013-02-20 トヨタ自動車株式会社 Control device for internal combustion engine
US8746189B2 (en) 2008-11-25 2014-06-10 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
WO2010064329A1 (en) 2008-12-03 2010-06-10 トヨタ自動車株式会社 Engine system control device
US8818693B2 (en) 2008-12-03 2014-08-26 Toyota Jidosha Kabushiki Kaisha Engine system control device
JP2012132464A (en) * 2012-02-27 2012-07-12 Toyota Motor Corp Internal combustion engine
WO2014046141A1 (en) * 2012-09-21 2014-03-27 日立オートモティブシステムズ株式会社 Control device for internal combustion engines
JP2014062496A (en) * 2012-09-21 2014-04-10 Hitachi Automotive Systems Ltd Control device of internal combustion engine
US9822711B2 (en) 2012-09-21 2017-11-21 Hitachi Automotive Systems, Ltd. Control device for internal combustion engine
JP2015183523A (en) * 2014-03-20 2015-10-22 日立オートモティブシステムズ株式会社 Control device and control method of internal combustion engine
CN106133296A (en) * 2014-03-20 2016-11-16 日立汽车系统株式会社 The control device of internal combustion engine and control method
WO2015141037A1 (en) * 2014-03-20 2015-09-24 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
US10012152B2 (en) 2014-03-20 2018-07-03 Hitachi Automotive Systems, Ltd. Control device and control method for internal combustion engine
CN108779720A (en) * 2016-03-11 2018-11-09 日产自动车株式会社 The control method of internal combustion engine and the control device of internal combustion engine
WO2018164097A1 (en) * 2017-03-09 2018-09-13 日立オートモティブシステムズ株式会社 Control device for internal combustion engine and control method for variable mechanism for internal combustion engine
US11008955B2 (en) 2017-03-09 2021-05-18 Hitachi Automotive Systems, Ltd. Control device for internal combustion engine and control method for variable mechanism for internal combustion engine
WO2019043860A1 (en) * 2017-08-31 2019-03-07 日産自動車株式会社 Control method and control device for internal combustion engine
CN111065805A (en) * 2017-08-31 2020-04-24 日产自动车株式会社 Method and device for controlling internal combustion engine
EP3677761A4 (en) * 2017-08-31 2020-09-09 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine
US10907552B2 (en) 2017-08-31 2021-02-02 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine
CN111065805B (en) * 2017-08-31 2022-06-24 日产自动车株式会社 Method and device for controlling internal combustion engine

Also Published As

Publication number Publication date
JP4403958B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP4376119B2 (en) Control device for internal combustion engine
US7278383B2 (en) Internal combustion engine with variable compression ratio and valve characteristics
WO2014030671A1 (en) Engine control device
JP6071370B2 (en) Control device for internal combustion engine
JP4403958B2 (en) Control device for internal combustion engine
JP2008128082A (en) Engine torque control device and adjustment method therefor
RU2618146C1 (en) Internal combustion engine control device and method of its control
JP2006312943A (en) Variable valve gear of internal combustion engine
JP2009293496A (en) Variable compression ratio internal combustion engine
JP2009185629A (en) Variable compression ratio engine
JP5104421B2 (en) Control device and control method for internal combustion engine
JP5229143B2 (en) Engine control device
JP4470727B2 (en) Control device and control method for internal combustion engine
JP6666232B2 (en) Variable system for internal combustion engine and control method thereof
CN110863912B (en) Engine cylinder deactivation method utilizing active vibration reduction
JP4765699B2 (en) Reciprocating internal combustion engine control method
JP4400116B2 (en) Ignition control device for internal combustion engine with variable compression ratio mechanism
JP4877209B2 (en) Control device for internal combustion engine
JP4536342B2 (en) Control device for internal combustion engine with variable compression ratio mechanism
JP2005009366A (en) Control device for internal combustion engine
JP7439655B2 (en) Engine control method and control device
JP2006046194A (en) Compression ratio controller for internal combustion engine
WO2020044768A1 (en) Variable compression ratio system for internal combustion engine, and control device for same
JP2006169967A (en) Control system for internal combustion engine
JP2009115102A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4