JP2006160596A - Highly wear-resistant zirconia microsphere and method for producing the same - Google Patents

Highly wear-resistant zirconia microsphere and method for producing the same Download PDF

Info

Publication number
JP2006160596A
JP2006160596A JP2005239422A JP2005239422A JP2006160596A JP 2006160596 A JP2006160596 A JP 2006160596A JP 2005239422 A JP2005239422 A JP 2005239422A JP 2005239422 A JP2005239422 A JP 2005239422A JP 2006160596 A JP2006160596 A JP 2006160596A
Authority
JP
Japan
Prior art keywords
microspheres
oxidizing atmosphere
wear resistance
zirconia
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005239422A
Other languages
Japanese (ja)
Other versions
JP4949657B2 (en
Inventor
Osamu Idohara
修 井戸原
Yoshiaki Inoue
好明 井上
Seiji Yokota
誠二 横田
Akira Terajima
章 寺島
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2005239422A priority Critical patent/JP4949657B2/en
Publication of JP2006160596A publication Critical patent/JP2006160596A/en
Application granted granted Critical
Publication of JP4949657B2 publication Critical patent/JP4949657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Grinding (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly wear-resistant zirconia microspheres which can be used as shots for shot blast, in particular as beads for bead mill. <P>SOLUTION: When a raw material powder is subjected to spheroidizing treatment comprising heating and melting the powder by a thermal plasma flame in order to obtain microspheres, microspheres (No.1, No.1A) having improved wear resistance in comparison with a conventional product (No.16) are obtained by performing spheroidizing treatment by carrying out water spraying in a non-oxidizing atmosphere containing N<SB>2</SB>, H<SB>2</SB>or ammonia or in an Ar+O<SB>2</SB>atmosphere. Further, microspheres (No.2, No.5, No.5A, No.11) having improved wear resistance are obtained by heat treating commercially available zirconia microspheres or microspheres, obtained by subjecting the raw material powder to spheroidizing treatment comprising heating and melting the powder by a thermal plasma flame, at 400-1,500°C in a non-oxidizing atmosphere of N<SB>2</SB>, H<SB>2</SB>, Ar or ammonia or of a mixture of them or in a vacuum of ≤100 Pa. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ショットブラストのショットなどの他に、特にビーズミルに使用されるビーズなどの耐摩耗性ジルコニア微小球に関するものである。   The present invention relates to wear-resistant zirconia microspheres such as beads used in bead mills in addition to shot blast shots.

金属化合物、酸化物などの超微粒子粉末を製造する技術としてビーズミルにより製造する技術が開示されている(特許文献4など)。この際に、ビーズの摩耗によるコンタミネーションを減じて製造される超微粒子粉末の純度を上げるためには、耐摩耗性の高いビーズの使用が要求される。このためビーズミル処理には、高寿命を有するジルコニアビーズが多く用いられている。   As a technique for producing ultrafine powders such as metal compounds and oxides, a technique for producing by a bead mill is disclosed (Patent Document 4 and the like). At this time, in order to increase the purity of the ultrafine particle powder produced by reducing contamination due to wear of the beads, it is required to use beads having high wear resistance. For this reason, many zirconia beads having a long life are used for the bead mill treatment.

一方、ジルコニア微小球については、市販ジルコニア粉末を媒体を用いて撹拌式の造粒機などにより製造されるなどの多くの発明がされている(例えば特許文献1、2)。また、微小球の製造には、高融点の微粉末の粒度の調整が容易な点から熱プラズマを用いて球状粉末を製造する技術も広く使用されている。(例えば特許文献3、4)。
特開平5−178620号公報 特許第2707528号公報 特開昭63−250401号公報 特開2000−233929号公報
On the other hand, as for zirconia microspheres, many inventions have been made, for example, a commercially available zirconia powder is produced by a stirring granulator using a medium (for example, Patent Documents 1 and 2). In addition, for producing microspheres, a technique for producing spherical powder using thermal plasma is widely used because it is easy to adjust the particle size of the high melting point fine powder. (For example, Patent Documents 3 and 4).
JP-A-5-178620 Japanese Patent No. 2707528 JP-A-63-250401 JP 2000-233929 A

従来ビーズミル用のビーズとしては、湿式造粒後に焼結したジルコニア微小球が使用されてきたが、前述したように、最近発達したビーズミル処理には一層耐摩耗性の高いビーズが要求されてきた。そのために従来の湿式造粒後に焼結したジルコニア微小球では、微小球の耐摩耗性が不十分であり、さらに耐摩耗性の向上が要請された。一方、熱プラズマにより溶融球状化して微小球を作る方法は公知であるが、まだビーズミル用のビーズとして一般には使用されていない。   Conventionally, zirconia microspheres sintered after wet granulation have been used as beads for bead milling, but as described above, beads with higher wear resistance have been required for the recently developed bead mill treatment. Therefore, the conventional zirconia microspheres sintered after wet granulation have insufficient wear resistance of the microspheres, and further improvement in wear resistance has been demanded. On the other hand, a method of making microspheres by melting into a spherical shape with thermal plasma is known, but is not yet generally used as a bead for beads mill.

そこで本発明者らは、従来の熱プラズマ球状化装置を使用してジルコニア微小球を作成し、これをビーズミルに使用してみたが、なお、満足のいく耐摩耗性が得られなかった。本発明者らは、これを改良する研究の結果、従来の公知のAr+O2 雰囲気の熱プラズマによる球状化の雰囲気を変えることにより、ジルコニア微小球の耐摩耗性を向上させることができることを見出だした。また、市販の焼結等によるジルコニア微小球や、公知の熱プラズマにより球状化したジルコニア微小球でも、加熱処理することにより耐摩耗性を向上させることができることを見出だした。本発明は、このような耐摩耗性の高いジルコニア微小球を提供することを目的とするものである。 Therefore, the present inventors made zirconia microspheres using a conventional thermal plasma spheroidizer and used it for a bead mill. However, satisfactory wear resistance was not obtained. As a result of research to improve this, the present inventors have found that the wear resistance of zirconia microspheres can be improved by changing the atmosphere of spheroidization by a thermal plasma in a conventionally known Ar + O 2 atmosphere. It was. It has also been found that wear resistance can be improved by heat treatment of commercially available zirconia microspheres by sintering or the like, or zirconia microspheres spheroidized by known thermal plasma. An object of the present invention is to provide such zirconia microspheres with high wear resistance.

上記目的を達成するために、本発明の高耐摩耗性ジルコニア微小球とその製造方法は、原料粉末を熱プラズマフレームで加熱溶融して微小球に球状化処理する際に、Ar+O2 の酸化雰囲気中で水噴霧を行って球状化処理することにより耐摩耗性を向上させたことを特徴とするものである。 In order to achieve the above-mentioned object, the highly wear-resistant zirconia microspheres of the present invention and the method for producing the same are obtained by subjecting an oxidizing atmosphere of Ar + O 2 when the raw material powder is heated and melted in a thermal plasma flame to spheroidize the microspheres It is characterized in that the wear resistance is improved by spheroidizing by spraying with water.

すなわち、従来から熱プラズマによるジルコニアの溶融球状化処理は行われていたが、従来はジルコニアの球状化処理は単にAr+O2 の酸化雰囲気で行われていた。本発明者らはこの処理の際に水噴霧を行うことにより、従来の単なるAr+O2 の酸化雰囲気で球状化したものより耐摩耗性が向上することを見出だしたものである。
ここでいうジルコニア微小球とは、ZrO2 のみでなく、イットリウム部分安定化ジルコニアやカルシア安定化ジルコニアなどを含むものをいう。
That is, conventionally, zirconia spheroidizing treatment by thermal plasma has been performed, but zirconia spheroidizing treatment has been conventionally performed only in an oxidizing atmosphere of Ar + O 2 . The inventors of the present invention have found that wear resistance is improved by performing water spraying in this treatment, compared to conventional spheroidizing in an oxidizing atmosphere of Ar + O 2 .
As used herein, zirconia microspheres include not only ZrO 2 but also yttrium partially stabilized zirconia and calcia stabilized zirconia.

また、上記目的を達成するために、本発明の高耐摩耗性ジルコニア微小球とその製造方法は、原料粉末を熱プラズマフレームで加熱溶融して微小球に球状化処理する際に、N2 ,H2 又はアンモニアを含む非酸化雰囲気で球状化処理することにより耐摩耗性を向上させたことを特徴とするものである。 In order to achieve the above object, the highly wear-resistant zirconia microspheres and the method for producing the same of the present invention are prepared by N 2 , when the raw material powder is heated and melted in a thermal plasma flame and spheroidized into microspheres. The wear resistance is improved by spheroidizing treatment in a non-oxidizing atmosphere containing H 2 or ammonia.

すなわち、前述のように、従来の熱プラズマによるジルコニアの球状化処理はAr+O2 の酸化雰囲気で行われていたが、本発明者らはこれをO2 に代えてN2 ,H2 又はアンモニアを含む非酸化雰囲気で球状化処理することにより、Ar+O2 の酸化雰囲気の球状化より耐摩耗性が向上することを見出だしたものである。この際に微小球の内部にNが侵入したことが原因と思われるカラーセンターによる黒化が生ずることがある。 That is, as described above, the conventional zirconia spheroidization treatment by thermal plasma was performed in an oxidizing atmosphere of Ar + O 2. The present inventors replaced N 2 , H 2, or ammonia with O 2 instead of O 2. It has been found that the wear resistance is improved by spheroidizing treatment in a non-oxidizing atmosphere including the spheroidizing of the Ar + O 2 oxidizing atmosphere. At this time, blackening may occur due to a color center which is considered to be caused by N entering the inside of the microsphere.

また本発明の高耐摩耗性ジルコニア微小球とその製造方法は、ジルコニア微小球を非酸化雰囲気中で加熱処理することにより耐摩耗性を向上させたことを特徴とするものである。すなわち、従来使用されている市販の焼結によるジルコニア微小球などでも本発明の加熱処理を施すことにより、耐摩耗性を向上させることができることを見出だしたものである。   Further, the highly wear-resistant zirconia microspheres and the production method thereof according to the present invention are characterized in that the wear resistance is improved by heat-treating the zirconia microspheres in a non-oxidizing atmosphere. That is, it has been found that the wear resistance can be improved by applying the heat treatment of the present invention to commercially-available sintered zirconia microspheres and the like that have been conventionally used.

また本発明の高耐摩耗性ジルコニア微小球とその製造方法は、原料粉末を熱プラズマフレームで加熱溶融して球状化処理したジルコニア微小球を、非酸化雰囲気中で加熱処理することにより耐摩耗性を向上させたことを特徴とするものである。   In addition, the highly wear-resistant zirconia microspheres of the present invention and the method for producing the same are obtained by heat-treating zirconia microspheres obtained by heating and melting raw material powder in a thermal plasma flame in a non-oxidizing atmosphere. It is characterized by improving.

従来から、熱プラズマフレームで球状化処理した粉末を、球状化後に加熱処理することは行われていた。しかし、これらの加熱処理は粉末の硬さを低下して加工性を増したり、結晶構造を変化させて超電導性を改善したりすることを目的とするものであった。本発明のように、球状化された粉末を加熱処理することにより耐摩耗性が改善されるという効果は、今まで知られなかったものであり、このような目的で加熱処理する技術は従来無く、本発明者らがこの効果を初めて見出だし本発明に至ったものである。   Conventionally, a powder that has been spheroidized with a thermal plasma flame has been subjected to heat treatment after spheronization. However, the purpose of these heat treatments is to reduce the hardness of the powder to increase workability, or to change the crystal structure to improve superconductivity. As in the present invention, the effect that the wear resistance is improved by heat-treating the spheroidized powder has not been known so far, and there is no conventional technique for heat-treating for such a purpose. The present inventors have found this effect for the first time and have reached the present invention.

また、本発明の高耐摩耗性ジルコニア微小球とその製造方法は、ジルコニア微小球を、N2 ,H2 ,Ar又はアンモニアの単独あるいはそれらの混合の非酸化雰囲気中、若しくは100Pa以下の真空中で400〜1500℃に加熱処理することにより耐摩耗性を向上させることが望ましい。 In addition, the highly wear-resistant zirconia microspheres and the method for producing the same of the present invention include zirconia microspheres in a non-oxidizing atmosphere of N 2 , H 2 , Ar, or ammonia alone or a mixture thereof, or in a vacuum of 100 Pa or less. It is desirable to improve the wear resistance by heat treatment at 400 to 1500 ° C.

ここで、加熱処理温度を400〜1500℃とするのは、150〜300℃の加熱処理では、かえって耐摩耗性が低下することを見出だしたからである。また、1500℃以上では粒子間の固着が生ずるからである。なお、加熱後の冷却条件については耐摩耗性に影響はない。   Here, the reason why the heat treatment temperature is set to 400 to 1500 ° C. is that the heat treatment at 150 to 300 ° C. has found that the wear resistance is lowered. Moreover, it is because adhesion between particles occurs at 1500 ° C. or higher. In addition, about the cooling conditions after a heating, there is no influence on abrasion resistance.

また、本発明の高耐摩耗性ジルコニア微小球は、前記微小球の径が10〜100μmであることを特徴とするものである。熱プラズマフレームによる球状化では、このような微小球が容易に得られるので、前記の処理によりこのような高耐摩耗性ジルコニア微小球が得られるものである。   The high wear-resistant zirconia microsphere of the present invention is characterized in that the diameter of the microsphere is 10 to 100 μm. In the spheroidization by the thermal plasma flame, such microspheres can be easily obtained, and such high wear-resistant zirconia microspheres can be obtained by the above-described treatment.

本発明の高耐摩耗性ジルコニア微小球は耐摩耗性に優れるので、とくにビーズミルのビーズに用いた場合に、ビーズの摩耗によるコンタミネーションが少なく、純度の高い製品が得られる。また、本発明の高耐摩耗性ジルコニア微小球は、ビーズミル以外のジルコニア微小球の用途にも広く利用できる。   Since the highly wear-resistant zirconia microspheres of the present invention are excellent in wear resistance, particularly when used for beads of a bead mill, there is little contamination due to wear of the beads, and a product with high purity can be obtained. Moreover, the high wear-resistant zirconia microspheres of the present invention can be widely used for zirconia microspheres other than bead mills.

以下本発明の高耐摩耗性ジルコニア微小球の実施例について説明する。表1に実施例における試験条件を示す。
プラズマ球状化の原料粉末にはZrO2 +5.3wt%Y2 3 を用いた。表1の条件の詳細については、各実施例において説明する。
Examples of the highly wear-resistant zirconia microspheres of the present invention will be described below. Table 1 shows test conditions in the examples.
ZrO 2 +5.3 wt% Y 2 O 3 was used as a raw material powder for plasma spheroidization. Details of the conditions in Table 1 will be described in each example.

Figure 2006160596
Figure 2006160596

実施例1は、熱プラズマ球状化におけるプラズマ雰囲気の影響を調査した。そのために、原料粉末をプラズマ雰囲気を変えて熱プラズマ球状化した微小球を、加熱処理をしないで、そのままの状態で耐摩耗性を試験した。   In Example 1, the influence of the plasma atmosphere on the thermal plasma spheroidization was investigated. Therefore, the wear resistance of the microspheres obtained by changing the raw material powder into a thermal plasma spheroid by changing the plasma atmosphere was tested as it was without heat treatment.

図2は球状化試験に用いたプラズマ球状化装置を示す図である。図において、原料ジルコニア粉末は熱プラズマ11で溶融されて球状化され、冷却塔12中に落下して上記雰囲気中で冷却されて微小球となり、下部の粉末溜15に回収される。そして、水噴霧雰囲気の場合は、冷却塔12の両側の蓋13に設けられた噴射ノズル14からの水噴射により冷却されるようになっている。   FIG. 2 is a diagram showing a plasma spheronization apparatus used in the spheronization test. In the figure, the raw material zirconia powder is melted and spheroidized by the thermal plasma 11, falls into the cooling tower 12, is cooled in the above atmosphere to form microspheres, and is collected in the lower powder reservoir 15. And in the case of a water spray atmosphere, it cools by the water injection from the injection nozzle 14 provided in the lid | cover 13 of the both sides of the cooling tower 12. FIG.

熱プラズマ球状化の雰囲気条件は、表2に示すように、試料No.15の従来の酸化雰囲気のAr+O2 と、試料No.1Aの同雰囲気で水噴霧処理した場合と、試料No.1の非酸化雰囲気のAr+N2 との3条件のプラズマ雰囲気で試験した。このプラズマ雰囲気中で熱プラズマにより球状化して40〜60μm径のジルコニア微小球を作成した。そしてこの微小球を加熱処理しないでそのままの状態の耐摩耗性を試験した。また比較材として試料No.16の市販品のままの耐摩耗試験も行った。 As shown in Table 2, the atmospheric conditions for thermal plasma spheroidization are as follows. 15 conventional Ar + O 2 in an oxidizing atmosphere, In the case of water spraying in the same atmosphere of 1A, sample No. The test was performed in a plasma atmosphere under three conditions with Ar + N 2 in 1 non-oxidizing atmosphere. Zirconia microspheres having a diameter of 40 to 60 μm were prepared by spheroidizing with thermal plasma in this plasma atmosphere. The microspheres were tested for wear resistance as they were without heat treatment. As a comparative material, Sample No. Sixteen commercially available wear resistance tests were also performed.

耐摩耗試験は、ポット寸法38mmφ×45mmLのビーズミルに60gのジルコニア微小球のビーズを装入し、媒体として純水を用いて8000rpmの回転数でからずりを行って、一定のからずり時間後のジルコニアビーズの摩耗量を調べた。   In the abrasion resistance test, 60 g of zirconia microsphere beads were placed in a bead mill having a pot size of 38 mmφ × 45 mmL, and pure water was used as a medium, followed by spinning at a rotational speed of 8000 rpm. The amount of wear of zirconia beads was examined.

摩耗量の計測は、媒体の濁り度測定法とICP発光分光分析法により行った。濁り度測定法は、からずり中の媒体の濁り度を目視計測して5〜1の評価をして耐摩耗性を判断した。耐摩耗性の高い順に、ビーズの摩耗量が少なく透明に近い濁り度が低いものを5とし、耐摩耗性の低い白濁した濁り度の高いものを1として評価した。ICP発光分光分析法は、からずり後にジルコニアビーズを取り除いた媒体中のジルコニア量をICP発光分光分析装置によって測定して摩耗量とした。   The amount of wear was measured by a medium turbidity measurement method and an ICP emission spectroscopic analysis method. In the turbidity measuring method, the turbidity of the medium in the shearing was visually measured and evaluated from 5 to 1, and the wear resistance was judged. In the descending order of wear resistance, evaluation was made with 5 indicating that the bead wear amount was low and the turbidity was almost transparent, and 5 was low and the turbidity was low and the turbidity was low. In the ICP emission spectroscopic analysis method, the amount of zirconia in the medium from which the zirconia beads were removed after twisting was measured with an ICP emission spectroscopic analyzer to determine the amount of wear.

前記試料のからずり時間1hと30hの濁り度による耐摩耗試験結果を表2に、ICP発光分光分析法によるからずり時間と摩耗率の関係の推移を図1に示す。   Table 2 shows the results of the abrasion resistance test according to the turbidity of the specimens with a shear time of 1 h and 30 h, and FIG. 1 shows the transition of the relation between the shear time and the wear rate by ICP emission spectroscopic analysis.

Figure 2006160596
Figure 2006160596

表2と図1の試験結果から、加熱処理しない微小球について以下のことが判った。
(1)プラズマ球状化したジルコニア微小球は、従来方法の試料No.15のAr+O2 の酸化雰囲気で球状化した微小球でも、試料No.16の市販品のジルコニア微小球よりはるかに耐摩耗性が良い。
(2)プラズマ雰囲気がAr+O2 の酸化雰囲気でも、これに水噴霧して球状化した試料No.1Aの微小球は、単にAr+O2 の酸化雰囲気で球状化した試料No.15の微小球と濁り度試験で比較すると、1hのからずりでは差が無いが、30hのからずりでは試料No.1Aが試料No.15より濁り度が小さく試料No.1Aの耐摩耗性が高い。図1のからずり耐摩耗性曲線においても同様である。すなわちAr+O2 の酸化雰囲気で熱プラズマ球状化する場合も、水噴霧することにより、従来の単に酸化雰囲気で球状化したものに対して耐摩耗性を向上できることが判った。
(3)Ar+N2 の非酸化雰囲気でプラズマ球状化した試料No.1の微小球は、Ar+O2 の酸化雰囲気で球状化した試料No.15の微小球と濁り度試験で比較すると、前記試料No.1Aと同様に1hのからずりでは濁り度に差が無いが、30hのからずりでは試料No.1が試料No.15より濁り度が小さく試料No.1の耐摩耗性が高い。図1のからずり耐摩耗性曲線においても同様である。すなわちN2 を含む雰囲気で熱プラズマ球状化することにより、従来の酸化雰囲気で球状化したものに対して耐摩耗性を向上できることが判った。
(4)Ar+O2 の酸化雰囲気に水噴霧した試料No.1Aの微小球は、Ar+N2 の非酸化雰囲気で球状化した試料No.1の微小球と濁り度試験ではほぼ同じであるが、図1のからずり耐摩耗性曲線においては、Ar+O2 の酸化雰囲気に水噴霧した試料No.1AがAr+N2 の非酸化雰囲気の試料No.1よりやや耐摩耗性が高い傾向が見られる。
From the test results in Table 2 and FIG. 1, the following was found for the microspheres that were not heat-treated.
(1) Plasma spheroidized zirconia microspheres are obtained by using conventional sample Nos. Even microspheres spheroidized in an Ar + O 2 oxidizing atmosphere of 15 Much better wear resistance than 16 commercially available zirconia microspheres.
(2) Even when the plasma atmosphere is an Ar + O 2 oxidation atmosphere, the sample No. The microspheres of 1A are simply sample Nos. Spheroidized in an oxidizing atmosphere of Ar + O 2 . When compared with the turbidity test of 15 microspheres, there is no difference in the haze of 1 h, but sample No. 1A is Sample No. The turbidity is smaller than 15 and sample no. 1A wear resistance is high. The same applies to the shear wear resistance curve of FIG. That is, it has been found that, even when thermal plasma spheroidization is performed in an oxidizing atmosphere of Ar + O 2, the wear resistance can be improved by spraying with water as compared with the conventional spheroidized simply in an oxidizing atmosphere.
(3) Sample No. obtained by spheroidizing plasma in a non-oxidizing atmosphere of Ar + N 2 Sample No. 1 microspheres were spheroidized in an oxidizing atmosphere of Ar + O 2 . 15 and the turbidity test, the sample No. Similar to 1A, there is no difference in turbidity with a hail of 1 h, but sample No. 1 is Sample No. The turbidity is smaller than 15 and sample no. 1 has high wear resistance. The same applies to the shear wear resistance curve of FIG. That is, it was found that wear resistance can be improved by spheroidizing in an atmosphere containing N 2 as compared with those spheroidized in a conventional oxidizing atmosphere.
(4) Sample No. sprayed with water in an oxidizing atmosphere of Ar + O 2 1A of the microspheres, samples were spheronized in a non-oxidizing atmosphere Ar + N 2 No. 1 is almost the same in the turbidity test, but in the shear wear resistance curve of FIG. 1, sample No. 1 sprayed with water in an oxidizing atmosphere of Ar + O 2 is used. Sample No. 1 in a non-oxidizing atmosphere in which 1A is Ar + N 2 . A tendency of slightly higher wear resistance than 1 is observed.

次に実施例2として、本発明のジルコニア微小球の加熱処理の効果について試験した。まず、以下の各製造条件のジルコニア微小球について、N2 +H2 の非酸化雰囲気で900℃×4hの加熱処理を行い、耐摩耗性に及ぼすジルコニア微小球の製造条件の差異を試験した。 Next, as Example 2, the effect of heat treatment on the zirconia microspheres of the present invention was tested. First, zirconia microspheres under the following production conditions were subjected to heat treatment at 900 ° C. for 4 hours in a non-oxidizing atmosphere of N 2 + H 2 to test the difference in the production conditions of zirconia microspheres on wear resistance.

加熱処理試験に供したジルコニア微小球は、表2に示す以下の4種類である。 試料No.2:試料No.16の市販のジルコニア微小球
試料No.5:Ar+O2 の酸化雰囲気で熱プラズマにより球状化したもの
試料No.5A:Ar+O2 の酸化雰囲気に水噴射して熱プラズマにより球状化したもの
試料No.11:Ar+N2 の非酸化雰囲気で熱プラズマにより球状化したもの濁り度測定の試験結果は表2に、ICP発光分光分析の摩耗率の試験結果は図1の曲線に示す。
The following four types of zirconia microspheres subjected to the heat treatment test are shown in Table 2. Sample No. 2: Sample No. 16 commercially available zirconia microspheres 5: Spheroidized by thermal plasma in an oxidizing atmosphere of Ar + O 2 5A: Water jetted into an oxidizing atmosphere of Ar + O 2 and spheroidized by thermal plasma. 11: Sphericalized by thermal plasma in a non-oxidizing atmosphere of Ar + N 2 Table 2 shows the test results of the turbidity measurement, and the test results of the wear rate of ICP emission spectroscopic analysis are shown in the curve of FIG.

表2と図1の試験結果から加熱処理したジルコニア微小球について以下のことが判った。
1.試料No.16の市販品の焼結によるジルコニア微小球でも、N2 +H2 の非酸化雰囲気中で加熱処理することにより、試料No.2のように濁り度で見ると耐摩耗性が向上するが、まだ熱プラズマ球状化処理したジルコニア微小球の試料No.1,1Aに比べると劣る。
2. Ar+O2 の酸化雰囲気で熱プラズマ球状化した試料No.5、Ar+O2 の酸化雰囲気に水噴射して熱プラズマ球状化した試料No.5A、Ar+N2 の非酸化雰囲気で熱プラズマ球状化した試料No.11のいずれも、からずり濁り度では差が認められなかったが、図1の摩耗率の試験では、酸化雰囲気に水噴霧した試料No.5Aと、Ar+N2 の非酸化雰囲気で球状化した試料No.11がほとんど同じ高い耐摩耗性を示した。そして、Ar+O2 の酸化雰囲気で熱プラズマ球状化した試料No.5も加熱処理により耐摩耗性は大幅に向上したが、上記試料No.5A,11より劣ることが判った。
From the test results of Table 2 and FIG. 1, the following was found for the heat-treated zirconia microspheres.
1. Sample No. No. 16 commercial product zirconia microspheres were also heat-treated in a non-oxidizing atmosphere of N 2 + H 2 to obtain sample No. As seen in turbidity, the wear resistance is improved as shown in FIG. Compared to 1,1A.
2. Sample No. spheroidized by thermal plasma in an oxidizing atmosphere of Ar + O 2 5. Sample No. 5 was sprayed with water into an Ar + O 2 oxidizing atmosphere to form a thermal plasma spheroid. Sample No. 5 which was spheroidized by thermal plasma in a non-oxidizing atmosphere of 5A, Ar + N 2 . 11, no difference was found in the shear turbidity, but in the wear rate test of FIG. Sample No. 5 spheroidized in a non-oxidizing atmosphere of Ar + N 2 11 showed almost the same high wear resistance. Then, Sample No. No. 2 was formed into a thermal plasma spheroid in an Ar + O 2 oxidizing atmosphere. No. 5 was significantly improved in wear resistance by heat treatment. It was found to be inferior to 5A and 11.

次に実施例3として、ジルコニア微小球の加熱処理における加熱温度の影響を試験した。
実施例3は、前記のAr+O2 の酸化雰囲気で熱プラズマ球状化した試料とAr+N2 の非酸化雰囲気で熱プラズマ球状化した試料とのそれぞれについて、N2 +H2 の非酸化雰囲気で150℃〜1,050℃×4hの範囲に温度を変えて加熱処理を行い加熱温度の影響を試験した。その結果を、表2の試料No.3〜7,9〜13及び試料No.17、18、20、21に示す。
表2から、400℃〜1,500℃の範囲の加熱処理の試料No.3〜7,及び試料No.9〜13では、いずれも耐摩耗性が良好であったが、加熱温度が150〜300℃の試料No.17、18、20、21では、加熱処理前より耐摩耗性が低下した。
Next, as Example 3, the influence of the heating temperature in the heat treatment of zirconia microspheres was tested.
Example 3 is a sample obtained by spheroidizing a thermal plasma in an oxidizing atmosphere of Ar + O 2 and a sample spheroidizing a thermal plasma in a non-oxidizing atmosphere of Ar + N 2, in a non-oxidizing atmosphere of N 2 + H 2. The heat treatment was performed while changing the temperature in the range of 1,050 ° C. × 4 h, and the influence of the heating temperature was tested. The results are shown in Sample No. 2 of Table 2. 3-7, 9-13 and sample no. 17, 18, 20, and 21.
From Table 2, sample No. of the heat processing of the range of 400 to 1500 degreeC is shown. 3-7 and sample no. In each of Nos. 9 to 13, the wear resistance was good, but sample Nos. With heating temperatures of 150 to 300 ° C were used. In 17, 18, 20, and 21, the wear resistance was lower than before the heat treatment.

実施例4は、加熱処理における雰囲気の影響を調べた。前記実施例3はN2 +H2 の非酸化雰囲気であったが、実施例4はさらに非酸化雰囲気のAr+H2 中の加熱と、酸化雰囲気の大気中とで900℃の加熱処理を行った。その結果を表2の試料No.8、14及び19、20に示す。
非酸化雰囲気のAr+H2 中加熱の試料No.8、14は、前記N2 +H2 中加熱の試料No.5、11と同等であったが、酸化雰囲気の大気中加熱の試料No.19、20は加熱処理前より大幅に耐摩耗性が低下した。
In Example 4, the influence of the atmosphere in the heat treatment was examined. In Example 3, the non-oxidizing atmosphere of N 2 + H 2 was used. In Example 4, a heat treatment at 900 ° C. was further performed in Ar + H 2 in a non-oxidizing atmosphere and in the air in an oxidizing atmosphere. The results are shown in Table 2. 8, 14 and 19, 20.
Sample No. heated in Ar + H 2 in a non-oxidizing atmosphere Nos. 8 and 14 are sample Nos. Heated in N 2 + H 2 . 5 and 11, but the sample No. In 19 and 20, the wear resistance was significantly lower than before the heat treatment.

上記の表2および図1の試験結果を総括すると、以下のようになった。
(1)熱プラズマにより球状化した微小球をN2 +H2 の非酸化雰囲気で400℃以上の加熱処理することにより耐摩耗性が向上する(試料No.3〜7,5A,9〜13)。この効果はAr+H2 の非酸化雰囲気の加熱でも認められる(試料No.8,14)。
(2)しかし、非酸化雰囲気中の加熱処理でも、300℃以下の加熱処理ではかえって球状化のままよりも耐摩耗性が低下する(試料No.17、18及び20,21参照)。したがって、加熱処理には400℃以上の加熱が必要であることが判った。しかし、1500℃以上では粒子間の固着が生ずる恐れがあるので1500℃以下とした。
(3)加熱処理による耐摩耗性の向上は、試料No.3〜8のAr+O2 の酸化性プラズマ雰囲気の球状化の場合も、試料No.9〜14のAr+N2 の非酸化性プラズマ雰囲気の球状化のいずれの加熱処理でも大幅に耐摩耗性が向上する。しかし、図1の摩耗曲線の試料No.5と試料No.11の比較から見られるように、Ar+N2 の非酸化性プラズマ雰囲気で球状化した試料No.9〜14の方が、Ar+O2 の酸化性プラズマ雰囲気で球状化した試料No.3〜8よりも耐摩耗性が高い。
(4)Ar+O2 の酸化雰囲気で水噴霧して球状化し、N2 +H2 の非酸化雰囲気で加熱処理した試料No.5Aは、Ar+N2 の非酸化性プラズマ雰囲気で球状化して加熱処理した試料No.9〜14と同等の耐摩耗性を示した。
(5)図1に見られるように、Ar+O2 雰囲気で球状化しN2 +H2 の非酸化雰囲気で加熱処理した試料No.5のジルコニア微小球でも、その摩耗率は、市販品のままのジルコニア微小球の試料No.16の摩耗率の1000分の1であり(図1の摩耗率は対数表示)、市販品に比して大幅に耐摩耗性が高い。
(6)Ar+N2 の非酸化性プラズマ雰囲気で球状化し加熱処理した試料No.11、あるいはAr+O2 雰囲気で水噴霧して球状化し、加熱処理した試料No.5Aのジルコニア微小球の摩耗率は、前記の試料No.5よりさらに10分の1である。
(7)市販品のジルコニア微小球も非酸化雰囲気中で加熱処理すると、耐摩耗性が向上する(試料No.2と試料No.16を比較)。この市販品を加熱処理したジルコニア微小球の試料No.2は、比較例の従来の酸化雰囲気のプラズマ球状化のままの試料No.15より短時間のからずりでは耐摩耗性が低いが、長時間のからずり(30h)では耐摩耗性が高い。
(8)また大気中の酸化雰囲気で加熱処理すると、Ar+N2 、Ar+O2 雰囲気のいずれのプラズマ雰囲気で球状化した場合も耐摩耗性は低下し、市販品のままの耐摩耗性程度になる(表2の試料No.19,22と16及び図1の試料No.19と16参照)。
The test results in Table 2 and FIG. 1 are summarized as follows.
(1) Wear resistance is improved by heat-treating microspheres spheroidized by thermal plasma at 400 ° C. or higher in a non-oxidizing atmosphere of N 2 + H 2 (Sample Nos. 3-7, 5A, 9-13). . This effect is also observed by heating in a non-oxidizing atmosphere of Ar + H 2 (Sample Nos. 8 and 14).
(2) However, even in the heat treatment in the non-oxidizing atmosphere, the wear resistance is lower than that in the spheroidization in the heat treatment at 300 ° C. or lower (see Sample Nos. 17, 18, and 21, 21). Therefore, it was found that heating at 400 ° C. or higher is necessary for the heat treatment. However, if the temperature is 1500 ° C. or higher, there is a possibility that adhesion between particles may occur.
(3) The improvement in wear resistance by heat treatment is shown in Sample No. In the case of spheroidization of an oxidizing plasma atmosphere of 3 to 8 Ar + O 2 , sample No. The wear resistance is greatly improved by any heat treatment of spheroidizing a non-oxidizing plasma atmosphere of 9 to 14 Ar + N 2 . However, the sample No. of the wear curve in FIG. 5 and sample no. 11. As can be seen from the comparison of Sample No. 11, sample Nos. Spheroidized in a non-oxidizing plasma atmosphere of Ar + N 2 . Samples Nos. 9 to 14 were spheroidized in an Ar + O 2 oxidizing plasma atmosphere. Abrasion resistance is higher than 3-8.
(4) Sample No. 2 was sprayed with water in an oxidizing atmosphere of Ar + O 2 to be spheroidized and heat-treated in a non-oxidizing atmosphere of N 2 + H 2 . Sample No. 5A was spheroidized in a non-oxidizing plasma atmosphere of Ar + N 2 and heat-treated. Abrasion resistance equivalent to 9-14 was exhibited.
(5) As shown in FIG. 1, the sample No. 1 was spheroidized in an Ar + O 2 atmosphere and heat-treated in a non-oxidizing atmosphere of N 2 + H 2 . The wear rate of the zirconia microspheres of No. 5 was as follows. It is 1/1000 of the wear rate of 16 (the wear rate in FIG. 1 is logarithmic), and is significantly higher in wear resistance than commercially available products.
(6) Sample No. spheroidized and heat-treated in a non-oxidizing plasma atmosphere of Ar + N 2 . 11 or sample No. 1 which was spheroidized by water spraying in an Ar + O 2 atmosphere and heat-treated. The wear rate of the zirconia microspheres of 5A is the same as that of Sample No. 1/10 more than 5.
(7) When the commercially available zirconia microspheres are also heat-treated in a non-oxidizing atmosphere, the wear resistance is improved (compare sample No. 2 and sample No. 16). Sample No. of zirconia microspheres obtained by heat-treating this commercially available product. No. 2 is a sample No. 2 with the plasma spheroidization in the conventional oxidizing atmosphere of the comparative example. The wear resistance is low when the shear is shorter than 15, but the wear resistance is high when the shear is long (30h).
(8) Further, when heat treatment is performed in an oxidizing atmosphere in the atmosphere, the wear resistance is reduced even when spheroidizing is performed in any of the plasma atmospheres of Ar + N 2 and Ar + O 2 , and the degree of wear resistance remains as a commercial product ( (See Sample Nos. 19, 22, and 16 in Table 2 and Sample Nos. 19 and 16 in FIG. 1).

以上の結果から、上記本発明のいずれの方法によっても、焼結等により作成された市販のジルコニア微小球に比して高い耐摩耗性のジルコニア微小球が得られるが、その耐摩耗性の高い順に示せば以下の処理の順になる。
1.非酸化雰囲気でプラズマ球状化したジルコニア微小球を非酸化雰囲気で加熱処理したもの(試料No.11)。
2.酸化雰囲気で水噴霧してプラズマ球状化したジルコニア微小球を非酸化雰囲気で加熱処理したものは、上記1とほぼ同等の耐摩耗性を示す(試料No.5A)。
3.酸化雰囲気でプラズマ球状化したジルコニア微小球を非酸化雰囲気で加熱処理したもの(試料No.5)。
4.酸化雰囲気で水噴霧してプラズマ球状化したジルコニア微小球のそのままのもの(試料No.1A)。
5.非酸化雰囲気でプラズマ球状化したジルコニア微小球のそのままのもの(試料No.1)。
6.市販品を非酸化雰囲気で加熱処理したもの(短時間のからずりにおいては酸化雰囲気のプラズマ球状化に劣るが長時間のからずりにおいて優れる)(試料No.2)。
7.酸化雰囲気でプラズマ球状化したジルコニア微小球のそのままのもの(短時間のからずりにおいては市販品を非酸化雰囲気で加熱処理したものに優れるが長時間のからずりにおいて劣る)(試料No.15)。
8.プラズマ球状化したジルコニア微小球を酸化雰囲気中で加熱処理したものと、市販品のそのままのものが最も耐摩耗性が悪い(試料No.16と試料No.19)。
なお、本実施例では示さないが、非酸化雰囲気で水噴射してプラズマ球状化したジルコニア微小球を非酸化雰囲気で加熱処理したものは、上記1及び2と同等の耐摩耗性を示すものと推定される。
From the above results, by any of the methods of the present invention, zirconia microspheres having higher wear resistance than commercially available zirconia microspheres prepared by sintering or the like can be obtained, but the wear resistance is high. If it shows in order, it becomes the order of the following processes.
1. Zirconia microspheres that have been spheroidized in a non-oxidizing atmosphere are heat-treated in a non-oxidizing atmosphere (Sample No. 11).
2. Zirconia microspheres that have been atomized by water spraying in an oxidizing atmosphere and heat-treated in a non-oxidizing atmosphere exhibit almost the same wear resistance as Sample 1 (Sample No. 5A).
3. Zirconia microspheres that have been spheroidized in an oxidizing atmosphere are heat-treated in a non-oxidizing atmosphere (Sample No. 5).
4). Zirconia microspheres as they are spheroidized by water spraying in an oxidizing atmosphere (sample No. 1A).
5. Zirconia microspheres as they are spheroidized in a non-oxidizing atmosphere (Sample No. 1).
6). A commercially available product heat-treated in a non-oxidizing atmosphere (it is inferior to plasma spheroidization in an oxidizing atmosphere in a short-time shear, but excellent in a long-time shear) (Sample No. 2).
7). Zirconia microspheres as they are made into plasma spheroids in an oxidizing atmosphere (in the case of a short time shear, it is superior to a heat-treated commercial product in a non-oxidizing atmosphere but inferior in a long time shear) (Sample No. 15) .
8). Plasma spheroidized zirconia microspheres heat-treated in an oxidizing atmosphere and commercially available ones have the worst wear resistance (Sample No. 16 and Sample No. 19).
Although not shown in this example, zirconia microspheres that have been spheroidized by water jetting in a non-oxidizing atmosphere are heat-treated in a non-oxidizing atmosphere and exhibit wear resistance equivalent to those in 1 and 2 above. Presumed.

以上説明したように、本発明によれば、原料粉末を熱プラズマフレームによりAr+O2 雰囲気中で水噴霧を行って球状化処理することにより、従来方法の酸化雰囲気で球状化するものより高い耐摩耗性のジルコニア微小球が得られる。 As described above, according to the present invention, the raw material powder is sprayed with water in an Ar + O 2 atmosphere by a thermal plasma flame to be spheroidized, so that the wear resistance is higher than that obtained by spheroidizing in an oxidizing atmosphere of a conventional method. Sex zirconia microspheres are obtained.

また、原料粉末を熱プラズマフレームによりN2 ,H2 又はアンモニアを含む非酸化雰囲気で加熱溶融して球状化処理することにより、従来方法の酸化雰囲気で球状化するものより高い耐摩耗性のジルコニア微小球が得られる。 In addition, zirconia with higher wear resistance than those obtained by spheroidizing in an oxidizing atmosphere of a conventional method by heating and melting the raw material powder in a non-oxidizing atmosphere containing N 2 , H 2 or ammonia using a thermal plasma flame Microspheres are obtained.

また、ジルコニア微小球を非酸化雰囲気中で加熱処理することにより耐摩耗性が向上する。この加熱処理するジルコニア微小球は、熱プラズマフレームにより加熱溶融して球状化処理した微小球においても、従来の焼結によるジルコニア微小球においても耐摩耗性を向上させることができる。これにより、市販のジルコニア微小球でも本発明の加熱処理を施すことにより耐摩耗性を向上させることができる。   Moreover, wear resistance is improved by heat-treating zirconia microspheres in a non-oxidizing atmosphere. The heat-treated zirconia microspheres can be improved in wear resistance both in the microspheres heated and melted by a thermal plasma flame and spheroidized, and in the conventional sintered zirconia microspheres. Thereby, even with a commercially available zirconia microsphere, wear resistance can be improved by performing the heat treatment of the present invention.

上記の非酸化雰囲気の加熱処理は、N2 ,H2 ,Ar又はアンモニアの単独あるいはそれらの混合の非酸化雰囲気中、若しくは100Pa以下の真空中で400〜1500℃に加熱処理することが好ましい。 The heat treatment in the non-oxidizing atmosphere is preferably performed at 400 to 1500 ° C. in a non-oxidizing atmosphere of N 2 , H 2 , Ar, or ammonia alone or a mixture thereof, or in a vacuum of 100 Pa or less.

本発明の方法は、熱プラズマフレームにより球状化するので、微小球の粒度調整が容易で、10〜100μm径のジルコニア微小球が容易に得られる。   Since the method of the present invention is spheroidized by a thermal plasma flame, the particle size of the microspheres can be easily adjusted, and zirconia microspheres having a diameter of 10 to 100 μm can be easily obtained.

以上述べたように、本発明の高耐摩耗性ジルコニア微小球は、従来の造粒・焼結法によるジルコニア微小球や、通常の酸化雰囲気の熱プラズマにより球状化したジルコニア微小球に比して耐摩耗性に優れるので、とくにビーズミルのビーズに用いた場合に、ビーズの摩耗によるコンタミネーションが少なく、純度の高い製品が得られる。また、本発明の高耐摩耗性ジルコニア微小球は、ビーズミル以外の耐摩耗性を必要とするジルコニア微小球の用途にも広く利用でき、産業の発展に寄与する。   As described above, the high wear-resistant zirconia microspheres of the present invention are compared with zirconia microspheres obtained by conventional granulation / sintering methods and zirconia microspheres spheroidized by thermal plasma in a normal oxidizing atmosphere. Since it is excellent in abrasion resistance, there is little contamination due to bead wear, especially when used for beads in a bead mill, and a product with high purity can be obtained. In addition, the highly wear-resistant zirconia microspheres of the present invention can be widely used for zirconia microspheres that require wear resistance other than bead mills, and contribute to industrial development.

本発明実施例のからずり時間と摩耗率の関係を示す図である。It is a figure which shows the relationship between the shearing time and wear rate of an Example of this invention. 本発明実施例に使用した熱プラズマ球状化装置の図である。It is a figure of the thermal plasma spheroidization apparatus used for the Example of this invention.

符号の説明Explanation of symbols

11 熱プラズマ、12 冷却塔、13 蓋、14 噴射ノズル、15 粉末溜   11 thermal plasma, 12 cooling tower, 13 lid, 14 injection nozzle, 15 powder reservoir

Claims (12)

原料粉末を熱プラズマフレームで加熱溶融して微小球に球状化処理する際に、Ar+O2 の酸化雰囲気中で水噴霧を行って球状化処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球。 When the raw material powder is heated and melted in a thermal plasma flame to spheroidize into microspheres, the wear resistance is improved by spheroidizing by spraying water in an oxidizing atmosphere of Ar + O 2. High wear-resistant zirconia microspheres. 原料粉末を熱プラズマフレームで加熱溶融して微小球に球状化処理する際に、N2 ,H2 又はアンモニアを含む非酸化雰囲気で球状化処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球。 When the raw material powder is heated and melted with a thermal plasma flame to spheroidize into microspheres, the wear resistance is improved by spheroidizing in a non-oxidizing atmosphere containing N 2 , H 2 or ammonia. High wear-resistant zirconia microspheres. ジルコニア微小球を非酸化雰囲気中で加熱処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球。 High wear-resistant zirconia microspheres characterized by improving wear resistance by heat-treating zirconia microspheres in a non-oxidizing atmosphere. 原料粉末を熱プラズマフレームで加熱溶融して球状化処理したジルコニア微小球を、非酸化雰囲気中で加熱処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球。 High wear-resistant zirconia microspheres characterized in that wear resistance is improved by heat-treating zirconia microspheres obtained by heating and melting raw material powder with a thermal plasma flame in a non-oxidizing atmosphere. ジルコニア微小球を、N2 ,H2 ,Ar又はアンモニアの単独あるいはそれらの混合の非酸化雰囲気中、若しくは100Pa以下の真空中で400〜1500℃に加熱処理することにより耐摩耗性を向上させたことを特徴とする請求項3又は4に記載の高耐摩耗性ジルコニア微小球。 Abrasion resistance was improved by heat-treating zirconia microspheres at 400 to 1500 ° C. in a non-oxidizing atmosphere of N 2 , H 2 , Ar, or ammonia alone or a mixture thereof, or in a vacuum of 100 Pa or less. The highly wear-resistant zirconia microsphere according to claim 3 or 4, 前記微小球の径が10〜100μmであることを特徴とする請求項1から5のいずれかに記載の高耐摩耗性ジルコニア微小球。 The diameter of the said microsphere is 10-100 micrometers, The high abrasion-resistant zirconia microsphere in any one of Claim 1 to 5 characterized by the above-mentioned. 原料粉末を熱プラズマフレームで加熱溶融して微小球に球状化処理する際に、Ar+O2 の酸化雰囲気中で水噴霧を行って球状化処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球の製造方法。 When the raw material powder is heated and melted in a thermal plasma flame to spheroidize into microspheres, the wear resistance is improved by spheroidizing by spraying water in an oxidizing atmosphere of Ar + O 2. A method for producing highly wear-resistant zirconia microspheres. 原料粉末を熱プラズマフレームで加熱溶融して微小球に球状化処理する際に、N2 ,H2 又はアンモニアを含む非酸化雰囲気で球状化処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球の製造方法。 When the raw material powder is heated and melted with a thermal plasma flame to spheroidize into microspheres, the wear resistance is improved by spheroidizing in a non-oxidizing atmosphere containing N 2 , H 2 or ammonia. A method for producing highly wear-resistant zirconia microspheres. ジルコニア微小球を非酸化雰囲気中で加熱処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球の製造方法。 A method for producing highly wear-resistant zirconia microspheres, wherein the wear resistance is improved by heat-treating zirconia microspheres in a non-oxidizing atmosphere. 原料粉末を熱プラズマフレームで加熱溶融して球状化処理したジルコニア微小球を、非酸化雰囲気中で加熱処理することにより耐摩耗性を向上させたことを特徴とする高耐摩耗性ジルコニア微小球の製造方法。 Zirconia microspheres, which are spheroidized by heating and melting the raw material powder in a thermal plasma flame, are heat-treated in a non-oxidizing atmosphere to improve wear resistance. Production method. ジルコニア微小球を、N2 ,H2 ,Ar又はアンモニアの単独あるいはそれらの混合の非酸化雰囲気中、若しくは100Pa以下の真空中で400〜1500℃に加熱処理することにより耐摩耗性を向上させたことを特徴とする請求項9又は10に記載の高耐摩耗性ジルコニア微小球の製造方法。 Abrasion resistance was improved by heat-treating zirconia microspheres at 400 to 1500 ° C. in a non-oxidizing atmosphere of N 2 , H 2 , Ar, or ammonia alone or a mixture thereof, or in a vacuum of 100 Pa or less. The method for producing highly wear-resistant zirconia microspheres according to claim 9 or 10. 前記微小球の径が10〜100μmであることを特徴とする請求項7から11のいずれかに記載の高耐摩耗性ジルコニア微小球の製造方法。
The diameter of the said microsphere is 10-100 micrometers, The manufacturing method of the highly wear-resistant zirconia microsphere in any one of Claim 7 to 11 characterized by the above-mentioned.
JP2005239422A 2004-11-09 2005-08-22 High wear-resistant zirconia microspheres and production method thereof Active JP4949657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239422A JP4949657B2 (en) 2004-11-09 2005-08-22 High wear-resistant zirconia microspheres and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004325539 2004-11-09
JP2004325539 2004-11-09
JP2005239422A JP4949657B2 (en) 2004-11-09 2005-08-22 High wear-resistant zirconia microspheres and production method thereof

Publications (2)

Publication Number Publication Date
JP2006160596A true JP2006160596A (en) 2006-06-22
JP4949657B2 JP4949657B2 (en) 2012-06-13

Family

ID=36663024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239422A Active JP4949657B2 (en) 2004-11-09 2005-08-22 High wear-resistant zirconia microspheres and production method thereof

Country Status (1)

Country Link
JP (1) JP4949657B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173461A (en) * 2008-01-21 2009-08-06 Tosoh Corp Method for producing ceramic bead having smooth surface
US8261577B2 (en) * 2009-12-21 2012-09-11 3M Innovative Properties Company Method for making hollow microspheres
JP2013241334A (en) * 2008-12-11 2013-12-05 Tosoh Corp Ceramic bead with smooth surface and manufacturing method thereof
US20140223867A1 (en) * 2011-09-05 2014-08-14 Lorenzini Snc Process for manufacturing mouthpieces of horse bits and product obtained with said process
CN111362647A (en) * 2020-03-17 2020-07-03 山东鲁润通节能科技有限公司 Inorganic micro-bead foaming modified silicon-plastic composite thermal insulation material and preparation method thereof
CN114605149A (en) * 2020-12-03 2022-06-10 中国科学院福建物质结构研究所 Preparation method and application of zirconia microspheres

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836653A (en) * 1981-08-28 1983-03-03 日本タングステン株式会社 Media for crushing magnetic material and production thereof
JPH026339A (en) * 1988-06-24 1990-01-10 High Frequency Heattreat Co Ltd Production of ultrafine particle of tungsten or tungsten oxide
JPH03261659A (en) * 1990-03-08 1991-11-21 Hitachi Metals Ltd Black sintered zirconia-based ceramics and production thereof
JPH06183833A (en) * 1992-12-16 1994-07-05 Tosoh Corp Zirconia ball and its production
JPH08337473A (en) * 1995-06-12 1996-12-24 Nitsukatoo:Kk Member for dispersing-pulverizing machine made of zirconia
JP2002012487A (en) * 2000-05-09 2002-01-15 Asulab Sa Method of manufacturing zirconia-based article with golden appearance
JP2002336688A (en) * 2001-05-18 2002-11-26 Tdk Corp Method for treating powder, method for manufacturing inorganic powder and apparatus for treating object to be treated
JP2002346377A (en) * 2001-05-23 2002-12-03 High Frequency Heattreat Co Ltd Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836653A (en) * 1981-08-28 1983-03-03 日本タングステン株式会社 Media for crushing magnetic material and production thereof
JPH026339A (en) * 1988-06-24 1990-01-10 High Frequency Heattreat Co Ltd Production of ultrafine particle of tungsten or tungsten oxide
JPH03261659A (en) * 1990-03-08 1991-11-21 Hitachi Metals Ltd Black sintered zirconia-based ceramics and production thereof
JPH06183833A (en) * 1992-12-16 1994-07-05 Tosoh Corp Zirconia ball and its production
JPH08337473A (en) * 1995-06-12 1996-12-24 Nitsukatoo:Kk Member for dispersing-pulverizing machine made of zirconia
JP2002012487A (en) * 2000-05-09 2002-01-15 Asulab Sa Method of manufacturing zirconia-based article with golden appearance
JP2002336688A (en) * 2001-05-18 2002-11-26 Tdk Corp Method for treating powder, method for manufacturing inorganic powder and apparatus for treating object to be treated
JP2002346377A (en) * 2001-05-23 2002-12-03 High Frequency Heattreat Co Ltd Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173461A (en) * 2008-01-21 2009-08-06 Tosoh Corp Method for producing ceramic bead having smooth surface
JP2013241334A (en) * 2008-12-11 2013-12-05 Tosoh Corp Ceramic bead with smooth surface and manufacturing method thereof
US8261577B2 (en) * 2009-12-21 2012-09-11 3M Innovative Properties Company Method for making hollow microspheres
US20140223867A1 (en) * 2011-09-05 2014-08-14 Lorenzini Snc Process for manufacturing mouthpieces of horse bits and product obtained with said process
US9493335B2 (en) * 2011-09-05 2016-11-15 Equiline S.R.L. Process for manufacturing mouthpieces of horse bits and product obtained with said process
CN111362647A (en) * 2020-03-17 2020-07-03 山东鲁润通节能科技有限公司 Inorganic micro-bead foaming modified silicon-plastic composite thermal insulation material and preparation method thereof
CN114605149A (en) * 2020-12-03 2022-06-10 中国科学院福建物质结构研究所 Preparation method and application of zirconia microspheres

Also Published As

Publication number Publication date
JP4949657B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4949657B2 (en) High wear-resistant zirconia microspheres and production method thereof
KR102393229B1 (en) Preparation of Tungsten Monocarbide (WC) Spherical Powder
CN110722171B (en) Method for preparing rare earth oxide doped tungsten and molybdenum spherical powder for 3D printing
CN105772700B (en) Metal powder for powder metallurgy, compound, prilling powder and sintered body
CN109182882A (en) A kind of preparation method of high intensity oxide dispersion intensifying Fe based alloy
CN104988451B (en) A kind of preparation method of ultrafine tungsten carbide base ball shaped thermal spray coating powder
EP2202277B1 (en) Manufacturing method of core-shell-type ceria-polymer hybrid nanoparticles and dispersion sols of them
CN104475745B (en) Spherical brass alloy powder manufacture method
CN105926029A (en) Method for quick synthesis of zinc oxide whiskers by means of microwaves
CN102586663A (en) W3Re-W25Re thermocouple material and preparation method of thermocouple
CN108395220A (en) A kind of preparation method of the wear-resisting diphase ceramic material of aluminium oxide-zirconium oxide
CN100535078C (en) Method for preparing acid-resistant pressing crack supporting agent
CN106676520B (en) A kind of laser cladding of material and its application for Copper substrate surface
CN107243644A (en) A kind of preparation method of the diamond tool copper-based prealloy powder of ultra-fine quaternary
JP2009155194A (en) Nickel oxide powder and method for manufacturing the same
JP2013204075A (en) Method for producing fine reduced iron powder
CN110452565A (en) A kind of fire-resistant oxidation resistant coating of nickel-base alloy hot rolling and preparation method thereof
WO2014208419A1 (en) Electrical contact material and method for manufacturing same
CN108947493A (en) A kind of preparation method of the nano oxidized magnesium-based ceramics of high-compactness
CN105349883A (en) Corrosion-resistant alloy steel
CN105798317B (en) A kind of preparation method of polyhedron Sub-micron Tungsten Powder
JP2016125103A (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
CN112301247A (en) Method for preparing vanadium nitride from vanadium slag
CN107438583A (en) Refractory block and glass-melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4949657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250