JP2006159339A - Cutting method for steel and cutting device - Google Patents

Cutting method for steel and cutting device Download PDF

Info

Publication number
JP2006159339A
JP2006159339A JP2004353278A JP2004353278A JP2006159339A JP 2006159339 A JP2006159339 A JP 2006159339A JP 2004353278 A JP2004353278 A JP 2004353278A JP 2004353278 A JP2004353278 A JP 2004353278A JP 2006159339 A JP2006159339 A JP 2006159339A
Authority
JP
Japan
Prior art keywords
cutting
steel
current
tool
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353278A
Other languages
Japanese (ja)
Other versions
JP4552010B2 (en
Inventor
Ryutaro Tanaka
隆太郎 田中
Akira Hosokawa
晃 細川
Keiji Yamada
啓司 山田
Takashi Ueda
隆司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2004353278A priority Critical patent/JP4552010B2/en
Publication of JP2006159339A publication Critical patent/JP2006159339A/en
Application granted granted Critical
Publication of JP4552010B2 publication Critical patent/JP4552010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method for steel and its device capable of improving machinability of free-cutting steel and extending tool life even in cutting the free-cutting steel at high speed. <P>SOLUTION: In the cutting method for steel, the workpiece is cut with the cutting tool 30 while the workpiece 10 mounted on a device body 60 is being rotated. The workpiece 10 is the free-cutting steel containing at least B, N, and Al, and a section between the device body 60 and the cutting tool 30 is kept to be an electrically insulating state, and cutting work is performed by applying a predetermined current to the section in between the cutting tool 30 and the free-cutting steel 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、切削工具を用いて被削材を切削する鋼の切削方法およびその切削装置に係り、特に、切削時における磨耗を低減し、工具の長寿命化が可能な鋼の切削方法およびその切削装置に関する。   The present invention relates to a steel cutting method and a cutting apparatus for cutting a work material using a cutting tool, and more particularly to a steel cutting method capable of reducing wear during cutting and extending the life of the tool, and the cutting method thereof. The present invention relates to a cutting device.

従来から、被削材である鋼を切削する切削装置としては、図6に示すような、切削装置50が挙げられる。この切削装置50は、接地された装置本体60と、回転するチャック61等、を備えており、このチャック61は、被削材100を取り付けることが可能な構成となっている。被削材100は、装置本体60に配置されたモータ(図示せず)によりチャック61を回転させることで回転すると共に、装置本体60の一端に取り付けられた切削工具30を押し当てることで、切削されるようになっている。   Conventionally, as a cutting device for cutting steel as a work material, a cutting device 50 as shown in FIG. 6 is exemplified. The cutting apparatus 50 includes a grounded apparatus main body 60, a rotating chuck 61, and the like. The chuck 61 is configured to be able to attach the work material 100. The work material 100 is rotated by rotating the chuck 61 by a motor (not shown) disposed in the apparatus main body 60 and is pressed by pressing the cutting tool 30 attached to one end of the apparatus main body 60. It has come to be.

たとえば、このような装置構成の一例として、装置本体に取り付けた鋳鉄(被削材)とこの装置本体とを電気絶縁状態にし、切削工具と鋳鉄との間に所定の電流を通電しながら、この切削工具を用いて鋳鉄の切削を行う切削装置が実験的な装置として提案されている(非特許文献1参照)。   For example, as an example of such an apparatus configuration, the cast iron (work material) attached to the apparatus main body is electrically insulated from the apparatus main body, and a predetermined current is passed between the cutting tool and the cast iron while A cutting device for cutting cast iron using a cutting tool has been proposed as an experimental device (see Non-Patent Document 1).

H.S.Shan,P.C.Pandey.Theromoelectric compensation in metal cutting,Microtecnic,1970,24,1,30−32H. S. Shan, P.A. C. Pandey. Thermoelectric compensation in metal cutting, Microtechnic, 1970, 24, 1, 30-32.

ところで、図6に示すような切削装置50を用いて被削材100を切削する場合には、切削工具30と被削材100とは異種金属であり、かつ切削中において両者は高温接点状態となることから、両者の間にはゼイベック係数に依存する電圧が発生する。そして、この電圧発生により図6の破線に示すように、工具30−被削材100−装置本体60を電気的な閉回路として電流が流れると共に、この回路の電流は、電気抵抗(主に装置本体60の抵抗)に依存し、極微小(1mA以下程度)流れるとされる。このゼイベック効果により流れる電流は、切削装置50の有する電気抵抗、切削条件等により変動するものであり、工具の寿命を短くすると共に、その寿命にばらつきを与える要因となっていた。   By the way, when cutting the work material 100 using the cutting apparatus 50 as shown in FIG. 6, the cutting tool 30 and the work material 100 are dissimilar metals, and both are in a high temperature contact state during cutting. Therefore, a voltage depending on the Zeibeck coefficient is generated between the two. As a result of this voltage generation, as shown by the broken line in FIG. 6, a current flows with the tool 30-the work material 100-the device main body 60 as an electrical closed circuit, and the current in this circuit is an electrical resistance (mainly a device). It depends on the resistance of the main body 60 and flows very little (less than about 1 mA). The current that flows due to the Zeibeck effect varies depending on the electrical resistance, cutting conditions, and the like of the cutting device 50, which shortens the tool life and causes variations in the tool life.

また、前記非特許文献1に記載のように、切削工具と鋼である被削材との間に電流を積極的に流して切削することも、実験的に試みられているが、該試みによっては、確実に切削性が向上し、工具の寿命が長くなるとの結果は得られていない。   In addition, as described in Non-Patent Document 1, it has been experimentally attempted to actively flow an electric current between a cutting tool and a work material that is steel. However, no results have been obtained that the machinability is improved and the tool life is prolonged.

一方、従来から、バイト等の切削工具を用いて被削材である鋼の切削を行うにあたって、該被削材の切削性を改善するために、被削材としての鋼の材料の内部介在物やその組織の調整制御に重点をおいた研究が行われ、このような被削材として様々な快削鋼が開発され、実用化されてきた。特に自動車部品のうち、切削が必要な部品の多くには、このような快削鋼が用いられている。   On the other hand, when cutting steel, which is a work material, using a cutting tool such as a bite, conventionally, an internal inclusion of the steel material as the work material is used to improve the machinability of the work material. As a result, various free-cutting steels have been developed and put to practical use. In particular, such free-cutting steel is used for many parts that require cutting among automobile parts.

しかし、前述の如く開発された快削鋼は、切削性や工具の長寿命を目的としたものではあるが、被削材としての鋼の材料の内部介在物やその組織の調整制御に重点をおいた開発であって、その快削鋼の切削性(被削性)及び切削工具の耐摩耗性を、鋼の材質(内部介在物やその組織)と実際の切削時の切削方法との組み合わせ、つまり快削鋼の材質と切削時における快削鋼の切削状態とを関連付けて、開発されたものではなかった。   However, the free-cutting steel developed as described above is intended for machinability and long tool life. However, emphasis is placed on the control of the internal inclusions and the structure of the steel material as the work material. Oita development, the machinability (machinability) of the free-cutting steel and the wear resistance of the cutting tool are combined with the material of the steel (internal inclusions and its structure) and the actual cutting method. In other words, it was not developed by associating the material of free-cutting steel with the cutting state of free-cutting steel at the time of cutting.

また、前記快削鋼の1つとして、B、N、及びAlの元素を含み、切削時に、快削鋼中に含まれるNとAlとが反応して、切削工具の表面にAlNからなるコーティング膜を形成し、工具の寿命を向上させる快削鋼(例えば、エヌケーケー条鋼(株)製BN快削鋼)が開発されている。   Further, as one of the free-cutting steels, B, N and Al elements are included, and during cutting, N and Al contained in the free-cutting steel react to form a coating made of AlN on the surface of the cutting tool. Free-cutting steel (for example, BN free-cutting steel manufactured by NKK Steel Co., Ltd.) that forms a film and improves the tool life has been developed.

しかし、前記快削鋼についても、更にその切削性及び切削工具の耐摩耗性を向上させるために、その切削方法を改善して、切削加工製品の生産性を向上させることが求められているものであり、そのことが今後の大きな課題となっている。   However, in order to further improve the machinability and wear resistance of the cutting tool, the free-cutting steel is also required to improve the cutting method and improve the productivity of the machined product. That is a major issue in the future.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、B、N及びAlを少なくとも含む快削鋼を高速の切削速度で切削しても、快削鋼の被削性を向上させ、切削工具を長寿命化させることができる鋼の切削方法及び切削装置を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to provide a free-cutting steel even if a free-cutting steel containing at least B, N and Al is cut at a high cutting speed. An object of the present invention is to provide a steel cutting method and a cutting apparatus capable of improving the machinability of the steel and extending the life of the cutting tool.

本発明者らは、前記の課題を解決すべく多くの実験と研究をした。その結果、特定の種類の快削鋼の切削時に該快削鋼に含有する元素によりベラークと呼ばれる保護膜が、切削工具の磨耗する面(切削面)に形成されること、及び、安定的に前記保護膜を形成するには、切削工具と被削材である快削鋼との間に特定の大きさの電流を流しながら切削することが必要であり、この安定的な保護膜を形成することにより切削工具の磨耗が抑制され、切削時における切り屑の厚みも小さくなり、かつ切削抵抗も低減されるとの知見を得た。   The present inventors have conducted many experiments and studies to solve the above-mentioned problems. As a result, when a specific type of free-cutting steel is cut, a protective film called verak is formed on the surface (cutting surface) of the cutting tool due to the elements contained in the free-cutting steel, and stably. In order to form the protective film, it is necessary to cut a current of a specific magnitude between the cutting tool and the free-cutting steel as a work material, and this stable protective film is formed. As a result, it was found that wear of the cutting tool was suppressed, the thickness of the chips during cutting was reduced, and the cutting resistance was reduced.

本発明は、本発明者らが得た前記の新たな知見に基づくものであり、本発明に係る鋼の切削方法は、装置本体に取付けられた被削材を回転させて切削工具で切削する鋼の切削方法であって、前記切削材は、B、N、及びAlを少なくとも含む快削鋼であり、前記装置本体と前記切削工具との間を電気絶縁状態として、前記切削工具と前記快削鋼との間に所定値の電流を流して切削することを特徴としている。   The present invention is based on the above-mentioned new knowledge obtained by the present inventors, and the steel cutting method according to the present invention rotates a work material attached to the apparatus main body and cuts it with a cutting tool. A steel cutting method, wherein the cutting material is free-cutting steel containing at least B, N, and Al, and the cutting tool and the free tool are electrically insulated between the apparatus main body and the cutting tool. It is characterized by cutting by passing a current of a predetermined value between the cutting steel.

本発明において、B、N、及びAlを少なくとも含む快削鋼とは、Feを主材として、ヘキサ窒化ホウ素と、Alの単体を、含有させた金属材料であり、切削時に、切削工具の表面に、AlNからなる保護膜を形成することができる材料である。そして、この被削材、装置本体、及び切削工具を電気的な閉回路とした電流、すなわちゼイベック効果による不安定な電流が流れないように、装置本体と切削工具との間に電気絶縁を行うものである。このように装置本体と切削工具との間を電気絶縁状態で、切削工具と快削鋼との間に、所定の電流を流しながら切削工具で快削鋼を切削すると、工具の寿命が延びると共に快削鋼の被削性も向上する。   In the present invention, the free-cutting steel containing at least B, N, and Al is a metal material containing Fe as a main material, hexaboron nitride, and a simple substance of Al. In addition, it is a material capable of forming a protective film made of AlN. Then, electrical insulation is performed between the apparatus main body and the cutting tool so that an electric current in which the work material, the apparatus main body, and the cutting tool are electrically closed circuit, that is, unstable current due to the Zeibeck effect does not flow. Is. As described above, when the free cutting steel is cut with the cutting tool while a predetermined current is passed between the cutting tool and the free cutting steel in an electrically insulated state between the apparatus main body and the cutting tool, the tool life is extended. The machinability of free-cutting steel is also improved.

好ましい態様としては、本発明の鋼の切削方法は、前記電流を、5mAから10mAの範囲で流すことを特徴とするものであり、このような範囲に微少電流を流しながら切削を行うことにより、より被削材の切削性(被削性)がより向上するとともに、工具の磨耗もより低減される。すなわち、この電流値が5mAよりも小さい場合には、逃げ面磨耗は抑制されるが、すくい面磨耗は効果的に抑制することができない。また、この電流値が、10mAよりも大きい場合には、逃げ面の磨耗が進み、工具の寿命が低下する。   As a preferred embodiment, the steel cutting method of the present invention is characterized in that the current is allowed to flow in a range of 5 mA to 10 mA, and by performing a cutting while flowing a minute current in such a range, The machinability (machinability) of the work material is further improved, and the wear of the tool is further reduced. That is, when this current value is smaller than 5 mA, flank wear is suppressed, but rake wear cannot be effectively suppressed. Further, when the current value is larger than 10 mA, the wear of the flank proceeds and the tool life is reduced.

また、好ましい態様としては、この鋼の切削方法は、前記切削時における切削速度を、100m/minから300m/minの範囲とすることを特徴とするものであり、このような範囲の切削速度で、前記の条件に基づいて切削を行うと、切削工具が磨耗する表面(切削面)にAlNの保護膜が効率よく形成される。すなわち、切削速度が100m/minよりも小さい場合は、AlNの保護膜を切削工具の切削面に効率よく形成することができない。同様に、300m/minよりも大きい場合も、AlNの保護膜を切削工具の切削面に効率よく形成することができない。   As a preferred embodiment, the steel cutting method is characterized in that the cutting speed at the time of cutting is in the range of 100 m / min to 300 m / min. When cutting is performed based on the above conditions, a protective film of AlN is efficiently formed on the surface (cutting surface) on which the cutting tool is worn. That is, when the cutting speed is lower than 100 m / min, the protective film of AlN cannot be efficiently formed on the cutting surface of the cutting tool. Similarly, when it is higher than 300 m / min, the protective film of AlN cannot be efficiently formed on the cutting surface of the cutting tool.

前記の切削方法を効果的に実施することができる装置として、本発明に係る鋼の切削装置は、前記電流を発生させる電源と、該電源から流れる電流を調整する電流調整手段と、を備えている。さらに好ましい態様として、本発明に係る鋼の切削装置は、前記装置本体と電気絶縁された切削工具取付体をさらに備えている。このように切削工具取付体とすることにより、切削工具を装置本体に取り付けることができると共に、装置本体と切削工具との間を電気絶縁することができる。   As a device capable of effectively carrying out the cutting method, a steel cutting device according to the present invention includes a power source for generating the current and a current adjusting means for adjusting a current flowing from the power source. Yes. As a more preferable aspect, the steel cutting device according to the present invention further includes a cutting tool mounting body that is electrically insulated from the device main body. By using the cutting tool mounting body as described above, the cutting tool can be attached to the apparatus main body, and the apparatus main body and the cutting tool can be electrically insulated.

またさらに、鋼の切削方法を効果的に実施することができる装置として、本発明に係る鋼の切削装置は、装置本体に取付けられた被削材を回転させて切削工具で切削する鋼の切削装置であって、該切削装置は、前記装置本体と前記切削工具との間に配置した電気絶縁体と、電流を発生する電源と、該電源からの電流を調整して前記切削工具と前記被削材との間に電流を流す電流調整手段と、を備え、該電流調整手段は、前記切削工具の切削面に、前記被削材に含有している元素により切削中に保護膜を形成するに最適な所定値の電流を流すものであることを特徴としている。   Furthermore, as a device capable of effectively carrying out the steel cutting method, the steel cutting device according to the present invention is a steel cutting device in which a work material attached to the device main body is rotated and cut with a cutting tool. The cutting device includes an electrical insulator disposed between the device main body and the cutting tool, a power source for generating a current, and adjusting the current from the power source to adjust the cutting tool and the workpiece. Current adjusting means for passing a current between the cutting material, and the current adjusting means forms a protective film on the cutting surface of the cutting tool by an element contained in the work material during cutting. It is characterized in that a current of a predetermined value that is optimum for the current flows.

本発明の鋼の切削加装置で切削を行うに際して、切削時に切削工具に保護膜を形成するため被削材として、上に示すような快削鋼を切削装置の装置本体の切削工具取付体等に取り付ける。そして、この取り付けの際には、被削材、装置本体、及び切削工具を電気的な閉回路とした電流が流れないように、装置本体と切削工具との間に電気絶縁体を配置する。この結果、不安定な電流が被削材と切削工具との間に流れないので、切削時における切削工具の磨耗が抑制される。   When cutting with the steel cutting apparatus of the present invention, a free cutting steel as shown above is used as a work material to form a protective film on the cutting tool during cutting. Attach to. And in this attachment, an electrical insulator is arrange | positioned between an apparatus main body and a cutting tool so that the electric current which made the work material, the apparatus main body, and the cutting tool the electrical closed circuit may not flow. As a result, unstable current does not flow between the work material and the cutting tool, so that wear of the cutting tool during cutting is suppressed.

さらに、この電気絶縁状態において、切削時に、被削材と切削工具との間に所定の値に調整した電流を流しながら切削を行うことで工具の切削面(具体的には、切削工具と、被削材とが接触して磨耗する工具の逃げ面及びすくい面)に、保護膜が形成されるので、すくい面および逃げ面の磨耗が抑制され、工具の被削性も向上する。   Furthermore, in this electrical insulation state, at the time of cutting, the cutting surface of the tool (specifically, the cutting tool, and by cutting while passing a current adjusted to a predetermined value between the work material and the cutting tool, Since the protective film is formed on the flank and rake face of the tool that wears in contact with the work material, wear of the rake face and flank face is suppressed, and the machinability of the tool is also improved.

本発明に係る鋼の切削方法およびその切削装置によれば、切削時に切削工具に保護膜を形成できる特定の被削材の切削において、切削工具と被削材との間にわずかな電流を流しながら切削を行うことにより、切削工具の切削面に確実に保護膜が形成させることで、切削工具のすくい面及び逃げ面の磨耗を抑制することができ、工具を長寿命化することができる。さらに、切削抵抗も低下し、切り屑の厚みも小さくなり、快削鋼の被削性が向上する。そして、わずかな電流で前記効果が得られるので、安価に切削加工を実施することができる。   According to the steel cutting method and the cutting apparatus according to the present invention, in cutting of a specific work material that can form a protective film on the cutting tool during cutting, a slight current is passed between the cutting tool and the work material. While cutting, the protective film is surely formed on the cutting surface of the cutting tool, so that wear of the rake face and flank face of the cutting tool can be suppressed, and the tool life can be extended. Further, the cutting resistance is reduced, the thickness of the chips is reduced, and the machinability of free-cutting steel is improved. And since the said effect is acquired with a slight electric current, cutting can be implemented cheaply.

以下に図面を参照しながら、本発明を実施の形態に基づき説明する。図1は、本発明の鋼の切削方法を好適に実施することができる、鋼の切削装置の一実施形態を説明するための模式図であり、図2は、図1に示す電流調整手段40の回路構成図である。以下、先に述べた図6の切削装置50と共通する箇所は、同じ符号を付して、説明は省略する。   Hereinafter, the present invention will be described based on embodiments with reference to the drawings. FIG. 1 is a schematic view for explaining an embodiment of a steel cutting apparatus that can suitably carry out the steel cutting method of the present invention, and FIG. 2 is a current adjusting means 40 shown in FIG. FIG. Hereinafter, parts common to the cutting apparatus 50 of FIG. 6 described above are denoted by the same reference numerals and description thereof is omitted.

図1に示すように本実施形態の切削装置1は、図6の如き従来の切削装置50と比して、さらに、電気絶縁体20、電流調整手段40、電源41、及びロータリコネクタ80を備えている。   As shown in FIG. 1, the cutting device 1 of this embodiment further includes an electrical insulator 20, a current adjusting means 40, a power source 41, and a rotary connector 80, as compared with the conventional cutting device 50 as shown in FIG. ing.

電気絶縁体20は、装置本体60に取り付けられた切削工具30と、装置本体60と、を電気絶縁状態にするように、装置本体60の切削工具取付体(図示せず)と切削工具30との間に配置されている。この電気絶縁体20は、ゴムなどの電気絶縁材料であって、非導電性の材料であるならば特に限定されるものではない。また、切削工具取付体の材質を、非導電性の材料にすると、電気絶縁体20を配置しなくてもよい。   The electrical insulator 20 includes a cutting tool attachment body (not shown) of the apparatus main body 60 and the cutting tool 30 so that the cutting tool 30 attached to the apparatus main body 60 and the apparatus main body 60 are electrically insulated. It is arranged between. The electrical insulator 20 is not particularly limited as long as it is an electrically insulating material such as rubber and is a non-conductive material. Moreover, if the material of the cutting tool attachment body is a non-conductive material, the electrical insulator 20 may not be disposed.

このように、電気絶縁体20を設けることで、被削材10−装置本体60−切削工具30を電気的な閉回路とした電流が流れないようにすることができる。また、この電気絶縁体20は、被削材10と装置本体60(具体的にはチャック61)との間に配置して、被削材10−装置本体60−切削工具30を電気的な閉回路とした電流が流れないようにしてもよい。   Thus, by providing the electrical insulator 20, it is possible to prevent a current from flowing through the work material 10-the apparatus body 60-the cutting tool 30 as an electrical closed circuit. The electrical insulator 20 is disposed between the work material 10 and the apparatus main body 60 (specifically, the chuck 61) to electrically close the work material 10-the apparatus main body 60-the cutting tool 30. It is also possible to prevent the circuit current from flowing.

電流調整手段40は、被削材10と切削工具30との間に電流を流し調整するための手段であり、配線40aの一端は、電源41に接続され、さらにこの電源41から被削材10に取り付けられたロータリコネクタ80を介して被削材に接続されている。また、配線40bの一端は、切削工具30に接続されており、切削工具30から被削材10に、通電可能となっている。   The current adjusting means 40 is a means for adjusting the current by flowing between the work material 10 and the cutting tool 30, and one end of the wiring 40 a is connected to the power source 41. It is connected to the work material through a rotary connector 80 attached to the workpiece. Further, one end of the wiring 40b is connected to the cutting tool 30, and the work material 10 can be energized from the cutting tool 30.

そして、図2に示すように、電流調整手段40は、抵抗42〜46、3WAYスイッチ47、及び電流計48を備えている。また、抵抗43、46は、可変抵抗であり、電流計48の電流値の表示を見ながら、抵抗値を可変的に調整することで、被削材10と切削工具30との間に流れる電流の調整を行うようになっている。   As shown in FIG. 2, the current adjusting unit 40 includes resistors 42 to 46, a 3 WAY switch 47, and an ammeter 48. The resistors 43 and 46 are variable resistors, and the current flowing between the work material 10 and the cutting tool 30 can be adjusted by variably adjusting the resistance value while viewing the display of the current value of the ammeter 48. Adjustments are made.

具体的な電流調整方法としては、まず、3WAYスイッチ47の接点47aに接続し、電流調整手段40内で電気的な閉回路を形成し、電流計48の電流値の表示を見ながら、可変抵抗43で調整して被削材10と切削工具30との間に流すべき電流を設定する。そして、電流値の調整が完了すると、3WAYスイッチ47の接点47bに接続することで、図1の破線に示すような電流調整手段40−ロータリコネクタ80−被削材10−切削工具30の電気的な閉回路が形成され、被削材10と切削工具30との間に調整された電流を流すことができる。またこの電流の微調整は、可変抵抗46で行う。   As a specific current adjustment method, first, the variable resistance is connected to the contact 47a of the 3WAY switch 47, an electrical closed circuit is formed in the current adjustment means 40, and the current value display of the ammeter 48 is viewed. The current to be passed between the work material 10 and the cutting tool 30 is set by adjusting at 43. When the adjustment of the current value is completed, by connecting to the contact 47b of the 3WAY switch 47, the electric current adjustment means 40-rotary connector 80-workpiece 10-cutting tool 30 as shown by the broken line in FIG. A closed circuit is formed, and a regulated current can flow between the work material 10 and the cutting tool 30. The fine adjustment of the current is performed by the variable resistor 46.

そして、このような装置構成において、装置本体60に取り付けられた切削工具30と、前記装置本体60と、を電気絶縁状態にし、切削工具30と被削材10との間に所定の電流を流しながら、所定の切削条件で、切削工具30を用いて被削材10の切削を行う。   In such an apparatus configuration, the cutting tool 30 attached to the apparatus main body 60 and the apparatus main body 60 are electrically insulated, and a predetermined current is passed between the cutting tool 30 and the work material 10. However, the workpiece 10 is cut using the cutting tool 30 under predetermined cutting conditions.

また、本実施形態の被削材10は、B、N、及びAlを少なくとも含む快削鋼であり、Feを主材として、ヘキサ窒化ホウ素と、Alの単体を、含有させた金属材料である。このような材料を用いることで、切削時に、切削工具30の表面に、AlNからなる保護膜を形成することができる。   Further, the work material 10 of the present embodiment is a free-cutting steel containing at least B, N, and Al, and is a metal material containing Fe as a main material and hexaboron nitride and a simple substance of Al. . By using such a material, a protective film made of AlN can be formed on the surface of the cutting tool 30 during cutting.

また、切削工具の材質としては、超硬合金、サーメット、等が挙げられる。特に、AlNを含む切削工具は、AlNの保護膜と親和性がよくさらに好適である。   Examples of the material for the cutting tool include cemented carbide, cermet, and the like. In particular, a cutting tool containing AlN is more suitable because of its good affinity with the protective film of AlN.

そして、この快削鋼(BN快削鋼)の切削時には、工具の磨耗する面上に生成されるAlNからなる保護膜により磨耗が抑制されるが、快削鋼と切削工具との間に所定の電流を流しながら、快削鋼と切削工具とが接触して磨耗する工具の切削面にAlNの保護膜を形成させることで、工具の逃げ面及びすくい面の磨耗が低減され、工具の長寿命化を図ることができる。   At the time of cutting this free-cutting steel (BN free-cutting steel), the wear is suppressed by the protective film made of AlN formed on the surface where the tool is worn, but a predetermined amount is provided between the free-cutting steel and the cutting tool. By forming an AlN protective film on the cutting surface of the tool that wears when the free-cutting steel and the cutting tool come into contact with each other, the wear of the flank and rake surface of the tool is reduced and the tool length is reduced. Life can be extended.

以下に、本発明の実施例1、2を比較例1,2と対比して説明する。
(実施例1)
実施例1−1:被削材には、表1に示すS45C−BN鋼を用い、切削工具には超硬工具P30(SNMN120408)を用いた。上述した実施形態の如く、切削工具と装置本体とを電気絶縁状態にし、切削工具から被削材に(この方向を正とする)一定の電流を流した。この状態において、切削速度200m/min、切り込み深さ0.5mm、送り速度0.1mm/rev、切削時間10分間、ドライ状態の(クーラントを使用しない)条件で、切削を行った。また電流値を0mA〜20mAの範囲で切削を行った。
Hereinafter, Examples 1 and 2 of the present invention will be described in comparison with Comparative Examples 1 and 2.
Example 1
Example 1-1: S45C-BN steel shown in Table 1 was used as a work material, and a carbide tool P30 (SNMN120408) was used as a cutting tool. As in the above-described embodiment, the cutting tool and the apparatus main body were electrically insulated, and a constant current was passed from the cutting tool to the work material (this direction being positive). In this state, cutting was performed under conditions of a dry state (no coolant used) at a cutting speed of 200 m / min, a cutting depth of 0.5 mm, a feed rate of 0.1 mm / rev, a cutting time of 10 minutes. Further, cutting was performed in a current value range of 0 mA to 20 mA.

実施例1−2:電流の流す方向を被削材から切削工具(負の方向)にした点で実施例1−1と異なり、その他は、実施例1−1と同じ条件で切削を行った。   Example 1-2: Different from Example 1-1 in that the direction of current flow was changed from the work material to the cutting tool (negative direction), and the others were cut under the same conditions as Example 1-1. .

(比較例1)
比較例1−1:被削材に、表1に示すS45Cを用い、電流値を0mA〜10mAの範囲で調整した点であり、その他は、実施例1−1と同様の条件で切削を行った。
(Comparative Example 1)
Comparative Example 1-1: S45C shown in Table 1 was used as the work material, and the current value was adjusted in the range of 0 mA to 10 mA. Other than that, cutting was performed under the same conditions as in Example 1-1. It was.

比較例1−2:電流の流す方向を切削工具から被削材(正の方向)にした点で比較例1−1と異なり、その他は、比較例1−1と同じ条件で切削を行った。   Comparative Example 1-2: Different from Comparative Example 1-1 in that the direction of current flow was changed from the cutting tool to the work material (positive direction), and the others were cut under the same conditions as Comparative Example 1-1. .

Figure 2006159339
Figure 2006159339

これらの実施例1、比較例1においては、逃げ面磨耗VBと最大クレータ深さKTとは、調整した電流値ごとに測定した。この結果を図3(a)、(b)に示す。ここで、逃げ面磨耗VBは、図4に示すように、切削工具30と被削材10の接触により磨耗する、工具の逃げ面における切削方向の磨耗の長さを示している。また、最大クレータ深さKTは、工具すくい面において、切り屑10aにより工具すくい面が磨耗したときに形成されるクレータの最大深さを示している。   In Example 1 and Comparative Example 1, the flank wear VB and the maximum crater depth KT were measured for each adjusted current value. The results are shown in FIGS. 3 (a) and 3 (b). Here, the flank wear VB indicates the length of wear in the cutting direction on the flank of the tool, which is worn by contact between the cutting tool 30 and the work material 10, as shown in FIG. Further, the maximum crater depth KT indicates the maximum depth of the crater formed when the tool rake face is worn by the chips 10a on the tool rake face.

図3の(b)に示すように、実施例1−1(▲)、実施例1−2(▽)の場合は、被削材と切削工具との間に5mA以上の電流を流すと、最大クレータ深さKTは減少した。また、被削材と切削工具との間に流した電流が10mA以下のときは、図3の(a)に示すように、逃げ面磨耗VBの値が減少し、逃げ面の磨耗が抑制されるが、電流値が10mAを超えると、逃げ面磨耗VBの値が増加した。また、実施例1−1(▲)と実施例1−2(▽)の逃げ面磨耗VB、最大クレータ深さKTの値は同程度であった。   As shown in FIG. 3B, in the case of Example 1-1 (▲) and Example 1-2 (▽), when a current of 5 mA or more flows between the work material and the cutting tool, The maximum crater depth KT has decreased. Further, when the current flowing between the work material and the cutting tool is 10 mA or less, as shown in FIG. 3A, the value of the flank wear VB decreases, and the flank wear is suppressed. However, when the current value exceeded 10 mA, the value of flank wear VB increased. Further, the values of the flank wear VB and the maximum crater depth KT of Example 1-1 (() and Example 1-2 (▽) were comparable.

一方、比較例1−1(●)の場合は、電流値を増加させると、逃げ面磨耗VBの値は減少するが、最大クレータ深さKTは増加した。また、比較例1−2(○)の場合は、電流値を増加させると、最大クレータ深さKTは減少するが、逃げ面磨耗VBの値は増加した。   On the other hand, in the case of Comparative Example 1-1 (●), when the current value was increased, the value of the flank wear VB decreased, but the maximum crater depth KT increased. In Comparative Example 1-2 (◯), when the current value was increased, the maximum crater depth KT decreased, but the value of the flank wear VB increased.

(評価1)
上記結果から、実施例1のように、被削材にS45C−BN鋼を用いて、被削材と切削工具との間に電流を流した場合には、電流の方向がいずれの方向であっても、切削工具の寿命が向上することがわかった。特に、電流値を5mAから10mAの範囲に調整すると、逃げ面磨耗VB及び最大クレータ深さKTが共に減少し、工具の寿命が向上することがわかった。
(Evaluation 1)
From the above results, when S45C-BN steel was used as the work material and current was passed between the work material and the cutting tool as in Example 1, the current direction was any direction. However, it has been found that the life of the cutting tool is improved. In particular, it has been found that when the current value is adjusted in the range of 5 mA to 10 mA, the flank wear VB and the maximum crater depth KT are both reduced, and the tool life is improved.

しかし、比較例1のように、被削材にS45Cを用いて、被削材と切削工具との間に電流を流した場合は、実施例1に対して逃げ面磨耗も最大クレータ深さも大きくなると共に、電流の方向に対しては、逃げ面磨耗VB又は最大クレータ深さKTのいずれか一方の磨耗が抑制されるのみであって、切削工具の寿命が向上するとは解せない。   However, as in Comparative Example 1, when S45C was used as the work material and a current was passed between the work material and the cutting tool, the flank wear and the maximum crater depth were larger than those of Example 1. At the same time, only the flank wear VB or the maximum crater depth KT wear is suppressed with respect to the current direction, and it cannot be understood that the life of the cutting tool is improved.

そして、実施例1が工具の磨耗が抑制された理由としては、特定の値の電流を流すことにより、被削材に含有されたAlとNの元素が化学反応を起こし、被削材が接触する磨耗しやすい切削工具のすくい面及び逃げ面(切削面)にAlNの保護膜が形成されることに起因すると考えられるし、その保護膜の形成は、電流の方向には、影響されないことが理解できる。   The reason why the wear of the tool is suppressed in Example 1 is that when a current of a specific value flows, the elements of Al and N contained in the work material cause a chemical reaction, and the work material comes into contact. It is considered that the protective film of AlN is formed on the rake face and the flank face (cutting surface) of the cutting tool which is easily worn, and the formation of the protective film is not affected by the direction of the current. Understandable.

(実施例2)
実施例2−1:切削工具から被削材に(正方向に)5mAの電流を流し、他の切削条件は実施例1−1と同じくし、切削速度を変えて切削を行った。
(Example 2)
Example 2-1: A current of 5 mA was passed from the cutting tool to the work material (in the positive direction), and the other cutting conditions were the same as in Example 1-1, and cutting was performed by changing the cutting speed.

実施例2−2:被削材から切削工具に(負方向に)5mAの電流を流し、他の切削条件は実施例2−1と同じくし、切削を行った。   Example 2-2: A current of 5 mA was passed from the work material to the cutting tool (in the negative direction), and other cutting conditions were the same as in Example 2-1, and cutting was performed.

(比較例2)
比較例2:切削工具と装置本体とを電気絶縁状態とせずに、かつ、切削工具と被削材との間に、電流を流さなかった点が実施例2−1とは異なり、他の切削条件は実施例2−1と同じくして、切削を行った。
(Comparative Example 2)
Comparative Example 2: Unlike Example 2-1, the cutting tool and the apparatus main body were not electrically insulated, and no current was passed between the cutting tool and the work material. The cutting was performed in the same manner as in Example 2-1.

これらの実施例2、比較例2においてせん断角φと切削抵抗とを、切削速度ごとに測定した。この結果を図5(a)、(b)に示す。尚、このせん断角φは、図4に示すように、切り屑10aと被削材10とで形成された角度である。ちなみに、このせん断角φが大きいほどと、切り屑厚さが小さくなり、被削性がよいことを示している。   In Example 2 and Comparative Example 2, the shear angle φ and cutting resistance were measured for each cutting speed. The results are shown in FIGS. 5 (a) and 5 (b). The shear angle φ is an angle formed by the chips 10a and the work material 10, as shown in FIG. Incidentally, it is shown that the greater the shear angle φ, the smaller the chip thickness and the better the machinability.

図5に示すように、実施例2−1(▲)、実施例2−2(▼)の場合は、比較例2(△)に比べ、せん断角φは大きくなり、さらに、切削速度100m/minから300m/minまでの間は、比較例2に比べ切削抵抗が小さかった。   As shown in FIG. 5, in the case of Example 2-1 (▲) and Example 2-2 (▼), the shear angle φ is larger than that of Comparative Example 2 (Δ), and the cutting speed is 100 m / The cutting resistance was smaller than that in Comparative Example 2 between min and 300 m / min.

(評価2)
このような結果から、実施例2は、切削工具と装置本体とを電気絶縁状態にし、被削材と切削工具との間に、電流を流すことにより、切削工具の表面のAlNの保護膜が確実に形成され、その結果、せん断角φが大きくなって切り屑厚さが小さくなると共に切削抵抗も小さくなり、被削性が向上すると考えられる。
(Evaluation 2)
From these results, in Example 2, the cutting tool and the apparatus main body are electrically insulated, and an electric current is passed between the work material and the cutting tool, so that the protective film of AlN on the surface of the cutting tool is obtained. As a result, it is considered that as a result, the shear angle φ increases, the chip thickness decreases, the cutting resistance decreases, and the machinability improves.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。本実施形態では被削材−装置本体−切削工具を電気的な閉回路とした電流が流れないように電気絶縁体を設けたが、このような電流が流れないようにできるであれば、装置本体内部に電気絶縁体等を設けてもよい。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention described in the claims. Design changes can be made. In the present embodiment, an electrical insulator is provided so as to prevent a current from flowing in the form of an electrical closed circuit of the work material, the apparatus main body, and the cutting tool. An electrical insulator or the like may be provided inside the main body.

また、本実施形態では、切削工具と被削材との間に流れる電流を安定して流すために、電圧調整手段に直流電源を設けたが、変動なく電流を流すことができるのであれば交流電源を用いてもよい。   In this embodiment, a DC power supply is provided in the voltage adjusting means in order to flow the current flowing between the cutting tool and the work material in a stable manner. A power source may be used.

さらに、本実施形態では、快削鋼として、B、N、及びAlを少なくとも含む快削鋼について説明したが、被削材に含有している元素により切削中に保護膜を形成することができるような鋼であるならば、特に鋼が限定されるものではない。   Furthermore, in this embodiment, the free-cutting steel including at least B, N, and Al has been described as the free-cutting steel. However, a protective film can be formed during cutting by the elements contained in the work material. If it is such steel, steel will not be specifically limited.

本発明の一実施形態に係る切削装置を説明するための模式図。The schematic diagram for demonstrating the cutting device which concerns on one Embodiment of this invention. 図1に示す電流調整手段の電気回路図。FIG. 2 is an electric circuit diagram of the current adjusting means shown in FIG. 1. 本発明の一実施形態に係る実施例1と比較例1との実験結果を説明するためのグラフであり、(a)は、電流値と逃げ面磨耗との関係を示した図であり、(b)は、電流値と最大クレータ深さとの関係を示した図。It is a graph for demonstrating the experimental result of Example 1 which concerns on one Embodiment of this invention, and the comparative example 1, (a) is the figure which showed the relationship between an electric current value and flank wear, b) The relationship between the current value and the maximum crater depth. 図3の実施例1及び比較例1の評価パラメータを説明するための図。The figure for demonstrating the evaluation parameter of Example 1 and Comparative Example 1 of FIG. 本発明の実施形態に係る実施例2と比較例2との実験の結果を説明するためのグラフであり、(a)は、切削速度とせん断角との関係を示した図であり、(b)は、切削速度と切削抵抗との関係を示した図。It is a graph for demonstrating the result of the experiment of Example 2 which concerns on embodiment of this invention, and the comparative example 2, (a) is the figure which showed the relationship between cutting speed and a shear angle, (b ) Is a diagram showing the relationship between cutting speed and cutting resistance. 従来の切削装置を説明するための模式図。The schematic diagram for demonstrating the conventional cutting device.

符号の説明Explanation of symbols

1:切削装置、10:被削材、20:電気絶縁体、30:切削工具、40:電流調整手段、41:直流電源、42〜46:抵抗、47:3WAYスイッチ、48:電流計、60:装置本体、80:ロータリコネクタ   1: Cutting device, 10: Work material, 20: Electrical insulator, 30: Cutting tool, 40: Current adjusting means, 41: DC power supply, 42-46: Resistance, 47: 3WAY switch, 48: Ammeter, 60 : Device main body, 80: Rotary connector

Claims (6)

装置本体に取付けられた被削材を回転させて切削工具で切削する鋼の切削方法であって、
前記被削材は、B、N、及びAlを少なくとも含む快削鋼であり、
前記装置本体と前記切削工具との間を電気絶縁状態として、前記切削工具と前記快削鋼との間に所定値の電流を流して切削することを特徴とする鋼の切削方法。
A steel cutting method in which a workpiece attached to the apparatus body is rotated and cut with a cutting tool,
The work material is free-cutting steel containing at least B, N, and Al,
A steel cutting method, wherein an electrical insulation state is provided between the apparatus main body and the cutting tool, and a current of a predetermined value is passed between the cutting tool and the free-cutting steel for cutting.
前記電流は、5mAから10mAの範囲であることを特徴とする請求項1に記載の鋼の切削方法。   The steel cutting method according to claim 1, wherein the current is in the range of 5 mA to 10 mA. 前記切削時における切削速度は、100m/minから300m/minの範囲であることを特徴とする請求項1又は2に記載の鋼の切削方法。   The steel cutting method according to claim 1 or 2, wherein a cutting speed during the cutting is in a range of 100 m / min to 300 m / min. 請求項1から3のいずれか一項に記載の鋼の切削方法を実行する切削装置であって、
前記切削装置は、前記電流を発生させる電源と、該電源から流れる電流を調整する電流調整手段と、を備えていることを特徴とする鋼の切削装置。
A cutting apparatus for executing the steel cutting method according to any one of claims 1 to 3,
The steel cutting device comprises: a power source that generates the current; and a current adjusting unit that adjusts a current flowing from the power source.
前記切削装置は、前記装置本体と電気絶縁された切削工具取付体をさらに備えることを特徴とする請求項4に記載の鋼の切削装置。   The steel cutting device according to claim 4, wherein the cutting device further includes a cutting tool mounting body that is electrically insulated from the device main body. 装置本体に取付けられた被削材を回転させて切削工具で切削する鋼の切削装置であって、
該切削装置は、前記装置本体と前記切削工具との間に配置した電気絶縁体と、電流を発生する電源と、該電源からの電流を調整して前記切削工具と前記被削材との間に電流を流す電流調整手段と、を備え、
該電流調整手段は、前記切削工具の切削面に、前記被削材に含有している元素により切削中に保護膜を形成するに最適な所定値の電流を流すものであることを特徴とする鋼の切削装置。
A steel cutting device that rotates a work material attached to the device body and cuts it with a cutting tool,
The cutting apparatus includes an electrical insulator disposed between the apparatus main body and the cutting tool, a power source that generates a current, and a current from the power source that is adjusted between the cutting tool and the work material. Current adjusting means for causing current to flow through,
The current adjusting means is configured to flow a current having a predetermined value optimum for forming a protective film during cutting by an element contained in the work material on a cutting surface of the cutting tool. Steel cutting device.
JP2004353278A 2004-12-06 2004-12-06 Steel cutting method and cutting apparatus Active JP4552010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353278A JP4552010B2 (en) 2004-12-06 2004-12-06 Steel cutting method and cutting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353278A JP4552010B2 (en) 2004-12-06 2004-12-06 Steel cutting method and cutting apparatus

Publications (2)

Publication Number Publication Date
JP2006159339A true JP2006159339A (en) 2006-06-22
JP4552010B2 JP4552010B2 (en) 2010-09-29

Family

ID=36661896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353278A Active JP4552010B2 (en) 2004-12-06 2004-12-06 Steel cutting method and cutting apparatus

Country Status (1)

Country Link
JP (1) JP4552010B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142945A (en) * 2008-12-16 2010-07-01 Mikron Agie Charmilles Ag Device for avoiding damages as a result of electrical interference in tool of machine tool
JP2019147218A (en) * 2018-02-27 2019-09-05 株式会社ジェイテクト Cutting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099502A (en) * 1983-10-14 1985-06-03 ロツクウエル インターナシヨナル コーポレーシヨン Metal machining tool using electric heating
JPH0352266A (en) * 1989-07-03 1991-03-06 General Electric Co <Ge> Fet, igbt and mct structures with improved operating characteristics
JPH0452266A (en) * 1990-06-21 1992-02-20 Nissan Motor Co Ltd Production of high strength gear
JP2001303209A (en) * 2000-04-19 2001-10-31 Nkk Joko Kk Bn-base free cutting steel excellent in soft magnetism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099502A (en) * 1983-10-14 1985-06-03 ロツクウエル インターナシヨナル コーポレーシヨン Metal machining tool using electric heating
JPH0352266A (en) * 1989-07-03 1991-03-06 General Electric Co <Ge> Fet, igbt and mct structures with improved operating characteristics
JPH0452266A (en) * 1990-06-21 1992-02-20 Nissan Motor Co Ltd Production of high strength gear
JP2001303209A (en) * 2000-04-19 2001-10-31 Nkk Joko Kk Bn-base free cutting steel excellent in soft magnetism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142945A (en) * 2008-12-16 2010-07-01 Mikron Agie Charmilles Ag Device for avoiding damages as a result of electrical interference in tool of machine tool
JP2019147218A (en) * 2018-02-27 2019-09-05 株式会社ジェイテクト Cutting method
JP7087441B2 (en) 2018-02-27 2022-06-21 株式会社ジェイテクト Cutting method

Also Published As

Publication number Publication date
JP4552010B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
Sharma et al. Effect of wire material on productivity and surface integrity of WEDM-processed Inconel 706 for aircraft application
Choudhury et al. Electrical discharge diamond grinding of high speed steel
Khan et al. Surface modification using electric discharge machining (EDM) with powder addition
CN104742002A (en) Intelligent grinding device for short chip removing and cooling by means of pulse electric smelting
KR20080066590A (en) Apparatus and method for deep groove welding
US6566622B1 (en) Wire electrode
JPS6281291A (en) Method for electric arc cutting of core-containing tubular electrode and metal
Patil et al. Some investigations into wire electro-discharge machining performance of Al/SiCp composites
Özerkan Simultaneous machining and surface alloying of AISI 1040 steel by electrical discharge machining with boron oxide powders
JP4552010B2 (en) Steel cutting method and cutting apparatus
Chen et al. Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel
TW201244860A (en) Method for sawing a workpiece
Agrawal et al. Development and experimental study of surface-electrical discharge diamond grinding of Al–10 wt% SiC composite
JP2001279465A (en) Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film
Tanaka et al. Influence of additional electrical current on machinability of BN free-machining steel in turning
Dutta et al. Hybrid electric discharge machining processes for hard materials: a review
Prihandana et al. The current methods for improving electrical discharge machining processes
Nair et al. Advancements in abrasive electrical discharge grinding (AEDG): a review
JP4658578B2 (en) Nozzle ELID grinding method and apparatus
JP2005279860A (en) Cutting tip thermoregulator
JP4451155B2 (en) EDM method
JP5264514B2 (en) Feeding die for wire electric discharge machine
Verma et al. Creating Productive Conditions for Electric Discharge Machining of Non-conductive Ceramics
JP6343464B2 (en) White copper electrode for rotary electric discharge machining of carbon-based high hardness material, rotary electric discharge machining method and apparatus
JP7087441B2 (en) Cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150