JP2006159130A - Method for suppressing generation of excess sludge - Google Patents

Method for suppressing generation of excess sludge Download PDF

Info

Publication number
JP2006159130A
JP2006159130A JP2004356749A JP2004356749A JP2006159130A JP 2006159130 A JP2006159130 A JP 2006159130A JP 2004356749 A JP2004356749 A JP 2004356749A JP 2004356749 A JP2004356749 A JP 2004356749A JP 2006159130 A JP2006159130 A JP 2006159130A
Authority
JP
Japan
Prior art keywords
carrier
uncoupler
excess sludge
generation
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004356749A
Other languages
Japanese (ja)
Other versions
JP4626286B2 (en
Inventor
Akira Hiraishi
明 平石
Yukiko Matsuzawa
有希子 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Kurita Water Industries Ltd
Original Assignee
Toyohashi University of Technology NUC
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Kurita Water Industries Ltd filed Critical Toyohashi University of Technology NUC
Priority to JP2004356749A priority Critical patent/JP4626286B2/en
Publication of JP2006159130A publication Critical patent/JP2006159130A/en
Application granted granted Critical
Publication of JP4626286B2 publication Critical patent/JP4626286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for suppressing the generation of excess sludge by subjecting organic waste water to biological treatment in the presence of an uncoupler, where, under the maintenance of the quality of treated water, the leakage of the uncoupler to the outside of the system is prevented, and the amount of the excess sludge to be generated is safely reduced at a low cost. <P>SOLUTION: Organic waste water is subjected to biological treatment in the presence of a carrier carrying an uncoupler. By carrying the uncoupler on the carrier, it can be stably held to the inside of the system. The carrier carrying the uncoupler exhibits a satisfactory uncoupling action by the contacting of its surface with a microbial cell, and suppresses the generation of excess sludge. According to the method where, by subjecting organic waste water to biological treatment in the presence of the uncoupler, the generation of excess sludge is suppressed, under the maintenance of the quality of treated water, the leakage of the uncoupler to the outside of the system is prevented, and the amount of the excess sludge to be generated can be safely reduced at a low cost. As the carrier, a polylactic acid based plastic carrier is preferable. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は余剰汚泥の発生抑制方法に係り、特に、脱共役剤の存在下に有機性排水を生物処理することにより、余剰汚泥の発生を抑制する方法において、処理水質を維持した上で、脱共役剤の系外漏出を防止して安全かつ低コストに余剰汚泥発生量を低減する方法に関する。   The present invention relates to a method for suppressing the generation of excess sludge, and in particular, in a method for suppressing the generation of excess sludge by biologically treating organic wastewater in the presence of a uncoupling agent, while maintaining the treated water quality, The present invention relates to a method for reducing excess sludge generation safely and at low cost by preventing leakage of a conjugate agent from the system.

下水や工場や事業所から排出される有機性排水の処理には現在活性汚泥処理法が広く用いられている。この方法は、処理効率と経済性は優れているが、廃棄物として余剰汚泥が発生するという大きな問題がある。余剰汚泥は産業廃棄物の約半分を占めると言われ、その処理・処分に多大なコストを要している。   Currently, the activated sludge treatment method is widely used for the treatment of sewage and organic wastewater discharged from factories and business establishments. This method is excellent in treatment efficiency and economy, but has a big problem that excess sludge is generated as waste. Excess sludge is said to occupy about half of industrial waste, and its processing and disposal requires a great deal of cost.

従来、この余剰汚泥は、脱水後に焼却または埋め立てにより処理されてきている。しかし、ダイオキシン類の環境規制強化による余剰汚泥の焼却処分の規制化や、最終処分場の確保の困難性と処理コストの上昇等の問題から、近年、余剰汚泥の発生そのものの抑制が重要な課題となってきている。   Conventionally, this excess sludge has been treated by incineration or landfill after dehydration. However, in recent years, it has become an important issue to control the generation of excess sludge due to issues such as the regulation of incineration of surplus sludge by strengthening environmental regulations for dioxins and the difficulty of securing a final disposal site and an increase in treatment costs. It has become.

一方で、余剰汚泥の固形燃料化・堆肥化・建設資材化等が検討されてはいるが、未だ十分な実用性を有するものはなく、このようなリサイクルシステムが有効に機能するにはなお更に時間を要するため、効果的な余剰汚泥の減量化技術の開発が待望されている。   On the other hand, the use of surplus sludge as solid fuel, composting, construction materials, etc. has been studied, but there is still no practical utility, and it is even more necessary for such a recycling system to function effectively. Since time is required, development of an effective technique for reducing excess sludge is awaited.

余剰汚泥の減量化技術としては、発生した余剰汚泥を最終処理までに減量化する方法と元の廃水処理槽内そのもので汚泥発生を抑制する方法とがある。また、用いる手段によって物理化学的方法と生物学(生化学)的方法とがあり、後者は主に処理槽内の汚泥発生抑制に使われる方法である。   As a technique for reducing the amount of excess sludge, there are a method for reducing the amount of generated excess sludge until final treatment and a method for suppressing the generation of sludge in the original wastewater treatment tank itself. In addition, there are a physicochemical method and a biological (biochemical) method depending on the means used, and the latter is a method mainly used for suppressing sludge generation in the treatment tank.

廃水処理槽内の汚泥発生を抑制する方法は、余剰汚泥発生そのものを防ぐ手段であるため二次廃棄物が発生せず、経済性の面でも優れている。この場合は、高速酸化法、捕食法、脱共役(プロトン転移)法等の生物学的、生化学的方法が用いられる(非特許文献1)。   The method for suppressing the generation of sludge in the wastewater treatment tank is a means for preventing the generation of excess sludge itself, so that secondary waste is not generated, and it is excellent in terms of economy. In this case, biological and biochemical methods such as a fast oxidation method, a predation method, and an uncoupling (proton transfer) method are used (Non-Patent Document 1).

このうち、高速酸化法は汚泥の自己酸化も含めて有機物の酸化を促進する方法であるが、通気量を多くしたり、通気時間を長くとる等の手段を用いなければならず、安定性、コスト、労力の点で問題がある。捕食法は原生動物や微小後生動物による汚泥の捕食を利用する方法であるが、未だ実用的な技術としては確立していない。脱共役法は微生物の化学エネルギーATPの生成を抑える薬剤を添加する方法であり、比較的低コストで簡単に行うことができる。脱共役剤は、微生物の基質酸化に伴う呼吸系電子伝達をあまり阻害せずにエネルギー生成を抑制するので、薬剤の添加によって呼吸や有機物の分解力を損なうことなく菌の増殖のみが抑えられ、結果として通常の処理を可能にしながら余剰汚泥の発生を抑制することができると考えられる。   Among these, the fast oxidation method is a method of promoting the oxidation of organic matter including the self-oxidation of sludge, but means such as increasing the aeration amount or taking a longer aeration time must be used for stability, There are problems in terms of cost and labor. The predation method is a method using sludge predation by protozoa and minute metazoans, but has not yet been established as a practical technique. The uncoupling method is a method of adding an agent that suppresses generation of chemical energy ATP of microorganisms, and can be easily performed at a relatively low cost. The uncoupler suppresses energy generation without significantly inhibiting the respiratory electron transfer associated with substrate oxidation of microorganisms, so the addition of chemicals suppresses only the growth of bacteria without impairing respiration or the decomposition of organic matter, As a result, it is considered that the generation of excess sludge can be suppressed while enabling normal treatment.

生化学実験等で使われる脱共役剤としては、カルボニルシアニド、m−クロロフェノールヒドラゾンや2,4−ジニトロフェノールがよく知られている。一方、余剰汚泥発生の抑制に脱共役法を適用した例では、より弱い脱共役作用を有するクロロフェノール、ニトロフェノール等の同類体、テトラクロロサリシルアニリドなどが使われている(非特許文献2,3)。   As uncoupling agents used in biochemical experiments and the like, carbonyl cyanide, m-chlorophenol hydrazone and 2,4-dinitrophenol are well known. On the other hand, in an example in which the uncoupling method is applied to suppress the generation of excess sludge, chlorophenol, nitrophenol and the like having weaker uncoupling action, tetrachlorosalicylanilide, etc. are used (Non-patent Document 2). , 3).

これまでに脱共役剤としてクロロフェノール類を用いた例では、2−クロロフェノール、3−クロロフェノール、4−クロロフェノール、2,4−ジクロロフェノール、2,6−ジクロロフェノール、2,4,5−トリクロロフェノールが報告され、特に、3,5−ジクロロフェノールの効果が高いことが報告されている(特許文献1)。   Examples of using chlorophenols as uncoupling agents so far include 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,5 -Trichlorophenol has been reported, and in particular, it has been reported that the effect of 3,5-dichlorophenol is high (Patent Document 1).

一方で、石油系プラスチックや生分解性プラスチックが様々な疎水性化学物質を吸着することが知られており、その性質を利用した汚染化学物質の除去技術が報告されている(特許文献2)。
特願2004−65989 特開2004−8967号公報 平石明:“活性汚泥処理における余剰汚泥減量化の生物学的原理とその応用”、用水と廃水、Vol.44、pp.853-860(2002). Liu,A.:“Chemically reduced excess sludge production in the activated sludge process”,Chemosphere,Vol.50,pp.1-7(2003). Wei,Y.,Van Houten, R.T.,Borger,A.R.,Eikelboom,D.H.,and Fan,Y.:“Minimization of excess sludge production for biological wastewater treatment”,Water Research,Vol.37,pp.4453-4467(2003).
On the other hand, it is known that petroleum-based plastics and biodegradable plastics adsorb various hydrophobic chemical substances, and a technique for removing pollutant chemical substances using these properties has been reported (Patent Document 2).
Japanese Patent Application No. 2004-65989 JP 2004-8967 A Akira Hiraishi: “Biological principles and application of excess sludge reduction in activated sludge treatment”, Water and wastewater, Vol.44, pp.853-860 (2002). Liu, A .: “Chemically reduced excess sludge production in the activated sludge process”, Chemosphere, Vol. 50, pp. 1-7 (2003). Wei, Y., Van Houten, RT, Burger, AR, Eikelboom, DH, and Fan, Y .: “Minimization of excess sludge production for biological wastewater treatment”, Water Research, Vol. 37, pp. 4453-4467 (2003 ).

前述の如く、脱共役法はコスト及び簡便性の点において、優れた余剰汚泥発生抑制技術ではあるが、脱共役剤そのものは生物に対して毒性を示す物質であるので、処理水の放流に伴って系外へ漏出すれば、環境への悪影響が懸念される。従って、脱共役法の実用化にあたっては、用いる脱共役剤の系外への漏出がないことが安全上求められるが、脱共役剤の系外への漏出を防止する効果的な技術は未だ確立されていないのが現状である。   As described above, the uncoupling method is an excellent technique for suppressing excessive sludge generation in terms of cost and simplicity, but the uncoupling agent itself is a substance that is toxic to living organisms. If it leaks out of the system, there are concerns about adverse environmental effects. Therefore, in the practical application of the uncoupling method, it is required for safety that the uncoupling agent to be used does not leak out of the system, but an effective technique for preventing the uncoupling agent from leaking out of the system is still established. The current situation is not.

本発明は上記従来の問題点を解決し、脱共役剤の存在下に有機性排水を生物処理することにより、余剰汚泥の発生を抑制する方法において、処理水質を維持した上で、脱共役剤の系外漏出を防止して安全かつ低コストに余剰汚泥発生量を低減する余剰汚泥の発生抑制方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in the method of suppressing the generation of excess sludge by biologically treating organic wastewater in the presence of the uncoupler, while maintaining the treated water quality, the uncoupler It aims at providing the generation | occurrence | production suppression method of the excess sludge which prevents the outside leakage of this system and reduces the excess sludge generation amount safely and at low cost.

本発明(請求項1)の余剰汚泥の発生抑制方法は、脱共役剤を担持した担体の存在下に、有機性排水を生物処理することを特徴とする。   The surplus sludge generation suppression method of the present invention (Claim 1) is characterized in that organic wastewater is biologically treated in the presence of a carrier carrying a uncoupler.

即ち、本発明者らは、脱共役剤の系外への漏出防止技術について鋭意検討した結果、石油系プラスチックや生分解性プラスチックが様々な疎水性物質を吸着し得ること、一方で、脱共役剤はプロトン放出性の疎水性物質であることから、このプラスチックの吸着作用を利用すれば脱共役剤を固定化できる可能性があり、脱共役剤を固定化することにより、脱共役剤の系外漏出を防止し得ることを見出し、本発明を完成させた。   That is, as a result of intensive studies on the leakage prevention technology of uncoupling agents outside the system, the present inventors have found that petroleum-based plastics and biodegradable plastics can adsorb various hydrophobic substances, while uncoupling Since the agent is a proton-releasing hydrophobic substance, there is a possibility that the uncoupling agent can be immobilized by using the adsorption action of this plastic. By immobilizing the uncoupling agent, the uncoupling agent system The inventors have found that leakage can be prevented and completed the present invention.

請求項2の余剰汚泥の発生抑制方法は、請求項1において、該担体がプラスチックよりなることを特徴とする。   The surplus sludge generation suppression method according to claim 2 is characterized in that, in claim 1, the carrier is made of plastic.

請求項3の余剰汚泥の発生抑制方法は、請求項2において、該担体が生分解性プラスチックよりなることを特徴とする。   The surplus sludge generation suppression method according to claim 3 is characterized in that, in claim 2, the carrier is made of a biodegradable plastic.

請求項4の余剰汚泥の発生抑制方法は、請求項3において、該担体がポリ乳酸系プラスチックよりなることを特徴とする。   According to a fourth aspect of the present invention, there is provided a surplus sludge generation suppressing method according to the third aspect, wherein the carrier is made of a polylactic acid plastic.

請求項5の余剰汚泥の発生抑制方法は、請求項2ないし4のいずれか1項において、該担体を、該担体を構成するプラスチックのガラス転移温度以上の温度条件下に、該脱共役剤に接触させることにより、該担体に脱共役剤を担持させることを特徴とする。   The surplus sludge generation suppression method according to claim 5 is the uncoupling agent according to any one of claims 2 to 4, wherein the carrier is used under the temperature condition equal to or higher than the glass transition temperature of the plastic constituting the carrier. It is characterized in that the uncoupling agent is supported on the carrier by contact.

請求項6の余剰汚泥の発生抑制方法は、請求項5において、該担体を、該担体を構成するプラスチックのガラス転移温度以上の温度条件下に、該脱共役剤の飽和溶液中に浸漬することにより、該担体に脱共役剤を担持させることを特徴とする。   The method for suppressing the generation of excess sludge according to claim 6 is the method according to claim 5, wherein the carrier is immersed in a saturated solution of the uncoupling agent under a temperature condition equal to or higher than the glass transition temperature of the plastic constituting the carrier. Thus, the uncoupling agent is supported on the carrier.

本発明の余剰汚泥の発生抑制方法によれば、脱共役剤の存在下に有機性排水を生物処理することにより、余剰汚泥の発生を抑制する方法において、脱共役剤を担体に担持することにより系内に安定に保持することができる。この脱共役剤担持担体は、その表面に菌体が接触することにより良好な脱共役作用を発揮し、余剰汚泥の発生を抑制する。従って、本発明によれば、処理水質を維持した上で、脱共役剤の系外漏出を防止して安全かつ低コストに余剰汚泥発生量を低減することができる。   According to the method for suppressing the generation of excess sludge according to the present invention, in the method for suppressing the generation of excess sludge by biologically treating organic waste water in the presence of the uncoupling agent, by supporting the uncoupling agent on a carrier. It can be stably held in the system. This uncoupling agent-carrying carrier exhibits a good uncoupling action when bacterial cells come into contact with the surface thereof, and suppresses the generation of excess sludge. Therefore, according to the present invention, the amount of excess sludge generated can be reduced safely and at low cost by maintaining the quality of the treated water and preventing the uncoupling agent from leaking out of the system.

本発明において、担体としてはプラスチックよりなるものが好ましく、その優れた疎水性物質吸着能を利用して、脱共役剤を安定に固定化することができる。   In the present invention, the carrier is preferably made of plastic, and the uncoupling agent can be stably immobilized by utilizing its excellent hydrophobic substance adsorption ability.

特に、この担体を構成するプラスチックとしては生分解性プラスチックが好ましく、生分解性プラスチックであれば後述のガラス転移温度以上での脱共役剤の吸着処理において、脱共役剤を安定に吸着することができ、好ましい。特に、生分解性プラスチックのうちでも、ポリ乳酸系プラスチックは生分解性への耐性に優れ、長寿命であることから好ましい。   In particular, the plastic constituting the carrier is preferably a biodegradable plastic. If the biodegradable plastic is used, the uncoupling agent can be stably adsorbed in the adsorption treatment of the uncoupling agent at a glass transition temperature or higher described later. It is possible and preferable. In particular, among the biodegradable plastics, polylactic acid-based plastics are preferable because they are excellent in resistance to biodegradability and have a long life.

このようなプラスチック担体への脱共役剤の担持方法としては、プラスチックのガラス転移温度以上の温度条件で、脱共役剤、好ましくは脱共役剤の飽和溶液に担体を接触させることが好ましい。即ち、ガラス転移温度以上の温度条件でプラスチック担体に吸着させた脱共役剤は、プラスチックの非結晶領域に潜り込み、容易には脱着されないものとなる。この性質は特に生分解性プラスチックにおいて顕著であるため、本発明においては、担体としては生分解性プラスチック担体を用いるのが好ましい。   As a method for supporting the uncoupler on such a plastic carrier, it is preferable to bring the carrier into contact with the uncoupler, preferably a saturated solution of the uncoupler, under a temperature condition higher than the glass transition temperature of the plastic. In other words, the uncoupler adsorbed on the plastic carrier under the temperature condition higher than the glass transition temperature enters the non-crystalline region of the plastic and is not easily desorbed. Since this property is particularly remarkable in biodegradable plastics, it is preferable to use a biodegradable plastic carrier as the carrier in the present invention.

以下に本発明の余剰汚泥の発生抑制方法の実施の形態を詳細に説明する。   The embodiment of the surplus sludge generation suppression method of the present invention will be described in detail below.

<被対象処理系>
本発明の脱共役法を使用する対象となる処理系は、都市下水、産業廃水等の活性汚泥処理、家庭下水等の合併浄化処理、オキシデーションディッチ、ラグーン酸化処理、生物膜処理、散布ろ床等のあらゆる好気的廃水処理系である。嫌気−好気処理、間欠曝気等の運転上の処理形態は問わない。
<Target processing system>
The treatment system to be used for the uncoupling method of the present invention is activated sludge treatment such as municipal sewage and industrial wastewater, combined purification treatment such as domestic sewage, oxidation ditch, lagoon oxidation treatment, biofilm treatment, spray filter bed Any aerobic wastewater treatment system. There are no limitations on the processing mode such as anaerobic-aerobic processing and intermittent aeration.

<脱共役剤>
脱共役剤としては特に制限はないが、好ましくは3,5−ジクロロフェノールが用いられる。即ち、前記したように、これまで使用された脱共役剤としては、クロロフェノール、ニトロフェノール等の同類体、テトラクロロサリシルアニリドなどがある。この中で、クロロフェノール同類体としては、2−クロロフェノール、3−クロロフェノール、4−クロロフェノール、2,4−ジクロロフェノール、2,6−ジクロロフェノール、2,4,5−トリクロロフェノールがある。これらの中には、脱共役作用に優れたものも含まれるが、脱共役効果が高いものは逆に有機基質の分解も阻害してしまうという欠点がある。これに対し、3,5−ジクロロフェノールは、有機基質酸化活性への影響が少なく、かつエネルギー生成に伴う菌体増殖への抑制効果が強く、総合的に判断して最も実用性に適う薬剤である。ただし、3,5−ジクロロフェノール以外の脱共役剤を、効果的濃度を調整した上で、3,5−ジクロロフェノールと併用して、あるいは交互に使用しても良い。このカクテル方式脱共役法は、薬剤の効き目を持続させるのに効果的である。3,5−ジクロロフェノールと併用できる脱共役剤は、基本的にフェノールの3,5の位置以外に修飾基が付いているもの、あるいは同類体でないものであれば何でもよい。特に効果的なものとして例えば、3,4−ジクロロフェノール、すべてのトリクロロフェノール、2−ニトロフェノール、4−ニトロフェノール、2,4−ジニトロフェノール、2,6−ジニトロフェノール、すべてのトリクロロフェノール、テトラクロロサリシルアニリド等が挙げられる。
<Uncoupler>
The uncoupler is not particularly limited, but 3,5-dichlorophenol is preferably used. That is, as described above, examples of the uncoupler used so far include analogues such as chlorophenol and nitrophenol, and tetrachlorosalicylanilide. Among these, chlorophenol analogues include 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, and 2,4,5-trichlorophenol. . Among these, those excellent in uncoupling action are included, but those having a high uncoupling effect have a disadvantage that they also inhibit the decomposition of the organic substrate. On the other hand, 3,5-dichlorophenol has little influence on the oxidation activity of organic substrates and has a strong inhibitory effect on cell growth accompanying energy generation. is there. However, an uncoupling agent other than 3,5-dichlorophenol may be used in combination with 3,5-dichlorophenol or alternately after adjusting the effective concentration. This cocktail-type uncoupling method is effective in maintaining the efficacy of the drug. As the uncoupling agent that can be used in combination with 3,5-dichlorophenol, basically, any one having a modifying group other than positions 3 and 5 of phenol, or any compound that is not a similar compound may be used. Particularly effective are, for example, 3,4-dichlorophenol, all trichlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, all trichlorophenol, tetra Examples include chlorosalicylanilide.

<担体>
本発明においては、上述のような脱共役剤を担体に担持させて用いる。
<Carrier>
In the present invention, the uncoupling agent as described above is supported on a carrier and used.

脱共役剤を担持固定化する担体としては、基本的に、脱共役剤に対する吸着作用を示し、吸着後、脱離がないものであれば良く、特に制限はないが、例えば、石油系プラスチックであるポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等が挙げられる。また、生分解性プラスチックであれば、脱共役剤の固定化性能に優れ、好ましい。   The carrier for supporting and immobilizing the uncoupling agent basically has an adsorption action on the uncoupling agent and does not desorb after adsorption, and is not particularly limited. Some polyethylene, polypropylene, polyethylene terephthalate, etc. are mentioned. In addition, a biodegradable plastic is preferable because it has excellent immobilization performance for the uncoupler.

生分解性プラスチックとしては、α−ヒドロキシプロピオネート(乳酸)、ヒドロキシブチレート、ブチレンサクシネート、エチレンサクシネート、カプロラクトン、ブチレンサクシネートアジペート変性物、ブチレンサクシネートカーボネート変性物、ブチレンアジペートテレフタレート等の1種よりなるホモポリマー、或いはこれらの2種以上よりなるコポリマー、その誘導体や変性物等、具体的には、ポリ乳酸、ポリヒドロキシブチレート、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリカプロラクトン、ポリブチレンサクシネートアジペート変性、ポリブチレンサクシネートカーボネート変性、ポリブチレンアジペートテレフタレートや、ヒドロキシブチレートと3−ヒドロキシ吉草酸とのコポリマー等が挙げられ、これらのなかでも好ましくはポリ乳酸(ポリα−ヒドロキシプロピオネート)、ポリヒドロキシブチレート(ポリヒドロキシ酪酸)、ポリカプロラクトン、ポリブチレンサクシネート等であり、特に、これらのうち、生分解性への耐性に優れ、長寿命であることから、ポリ乳酸、その誘導体ないしは変性物等のポリ乳酸系プラスチックが好ましい。   Examples of biodegradable plastics include α-hydroxypropionate (lactic acid), hydroxybutyrate, butylene succinate, ethylene succinate, caprolactone, butylene succinate adipate modified product, butylene succinate carbonate modified product, butylene adipate terephthalate, etc. A homopolymer composed of one kind, or a copolymer composed of two or more kinds thereof, derivatives or modified products thereof, such as polylactic acid, polyhydroxybutyrate, polybutylene succinate, polyethylene succinate, polycaprolactone, poly Butylene succinate adipate modification, polybutylene succinate carbonate modification, polybutylene adipate terephthalate, copolymers of hydroxybutyrate and 3-hydroxyvaleric acid, etc. Among these, polylactic acid (poly α-hydroxypropionate), polyhydroxybutyrate (polyhydroxybutyric acid), polycaprolactone, polybutylene succinate and the like are preferable, and among these, biodegradability is particularly preferable. Polylactic acid-based plastics such as polylactic acid and its derivatives or modified products are preferred because of their excellent resistance to heat and long life.

これらの担体の形態は、系外へ漏出しない形であればどのような形態でも良く、例えば、粒状、ペレット状、繊維状、フィラメント状、フィルム状等、その他各種の異形形状とすることができる。担体の寸法はその形態に応じて、漏出防止と取り扱い性、有機性排水との接触効率、脱共役剤の吸着効率等を考慮して適宜設計される。   The form of these carriers may be any form as long as it does not leak out of the system. For example, it can be in various other shapes such as granular, pellet, fiber, filament, and film. . The dimensions of the carrier are appropriately designed according to the form, taking into consideration leakage prevention and handling, contact efficiency with organic waste water, adsorption efficiency of uncoupler, and the like.

<担体への脱共役剤の担持>
担体への脱共役剤の担持方法としては特に制限はなく、常法に従って行うことができるが、特に担体としてプラスチック担体を用いる場合の好適な担持方法について以下に説明する。
<Supporting uncoupling agent on carrier>
The method for supporting the uncoupler on the carrier is not particularly limited and can be carried out according to a conventional method. However, a preferred method for supporting a plastic carrier as a carrier will be described below.

生分解性プラスチックを含むプラスチックの性状の一つとしてガラス転移温度があるが、プラスチックへの脱共役剤の吸着はガラス転移温度に依存する。即ち、脱共役剤のプラスチックへの吸着は、当該プラスチックのガラス転移温度以上の温度で進行し易く、この温度条件でプラスチックに吸着された脱共役剤は、プラスチックの非結晶領域に潜り込み、容易に脱着されないものとなる。この性質は特に生分解性プラスチックで顕著であるため、脱共役性担体としては特に生分解性プラスチックが有効であると考えられる。また、前述の如く生分解性への耐性、長寿命という観点からはポリ乳酸、ポリブチレンサクシネート及びそれらの誘導体又はそれらの混合物が優れている。   One of the properties of plastics including biodegradable plastics is the glass transition temperature. Adsorption of the uncoupler to the plastics depends on the glass transition temperature. That is, the adsorption of the uncoupling agent to the plastic easily proceeds at a temperature higher than the glass transition temperature of the plastic, and the uncoupling agent adsorbed to the plastic under this temperature condition can easily enter the non-crystalline region of the plastic. It will not be desorbed. Since this property is particularly remarkable for biodegradable plastics, it is considered that biodegradable plastics are particularly effective as uncoupling carriers. In addition, as described above, polylactic acid, polybutylene succinate and derivatives thereof, or a mixture thereof are excellent from the viewpoints of resistance to biodegradability and long life.

この担持処理時の温度条件はプラスチックのガラス転移温度以上であれば良く、過度に高いとプラスチックの熱劣化を招くため、通常はプラスチックのガラス転移温度よりも5〜10℃程度高い温度領域で実施される。   The temperature condition at the time of the supporting treatment may be higher than the glass transition temperature of the plastic, and if it is excessively high, it causes thermal degradation of the plastic. Is done.

一般的に生分解性プラスチックは室温以下のガラス転移温度を有するため、脱共役剤の吸着は常温で容易に可能であるが、ポリ乳酸のガラス転移温度は65℃であるため、常温での脱共役剤の吸着は困難であり、その目的のためには65℃以上、好ましくは70〜75℃に加温する必要がある。   In general, biodegradable plastics have a glass transition temperature below room temperature, so that the uncoupler can be easily adsorbed at room temperature. However, since the glass transition temperature of polylactic acid is 65 ° C., decoupling at room temperature is possible. Adsorption of the conjugating agent is difficult, and for that purpose, it is necessary to heat to 65 ° C. or higher, preferably 70 to 75 ° C.

脱共役剤の吸着は、より具体的には、脱共役剤の飽和水溶液に担体を浸漬し、所定の温度条件下、必要に応じて撹拌して1日〜2日程度保持することにより行われる。   More specifically, the uncoupling agent is adsorbed by immersing the carrier in a saturated aqueous solution of the uncoupling agent, and stirring for about 1 to 2 days under a predetermined temperature condition as necessary. .

<脱共役剤担持担体の添加方法>
脱共役剤担持担体は処理系内に連続的に添加されてもよいが、汚泥が脱共役剤に対し耐性を獲得することを防止するために、3〜7日間の間隔をあけて添加することが望ましい。また、例えば、3,5−ジクロロフェノール担持担体を3〜7日間添加した後、他の脱共役剤を担持した担体を3〜7日間添加し、以下これを繰り返すパターンを採用することができる。
<Method of adding uncoupler-carrying carrier>
The uncoupler-carrying carrier may be added continuously in the treatment system, but added at intervals of 3-7 days to prevent the sludge from gaining resistance to the uncoupler. Is desirable. Further, for example, a pattern in which 3,5-dichlorophenol-carrying carrier is added for 3 to 7 days and then a carrier carrying another uncoupling agent is added for 3 to 7 days, and this can be repeated thereafter.

脱共役剤担持担体を添加する場所は、流入廃水中、貯留槽、前処理槽、或いは曝気槽内のいずれでも良いが、主処理槽よりも前の段階で添加した方が溶解が速くなり、効果的である。   The place where the uncoupler-carrying carrier is added may be any of inflow wastewater, storage tank, pretreatment tank, or aeration tank, but if added at a stage before the main treatment tank, dissolution will be faster. It is effective.

脱共役剤担持担体の添加量は、曝気槽等の水槽に投入する場合は、槽容量の1〜5体積%程度添加することが好ましい。   When the uncoupler-carrying carrier is added to a water tank such as an aeration tank, it is preferable to add about 1 to 5% by volume of the tank capacity.

以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

なお、担体への脱共役剤の担持方法、汚泥混液の調製方法は次の通りである。   The method for supporting the uncoupler on the carrier and the method for preparing the sludge mixed solution are as follows.

<担体への脱共役剤の担持方法>
担体として、ポリ乳酸よりなる直径5mm、厚さ1.5〜2.0mmのペレット状のものを用い、また、脱共役剤としては3,5−ジクロロフェノールを用いた。
<Method of supporting uncoupling agent on carrier>
As the carrier, a pellet made of polylactic acid having a diameter of 5 mm and a thickness of 1.5 to 2.0 mm was used, and 3,5-dichlorophenol was used as the uncoupling agent.

担体への脱共役剤の担持は、ポリ乳酸担体を3,5−ジクロロフェノールの飽和水溶液(濃度:4000mg/L)に浸漬し、温度75℃、撹拌速度100rpmで2日間保持した後取り出し、超純水で洗浄した後乾燥することにより行った。   The uncoupling agent is supported on the carrier by immersing the polylactic acid carrier in a saturated aqueous solution of 3,5-dichlorophenol (concentration: 4000 mg / L), holding it at a temperature of 75 ° C. and a stirring speed of 100 rpm for 2 days, and removing it. It was performed by washing with pure water and drying.

以下において、3,5−ジクロロフェノールを担持していないポリ乳酸担体を「PLA」と称し、上述の方法で3,5−ジクロロフェノールを担持したポリ乳酸担体を「3,5−DCP吸着PLA」と称す。   Hereinafter, the polylactic acid carrier not supporting 3,5-dichlorophenol is referred to as “PLA”, and the polylactic acid carrier supporting 3,5-dichlorophenol by the above-described method is referred to as “3,5-DCP adsorption PLA”. Called.

<汚泥混液の調製方法>
種汚泥として、中島処理場(豊橋市)の主曝気槽から採取した下水汚泥混液を用い、採取した下水汚泥混液1Lを汚泥濃度(MLSS)700mg/Lになるように調整後、1Lスケールのジャケット付きカルスターフラスコ(柴田科学社製)に添加した。このリアクターに表1に示す組成の人口廃水を生物学的酸素要求量(BOD)負荷量0.35g/g−MLSS/日となるように添加して馴養を開始した。上清500mlを抜き取り、オートクレーブ滅菌した人口廃水と水道水を加えて再び1Lに調整した。汚泥濃度を週に一回MLSS700mg/Lとなるように調整し、その後は汚泥増加に準じて人口廃水の添加量を決定した。槽内温度は25℃、撹拌速度は150rpmとし、ポンプで通気(3L/min)した。
<Method for preparing sludge mixture>
1L scale jacket after adjusting 1L of the collected sewage sludge mixture to a sludge concentration (MLSS) of 700mg / L using the sewage sludge mixture collected from the main aeration tank of Nakajima Treatment Plant (Toyohashi City) as seed sludge It added to the attached calster flask (made by Shibata Kagakusha). Acclimatization was started by adding artificial wastewater having the composition shown in Table 1 to this reactor so that the biological oxygen demand (BOD) loading was 0.35 g / g-MLSS / day. 500 ml of the supernatant was extracted and adjusted to 1 L again by adding autoclave-sterilized artificial waste water and tap water. The sludge concentration was adjusted to MLSS 700 mg / L once a week, and then the amount of artificial wastewater added was determined according to the increase in sludge. The temperature in the tank was 25 ° C., the stirring speed was 150 rpm, and aeration (3 L / min) was performed with a pump.

Figure 2006159130
Figure 2006159130

2ヶ月の馴養の後、PCR−DGGE法による群集構造解析を行った結果、優占種が安定していることが確認されたため充分に馴養されたと考えられたので、これを汚泥混液として実験に用いた。   After acclimatization for 2 months, as a result of the analysis of the community structure by PCR-DGGE method, it was confirmed that the dominant species was stable. Using.

実施例1
上記で調製した汚泥混液に、BOD負荷量0.35g/g−MLSS/日となるように、前述の人口廃水を添加すると共に、3,5−DCP吸着PLAをリアクター内容量の5体積%(50g)投入し、上記汚泥混液の調製方法と同様の条件で処理を行った。
Example 1
The above-mentioned artificial wastewater is added to the sludge mixed liquid prepared above so that the BOD load is 0.35 g / g-MLSS / day, and 3,5-DCP adsorption PLA is added to 5 volume% of the reactor internal volume ( 50 g), and the treatment was performed under the same conditions as in the method for preparing the sludge mixed solution.

このときの槽内汚泥濃度の経時変化を調べ、結果を図1に示した。   The change with time of the sludge concentration in the tank at this time was examined, and the results are shown in FIG.

なお、汚泥濃度は、運転を一時的に停止し、リアクター内汚泥の波長660nmにおける濁度(OD660)を分光光度計を用いて測定することにより求めた。 The sludge concentration was determined by temporarily stopping the operation and measuring the turbidity (OD 660 ) of the sludge in the reactor at a wavelength of 660 nm using a spectrophotometer.

比較例1
実施例1において、リアクターに3,5−DCP吸着PLAを投入しなかったこと以外は同様にして処理を行い、同様に汚泥濁度(OD660)を調べ、結果を図1に示した。
Comparative Example 1
In Example 1, the treatment was carried out in the same manner except that the reactor was not charged with 3,5-DCP adsorption PLA, and the sludge turbidity (OD 660 ) was similarly examined. The results are shown in FIG.

比較例2
実施例1において、リアクターに3,5−DCP吸着PLAの代りにPLAをリアクター内容量の5体積%(50g)投入したこと以外は同様にして処理を行い、同様に汚泥濁度(OD660)を調べ、結果を図1に示した。
Comparative Example 2
In Example 1, treatment was conducted in the same manner except that 5 vol% (50 g) of the reactor internal volume was added to the reactor in place of 3,5-DCP adsorption PLA, and the sludge turbidity (OD 660 ) was similarly obtained. The results are shown in FIG.

図1より、比較例1,2では汚泥濃度が徐々に上昇しているのに対して、脱共役剤担持担体を投入した実施例1では、汚泥濃度が低減しており、従って、余剰汚泥発生量を抑制することができることがわかる。   From FIG. 1, the sludge concentration gradually increased in Comparative Examples 1 and 2, whereas in Example 1 in which the uncoupler-carrying carrier was introduced, the sludge concentration was reduced, and therefore excess sludge was generated. It can be seen that the amount can be suppressed.

なお、実施例1及び比較例1,2において、運転中に定期的にリアクターの上清を採水して遠心分離後、0.45μmメンブレンフィルターで濾過した後、0.25μmメンブレンフィルターでさらに濾過したものを測定用サンプルとし、島津製作所製TOC測定装置「TOC−VCPH/TOC−VCPN」でTOC濃度を測定したところ、約1ヶ月の運転期間中、いずれの場合もTOC濃度は10〜15mg/Lの範囲であり、脱共役剤担持担体を用いた実施例1が、比較例1,2に対して、処理水水質の低下の問題はなく、同等の処理水水質を得ることができることが確認された。 In Example 1 and Comparative Examples 1 and 2, the reactor supernatant was collected periodically during operation, centrifuged, filtered through a 0.45 μm membrane filter, and further filtered through a 0.25 μm membrane filter. When the TOC concentration was measured with a TOC measuring device “TOC-V CPH / TOC-V CPN ” manufactured by Shimadzu Corporation, the TOC concentration was 10 to 10 in each case during the operation period of about 1 month. In the range of 15 mg / L, Example 1 using the uncoupler-carrying carrier has no problem of deterioration in the quality of treated water compared to Comparative Examples 1 and 2, and the equivalent treated water quality can be obtained. Was confirmed.

なお、前記3,5−DCP吸着PLAを、実際の食品排水の処理設備の曝気槽に槽内容量に対して5容量%投入して処理を行ったところ、同様に処理水水質の低下を引き起こすことなく、余剰汚泥発生量の低減を図ることができ、また、3,5−DCP吸着PLAの系外流出の問題もないことが確認された。   When the 3,5-DCP-adsorbed PLA was put into an aeration tank of an actual food wastewater treatment facility in an amount of 5% by volume with respect to the tank volume, the quality of the treated water was similarly lowered. Thus, it was confirmed that the amount of surplus sludge generated could be reduced, and that there was no problem of outflow of 3,5-DCP adsorption PLA.

実施例1及び比較例1,2における汚泥濁度(OD660)の経時変化を示すグラフである。Is a graph showing changes with time of the sludge turbidity (OD 660) of Example 1 and Comparative Examples 1 and 2.

Claims (6)

脱共役剤を担持した担体の存在下に、有機性排水を生物処理することを特徴とする余剰汚泥の発生抑制方法。   A method for suppressing the generation of excess sludge, characterized in that organic wastewater is biologically treated in the presence of a carrier carrying an uncoupling agent. 請求項1において、該担体がプラスチックよりなることを特徴とする余剰汚泥の発生抑制方法。   The method for suppressing the generation of excess sludge according to claim 1, wherein the carrier is made of plastic. 請求項2において、該担体が生分解性プラスチックよりなることを特徴とする余剰汚泥の発生抑制方法。   The method for suppressing the generation of excess sludge according to claim 2, wherein the carrier is made of a biodegradable plastic. 請求項3において、該担体がポリ乳酸系プラスチックよりなることを特徴とする余剰汚泥の発生抑制方法。   4. The method for suppressing the generation of excess sludge according to claim 3, wherein the carrier is made of polylactic acid plastic. 請求項2ないし4のいずれか1項において、該担体を、該担体を構成するプラスチックのガラス転移温度以上の温度条件下に、該脱共役剤に接触させることにより、該担体に脱共役剤を担持させることを特徴とする余剰汚泥の発生抑制方法。   5. The carrier according to claim 2, wherein the carrier is brought into contact with the uncoupler under a temperature condition equal to or higher than the glass transition temperature of the plastic constituting the carrier. A method for suppressing the generation of excess sludge, which is characterized in that it is supported. 請求項5において、該担体を、該担体を構成するプラスチックのガラス転移温度以上の温度条件下に、該脱共役剤の飽和溶液中に浸漬することにより、該担体に脱共役剤を担持させることを特徴とする余剰汚泥の発生抑制方法。   6. The carrier according to claim 5, wherein the carrier is supported on the carrier by immersing the carrier in a saturated solution of the uncoupler under a temperature condition equal to or higher than the glass transition temperature of the plastic constituting the carrier. A method for suppressing the generation of excess sludge.
JP2004356749A 2004-12-09 2004-12-09 Control method of excess sludge generation Active JP4626286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356749A JP4626286B2 (en) 2004-12-09 2004-12-09 Control method of excess sludge generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356749A JP4626286B2 (en) 2004-12-09 2004-12-09 Control method of excess sludge generation

Publications (2)

Publication Number Publication Date
JP2006159130A true JP2006159130A (en) 2006-06-22
JP4626286B2 JP4626286B2 (en) 2011-02-02

Family

ID=36661713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356749A Active JP4626286B2 (en) 2004-12-09 2004-12-09 Control method of excess sludge generation

Country Status (1)

Country Link
JP (1) JP4626286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084474A1 (en) * 2007-12-28 2009-07-09 Showa Denko K.K. Water treatment method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1221550A (en) * 1967-07-21 1971-02-03 Hoechst Ag Process for reducing the production of excess sludge in activated sludge plants for the purification of wastewater
JPH0655188A (en) * 1992-06-25 1994-03-01 Carl Freudenberg:Fa Biologically decomposable flat plate-like support material for biologically operable clarification process
JPH0671286A (en) * 1992-08-28 1994-03-15 Kankyo Eng Kk Agent and method for preventive bulking
JPH09239396A (en) * 1996-03-07 1997-09-16 Agency Of Ind Science & Technol Treatment of chlorophenol-containing water
JPH11179387A (en) * 1997-12-25 1999-07-06 Miyoshi Shokai Carrier for biological treatment of waste water
JPH11216306A (en) * 1997-11-10 1999-08-10 Toto Ltd Purification device of bathtub water and circulating system of bathtub water
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2001300573A (en) * 2000-04-21 2001-10-30 Toyobo Co Ltd Microorganism carrier
JP2002500510A (en) * 1997-05-01 2002-01-08 イーストマン ケミカル カンパニー Bioluminescent reporter: a method for monitoring toxicity in bacterial and biological wastewater treatment systems
JP2003211155A (en) * 2001-11-16 2003-07-29 Nippon System Products Kk Zeolite complex having property of floating in water
JP2003219871A (en) * 2002-01-31 2003-08-05 Hagiwara Kk Microorganism carrier treated with organic acids such as pyroligneous acid and bamboo pyroligneous acid
JP2004008967A (en) * 2002-06-07 2004-01-15 Japan Science & Technology Corp Adsorbent for hardly decomposable organic substance, and method and system for purifying water containing hardly decomposable organic substance
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005218995A (en) * 2004-02-06 2005-08-18 Kurita Water Ind Ltd Biological treatment method for organic waste water
JP2005254066A (en) * 2004-03-09 2005-09-22 Akira Hiraishi Waste water treatment method
JP2006527652A (en) * 2003-06-20 2006-12-07 ロディア ユーケイ リミテッド Uncoupler

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1221550A (en) * 1967-07-21 1971-02-03 Hoechst Ag Process for reducing the production of excess sludge in activated sludge plants for the purification of wastewater
JPH0655188A (en) * 1992-06-25 1994-03-01 Carl Freudenberg:Fa Biologically decomposable flat plate-like support material for biologically operable clarification process
JPH0671286A (en) * 1992-08-28 1994-03-15 Kankyo Eng Kk Agent and method for preventive bulking
JPH09239396A (en) * 1996-03-07 1997-09-16 Agency Of Ind Science & Technol Treatment of chlorophenol-containing water
JP2002500510A (en) * 1997-05-01 2002-01-08 イーストマン ケミカル カンパニー Bioluminescent reporter: a method for monitoring toxicity in bacterial and biological wastewater treatment systems
JPH11216306A (en) * 1997-11-10 1999-08-10 Toto Ltd Purification device of bathtub water and circulating system of bathtub water
JPH11179387A (en) * 1997-12-25 1999-07-06 Miyoshi Shokai Carrier for biological treatment of waste water
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2001300573A (en) * 2000-04-21 2001-10-30 Toyobo Co Ltd Microorganism carrier
JP2003211155A (en) * 2001-11-16 2003-07-29 Nippon System Products Kk Zeolite complex having property of floating in water
JP2003219871A (en) * 2002-01-31 2003-08-05 Hagiwara Kk Microorganism carrier treated with organic acids such as pyroligneous acid and bamboo pyroligneous acid
JP2004008967A (en) * 2002-06-07 2004-01-15 Japan Science & Technology Corp Adsorbent for hardly decomposable organic substance, and method and system for purifying water containing hardly decomposable organic substance
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2006527652A (en) * 2003-06-20 2006-12-07 ロディア ユーケイ リミテッド Uncoupler
JP2005218995A (en) * 2004-02-06 2005-08-18 Kurita Water Ind Ltd Biological treatment method for organic waste water
JP2005254066A (en) * 2004-03-09 2005-09-22 Akira Hiraishi Waste water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084474A1 (en) * 2007-12-28 2009-07-09 Showa Denko K.K. Water treatment method

Also Published As

Publication number Publication date
JP4626286B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
Ahmed et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review
Tran et al. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds
Ng et al. An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater
Abdelfattah et al. High-strength wastewater treatment using microbial biofilm reactor: a critical review
Chu et al. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor
Sharma et al. Combined biological and photocatalytic treatment of real coke oven wastewater
Nguyen et al. Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater
Noor et al. Treatment innovation using biological methods in combination with physical treatment methods
Lv et al. Virus removal performance and mechanism of a submerged membrane bioreactor
Garcia-Becerra et al. Biodegradation of emerging organic micropollutants in nonconventional biological wastewater treatment: a critical review
Xing et al. Treatment of antibiotic fermentation‐based pharmaceutical wastewater using anaerobic and aerobic moving bed biofilm reactors combined with ozone/hydrogen peroxide process
Delgado et al. Removal of pharmaceuticals and personal care products from domestic wastewater using rotating biological contactors
Xia et al. Denitrification performance and microbial community of bioreactor packed with PHBV/PLA/rice hulls composite
Ong et al. Treatment of azo dye Orange II in a sequential anaerobic and aerobic-sequencing batch ractor system
Tuyen et al. Anammox bacteria immobilization using polyvinyl alcohol/sodium alginate crosslinked with sodium sulfate
Huang et al. Biological technologies for cHRPs and risk control
Ni et al. Treatment of high-load organic wastewater by novel basalt fiber carrier media
CN104944573A (en) Method for domesticating degradable 2-CP activated sludge with glucose as co-substrate
Xu et al. Fenton-Anoxic–Oxic/MBR process as a promising process for avermectin fermentation wastewater reclamation
JP4626286B2 (en) Control method of excess sludge generation
Almomani et al. Improving the performance of attached-growth wastewater treatment processes by altering the support media surface
Fu et al. Enhanced nitrogen removal by rice husk amended dynamic membrane bioreactors
Le et al. Utilization of waste materials for microbial carrier in wastewater treatment
JP2000218290A (en) Sewage treatment and sewage treating device
JP2009072739A (en) Method for biodegradation treatment of material to be treated

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350