JP2006158171A - High power piezoelectric transformer inverter - Google Patents

High power piezoelectric transformer inverter Download PDF

Info

Publication number
JP2006158171A
JP2006158171A JP2004382209A JP2004382209A JP2006158171A JP 2006158171 A JP2006158171 A JP 2006158171A JP 2004382209 A JP2004382209 A JP 2004382209A JP 2004382209 A JP2004382209 A JP 2004382209A JP 2006158171 A JP2006158171 A JP 2006158171A
Authority
JP
Japan
Prior art keywords
piezoelectric
khz
piezoelectric transformer
mode
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004382209A
Other languages
Japanese (ja)
Inventor
晃 ▲徳▼島
Akira Tokushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004382209A priority Critical patent/JP2006158171A/en
Publication of JP2006158171A publication Critical patent/JP2006158171A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a large-sized LCD back-light high-powered and to increase its power in a highly effective manner. <P>SOLUTION: The total length of a piezoelectric transformer is made to be approximately 75 mm to 85 mm, and the resonance frequency of a lambda mode (secondary mode) is decreased to 30 kHz - 40 kHz to reduce the number of repetition of a bending mode to approximately 1/2-1/3. A piezoelectric inverter driven with large electric power is realized using the high power piezoelectric transformer with the high efficiency thus obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶テレビ等のバックライトに用いられる、ハイパワー圧電インバータに関する。  The present invention relates to a high power piezoelectric inverter used for a backlight of a liquid crystal television or the like.

従来の圧電インバータにおいては、出力が3W程度の、液晶のバックライトサイズでは、15インチないし17インチ程度を最大とする、主にコンピュータ用小ワット数の圧電トランスと、前記の圧電トランスを搭載した圧電インバータが開発されて実用されてきた。(例えば非特許文献1参照)  In the conventional piezoelectric inverter, the output is about 3 W, and the liquid crystal backlight size has a maximum of about 15 inches to 17 inches, mainly a small wattage piezoelectric transformer for computers, and the piezoelectric transformer described above. Piezoelectric inverters have been developed and put into practical use. (For example, see Non-Patent Document 1)

「NIKKEI ELECTRONICS 1994.11.7(No.621)」"NIKKEI ELECTRONICS 1994.11.7 (No. 621)"

従来の圧電インバータにあっては、直径が2mm程度で長さが250mm程度の冷陰極放電管を、3W程度の出力仕様で、前記したように主に15インチから17インチ程度のノートパソコン向けに開発されて実用されてきたが、これに加えて最近液晶テレビ市場などの大型液晶ディスプレイ市場が前年度比で2倍以上に伸びて、30型及び40型などの大型液晶テレビの市場が飛躍的に拡大してきている。  In the conventional piezoelectric inverter, a cold cathode discharge tube having a diameter of about 2 mm and a length of about 250 mm is used mainly for notebook computers of about 15 to 17 inches with an output specification of about 3 W as described above. Although it has been developed and put into practical use, in addition to this, the market for large-sized liquid crystal televisions such as the liquid crystal television market has more than doubled compared to the previous year, and the market for large-sized liquid crystal televisions such as 30-inch and 40-inch has grown dramatically. Has expanded to.

さらにまた最近、映画館なみの臨場感や迫力を得る目的で、縦横比が1:1.4程度の65インチの大型液晶テレビが初めて商品化された。これらの液晶テレビには、1300mm〜1500mm前後となる長管の冷陰極放電管が35本前後の数、搭載されている。  Recently, a 65-inch large-sized LCD TV with an aspect ratio of about 1: 1.4 has been commercialized for the first time with the aim of gaining the realism and power of a movie theater. These liquid crystal televisions are equipped with about 35 long-length cold cathode discharge tubes each having a length of about 1300 mm to 1500 mm.

本発明は、このように大型化する液晶バックライトのハイパワー化及び大電力化を高効率に実現しようとするものであり、これまでの圧電トランスを昇圧手段として用いた圧電インバータでは、圧電トランス1台で、1本の冷陰極放電管をドライブするか、比較的大電力を出力できるタイプでも、例えば直径が3mmで、長さが680mm程度の冷陰極放電管を圧電トランス1台で、15Wの駆動を最大とした。また両端駆動方式でもあわせて30W程度を駆動するものが、最大のドライブワット数となっていた。(特許文献1 特願2003−403797)  The present invention is intended to achieve high power and high power consumption of a liquid crystal backlight that increases in size in this manner with high efficiency. In a piezoelectric inverter using a conventional piezoelectric transformer as a boosting means, the piezoelectric transformer Even if it is a type that can drive one cold cathode discharge tube with one unit or output relatively large power, for example, a cold cathode discharge tube having a diameter of about 3 mm and a length of about 680 mm can be driven by a single piezoelectric transformer. The driving of was maximized. Moreover, what drives about 30W in total also with the both-ends drive system had the largest drive wattage. (Patent Document 1 Japanese Patent Application No. 2003-403797)

特願2003−403797号Japanese Patent Application No. 2003-403797

液晶表示装置の光源は、平面光源を得る為に、様々な工夫が施されているが、30インチ〜40インチの大きさの液晶テレビでは、30本ないし40本の冷陰極放電管をその光源として使用している。
前記の放電管には、前述したように例えば直径が3mmで、長さが680mm程度のものが使用されて、放電管と導光板の隙間寸法は、0.5mm〜1.0mm程度に近接して固定されることで、放電管の点灯時の等価回路は、前記の放電管の高電圧部から低電圧部に向けて、実在しない無数のカップリング・コンデンサが多数個並んだ等価回路を示して、前記の無数の実在しないカップリング・コンデンサに無効電流が点灯時には供給されるので、高い発熱と共に低効率の温床となってきた。
The light source of the liquid crystal display device has been devised in order to obtain a flat light source. In a liquid crystal television having a size of 30 to 40 inches, 30 to 40 cold cathode discharge tubes are used as the light source. It is used as
As described above, for example, the discharge tube having a diameter of 3 mm and a length of about 680 mm is used, and the gap between the discharge tube and the light guide plate is close to about 0.5 mm to 1.0 mm. The equivalent circuit when the discharge tube is lit shows an equivalent circuit in which a large number of innumerable coupling capacitors are arranged from the high voltage portion to the low voltage portion of the discharge tube. Thus, the reactive current is supplied to the infinite number of non-existing coupling capacitors at the time of lighting, resulting in a hot bed with high heat generation and low efficiency.

このカップリング・コンデンサを介して流れる漏れ電流の大きさは、現行の高周波数(80kHz〜115kHz)でドライブされる現行の圧電インバータでは、無視できない大きさとなり、実装効率の悪いインバータとなってきた。  The magnitude of the leakage current flowing through this coupling capacitor has become a magnitude that cannot be ignored in the current piezoelectric inverter driven at the current high frequency (80 kHz to 115 kHz), and has become an inverter with poor mounting efficiency. .

本発明は上記目的を達成するために、以下に述べるように、圧電トランスと圧電インバータの共振周波数、及びドライブ周波数に着目したものである。
本発明によるラムダモード(2次モード)を用いた、圧電セラミックトランスの全長は約82mmで、幅が約15mm及び厚さが1〜3mm程度の、前記の圧電トランスの共振周波数は、約30kHzとなった。また圧電セラミックトランスの長さが約75mmで、幅が約15mm及び厚さが1〜3mm程度の、前記の圧電トランスのラムダモード(2次モード)の共振周波数は、約40kHz前後と、共に前述のこれ迄の圧電トランスのドライブ周波数に比べてほぼ半値あるいはそれ以下のドライブ周波数を実現することができた。
In order to achieve the above object, the present invention focuses on the resonance frequency and drive frequency of the piezoelectric transformer and the piezoelectric inverter as described below.
The total length of the piezoelectric ceramic transformer using the lambda mode (secondary mode) according to the present invention is about 82 mm, the width is about 15 mm, and the thickness is about 1 to 3 mm. The resonance frequency of the piezoelectric transformer is about 30 kHz. became. The piezoelectric transformer has a length of about 75 mm, a width of about 15 mm, and a thickness of about 1 to 3 mm. The resonance frequency in the lambda mode (secondary mode) of the piezoelectric transformer is about 40 kHz. Compared to the conventional drive frequency of piezoelectric transformers, it was possible to realize a drive frequency of approximately half or less.

上記したように、これまでに用いられてきた80〜90kHzのドライブ周波数による圧電トランスのベンディングモードの繰り返し回数は、1秒間にほぼ8万回であったものが、共振周波数が40kHzのものは、この半値の4万回に減少し、さらに30kHzの圧電トランスの繰り返し回数は、1秒間に3万回に減少して、80kHzに比べて1/2.7から1/3に減少した。この効果により前記したように、冷陰極放電管の実装時の等価回路は高圧部から低圧部に向けて、実在しない無数のカップリング・コンデンサが列なった形と成るので、前記のカップリング・コンデンサに流れる無効電流が40kHzのドライブ時には半値に減少して、また30kHzのドライブ時には、約1/3程度の値に減少するという、効果を発揮できるものである。  As described above, the number of repetitions of the bending mode of the piezoelectric transformer with the drive frequency of 80 to 90 kHz that has been used so far is approximately 80,000 times per second, but the resonance frequency is 40 kHz. This half value was reduced to 40,000 times, and the number of repetitions of the 30 kHz piezoelectric transformer was reduced to 30,000 times per second, from 1 / 2.7 to 1/3 compared to 80 kHz. Due to this effect, as described above, the equivalent circuit when the cold cathode discharge tube is mounted is in the form of an infinite number of non-existing coupling capacitors arranged in a row from the high voltage portion to the low pressure portion. The reactive current flowing through the capacitor can be reduced to half when driving at 40 kHz, and can be reduced to about 1/3 when driving at 30 kHz.

以下、本発明の実施の形態を図1を用いて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to FIG.

図1に示すように、例えば長さ75〜82mm、幅15mm、厚さ1〜3mm程度の単体の圧電セラミックスの両端面に、E面電極1及びG面電極2を付与した、前記の圧電トランスを長さ方向にほぼ2:2:1:2:2の割合となるように圧電トランスの領域が分割される。第1の領域と第5の領域は出力部である。矢印で示すように左側と右側では、分極の向きが180度異なる位相関係に分極してある。第2の領域と第4の領域は入力部で、矢印で示すように分極の向きが180度異なる位相関係に分極してある。第3の領域は剛体部で未分極部となっている。前記圧電トランスをドライブするには、入力端子3及び4を接続してひとまとめとし、また他の入力端子5及び6を接続して別のひとまとめとして、前記のひとまとめとした両入力端子にドライブ信号を印加すると、E面電極1及びG面電極2には180度位相の異なる、高電圧の信号が同時出力される。  As shown in FIG. 1, for example, the above-mentioned piezoelectric transformer in which an E-plane electrode 1 and a G-plane electrode 2 are provided on both end faces of a single piezoelectric ceramic having a length of 75 to 82 mm, a width of 15 mm, and a thickness of 1 to 3 mm. The region of the piezoelectric transformer is divided so as to have a ratio of 2: 2: 1: 2: 2 in the length direction. The first area and the fifth area are output units. As indicated by the arrows, the left and right sides are polarized in a phase relationship that is 180 degrees different in polarization direction. The second region and the fourth region are input portions, and are polarized in a phase relationship in which the polarization directions differ by 180 degrees as indicated by arrows. The third region is a rigid part that is an unpolarized part. In order to drive the piezoelectric transformer, the input terminals 3 and 4 are connected together, and the other input terminals 5 and 6 are connected together as another group. When applied, the E plane electrode 1 and the G plane electrode 2 simultaneously output high voltage signals having a phase difference of 180 degrees.

以上の構成によって成る圧電セラミックスから成る圧電トランスは、超音波振動励振の中央部が、未分極で振動せず強固な剛体部として機能することで、ハイパワードライブ時に、繰り返し振動による軟化から発生する捩り方向振動モードや、蛇行方向振動モードを、共に抑制する効果を発して、前記した構成がロス系を小さくする方向に働き、この振動モードに起因する効果で、圧電インバータ効率が50W程度のドライブ時にも、80Wないし100W以上の大電力ドライブ時においても、共に90%ないし95%という高効率を初めて実現した。また圧電トランスの温度上昇も、室温プラス10度〜20度程度の温度上昇で、飽和に達した。  Piezoelectric transformers composed of piezoelectric ceramics with the above configuration are generated by softening due to repeated vibration during high-power driving because the central part of the ultrasonic vibration excitation functions as a rigid part that is not polarized and does not vibrate. The effect of suppressing both the torsional direction vibration mode and the meandering direction vibration mode, and the above-described configuration works in the direction of reducing the loss system. Due to this vibration mode, the piezoelectric inverter efficiency is about 50 W drive. Sometimes, for the first time, a high efficiency of 90% to 95% was achieved both when driving at 80W to 100W or more. The temperature rise of the piezoelectric transformer also reached saturation with a temperature rise of room temperature plus about 10 to 20 degrees.

本発明の基本的な実施形態を示す圧電トランスの斜視図1 is a perspective view of a piezoelectric transformer showing a basic embodiment of the present invention.

符号の説明Explanation of symbols

1 E面電極
2 G面電極
3、4、5、6 入力端子
7、8 出力端子
1 E surface electrode 2 G surface electrode 3, 4, 5, 6 Input terminal 7, 8 Output terminal

Claims (6)

圧電セラミックスから成る圧電トランスが、30kHzないし40kHz前後の比較的低周波数のラムダモード(2次モード)の共振周波数を用いてドライブされることを特徴とする圧電インバータ。  A piezoelectric inverter, wherein a piezoelectric transformer made of piezoelectric ceramic is driven by using a lambda mode (secondary mode) resonance frequency of a relatively low frequency of about 30 kHz to about 40 kHz. 圧電セラミックスから成る圧電トランスが、30kHzないし40kHz前後の比較的低周波数のラムダモード(2次モード)の共振周波数を用いて数本以上の冷陰極放電管をドライブすることを特徴とする圧電インバータ。  A piezoelectric inverter, wherein a piezoelectric transformer made of piezoelectric ceramics drives several or more cold cathode discharge tubes using a lambda mode (secondary mode) resonance frequency of a relatively low frequency of about 30 kHz to 40 kHz. 圧電セラミックスから成る圧電トランスが、30kHzないし40kHz前後の比較的低周波数のラムダモード(2次モード)の共振周波数を用いて数拾ワット以上の電力でドライブされることを特徴とする圧電インバータ。  A piezoelectric inverter, wherein a piezoelectric transformer made of piezoelectric ceramic is driven with a power of several pick-up watts or more using a resonance frequency of a relatively low frequency lambda mode (secondary mode) of about 30 kHz to 40 kHz. 圧電セラミックスから成る圧電トランスの全長が、75〜85mm前後の長さから構成されて、比較的低周波数のラムダモード(2次モード)の共振周波数を用いてドライブされることを特徴とする圧電インバータ。  A piezoelectric inverter comprising a piezoelectric transformer made of piezoelectric ceramics having a total length of about 75 to 85 mm and driven by using a relatively low frequency lambda mode (secondary mode) resonance frequency . 圧電セラミックスから成る圧電トランスが、複数の入力部と複数の出力部から構成されて、比較的低周波数の30kHzないし40kHz前後のラムダモード(2次モード)の共振周波数を用いてドライブされることを特徴とする圧電インバータ。  A piezoelectric transformer made of piezoelectric ceramics is composed of a plurality of input sections and a plurality of output sections and is driven using a lambda mode (secondary mode) resonance frequency of a relatively low frequency of 30 kHz to around 40 kHz. A characteristic piezoelectric inverter. 圧電セラミックスから成る圧電トランスにおいて、比較的低周波数の30kHzないし40kHz前後のラムダモード(2次モード)で共振する圧電トランスが、第2の領域及び第4の領域となる入力部と、第1の領域及び第5の領域となる出力部と、第3の領域となる未分極部から成る剛体部の、前記の5領域から構成されたことを特徴するハイパワー圧電トランスを用いた圧電インバータ。  In a piezoelectric transformer made of piezoelectric ceramics, a piezoelectric transformer that resonates in a lambda mode (secondary mode) at a relatively low frequency of about 30 kHz to about 40 kHz includes an input section serving as a second region and a fourth region, A piezoelectric inverter using a high-power piezoelectric transformer, characterized in that it is composed of the above-mentioned five regions of a rigid portion comprising an output portion serving as a region and a fifth region and an unpolarized portion serving as a third region.
JP2004382209A 2004-11-30 2004-11-30 High power piezoelectric transformer inverter Pending JP2006158171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004382209A JP2006158171A (en) 2004-11-30 2004-11-30 High power piezoelectric transformer inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004382209A JP2006158171A (en) 2004-11-30 2004-11-30 High power piezoelectric transformer inverter

Publications (1)

Publication Number Publication Date
JP2006158171A true JP2006158171A (en) 2006-06-15

Family

ID=36635766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004382209A Pending JP2006158171A (en) 2004-11-30 2004-11-30 High power piezoelectric transformer inverter

Country Status (1)

Country Link
JP (1) JP2006158171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184868A1 (en) * 2019-03-11 2020-09-17 엘지이노텍 주식회사 Ultrasonic mask and skincare device comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184868A1 (en) * 2019-03-11 2020-09-17 엘지이노텍 주식회사 Ultrasonic mask and skincare device comprising same

Similar Documents

Publication Publication Date Title
US7683555B2 (en) Discharge tube lighting circuit and electronic apparatus provided with the discharge tube lighting circuit
JP2006158171A (en) High power piezoelectric transformer inverter
JP2002291253A (en) Piezoelectric transformer derive device
EP1158586A1 (en) Piezoelectric transformer
JP2005129475A (en) High power piezo-electric transformer
JP2004289097A (en) High power piezoelectric transformer
JP2000307165A (en) Driving method of piezoelectric transformer
JP4422440B2 (en) Piezoelectric transformer
JP2006121017A (en) High power piezoelectric transformer
JP2005142136A (en) Multiple drive/multiple output type piezoelectric transformer inverter
JP2005129475A5 (en)
JP2004146653A (en) Piezoelectric transformer
JPH07221359A (en) Piezoelectric transformer
JP2007281354A (en) Piezoelectric ceramic transformer
JP2001196655A (en) Piezoelectric transformer circuit
JP2004055718A (en) Piezoelectric transformer
JPH09214010A (en) Piezoelectric transformer
JP3468202B2 (en) Piezoelectric transformer, piezoelectric transformer drive circuit and liquid crystal display
JP2004128431A (en) Piezoelectric transformer for driving device
JPH1023753A (en) High voltage generating circuit
KR100293589B1 (en) Supporting device of piezo-transformer
JP2000216449A (en) Piezoelectric transformer
JP2003174212A (en) Piezoelectric transformer
JP2005175244A (en) Piezoelectric transformer
JPH0832137A (en) Piezoelectric vibrator