JP2006158154A - Control device for vehicle - Google Patents

Control device for vehicle Download PDF

Info

Publication number
JP2006158154A
JP2006158154A JP2004348593A JP2004348593A JP2006158154A JP 2006158154 A JP2006158154 A JP 2006158154A JP 2004348593 A JP2004348593 A JP 2004348593A JP 2004348593 A JP2004348593 A JP 2004348593A JP 2006158154 A JP2006158154 A JP 2006158154A
Authority
JP
Japan
Prior art keywords
vehicle
vehicle speed
driving force
control device
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004348593A
Other languages
Japanese (ja)
Other versions
JP4604687B2 (en
Inventor
Yoshihiko Hiroe
廣江  佳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004348593A priority Critical patent/JP4604687B2/en
Publication of JP2006158154A publication Critical patent/JP2006158154A/en
Application granted granted Critical
Publication of JP4604687B2 publication Critical patent/JP4604687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for vehicles by which a discharge load of a battery is not made excessive without losing a feeling of driving, when the vehicles are driven using a motor generator supplied from the battery. <P>SOLUTION: An HV_ECU executes a program which includes a step to detect an opening of an accelerator (S200), a step to detect a vehicle speed V (S400) when the opening of the accelerator does not correspond to a WOT (YES in S300), a step to compute target torque based on the opening of the accelerator (S600) when the vehicle speed V is in a region of higher vehicle speeds (YES in S500), a step to calculate an annealing parameter P based on the vehicle speed V (S700), a step to calculate a correction target torque using the target torque and the annealing parameter P (S800), and a step to compute engine torque and motor torque based on the correction target torque (S900). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蓄電機構の電力を用いた電気モータにより駆動される車両の制御装置に関し、特に、運転フィーリングを損なうことなく、車両の加速時における蓄電機構の負荷を回避する制御装置に関する。   The present invention relates to a control device for a vehicle driven by an electric motor using electric power of a power storage mechanism, and more particularly to a control device for avoiding a load on the power storage mechanism during acceleration of the vehicle without impairing driving feeling.

エンジン(たとえば、ガソリンエンジンやディーゼルエンジンなどの公知の機関を用いることが考えられる。)と電気モータとを組合せたハイブリッドシステムと呼ばれるパワートレインを搭載した車両が開発され、実用化されている。このような車両においては、運転者のアクセル操作量に関係なく、エンジンによる運転と電気モータとによる運転とが自動的に切換えられて、最も効率が良くなるように制御される。たとえば、エンジンが、定常状態で運転されて二次電池(バッテリ)を充電する発電機を回すために運転される場合、あるいは二次電池の充電量などに応じて走行中に間欠的に運転される場合などは、運転者によるアクセルの操作量とは無関係にエンジンの運転および停止を繰返す。つまりエンジンと電気モータとをそれぞれ単独、または協同して動作させることにより、燃料消費向上や排気ガスを大幅に抑制することが可能になる。   A vehicle equipped with a power train called a hybrid system combining an engine (for example, a known engine such as a gasoline engine or a diesel engine) and an electric motor has been developed and put into practical use. In such a vehicle, regardless of the amount of accelerator operation by the driver, the operation by the engine and the operation by the electric motor are automatically switched and controlled so as to obtain the highest efficiency. For example, when the engine is operated in a steady state to operate a generator that charges a secondary battery (battery), or the engine is operated intermittently during traveling according to the amount of charge of the secondary battery, etc. In such a case, the engine is repeatedly operated and stopped regardless of the amount of accelerator operation by the driver. That is, by operating the engine and the electric motor individually or in cooperation, it becomes possible to improve fuel consumption and significantly reduce exhaust gas.

このようなハイブリッドシステムについて、特開2000−78705号公報(特許文献1)は、モータの制御に起因する振動を抑制するハイブリッド車両を開示する。このハイブリッド車両は、内燃機関と、内燃機関の出力軸および車軸の双方に結合され双方の軸で入出力される動力を電力のやりとりによって調整可能な動力調整装置と、車軸に機械的に結合された電動発電機とを有し、少なくとも内燃機関から出力された動力を変換して車軸から出力して走行可能なハイブリッド車両であって、電動発電機の目標トルクを設定する目標トルク設定手段と、ハイブリッド車両の走行状態を特定する特定手段と、目標トルクを修正して走行状態に応じて予め定められた応答性を達成する目標トルク修正手段と、電動発電機の運転を制御して、設定された目標トルクを出力する電動発電機制御手段とを備える。特定手段は、ハイブリッド車両の走行状態として、停車中であるか否かを特定する手段であり、目標トルク修正手段における応答性は、ハイブリッド車両が停車中の方が走行中よりも高く定められているものである。   With regard to such a hybrid system, Japanese Patent Application Laid-Open No. 2000-78705 (Patent Document 1) discloses a hybrid vehicle that suppresses vibration caused by motor control. This hybrid vehicle is mechanically coupled to an internal combustion engine, a power adjustment device that is coupled to both the output shaft and the axle of the internal combustion engine and can adjust power input / output on both shafts by exchanging electric power, and the axle. A hybrid vehicle capable of converting at least the power output from the internal combustion engine to be output from the axle and traveling, the target torque setting means for setting the target torque of the motor generator; Setting means for controlling the operation of the motor generator, specifying means for specifying the running state of the hybrid vehicle, target torque correcting means for correcting the target torque to achieve a predetermined response according to the running state Motor generator control means for outputting the target torque. The specifying means is means for specifying whether or not the hybrid vehicle is in a stopped state, and the responsiveness in the target torque correcting means is determined to be higher when the hybrid vehicle is stopped than when the hybrid vehicle is running. It is what.

このハイブリッド車両によると、一般に、停車中、乗員は車両の振動に対して非常に敏感であるので、目標トルク修正手段により電動発電機の応答性を設定すれば、停車中は走行中よりも高い応答性で電動発電機を制御することができる。つまり、内燃機関および動力調整装置の運転状態が変化して、両者から車軸に出力されるトルクが変動した場合でも、変動分を電動発電機で素早く補償することができる。従って、車軸に出力されるトルクをほぼ一定の値に維持することが可能となり、停車中において、内燃機関や動力調整装置の運転状態の変化に起因する振動を抑制することができる。
特開2000−78705号公報
According to this hybrid vehicle, since the passenger is generally very sensitive to the vibration of the vehicle while the vehicle is stopped, if the response of the motor generator is set by the target torque correcting means, the vehicle is higher when the vehicle is stopped than when the vehicle is traveling. The motor generator can be controlled with responsiveness. That is, even when the operating states of the internal combustion engine and the power adjustment device change and the torque output from both changes to the axle, the fluctuation can be quickly compensated by the motor generator. Therefore, the torque output to the axle can be maintained at a substantially constant value, and vibrations caused by changes in the operating state of the internal combustion engine and the power adjustment device can be suppressed while the vehicle is stopped.
JP 2000-78705 A

しかしながら、特許文献1に開示されたハイブリッド車両は、目標トルク修正手段により停車中の振動の抑制を実現できても、通常走行時における蓄電機構(たとえば二次電池)の負荷変動を回避することができない。すなわち、走行時にアクセルペダルが踏まれるとエンジンだけではなくモータにより車両を駆動する。このような場合において、エンジンとモータとの応答性等の違い(モータの方が応答性が良い)から、運転者によるトルク要求の増大に対して、モータを作動させたりモータからの発生トルクを増加させると、車速が低い領域においては好ましい加速感等を得ることができる。ところが、車速が比較的高い領域においては、低車速の領域と比べて、モータからの発生トルクを過大に増加させても好ましい加速感等を得ることができない場合がある。このとき、二次電池には大きな放電負荷がかかる。このような状態で、アクセルペダルが戻されると、このような大きな放電負荷がなくなる。大きな放電負荷が発生したり消失したりすることを短い時間の間に繰り返すと(負荷変動が頻繁に起こると)、二次電池の劣化を早めるおそれがある。すなわち、このように負荷変動が大きく二次電池の劣化を招くような要因となり得るにも関わらず、車速が比較的高いので、大きな加速度を発現させることができず、運転者が十分な加速感を体感し得ない。   However, the hybrid vehicle disclosed in Patent Document 1 can avoid load fluctuations of a power storage mechanism (for example, a secondary battery) during normal travel even if the target torque correction means can suppress vibration during stopping. Can not. That is, when the accelerator pedal is depressed during traveling, the vehicle is driven not only by the engine but also by the motor. In such a case, due to the difference in responsiveness between the engine and the motor (the motor is more responsive), the motor is operated or the torque generated from the motor is reduced in response to an increase in torque demand by the driver. When the vehicle speed is increased, a preferable acceleration feeling can be obtained in a region where the vehicle speed is low. However, in a region where the vehicle speed is relatively high, there may be a case where a preferable feeling of acceleration or the like cannot be obtained even if the torque generated from the motor is excessively increased as compared with a region where the vehicle speed is low. At this time, a large discharge load is applied to the secondary battery. When the accelerator pedal is returned in such a state, such a large discharge load disappears. If the occurrence or disappearance of a large discharge load is repeated in a short period of time (when load fluctuations occur frequently), the secondary battery may be quickly deteriorated. In other words, despite the fact that the load fluctuation is large and may cause deterioration of the secondary battery, the vehicle speed is relatively high, so that a large acceleration cannot be expressed and the driver feels sufficient acceleration. I can not feel.

本発明は、上述の課題を解決するためになされたものであって、その目的は、バッテリやキャパシタ等の蓄電機構から供給された電気機器(電動機、電動発電機(モータジェネレータ))を用いて車両を駆動する場合において、運転フィーリングを損なうことなく、蓄電機構の放電負荷を過大にしないようにできる、車両の制御装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to use an electric device (an electric motor or a motor generator (motor generator)) supplied from a power storage mechanism such as a battery or a capacitor. An object of the present invention is to provide a control device for a vehicle that can prevent an excessive discharge load of a power storage mechanism without impairing driving feeling when driving the vehicle.

第1の発明に係る車両の制御装置は、蓄電機構の電力を用いて電気機器を作動させることにより駆動される車両を制御する。この制御装置は、車両の速度を検知するための検知手段と、要求駆動力を算出するための算出手段と、電気機器および蓄電機構の少なくともいずれかを制御するための制御手段とを含む。制御手段は、車両の車速が高い場合には低い場合に比べて、要求駆動力の増加に対して電気機器を用いた駆動力の増加の応答性を抑制するように、電気機器を制御するための手段を含む。   A vehicle control device according to a first aspect of the invention controls a vehicle that is driven by operating an electric device using electric power of a power storage mechanism. The control device includes a detection unit for detecting the speed of the vehicle, a calculation unit for calculating the required driving force, and a control unit for controlling at least one of the electric device and the power storage mechanism. The control means controls the electric device so as to suppress the responsiveness of the increase in the driving force using the electric device with respect to the increase in the required driving force when the vehicle speed of the vehicle is high compared to when the vehicle speed is low Including means.

第1の発明によると、車速の比較的高い領域においては、運転者がパーシャル域でのアクセル操作を行なうと、大きな要求駆動力が算出され、電気機器(ここでは車両を駆動するモータやモータジェネレータ)に大きな電力が供給される。ところが、高速時は低速時に比べて、大きな電力で電気機器を作動させても運転者が満足するような加速感を実現し難い。そればかりか運転者が頻繁にアクセル操作を行なうと、大きな放電電力が発生したり消失したりすることも発生する。このため、制御手段は、車速が高い場合には低い場合に比べて、要求駆動力の増加に対して電気機器を用いた駆動力の増加の応答性を抑制する。このようにすると、大きな電力を放電しても運転者が期待するほどの加速感が得られない高速領域において、蓄電機構からの放電電力が大きくなることを抑制できるとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動(大きな放電負荷が発生したり消失したりする変動)を抑制することができる。このようにしても、低速時においては大きな加速感を得られるので、運転者の運転フィーリングを損なうおそれも少ない。このようにして放電負荷を低減すると、蓄電機構の劣化を抑制できる。その結果、バッテリやキャパシタ等の蓄電機構から供給された電気機器を用いて車両を駆動する場合において、運転フィーリングを損なうことなく、蓄電機構の放電負荷を過大にしないようにできる、車両の制御装置を提供することができる。   According to the first invention, in a region where the vehicle speed is relatively high, when the driver performs an accelerator operation in the partial region, a large required driving force is calculated and an electric device (here, a motor or a motor generator for driving the vehicle) is calculated. ) Is supplied with large electric power. However, at high speeds, it is difficult to realize an acceleration feeling that satisfies the driver even if the electric device is operated with a large amount of electric power compared to low speeds. In addition, if the driver frequently performs the accelerator operation, large discharge power may be generated or lost. For this reason, a control means suppresses the responsiveness of the increase in the driving force using an electric device with respect to the increase in the required driving force when the vehicle speed is high compared to when the vehicle speed is low. In this way, it is possible to prevent the discharge power from the power storage mechanism from increasing in a high-speed region where the driver cannot expect the acceleration feeling even when large electric power is discharged, and the driver's frequent accelerator It is possible to suppress variations in the discharge load (variations in which a large discharge load is generated or disappears) without sensitively responding to the operation. Even in this case, since a great acceleration feeling can be obtained at low speed, there is little possibility of impairing the driving feeling of the driver. When the discharge load is reduced in this way, deterioration of the power storage mechanism can be suppressed. As a result, when driving a vehicle using an electric device supplied from a power storage mechanism such as a battery or a capacitor, the vehicle control can prevent the discharge load of the power storage mechanism from becoming excessive without impairing the driving feeling. An apparatus can be provided.

第2の発明に係る制御装置は、第1の発明の構成に加えて、車両の運転者によるアクセル操作を検知するための検知手段をさらに含む。算出手段は、検知されたアクセル操作に基づいて、要求駆動力を算出するための手段を含む。   In addition to the configuration of the first invention, the control device according to the second invention further includes detection means for detecting an accelerator operation by the driver of the vehicle. The calculating means includes means for calculating the required driving force based on the detected accelerator operation.

第2の発明によると、運転者の加速要求を示すアクセル操作に基づいて要求駆動力が算出されるので、運転者の運転フィーリングに対応させることができる。   According to the second aspect, since the required driving force is calculated based on the accelerator operation indicating the driver's acceleration request, it is possible to correspond to the driving feeling of the driver.

第3の発明に係る制御装置は、第1の発明の構成に加えて、車両の運転者によるアクセル操作を検知するための検知手段をさらに含む。制御手段は、検知されたアクセル操作がWOT(Wide Open Throttle)に対応する操作ではなく、かつ車速が予め定められたよりも高い車速である領域において、応答性を抑制するように、電気機器を制御するための手段を含む。   In addition to the configuration of the first invention, the control device according to the third invention further includes detection means for detecting an accelerator operation by the driver of the vehicle. The control means controls the electric device so as to suppress responsiveness in a region where the detected accelerator operation is not an operation corresponding to WOT (Wide Open Throttle) and the vehicle speed is higher than a predetermined speed. Means for doing so.

第3の発明によると、運転者がアクセルを強く踏込んでWOTに対応するアクセル開度であるときには、放電制限を行なわないで、運転者の運転フィーリングを満足させる。WOTに対応するアクセル操作ではなく、大きな放電電力でも十分な加速感が得られない高車速領域であると、蓄電機構からの放電電力が大きくなることを抑制するとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動を抑制することができる。   According to the third invention, when the driver depresses the accelerator strongly and the accelerator opening degree corresponds to the WOT, discharge restriction is not performed, and the driver's driving feeling is satisfied. It is not an accelerator operation corresponding to WOT, and in a high vehicle speed range where sufficient acceleration can not be obtained even with a large discharge power, the increase in the discharge power from the power storage mechanism is suppressed, and the driver's frequent accelerator operation It is possible to suppress fluctuations in the discharge load without responding sensitively.

第4の発明に係る制御装置においては、第1〜3のいずれかの発明の構成に加えて、制御手段は、車両の車速が高い場合には低い場合に比べて、要求駆動力の増加に対して電気機器を用いた駆動力の増加の応答性を、要求駆動力をなまし処理することにより抑制するように、電気機器を制御するための手段を含む。   In the control device according to the fourth invention, in addition to the configuration of any one of the first to third inventions, the control means increases the required driving force when the vehicle speed is high compared to when the vehicle speed is low. On the other hand, a means for controlling the electric device is included so as to suppress the responsiveness of the increase in the driving force using the electric device by smoothing the required driving force.

第4の発明によると、要求駆動力をなまし処理で補正して、変化率を抑制することにより、蓄電機構からの放電電力が大きくなることを抑制できるとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動を抑制することができる。   According to the fourth aspect of the invention, the required driving force is corrected by the smoothing process, and the rate of change is suppressed, so that the discharge power from the power storage mechanism can be prevented from increasing, and the driver can frequently operate the accelerator. Variations in the discharge load can be suppressed without sensitively responding.

第5の発明に係る制御装置においては、第1〜3のいずれかの発明の構成に加えて、制御手段は、車両の車速が高い場合には低い場合に比べて、要求駆動力の増加に対して電気機器を用いた駆動力の増加の応答性を、電気機器の出力をなまし処理することにより抑制するように、電気機器を制御するための手段を含む。   In the control device according to the fifth invention, in addition to the configuration of any one of the first to third inventions, the control means increases the required driving force when the vehicle speed is high compared to when it is low. Means for controlling the electric device is included so as to suppress the responsiveness of the increase in driving force using the electric device by smoothing the output of the electric device.

第5の発明によると、電気機器(車両駆動用のモータやモータジェネレータ)からの出力をなまし処理で補正して、変化率を抑制することにより、蓄電機構からの放電電力が大きくなることを抑制できるとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動を抑制することができる。   According to the fifth aspect of the present invention, the output from the electrical storage mechanism is increased by correcting the output from the electric device (vehicle driving motor or motor generator) by the smoothing process and suppressing the rate of change. While being able to suppress, the fluctuation | variation of discharge load can be suppressed, without responding sensitively to a driver | operator's frequent accelerator operation.

第6の発明に係る制御装置においては、第1の発明の構成に加えて、制御手段は、車両の車速が高い場合には低い場合に比べて、蓄電機構における放電電力制限値を大きくするように、蓄電機器を制御するための手段を含む。   In the control device according to the sixth invention, in addition to the configuration of the first invention, the control means increases the discharge power limit value in the power storage mechanism when the vehicle speed is high compared to when the vehicle speed is low. Includes means for controlling the power storage device.

第6の発明によると、電気機器に電力を供給する蓄電機構からの放電電力を、高速時にはより強く制限して、蓄電機構からの放電電力が大きくなることを抑制できるとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動を抑制することができる。   According to the sixth aspect of the invention, the discharge power from the power storage mechanism that supplies power to the electrical device can be more strongly limited at high speeds, and the increase in the discharge power from the power storage mechanism can be suppressed. Variations in the discharge load can be suppressed without sensitively responding to the accelerator operation.

第7の発明に係る制御装置においては、第1〜6のいずれかの発明の構成に加えて、電気機器はモータおよびモータジェネレータの少なくともいずれかであって、車両は、電気機器に加えて内燃機関を作動させることにより駆動されるものである。   In the control device according to the seventh invention, in addition to the configuration of any one of the first to sixth inventions, the electric device is at least one of a motor and a motor generator, and the vehicle is an internal combustion engine in addition to the electric device. It is driven by operating the engine.

第7の発明によると、内燃機関(エンジン)とモータとを搭載したハイブリッド車両における、蓄電機構からの放電電力が大きくなることを抑制できるとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動を抑制することができる。   According to the seventh invention, in a hybrid vehicle equipped with an internal combustion engine (engine) and a motor, it is possible to suppress an increase in discharge power from the power storage mechanism, and to respond sensitively to a driver's frequent accelerator operation. Therefore, fluctuations in the discharge load can be suppressed.

以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1を参照して、本発明の実施の形態に係るハイブリッド車両の制御ブロック図を説明する。なお、本発明は図1に示すハイブリッド車両に限定されない。他の態様を有するハイブリッド車両であってもよい。また、電気自動車であっても、燃料電池車であってもよい。また、走行用バッテリではなくキャパシタ等の蓄電機構であってもよい。   A control block diagram of a hybrid vehicle according to an embodiment of the present invention will be described with reference to FIG. The present invention is not limited to the hybrid vehicle shown in FIG. It may be a hybrid vehicle having another aspect. Further, it may be an electric vehicle or a fuel cell vehicle. In addition, a power storage mechanism such as a capacitor may be used instead of the traveling battery.

ハイブリッド車両は、駆動源としての、たとえばガソリンエンジンやディーゼルエンジン等の内燃機関(以下、単にエンジンという)120と、モータジェネレータ(MG)140を含む。なお、図1においては、説明の便宜上、モータジェネレータ140を、モータ140Aとジェネレータ140B(あるいはモータジェネレータ140B)と表現するが、ハイブリッド車両の走行状態に応じて、モータ140Aがジェネレータとして機能したり、ジェネレータ140Bがモータとして機能したりする。   The hybrid vehicle includes an internal combustion engine (hereinafter simply referred to as an engine) 120 such as a gasoline engine or a diesel engine, and a motor generator (MG) 140 as drive sources. In FIG. 1, for convenience of explanation, the motor generator 140 is expressed as a motor 140A and a generator 140B (or a motor generator 140B), but the motor 140A functions as a generator depending on the traveling state of the hybrid vehicle. The generator 140B functions as a motor.

ハイブリッド車両には、この他に、エンジン120やモータジェネレータ140で発生した動力を駆動輪160に伝達したり、駆動輪160の駆動をエンジン120やモータジェネレータ140に伝達する減速機180と、エンジン120の発生する動力を駆動輪160とジェネレータ140Bとの2経路に分配する動力分割機構(たとえば、遊星歯車機構)200と、モータジェネレータ140を駆動するための電力を充電する走行用バッテリ220と、走行用バッテリ220の直流とモータ140Aおよびジェネレータ140Bの交流とを変換しながら電流制御を行なうインバータ240と、走行用バッテリ220の充放電状態を管理制御するバッテリ制御ユニット(以下、バッテリECU(Electronic Control Unit)という)260と、エンジン120の動作状態を制御するエンジンECU
280と、ハイブリッド車両の状態に応じてモータジェネレータ140およびバッテリECU260、インバータ240等を制御するMG_ECU300と、バッテリECU260、エンジンECU280およびMG_ECU300等を相互に管理制御して、ハイブリッド車両が最も効率よく運行できるようにハイブリッドシステム全体を制御するHV_ECU320等を含む。
In addition to this, the hybrid vehicle transmits a power generated by the engine 120 and the motor generator 140 to the drive wheels 160, and a reduction gear 180 that transmits the drive of the drive wheels 160 to the engine 120 and the motor generator 140, and the engine 120. Power split mechanism (for example, planetary gear mechanism) 200 that distributes the generated power to two paths of drive wheel 160 and generator 140B, travel battery 220 that charges power for driving motor generator 140, and travel Inverter 240 that performs current control while converting the direct current of battery 220 and the alternating current of motor 140A and generator 140B, and a battery control unit (hereinafter referred to as a battery ECU (Electronic Control Unit)) that manages and controls the charge / discharge state of traveling battery 220 260) and En Engine ECU controlling an operation state of the emission 120
280 and MG_ECU 300 that controls motor generator 140, battery ECU 260, inverter 240, etc., and battery ECU 260, engine ECU 280, MG_ECU 300, etc. according to the state of the hybrid vehicle are mutually managed and controlled so that the hybrid vehicle can operate most efficiently. HV_ECU 320 and the like for controlling the entire hybrid system.

本実施の形態においては、走行用バッテリ220とインバータ240との間にはコンバータ242が設けられている。これは、走行用バッテリ220の定格電圧が、モータ140Aやモータジェネレータ140Bの定格電圧よりも低いので、走行用バッテリ220からモータ140Aやモータジェネレータ140Bに電力を供給するときには、コンバータ242で電力を昇圧する。このコンバータ242には平滑コンデンサが内蔵されており、コンバータ242が昇圧動作を行なう際には、この平滑コンデンサに電荷が蓄えられる。   In the present embodiment, converter 242 is provided between battery for traveling 220 and inverter 240. This is because the rated voltage of the traveling battery 220 is lower than the rated voltage of the motor 140A or the motor generator 140B, and therefore when the power is supplied from the traveling battery 220 to the motor 140A or the motor generator 140B, the converter 242 boosts the power. To do. This converter 242 has a built-in smoothing capacitor, and when the converter 242 performs a boosting operation, electric charge is stored in this smoothing capacitor.

なお、図1においては、各ECUを別構成しているが、2個以上のECUを統合したECUとして構成してもよい(たとえば、図1に、点線で示すように、MG_ECU300とHV_ECU320とを統合したECUとすることがその一例である)。   In FIG. 1, each ECU is configured separately, but may be configured as an ECU in which two or more ECUs are integrated (for example, MG_ECU 300 and HV_ECU 320, as shown by a dotted line in FIG. 1). An example is an integrated ECU).

動力分割機構200は、エンジン120の動力を、駆動輪160とモータジェネレータ140Bとの両方に振り分けるために、遊星歯車機構(プラネタリーギヤ)が使用される。モータジェネレータ140Bの回転数を制御することにより、動力分割機構200は無段変速機としても機能する。エンジン120の回転力はプラネタリーキャリア(C)に入力され、それがサンギヤ(S)によってモータジェネレータ140Bに、リングギヤ(R)によってモータおよび出力軸(駆動輪160側)に伝えられる。回転中のエンジン120を停止させる時には、エンジン120が回転しているので、この回転の運動エネルギをモータジェネレータ140Bで電気エネルギに変換して、エンジン120の回転数を低下させる。   The power split mechanism 200 uses a planetary gear mechanism (planetary gear) in order to distribute the power of the engine 120 to both the drive wheel 160 and the motor generator 140B. By controlling the rotation speed of motor generator 140B, power split device 200 also functions as a continuously variable transmission. The rotational force of the engine 120 is input to the planetary carrier (C), which is transmitted to the motor generator 140B by the sun gear (S) and to the motor and the output shaft (drive wheel 160 side) by the ring gear (R). When the rotating engine 120 is stopped, since the engine 120 is rotating, the kinetic energy of this rotation is converted into electric energy by the motor generator 140B, and the rotational speed of the engine 120 is reduced.

図1に示すようなハイブリッドシステムを搭載するハイブリッド車両においては、発進時や低速走行時等であってエンジン120の効率が悪い場合には、モータジェネレータ140のモータ140Aのみによりハイブリッド車両の走行を行ない、通常走行時には、たとえば動力分割機構200によりエンジン120の動力を2経路に分け、一方で駆動輪160の直接駆動を行ない、他方でジェネレータ140Bを駆動して発電を行なう。この時、発生する電力でモータ140Aを駆動して駆動輪160の駆動補助を行なう。また、高速走行時には、さらに走行用バッテリ220からの電力をモータ140Aに供給してモータ140Aの出力を増大させて駆動輪160に対して駆動力の追加を行なう。一方、減速時には、駆動輪160により従動するモータ140Aがジェネレータとして機能して回生発電を行ない、回収した電力を走行用バッテリ220に蓄える。なお、走行用バッテリ220の充電量が低下し、充電が特に必要な場合には、エンジン120の出力を増加してジェネレータ140Bによる発電量を増やして走行用バッテリ220に対する充電量を増加する。もちろん、低速走行時でも必要に応じてエンジン120の駆動量を増加する制御を行なう場合もある。たとえば、上述のように走行用バッテリ220の充電が必要な場合や、エアコン等の補機を駆動する場合や、エンジン120の冷却水の温度を所定温度まで上げる場合等である。   In a hybrid vehicle equipped with a hybrid system as shown in FIG. 1, the hybrid vehicle travels only by the motor 140 </ b> A of the motor generator 140 when the engine 120 is inefficient, such as when starting or running at a low speed. During normal travel, for example, the power split mechanism 200 divides the power of the engine 120 into two paths, and on the other hand, the drive wheels 160 are directly driven, and on the other hand, the generator 140B is driven to generate power. At this time, the motor 140A is driven by the generated electric power to assist driving of the driving wheels 160. Further, at the time of high speed traveling, electric power from the traveling battery 220 is further supplied to the motor 140A to increase the output of the motor 140A and to add driving force to the driving wheels 160. On the other hand, at the time of deceleration, motor 140 </ b> A driven by drive wheel 160 functions as a generator to perform regenerative power generation, and the collected power is stored in traveling battery 220. When the amount of charge of traveling battery 220 decreases and charging is particularly necessary, the output of engine 120 is increased to increase the amount of power generated by generator 140B to increase the amount of charge for traveling battery 220. Of course, there is a case where control is performed to increase the drive amount of the engine 120 as necessary even during low-speed traveling. For example, it is necessary to charge the traveling battery 220 as described above, to drive an auxiliary machine such as an air conditioner, or to raise the temperature of the cooling water of the engine 120 to a predetermined temperature.

本実施の形態における技術的特徴は、上述した通常走行時におけるモータ140Aを駆動して駆動輪160の駆動補助を行なう場合に走行用バッテリ220の放電負荷を過大にならないようにすることである。以下の説明では、アクセルペダルの開度から要求駆動力を算出して、高速時は低速時に比べて応答性を低下させるように、要求駆動力をなまし処理するものについて説明する。   The technical feature of the present embodiment is that the discharge load of the traveling battery 220 is not excessive when driving the motor 140A during the above-described normal traveling to assist driving of the driving wheels 160. In the following description, the required driving force is calculated from the opening degree of the accelerator pedal, and the required driving force is smoothed so that the responsiveness is lowered at high speed compared to that at low speed.

図2のフローチャートを参照して、図1のHV_ECU320で実行されるプログラムの制御構造について説明する。   A control structure of a program executed by HV_ECU 320 of FIG. 1 will be described with reference to the flowchart of FIG.

ステップ(以下、ステップをSと略す)100にて、HV_ECU320は、アクセルON状態であるか否かを判断する。この判断は、アクセルペダルに設けられたセンサからHV_ECU320に入力された信号に基づいて行なわれる。アクセルON状態であると(S100にてYES)、処理はS200へ移される。もしそうでないと(S100にてNO)、処理はS100へ戻される。   In step (hereinafter, step is abbreviated as S) 100, HV_ECU 320 determines whether or not the accelerator is in an ON state. This determination is made based on a signal input to HV_ECU 320 from a sensor provided on the accelerator pedal. If the accelerator is ON (YES in S100), the process proceeds to S200. If not (NO in S100), the process returns to S100.

S200にて、HV_ECU320は、アクセル開度を検知する。S300にて、HV_ECU320は、アクセル開度がWOTに対応するアクセル開度でないか否かを判断する。この判断は、アクセルペダル開度と、WOTに対応して予め設定されたアクセル開度しきい値との大小関係に基づいて行なわれる。アクセル開度がWOTに対応するアクセル開度でないと(S300にてYES)、パーシャル域(中間域)であると判断されて、処理はS400へ移される。もしそうでないと(S300にてNO)、WOT域であると判断されて、S400〜S900の処理が行なわれることなく、この処理は終了する。このとき(S300にてNO)、なまし処理は行なわれないで、WOTに対応するように大きなモータトルクが発生される。   In S200, HV_ECU 320 detects the accelerator opening. In S300, HV_ECU 320 determines whether or not the accelerator opening is not the accelerator opening corresponding to WOT. This determination is made based on the magnitude relationship between the accelerator pedal opening and the accelerator opening threshold set in advance corresponding to WOT. If the accelerator opening is not the accelerator opening corresponding to WOT (YES in S300), it is determined that the vehicle is in the partial area (intermediate area), and the process proceeds to S400. If not (NO in S300), it is determined that the area is the WOT area, and the process ends without performing the processes of S400 to S900. At this time (NO in S300), the annealing process is not performed, and a large motor torque is generated so as to correspond to WOT.

S400にて、HV_ECU320は、車速Vを検知する。このとき、たとえば、ECT_ECU1100からHV_ECU320へ入力された減速機180の出力軸回転数に基づいて、車速Vが検知される。   In S400, HV_ECU 320 detects vehicle speed V. At this time, for example, the vehicle speed V is detected based on the output shaft speed of the speed reducer 180 input from the ECT_ECU 1100 to the HV_ECU 320.

S500にて、HV_ECU320は、車速Vが予め定められた、車速のしきい値よりも大きいか否かを判断する。車速Vが車速のしきい値よりも大きいと(S500にてYES)、高車速領域であると判断されて、処理はS600へ移される。もしそうでないと(S500にてNO)、高車速領域であるとは判断されないで、この処理は終了する。   In S500, HV_ECU 320 determines whether or not vehicle speed V is greater than a predetermined vehicle speed threshold value. If vehicle speed V is greater than the vehicle speed threshold (YES in S500), it is determined that the vehicle is in the high vehicle speed region, and the process proceeds to S600. Otherwise (NO in S500), it is not determined that the vehicle is in the high vehicle speed region, and this process ends.

S600にて、HV_ECU320は、アクセル開度に基づいて目標トルクTtargetを算出する。なお、アクセル開度のみならず、自動運転制御装置(オートクルーズ)等からの要求駆動力に基づいて、目標トルクTtargetを算出するようにしてもよい。S700にて、HV_ECU320は、車速に基づいて、なましパラメータPを算出する。このとき、車速が高いほどなましパラメータPが大きく、車速が低いほどなましパラメータPが小さく算出される。たとえば、図3に示すような、実線、一点鎖線および二点鎖線のいずれでもよいが、車速が高いほど大きななましパラメータPとなる。また、車速となましパラメータPとの関係は図3に示す以外のものであっても構わない。   In S600, HV_ECU 320 calculates target torque Ttarget based on the accelerator opening. Note that the target torque Ttarget may be calculated based not only on the accelerator opening but also on the required driving force from an automatic driving control device (auto cruise) or the like. In S700, HV_ECU 320 calculates annealing parameter P based on the vehicle speed. At this time, the smoothing parameter P increases as the vehicle speed increases, and the annealing parameter P decreases as the vehicle speed decreases. For example, as shown in FIG. 3, any of a solid line, a one-dot chain line, and a two-dot chain line may be used. The higher the vehicle speed, the larger the annealing parameter P becomes. Further, the relationship between the vehicle speed and the tempering parameter P may be other than that shown in FIG.

S800にて、HV_ECU320は、補正目標トルクTを算出する。このとき、補正目標トルクTは、T=(P−1)×Tpre/P+Ttarget/Pで算出される。なお、Tpreは、前回にこの処理ルーチンが実行されたときの補正目標トルクTの値である。このようにして補正目標トルクTを算出すると、なましパラメータPの値が大きくなるほど、補正目標トルクTの変化率を抑制できる。なお、これ以外の演算式を用いて、補正目標トルクを算出するようにしてもよい。   In S800, HV_ECU 320 calculates corrected target torque T. At this time, the corrected target torque T is calculated by T = (P−1) × Tpre / P + Ttarget / P. Tpre is the value of the corrected target torque T when this processing routine was executed last time. When the corrected target torque T is calculated in this way, the rate of change of the corrected target torque T can be suppressed as the value of the annealing parameter P increases. The corrected target torque may be calculated using an arithmetic expression other than this.

S900にて、HV_ECU320は、補正目標トルクTに基づいて、エンジントルクおよびエンジンアシストトルク(モータトルク)を算出する。この後、算出されたモータトルクをモータ140が発生するように、MG_ECU300によりモータ制御が行なわれる。   In S900, HV_ECU 320 calculates engine torque and engine assist torque (motor torque) based on corrected target torque T. Thereafter, motor control is performed by the MG_ECU 300 so that the motor 140 generates the calculated motor torque.

以上のような構造およびフローチャートに基づく、本実施の形態に係る制御装置を搭載した車両の動作について説明する。   The operation of the vehicle equipped with the control device according to the present embodiment based on the structure and flowchart as described above will be described.

車両が走行中に、運転者によりアクセル操作が行なわれ(アクセルペダルを踏まれ)(S100にてYES)、アクセル開度がWOTに対応する開度でないと(S300にてYES)、車速Vが検知される。   While the vehicle is running, the driver performs an accelerator operation (depresses the accelerator pedal) (YES in S100), and if the accelerator opening is not an opening corresponding to WOT (YES in S300), the vehicle speed V is Detected.

車速Vが予め定められたしきい値よりも大きく高車速領域であると(S500にてYES)、アクセル開度に基づいて目標トルクTtargetが算出される(S600)。さらに、車速Vと、図3に示すような車速VおよびなましパラメータPの関係とに基づいて、なましパラメータPが算出される。   If vehicle speed V is greater than a predetermined threshold and is in a high vehicle speed range (YES in S500), target torque Ttarget is calculated based on the accelerator opening (S600). Furthermore, the annealing parameter P is calculated based on the vehicle speed V and the relationship between the vehicle speed V and the annealing parameter P as shown in FIG.

補正目標トルクTが、目標トルクTtargetおよびなましパラメータPと前回の処理ルーチンで算出された補正目標トルクTpreとを用いて算出される(S800)。この補正目標トルクTに基づいてエンジントルクおよびモータトルクが算出される(S900)。   The corrected target torque T is calculated using the target torque Ttarget and the annealing parameter P and the corrected target torque Tpre calculated in the previous processing routine (S800). Based on the corrected target torque T, the engine torque and the motor torque are calculated (S900).

このようにすると、高速時には、低速時に比べて、目標トルクの応答性がより遅くなるように(変化率を抑制するように)、モータトルクを算出することができる。   In this way, the motor torque can be calculated at a high speed so that the response of the target torque is slower (a rate of change is suppressed) than at a low speed.

図4を参照して、たとえば、低車速を20km/hとして、高車速を80km/hとした場合を比較する。図4に示すように、高車速の場合には、低車速の場合に比べて、運転者からの要求トルクに対する応答性を抑制している。このようにすると、走行用バッテリ220からの放電電力が大きくなることを抑制できるとともに、運転者の頻繁なアクセル操作に敏感に応答することなく放電負荷の変動(大きな放電負荷が発生したり消失したりする変動)を抑制することができる。   Referring to FIG. 4, for example, a case where the low vehicle speed is 20 km / h and the high vehicle speed is 80 km / h is compared. As shown in FIG. 4, in the case of a high vehicle speed, the responsiveness with respect to the request torque from a driver | operator is suppressed compared with the case of a low vehicle speed. In this way, it is possible to suppress an increase in the discharge power from the traveling battery 220 and to change the discharge load (a large discharge load is generated or lost without sensitively responding to the driver's frequent accelerator operation). Fluctuation).

以上のようにして、本実施の形態に係る制御装置によると、高速時には低速時よりも、運転者のアクセル操作に基づく要求トルクに対する応答性を抑制した。このため、高速時における加速に用いられる大きな電力かつ変化率の大きな放電負荷を発生させることを回避することができる。その結果、走行用バッテリの劣化を防止することができる。   As described above, according to the control device of the present embodiment, the response to the required torque based on the driver's accelerator operation is suppressed at high speeds than at low speeds. For this reason, it is possible to avoid the generation of a large load of electric power used for acceleration at high speed and a large change rate. As a result, deterioration of the traveling battery can be prevented.

なお、上述した実施の形態においては、高速時ほど低速時よりも、要求トルクを、より強くなまし処理(応答性を悪く処理)したが、要求トルクをなまし処理するのではなく、モータ140Aの出力をなまし処理するようにしてもよい。また、高速時ほど低速時よりも、走行用バッテリ220の放電出力制限値を大きくして高速時に大きな電力が放電されないようにしてもよい。いずれの場合であっても、高速時であって走行用バッテリ220から大きな放電電力を用いても大きな加速感が得られない場合には、走行用バッテリ220からの放電電力を制限することができる。また、運転者の頻繁なアクセルワークに応答性良く対応することもなくなる。これにより、負荷の大きさも負荷変動の頻度も低減させることができるので、走行用バッテリ220の放電負荷を抑制して、走行用バッテリ220の劣化を回避することができる。   In the above-described embodiment, the required torque is more strongly smoothed (lower responsiveness is processed) at higher speeds than at low speeds, but the required torque is not smoothed. May be subjected to an annealing process. Further, the discharge output limit value of the traveling battery 220 may be increased at higher speeds than at low speeds so that large power is not discharged at high speeds. In any case, when high acceleration is not obtained even when high discharge power is used from the traveling battery 220 at high speed, the discharge power from the traveling battery 220 can be limited. . In addition, the driver's frequent accelerator work is not responded with good responsiveness. Thereby, since the magnitude | size of load and the frequency of a load fluctuation can be reduced, the discharge load of the battery 220 for driving | running | working can be suppressed and deterioration of the battery 220 for driving | running | working can be avoided.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に係るハイブリッド車両の制御ブロック図である。It is a control block diagram of the hybrid vehicle which concerns on embodiment of this invention. HV_ECUで実行されるエンジン停止処理の制御構造を示すフローチャートである。It is a flowchart which shows the control structure of the engine stop process performed by HV_ECU. HV_ECUに記憶される、車速VとなましパラメータPとの関係を示す図である。It is a figure which shows the relationship with the vehicle speed V and the parameter P which is memorize | stored in HV_ECU. トルクの時間変化を示すタイミングチャートである。It is a timing chart which shows the time change of torque.

符号の説明Explanation of symbols

120 エンジン、140 モータジェネレータ、140A モータ、140B ジェネレータ、160 駆動輪、180 減速機、200 動力分割機構、220 バッテリ、240 インバータ、242 コンバータ、260 バッテリECU、280 エンジンECU、300 MG_ECU、320 HV_ECU。   120 engine, 140 motor generator, 140A motor, 140B generator, 160 drive wheel, 180 reducer, 200 power split mechanism, 220 battery, 240 inverter, 242 converter, 260 battery ECU, 280 engine ECU, 300 MG_ECU, 320 HV_ECU.

Claims (7)

蓄電機構の電力を用いて電気機器を作動させることにより駆動される車両の制御装置であって、
前記車両の速度を検知するための検知手段と、
要求駆動力を算出するための算出手段と、
前記電気機器および前記蓄電機構の少なくともいずれかを制御するための制御手段とを含み、
前記制御手段は、前記車両の車速が高い場合には低い場合に比べて、前記要求駆動力の増加に対して前記電気機器を用いた駆動力の増加の応答性を抑制するように、前記電気機器を制御するための手段を含む、車両の制御装置。
A control device for a vehicle driven by operating an electric device using electric power of a power storage mechanism,
Detecting means for detecting the speed of the vehicle;
A calculating means for calculating the required driving force;
Control means for controlling at least one of the electrical device and the power storage mechanism,
When the vehicle speed of the vehicle is high, the control means suppresses the responsiveness of the increase in the driving force using the electric device with respect to the increase in the required driving force. A control apparatus for a vehicle, including means for controlling an apparatus.
前記制御装置は、前記車両の運転者によるアクセル操作を検知するための検知手段をさらに含み、
前記算出手段は、検知されたアクセル操作に基づいて、前記要求駆動力を算出するための手段を含む、請求項1に記載の車両の制御装置。
The control device further includes a detecting means for detecting an accelerator operation by a driver of the vehicle,
The vehicle control device according to claim 1, wherein the calculating means includes means for calculating the required driving force based on the detected accelerator operation.
前記制御装置は、前記車両の運転者によるアクセル操作を検知するための検知手段をさらに含み、
前記制御手段は、検知されたアクセル操作がWOTに対応する操作ではなく、かつ車速が予め定められたよりも高い車速である領域において、前記応答性を抑制するように、前記電気機器を制御するための手段を含む、請求項1に記載の車両の制御装置。
The control device further includes a detecting means for detecting an accelerator operation by a driver of the vehicle,
The control means controls the electrical device so as to suppress the responsiveness in a region where the detected accelerator operation is not an operation corresponding to WOT and the vehicle speed is higher than a predetermined vehicle speed. The vehicle control device according to claim 1, comprising:
前記制御手段は、前記車両の車速が高い場合には低い場合に比べて、前記要求駆動力の増加に対して前記電気機器を用いた駆動力の増加の応答性を、要求駆動力をなまし処理することにより抑制するように、前記電気機器を制御するための手段を含む、請求項1〜3のいずれかに記載の車両の制御装置。   When the vehicle speed of the vehicle is high, the control means smoothes the required driving force with respect to the increase in the required driving force with respect to the increase in the driving force using the electric device. The vehicle control device according to claim 1, comprising means for controlling the electric device so as to be suppressed by processing. 前記制御手段は、前記車両の車速が高い場合には低い場合に比べて、前記要求駆動力の増加に対して前記電気機器を用いた駆動力の増加の応答性を、電気機器の出力をなまし処理することにより抑制するように、前記電気機器を制御するための手段を含む、請求項1〜3のいずれかに記載の車両の制御装置。   When the vehicle speed of the vehicle is high, the control means performs the response of the increase of the driving force using the electric device to the increase of the required driving force, and the output of the electric device. The vehicle control device according to any one of claims 1 to 3, further comprising means for controlling the electric device so as to be suppressed by further processing. 前記制御手段は、前記車両の車速が高い場合には低い場合に比べて、前記蓄電機構における放電電力制限値を大きくするように、前記蓄電機器を制御するための手段を含む、請求項1に記載の車両の制御装置。   The control means includes means for controlling the power storage device so as to increase a discharge power limit value in the power storage mechanism when the vehicle speed of the vehicle is high compared to when the vehicle speed is low. The vehicle control device described. 前記電気機器はモータおよびモータジェネレータの少なくともいずれかであって、
前記車両は、前記電気機器に加えて内燃機関を作動させることにより駆動される、請求項1〜6のいずれかに記載の車両の制御装置。
The electrical device is at least one of a motor and a motor generator,
The vehicle control device according to claim 1, wherein the vehicle is driven by operating an internal combustion engine in addition to the electric device.
JP2004348593A 2004-12-01 2004-12-01 Vehicle control device Active JP4604687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348593A JP4604687B2 (en) 2004-12-01 2004-12-01 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348593A JP4604687B2 (en) 2004-12-01 2004-12-01 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2006158154A true JP2006158154A (en) 2006-06-15
JP4604687B2 JP4604687B2 (en) 2011-01-05

Family

ID=36635750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348593A Active JP4604687B2 (en) 2004-12-01 2004-12-01 Vehicle control device

Country Status (1)

Country Link
JP (1) JP4604687B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130862A (en) * 2008-11-29 2010-06-10 Nissan Motor Co Ltd Driving force control device of vehicle
KR101219903B1 (en) * 2006-11-21 2013-01-08 기아자동차주식회사 Controlling method of torque using surge damper
JP2014169679A (en) * 2013-03-05 2014-09-18 Denso Corp Alternator control device
EP3527447A1 (en) 2018-02-16 2019-08-21 Toyota Jidosha Kabushiki Kaisha Control device and control method for hybrid vehicle
US11325584B2 (en) 2019-08-08 2022-05-10 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331604A (en) * 1996-06-11 1997-12-22 Toyota Motor Corp Motor control equipment
JP2002101693A (en) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd Controller of electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331604A (en) * 1996-06-11 1997-12-22 Toyota Motor Corp Motor control equipment
JP2002101693A (en) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd Controller of electric motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219903B1 (en) * 2006-11-21 2013-01-08 기아자동차주식회사 Controlling method of torque using surge damper
JP2010130862A (en) * 2008-11-29 2010-06-10 Nissan Motor Co Ltd Driving force control device of vehicle
JP2014169679A (en) * 2013-03-05 2014-09-18 Denso Corp Alternator control device
EP3527447A1 (en) 2018-02-16 2019-08-21 Toyota Jidosha Kabushiki Kaisha Control device and control method for hybrid vehicle
US11130484B2 (en) 2018-02-16 2021-09-28 Toyota Jidosha Kabushiki Kaisha Control device and control method for hybrid vehicle
US11325584B2 (en) 2019-08-08 2022-05-10 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP4604687B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4197013B2 (en) Control device for hybrid vehicle
JP4348557B2 (en) Control device for hybrid electric vehicle
JP5548697B2 (en) Vehicle control device
JP4623062B2 (en) Vehicle driving force control device
US9923490B2 (en) Vehicle
JP2005020820A (en) Hybrid car and control method thereof
EP2789514A1 (en) Hybrid-vehicle control device
JP4826657B2 (en) Vehicle control device
JP2007221885A (en) Controller and control method of secondary battery
WO2012105042A1 (en) Hybrid vehicle
JP2006275019A (en) Control device for hybrid vehicle
JP4135030B1 (en) Vehicle control device, control method, program for realizing the method, and recording medium recording the program
JP2006118359A (en) Vehicle and its control method
JP2011097666A (en) Vehicle and control method therefor
JP2009173235A (en) Driving force control device for hybrid vehicle
JP4661712B2 (en) Vehicle start control device
JP4604687B2 (en) Vehicle control device
JP2011183910A (en) Hybrid vehicle and method of controlling the same
JPH1014010A (en) Generation control device of hybrid vehicle
JP2003065106A (en) Power output device and electric vehicle
JP5057279B2 (en) Drive control apparatus for hybrid vehicle
JP4386003B2 (en) Battery protection control device for hybrid vehicle
US11628824B2 (en) Controller for vehicle and control method for vehicle
JP4566110B2 (en) Vehicle, power output device, vehicle control method, and power output device control method
JP2004225623A (en) Control device and method for starting engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R151 Written notification of patent or utility model registration

Ref document number: 4604687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3