JP2006156874A - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JP2006156874A
JP2006156874A JP2004348403A JP2004348403A JP2006156874A JP 2006156874 A JP2006156874 A JP 2006156874A JP 2004348403 A JP2004348403 A JP 2004348403A JP 2004348403 A JP2004348403 A JP 2004348403A JP 2006156874 A JP2006156874 A JP 2006156874A
Authority
JP
Japan
Prior art keywords
conductive substrate
photoelectric conversion
semiconductor particles
crystalline semiconductor
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004348403A
Other languages
Japanese (ja)
Inventor
Jun Fukuda
潤 福田
Koichi Uchimoto
晃一 内本
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004348403A priority Critical patent/JP2006156874A/en
Priority to US11/283,609 priority patent/US20060118898A1/en
Publication of JP2006156874A publication Critical patent/JP2006156874A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable photoelectric conversion device using crystalline semiconductor particles manufactured at low cost. <P>SOLUTION: In the photoelectric conversion device, large number of crystalline semiconductor particles 4 in one conduction type are disposed on one main surface of a conductive substrate 1 in a way that they are bonded to the substrate 1 at lower portions with insulating materials 3 being interposed between adjacent particles, and exposed from the insulating materials 3 at upper portions. The crystalline semiconductor particles 4 have semiconductor portions 3 in the other conduction type and translucent conductor layers 6 formed thereon. In the crystalline semiconductor particles 4, a boundary surface between a bonded portion to the conductive substrate 1 and the remainder is approximately parallel to the one main surface of the conductive substrate 1, or the central portion of the boundary surface is positioned at a conductive substrate 1 side with respect to an outer circumferential portion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電等に使用される光電変換装置に関し、特にシリコン等の半導体から成る結晶半導体粒子を用いた光電変換装置に関する。   The present invention relates to a photoelectric conversion device used for photovoltaic power generation and the like, and more particularly to a photoelectric conversion device using crystalline semiconductor particles made of a semiconductor such as silicon.

従来、光電変換装置として結晶シリコンウエハを用いた光電変換効率の高い太陽電池が実用化されている。この結晶シリコンウエハは、結晶性がよく、かつ不純物が少なくてその分布に偏りのない大型の結晶シリコンインゴットから切り出されて作製されている。しかし、大型の結晶シリコンインゴットは作製するのに長時間を要するため生産性が悪く、これにより高価となるので、大型の結晶シリコンインゴットを必要とせず高効率な次世代太陽電池の出現が強く望まれている。   Conventionally, a solar cell with high photoelectric conversion efficiency using a crystalline silicon wafer as a photoelectric conversion device has been put into practical use. This crystalline silicon wafer is manufactured by cutting out a large crystalline silicon ingot having good crystallinity, low impurities, and no uneven distribution. However, large crystalline silicon ingots take a long time to produce and are therefore less productive, which makes them expensive. Therefore, the emergence of highly efficient next-generation solar cells that do not require large crystalline silicon ingots is strongly desired. It is rare.

大型の結晶シリコンインゴットを必要としない光電変換装置として、結晶シリコン粒子を用いた光電変換装置が提案されている。例えば、アルミニウム製の導電性基板もしくは表面にアルミニウム層が形成された導電性基板上に多数の結晶シリコン粒子を配設し、導電性基板表面もしくはアルミニウム層と結晶シリコン粒子との界面に、アルミニウムとシリコンとの合金層から成る接合部を形成した構成のものが開示されている(例えば、特許文献1参照)。
特開2002−43602号公報
As a photoelectric conversion device that does not require a large crystalline silicon ingot, a photoelectric conversion device using crystalline silicon particles has been proposed. For example, a large number of crystalline silicon particles are disposed on a conductive substrate made of aluminum or a conductive substrate having an aluminum layer formed on the surface, and aluminum is formed on the conductive substrate surface or the interface between the aluminum layer and the crystalline silicon particles. The thing of the structure which formed the junction part which consists of an alloy layer with silicon | silicone is disclosed (for example, refer patent document 1).
JP 2002-43602 A

しかしながら、上述の従来の技術においては、結晶シリコン粒子とアルミニウム層とで合金層を形成し両者を接合する構成であるが、結晶シリコン粒子のシリコン(Si)と、導電性基板を成すアルミニウムと、アルミニウム−シリコン合金層との熱膨脹差に起因して、温度サイクル等の信頼性評価を行なうと接合部の境界面にクラックが発生進展し、その結果光電変換効率が劣化するという問題がある。   However, in the above-described conventional technology, an alloy layer is formed by crystal silicon particles and an aluminum layer, and both are joined. However, silicon (Si) of crystal silicon particles and aluminum forming a conductive substrate, Due to the difference in thermal expansion with the aluminum-silicon alloy layer, if reliability evaluation such as temperature cycle is performed, there is a problem that cracks are generated at the boundary surface of the joint, and as a result, the photoelectric conversion efficiency is deteriorated.

従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、低コストで製造可能な結晶半導体粒子を用いた高信頼性の光電変換装置を提供することである。   Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a highly reliable photoelectric conversion device using crystal semiconductor particles that can be manufactured at low cost.

本発明の光電変換装置は、導電性基板の一主面に、表面に他方導電型の半導体部が設けられた一方導電型の結晶半導体粒子が多数個、下部を前記導電性基板に接合され、隣接するもの同士の間に絶縁物質を介在させるとともに上部を前記絶縁物質から露出させて配置されて、これら結晶半導体粒子に透光性導体層が設けられた光電変換装置において、前記結晶半導体粒子は、前記導電性基板との接合部とその残部との境界面が前記導電性基板の一主面と略平行であるか、または前記境界面の中央部が外周部よりも前記導電性基板側に位置していることを特徴とする。   In the photoelectric conversion device of the present invention, on one main surface of the conductive substrate, a large number of one-conductivity-type crystal semiconductor particles each provided with a semiconductor portion of the other conductivity type on the surface, the lower part is bonded to the conductive substrate, In a photoelectric conversion device in which an insulating material is interposed between adjacent ones and an upper part is exposed from the insulating material, and the transparent semiconductor layer is provided on the crystalline semiconductor particles, the crystalline semiconductor particles are The boundary surface between the junction with the conductive substrate and the remaining portion is substantially parallel to one main surface of the conductive substrate, or the central portion of the boundary surface is closer to the conductive substrate than the outer peripheral portion. It is located.

本発明の光電変換装置によれば、導電性基板の一主面に、表面に他方導電型の半導体部設けられた一方導電型の結晶半導体粒子が多数個、下部を導電性基板に接合され、隣接するもの同士の間に絶縁物質を介在させるとともに上部を絶縁物質から露出させて配置されて、これら結晶半導体粒子に透光性導体層が設けられた光電変換装置において、結晶半導体粒子は、導電性基板との接合部とその残部との境界面が導電性基板の一主面と略平行であるか、または境界面の中央部が外周部よりも導電性基板側に位置していることにより、温度サイクル等の信頼性評価において境界面に発生するクラックの発生進展が抑制され、長期間の実使用において光電変換効率の劣化の少ない高信頼性の光電変換装置を提供することができる。   According to the photoelectric conversion device of the present invention, on one main surface of the conductive substrate, a large number of one-conductivity-type crystal semiconductor particles provided on the surface with the other-conductivity-type semiconductor portion, and the lower portion are bonded to the conductive substrate, In a photoelectric conversion device in which an insulating material is interposed between adjacent ones and an upper portion is exposed from an insulating material, and the transparent semiconductor layer is provided on the crystalline semiconductor particles, the crystalline semiconductor particles are electrically conductive. The boundary surface between the joint portion with the conductive substrate and the remaining portion is substantially parallel to one main surface of the conductive substrate, or the central portion of the boundary surface is located closer to the conductive substrate than the outer peripheral portion. In addition, it is possible to provide a highly reliable photoelectric conversion device in which the occurrence of cracks generated at the boundary surface in the reliability evaluation such as the temperature cycle is suppressed and the photoelectric conversion efficiency is less deteriorated in long-term actual use.

本発明の光電変換装置について図面に基づいて以下に詳細に説明する。   The photoelectric conversion device of the present invention will be described in detail below based on the drawings.

図1は、本発明の光電変換装置の実施の形態の1例を示す断面図であり、1は導電性基板、2は導電性基板1の成分と結晶半導体粒子4の成分とで形成された合金層、3は絶縁物質、4は一方導電型の結晶半導体粒子、5は他方導電型の半導体部、6は透光性導体層である。合金層2は、導電性基板1と一方導電型の結晶半導体粒子4との接触部を加熱溶融させて生成した合金層であり、導電性基板1の一部を成すものといえる。   FIG. 1 is a cross-sectional view showing an example of an embodiment of a photoelectric conversion device of the present invention, where 1 is a conductive substrate, 2 is a component of a conductive substrate 1 and a component of crystalline semiconductor particles 4 is formed. An alloy layer, 3 is an insulating material, 4 is one conductive crystal semiconductor particle, 5 is the other conductive semiconductor portion, and 6 is a translucent conductor layer. The alloy layer 2 is an alloy layer formed by heating and melting the contact portion between the conductive substrate 1 and the one-conductivity type crystalline semiconductor particle 4, and can be said to constitute a part of the conductive substrate 1.

導電性基板1は導電性の金属からなり、例えばアルミニウム、またはアルミニウム層を表面に有する複合材料を用いることができる。複合材料の下地基板としては、アルミニウムの融点以上の融点を有する金属であればよく、例えば鉄(Fe),ニッケル(Ni),ステンレススチール(SUS)や、Fe−Ni合金,Fe−Ni−Co合金等を主成分とする低熱膨張係数の合金等が用いられる。なお、この複合材料における表層のアルミニウム層の厚みは、結晶半導体粒子4を導電性基板1上に均一に溶融接合するのに必要なアルミニウム量からすると、0.01mm(10μm)以上が好ましい。   The conductive substrate 1 is made of a conductive metal, and for example, aluminum or a composite material having an aluminum layer on the surface can be used. The base substrate of the composite material may be any metal having a melting point equal to or higher than that of aluminum. For example, iron (Fe), nickel (Ni), stainless steel (SUS), Fe—Ni alloy, Fe—Ni—Co An alloy having a low thermal expansion coefficient mainly composed of an alloy or the like is used. The thickness of the surface aluminum layer in the composite material is preferably 0.01 mm (10 μm) or more in view of the amount of aluminum necessary for uniformly melting and bonding the crystalline semiconductor particles 4 onto the conductive substrate 1.

また、導電性基板1が複合材料から成る場合、熱的負荷等により発生する導電性基板1の反りを抑える目的で、結晶半導体粒子4を配設する側と反対側の主面の一部もしくは全面に、アルミニウム層(図示せず)を設けることも可能である。   Further, when the conductive substrate 1 is made of a composite material, a part of the main surface opposite to the side where the crystalline semiconductor particles 4 are disposed or for the purpose of suppressing warpage of the conductive substrate 1 caused by a thermal load or the like It is also possible to provide an aluminum layer (not shown) on the entire surface.

また、導電性基板1の厚さは、0.1〜2mmであることが好ましい。0.1mm未満の場合、導電性基板1の厚さが薄くなるため、導電性基板1に結晶半導体粒子4を溶着させた際に、導電性基板1に反りが発生し易くなり、光電変換効率が低下する。また、2mm超の場合、導電性基板1自体の重量が増えるため、光電変換装置の軽量化が困難となる。   Moreover, it is preferable that the thickness of the electroconductive board | substrate 1 is 0.1-2 mm. When the thickness is less than 0.1 mm, the thickness of the conductive substrate 1 becomes thin. Therefore, when the crystalline semiconductor particles 4 are welded to the conductive substrate 1, the conductive substrate 1 is likely to be warped, and the photoelectric conversion efficiency is improved. descend. Moreover, since the weight of the electroconductive board | substrate 1 itself will increase when it exceeds 2 mm, the weight reduction of a photoelectric conversion apparatus becomes difficult.

絶縁物質3は、正極と負極との分離を行なうための絶縁材料からなる。例えば酸化珪素(SiO),酸化アルミニウム(Al),酸化鉛(PbO),酸化硼素(B),酸化亜鉛(ZnO)等を成分とするガラス、耐熱性樹脂材料、耐熱性樹脂材料と無機フィラーとの混合体、珪素を含有する有機無機複合材料、珪素を含有する有機無機複合材料と無機フィラーとの混合体等からなる。絶縁物質3は、結晶半導体粒子4間に介在するように合金層2の表面に層状に形成され、その好適な厚みは絶縁物質3の絶縁抵抗により異なるが、絶縁物質3が耐熱性樹脂から成る場合、0.001mm(1μm)以上であることが好ましい。 The insulating material 3 is made of an insulating material for separating the positive electrode and the negative electrode. For example, glass containing silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), lead oxide (PbO), boron oxide (B 2 O 3 ), zinc oxide (ZnO), etc., heat resistant resin material, heat resistance A mixture of a functional resin material and an inorganic filler, an organic-inorganic composite material containing silicon, a mixture of an organic-inorganic composite material containing silicon and an inorganic filler, and the like. The insulating material 3 is formed in layers on the surface of the alloy layer 2 so as to be interposed between the crystalline semiconductor particles 4, and the preferred thickness varies depending on the insulation resistance of the insulating material 3, but the insulating material 3 is made of a heat resistant resin. In this case, it is preferably 0.001 mm (1 μm) or more.

結晶半導体粒子4は、珪素(Si)にp型を呈する硼素(B)、アルミニウム(Al)、ガリウム(Ga)等、またはn型を呈するリン(P)、砒素(As)等が微量元素として含まれているものである。結晶半導体粒子4の粒径は0.1〜0.6mmがよく、0.6mmを超えると従来型の結晶板系の光電変換素子の珪素(Si)使用量と変わらなくなり、結晶半導体粒子4を用いる利点が小さくなる。一方、0.1mmよりも小さいと、光透過等による光エネルギーのロスが大きくなり、光電変換効率が低下する傾向がある。また、結晶半導体粒子4の形状としては、球状、回転楕円体状、多角立体状、多角立体状の角部が曲面とされたもの等、種々の形状であってよい。   The crystalline semiconductor particles 4 are boron (B), aluminum (Al), gallium (Ga), etc. exhibiting p-type in silicon (Si), or phosphorus (P), arsenic (As), etc. exhibiting n-type as trace elements. It is included. The grain size of the crystalline semiconductor particles 4 is preferably 0.1 to 0.6 mm. If the grain size exceeds 0.6 mm, the amount of silicon (Si) used in a conventional crystal plate type photoelectric conversion element remains the same, and the advantage of using the crystalline semiconductor particles 4 is small. Become. On the other hand, if it is smaller than 0.1 mm, the loss of light energy due to light transmission or the like increases, and the photoelectric conversion efficiency tends to decrease. Further, the shape of the crystalline semiconductor particles 4 may be various shapes such as a spherical shape, a spheroid shape, a polygonal solid shape, and a corner portion of the polygonal solid shape that is a curved surface.

他方導電型の半導体部5は、例えば珪素(Si)から成り、熱拡散法、気相成長法等により、例えばシラン化合物の気相にn型を呈するリン系化合物の気相、またはp型を呈する硼素系化合物の気相を微量導入して形成する。その厚みは10nm以上が好ましく、膜質としては結晶質、非晶質、または結晶質と非晶質とが混在するもののいずれでもよい。   On the other hand, the conductive-type semiconductor portion 5 is made of, for example, silicon (Si), and is formed by a thermal diffusion method, a vapor phase growth method, or the like, for example, a vapor phase of a phosphorus compound that exhibits n-type in a vapor phase of a silane compound, or a p-type. It is formed by introducing a small amount of the gas phase of the boron compound to be exhibited. The thickness is preferably 10 nm or more, and the film quality may be crystalline, amorphous, or a mixture of crystalline and amorphous.

さらに、他方導電型の半導体部5は、一方導電型の結晶半導体粒子4の表面形状に沿って形成されることが好ましい。それにより、一方導電型の結晶半導体粒子4は凸形の曲面状の表面を有することから、結晶半導体粒子4と半導体部5との間で形成されるpn接合部の面積を広くすることができ、結晶半導体粒子4内部で光電変換により発生した電子を効率よく収集することができる。   Furthermore, it is preferable that the other conductivity type semiconductor portion 5 is formed along the surface shape of the one conductivity type crystalline semiconductor particle 4. Accordingly, the one-conductivity-type crystalline semiconductor particle 4 has a convex curved surface, so that the area of the pn junction formed between the crystalline semiconductor particle 4 and the semiconductor portion 5 can be increased. Electrons generated by photoelectric conversion inside the crystalline semiconductor particles 4 can be efficiently collected.

なお、結晶半導体粒子4として、その表面にn型を呈するリン(P)、砒素(As)等またはp型を呈する硼素(B)、アルミニウム(Al)、ガリウム(Ga)等が微量含まれている領域を層状に有するものを用いる場合、この層状の領域を他方導電型の半導体部5とし、この半導体部5上に透光性導体層6を直接形成してもよい。   The crystal semiconductor particles 4 contain a small amount of n-type phosphorus (P), arsenic (As), etc. or p-type boron (B), aluminum (Al), gallium (Ga), etc. on the surface thereof. In the case where a layer having a certain region is used, this layered region may be used as the other conductivity type semiconductor portion 5, and the translucent conductor layer 6 may be directly formed on the semiconductor portion 5.

透光性導体層6は、スパッタリング法や気相成長法の成膜方法あるいは塗布焼成法等によって形成され、SnO、In、ITO、ZnO、TiO等から選ばれる1種または複数の酸化物の層、またはTi、Pt、Au等から選ばれる1種または複数の金属から成る層として形成される。この透光生導電層6は結晶半導体粒子4がない部分で入射した光の一部を透過させ、下側の導電性基板1で反射させて結晶半導体粒子4に照射させることで、光電変換装置全体に照射される光エネルギーを効率よく結晶半導体粒子4に照射させることが可能となる。 The translucent conductor layer 6 is formed by a sputtering method, a vapor deposition method, a coating baking method, or the like, and one or more selected from SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2, and the like. Or a layer made of one or more metals selected from Ti, Pt, Au and the like. The translucent bioconductive layer 6 transmits a part of incident light at a portion where the crystalline semiconductor particles 4 are not present, is reflected by the lower conductive substrate 1 and is irradiated to the crystalline semiconductor particles 4, thereby producing a photoelectric conversion device. It becomes possible to efficiently irradiate the crystal semiconductor particles 4 with the light energy irradiated to the whole.

透光性導体層6上には保護層(図示せず)を形成してもよい。このような保護層としては、透光性でかつ誘電体の特性を持つものを用いるのがよく、例えば酸化珪素、酸化セシウム(CsO)、酸化アルミニウム(Al)、窒化珪素(Si)、酸化チタン(TiO)、酸化タンタル(Ta)、酸化イットリウム(Y)等を、単一組成または複数組成で、単層または複数層を組み合わせて、CVD法やPVD法等により形成すればよい。この保護膜は、光の入射面に配置されているために透光性が必要であり、また光電変換により得られた電流のリーク防止のために誘電体であることが必要である。さらに、保護層は、厚みを最適化することにより反射防止膜としての機能も期待できる。 A protective layer (not shown) may be formed on the translucent conductor layer 6. As such a protective layer, a light-transmitting and dielectric material is preferably used. For example, silicon oxide, cesium oxide (Cs 2 O), aluminum oxide (Al 2 O 3 ), silicon nitride ( Si 3 N 4 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), etc., in a single composition or multiple compositions, in combination of a single layer or multiple layers, What is necessary is just to form by CVD method, PVD method, etc. Since this protective film is disposed on the light incident surface, it needs to be translucent, and it needs to be a dielectric material to prevent leakage of current obtained by photoelectric conversion. Furthermore, the protective layer can be expected to function as an antireflection film by optimizing the thickness.

また、直列抵抗値を低くするために他方導電型の半導体部5または透光性導体層6の上に一定間隔のフィンガー電極およびバスバーからなるパターン電極(図示せず)を設け、光電変換効率を向上させることも可能である。   In addition, in order to reduce the series resistance value, a pattern electrode (not shown) made up of finger electrodes and bus bars at regular intervals is provided on the other conductive type semiconductor portion 5 or the translucent conductor layer 6 to increase the photoelectric conversion efficiency. It is also possible to improve.

本発明において、導電性基板1の一主面に、一方導電型の結晶半導体粒子4が多数個、下部を導電性基板1に接合され、隣接するもの同士の間に絶縁物質3を介在させるとともに上部を絶縁物質3から露出させて配置されて、これら結晶半導体粒子4に他方導電型の半導体部3および透光性導体層6が設けられた光電変換装置において、結晶半導体粒子4は、導電性基板1との接合部とその残部との境界面が導電性基板1の一主面と略平行であるか、または境界面の中央部が外周部よりも導電性基板側1に位置している。この構成により、温度サイクル等の信頼性評価において境界面に発生するクラックの発生および進展が抑制され、長期間の実使用において光電変換効率の劣化の少ない高信頼性の光電変換装置を得ることができる。   In the present invention, on one main surface of the conductive substrate 1, there are a large number of one-conductive type crystalline semiconductor particles 4, the lower part is bonded to the conductive substrate 1, and the insulating material 3 is interposed between adjacent ones. In the photoelectric conversion device in which the upper portion is arranged to be exposed from the insulating material 3 and the other semiconductor type 3 and the translucent conductor layer 6 are provided on the crystalline semiconductor particles 4, the crystalline semiconductor particles 4 are electrically conductive. The boundary surface between the joint portion with the substrate 1 and the remaining portion thereof is substantially parallel to one main surface of the conductive substrate 1, or the central portion of the boundary surface is located closer to the conductive substrate side 1 than the outer peripheral portion. . With this configuration, it is possible to obtain a highly reliable photoelectric conversion device that suppresses the occurrence and progress of cracks generated at the boundary surface in reliability evaluation such as temperature cycle, and has little deterioration in photoelectric conversion efficiency in long-term actual use. it can.

上記のような、結晶半導体粒子4が、導電性基板1との接合部とその残部との境界面が導電性基板1の一主面と略平行であるか、または境界面の中央部が外周部よりも導電性基板側1に位置しているという構成(構成Aともいう)は、結晶半導体粒子4を導電性基板1に、それらの成分(例えばアルミニウムとシリコン)の共晶点以上に加熱して接合するときに、粘性のある共晶合金に結晶半導体粒子4がめり込むように圧力を加えるという製造方法により実現することができる。   As described above, the crystalline semiconductor particles 4 are such that the boundary surface between the joint portion with the conductive substrate 1 and the remaining portion is substantially parallel to one main surface of the conductive substrate 1, or the central portion of the boundary surface is the outer periphery. The configuration (also referred to as configuration A) that is located on the side of the conductive substrate 1 relative to the portion heats the crystalline semiconductor particles 4 to the conductive substrate 1 to a temperature equal to or higher than the eutectic point of those components (for example, aluminum and silicon). Thus, it can be realized by a manufacturing method in which a pressure is applied so that the crystalline semiconductor particles 4 sink into the viscous eutectic alloy.

例えば、700個程度の結晶半導体粒子4に対して、それらの上方より0.002〜1N/cm程度の圧力を加えることによって上記の構成Aとすることができる。圧力が0.002N/cm未満では、結晶半導体粒子4を共晶部に押し込むことが難しくなる。1N/cmを超えると、結晶半導体粒子4を破損したり、共晶部を押しすぎて共晶金属が結晶半導体粒子4下部から外に押し出されてしまい易くなる。 For example, the above-described configuration A can be achieved by applying a pressure of about 0.002 to 1 N / cm 2 to about 700 crystalline semiconductor particles 4 from above. When the pressure is less than 0.002 N / cm 2 , it is difficult to push the crystalline semiconductor particles 4 into the eutectic part. If it exceeds 1 N / cm 2 , the crystalline semiconductor particles 4 are damaged, or the eutectic part is pushed too much and the eutectic metal is easily pushed out from the lower part of the crystalline semiconductor particles 4.

加圧しないで共晶形成のみによる接合をしたときには、結晶半導体粒子4内部の共晶の進行に較べ、結晶半導体粒子4表面に形成されている自然酸化膜での共晶の進み方が遅いため、図3のように外周部が境界面の中央部よりも導電性基板1側に位置している形状となる。   When bonding is performed only by eutectic formation without applying pressure, the progress of the eutectic in the natural oxide film formed on the surface of the crystalline semiconductor particles 4 is slower than the progress of the eutectic inside the crystalline semiconductor particles 4. As shown in FIG. 3, the outer peripheral portion is located on the conductive substrate 1 side with respect to the central portion of the boundary surface.

本発明では、接合部の共晶の形成時に結晶シリコン粒子4を導電性基板1側に加圧することで、図3のような導電性基板1側に位置する外周部が共晶内に押し込まれて外周部の共晶化が促進される。その結果、境界面が図2(a)〜(e)のような、導電性基板1の一主面と略平行であるか、または境界面の中央部が外周部よりも導電性基板1側に位置した構成とすることができる。   In the present invention, the outer peripheral portion located on the conductive substrate 1 side as shown in FIG. 3 is pushed into the eutectic by pressurizing the crystalline silicon particles 4 to the conductive substrate 1 side during the formation of the eutectic at the joint. Thus, eutectic formation at the outer peripheral portion is promoted. As a result, the boundary surface is substantially parallel to one main surface of the conductive substrate 1 as shown in FIGS. 2A to 2E, or the central portion of the boundary surface is closer to the conductive substrate 1 than the outer peripheral portion. It can be set as the structure located in.

本発明の光電変換装置の実施例について以下に説明する。   Examples of the photoelectric conversion device of the present invention will be described below.

図1に示した光電変換装置としての結晶シリコン粒子を用いた太陽電池について説明する。まず、p型ドーパントとして硼素(B)を微量添加した、結晶半導体粒子としての平均粒径400μmの結晶シリコン粒子の表面を洗浄した後、POCl雰囲気中において850℃、30分で熱拡散を行い、結晶シリコン粒子の表面に他方導電型の半導体部5としてn型シリコン層を形成した。このとき、硼素を拡散しない部分を酸化珪素で覆うことで、必要な部分だけにn型シリコン層を形成した。 A solar cell using crystalline silicon particles as the photoelectric conversion device shown in FIG. 1 will be described. First, after the surface of crystalline silicon particles having an average particle diameter of 400 μm as crystalline semiconductor particles to which a small amount of boron (B) is added as a p-type dopant is washed, thermal diffusion is performed in a POCl 3 atmosphere at 850 ° C. for 30 minutes. Then, an n-type silicon layer was formed as the semiconductor portion 5 of the other conductivity type on the surface of the crystalline silicon particles. At this time, an n-type silicon layer was formed only in a necessary portion by covering a portion where boron was not diffused with silicon oxide.

次に、アルミニウム製の導電性基板1上に、n型シリコン層が形成された結晶シリコン粒子を密に1層配設し、接合温度、接合時間、昇温速度、降温速度等の拡散接合条件を種々変更し、導電性基板1と結晶シリコン粒子とを拡散接合させたサンプルを作製した。   Next, a single layer of crystalline silicon particles having an n-type silicon layer formed thereon is densely disposed on the conductive substrate 1 made of aluminum, and diffusion bonding conditions such as a bonding temperature, a bonding time, a heating rate, and a cooling rate. Various samples were changed, and samples in which the conductive substrate 1 and the crystalline silicon particles were diffusion bonded were produced.

次に、絶縁物質3の絶縁体材料としてポリイミドを選択し、結晶シリコン粒子間に導電性基板1表面を覆うように絶縁物質3を形成した。次に、導電性基板1上にITOからなる透光性導体層6を100nmの厚みで形成し、光電変換装置を作製した。   Next, polyimide was selected as the insulator material of the insulating substance 3, and the insulating substance 3 was formed so as to cover the surface of the conductive substrate 1 between the crystalline silicon particles. Next, the translucent conductor layer 6 made of ITO was formed on the conductive substrate 1 with a thickness of 100 nm to produce a photoelectric conversion device.

この光電変換装置の初期光電変換特性、信頼性評価、および断面観察を行ない、クラック進展の有無および境界面形状を確認した結果を表1に示す。信頼性は、温度−40℃〜90℃、6時間を1サイクルとして、温度サイクル試験を500サイクル行ない、その信頼性評価前後の光電変換効率の低下割合を評価した。   Table 1 shows the results of conducting initial photoelectric conversion characteristics, reliability evaluation, and cross-sectional observation of this photoelectric conversion device, and confirming the presence or absence of crack propagation and the boundary surface shape. As for reliability, a temperature cycle test was performed 500 cycles with a temperature of −40 ° C. to 90 ° C. for 6 hours as one cycle, and the reduction rate of photoelectric conversion efficiency before and after the reliability evaluation was evaluated.

なお、表1において、サンプル1は、700個の結晶シリコン粒子に対して0.07N/cmの圧力を加えて導電性基板1に接合させた例であり、サンプル2は700個の結晶シリコン粒子に対して0.06N/cmの圧力、サンプル3は700個の結晶シリコン粒子に対して0.05N/cmの圧力、サンプル4は700個の結晶シリコン粒子に対して0.04N/cmの圧力、サンプル5は700個の結晶シリコン粒子に対して0.03N/cmの圧力、サンプル6は700個の結晶シリコン粒子に対して0.02N/cmの圧力を加えた例である。 In Table 1, Sample 1 is an example in which a pressure of 0.07 N / cm 2 is applied to 700 crystalline silicon particles and bonded to the conductive substrate 1, and Sample 2 is 700 crystalline silicon particles. Pressure is 0.06 N / cm 2 for sample 3, sample N is 0.05 N / cm 2 for 700 crystalline silicon particles, and sample 4 is 0.04 N / cm 2 for 700 crystalline silicon particles sample 5 is an example of adding 700 of a pressure of 0.03 N / cm 2 relative to the crystal silicon grain, sample 6 for 700 of the crystalline silicon grains pressure 0.02 N / cm 2.

また、サンプル7,8は、結晶シリコン粒子に対して、導電性基板1への接合時に圧力を加えていない例である。

Figure 2006156874
Samples 7 and 8 are examples in which no pressure is applied to the crystalline silicon particles during bonding to the conductive substrate 1.
Figure 2006156874

表1より、導電性基板1と結晶シリコン粒子とを加熱溶着させて生成した合金層(接合部)と結晶シリコン粒子の残部との境界面が、導電性基板1の一主面と略平行であるか、または境界面の中央部が外周部よりも導電性基板側1に位置していることによって、信頼性評価後のクラック進展は確認されず、光電変換効率劣化率も低減した。   From Table 1, the boundary surface between the alloy layer (bonding portion) formed by heat-welding the conductive substrate 1 and the crystalline silicon particles and the remainder of the crystalline silicon particles is substantially parallel to one main surface of the conductive substrate 1. In some cases, or because the central portion of the boundary surface is located closer to the conductive substrate side 1 than the outer peripheral portion, crack progress after reliability evaluation was not confirmed, and the photoelectric conversion efficiency deterioration rate was also reduced.

なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更を施すことは何等差し支えない。   The present invention is not limited to the above-described embodiments and examples, and various modifications may be made without departing from the scope of the present invention.

本発明の光電変換装置について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the photoelectric conversion apparatus of this invention. (a)〜(e)は、本発明の光電変換装置における結晶半導体粒子の接合部の境界面の各種の例を示す断面図である。(A)-(e) is sectional drawing which shows the various examples of the interface of the junction part of the crystalline semiconductor particle in the photoelectric conversion apparatus of this invention. 比較例における光電変換装置の結晶半導体粒子の接合部の境界面の形状を示す断面図である。It is sectional drawing which shows the shape of the interface of the junction part of the crystal semiconductor particle of the photoelectric conversion apparatus in a comparative example.

符号の説明Explanation of symbols

1・・・導電性基板
2・・・合金層
3・・・絶縁物質
4・・・一方導電型の結晶半導体粒子
5・・・他方導電型の半導体部
6・・・透光性導体層
DESCRIPTION OF SYMBOLS 1 ... Conductive board | substrate 2 ... Alloy layer 3 ... Insulating substance 4 ... One-conductivity type crystalline semiconductor particle 5 ... Other conductive-type semiconductor part 6 ... Translucent conductor layer

Claims (1)

導電性基板の一主面に、表面に他方導電型の半導体部が設けられた一方導電型の結晶半導体粒子が多数個、下部を前記導電性基板に接合され、隣接するもの同士の間に絶縁物質を介在させるとともに上部を前記絶縁物質から露出させて配置されて、これら結晶半導体粒子に透光性導体層が設けられた光電変換装置において、前記結晶半導体粒子は、前記導電性基板との接合部とその残部との境界面が前記導電性基板の一主面と略平行であるか、または前記境界面の中央部が外周部よりも前記導電性基板側に位置していることを特徴とする光電変換装置。 A large number of one-conductivity-type crystalline semiconductor particles each having a semiconductor portion of the other conductivity type provided on the surface on one main surface of the conductive substrate, and the lower part is bonded to the conductive substrate and insulated between adjacent ones In the photoelectric conversion device in which a substance is interposed and an upper portion is exposed from the insulating substance, and the crystal semiconductor particles are provided with a light-transmitting conductive layer, the crystal semiconductor particles are bonded to the conductive substrate. The boundary surface between the portion and the remaining portion is substantially parallel to one main surface of the conductive substrate, or the central portion of the boundary surface is located closer to the conductive substrate than the outer peripheral portion. Photoelectric conversion device.
JP2004348403A 2004-11-17 2004-12-01 Photoelectric conversion device Withdrawn JP2006156874A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004348403A JP2006156874A (en) 2004-12-01 2004-12-01 Photoelectric conversion device
US11/283,609 US20060118898A1 (en) 2004-11-17 2005-11-17 Photoelectric conversion device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348403A JP2006156874A (en) 2004-12-01 2004-12-01 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2006156874A true JP2006156874A (en) 2006-06-15

Family

ID=36634740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348403A Withdrawn JP2006156874A (en) 2004-11-17 2004-12-01 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2006156874A (en)

Similar Documents

Publication Publication Date Title
JP3963924B2 (en) Chalcopyrite solar cell
JP4287473B2 (en) Method for manufacturing solar cell element
JP4969785B2 (en) Chalcopyrite solar cell and method for manufacturing the same
JP4695850B2 (en) Chalcopyrite solar cell
JP4681352B2 (en) Chalcopyrite solar cell
US6620996B2 (en) Photoelectric conversion device
TW201203588A (en) Solar cell including sputtered reflective layer and method of manufacture thereof
US20060118898A1 (en) Photoelectric conversion device and method of manufacturing the same
JP2006156874A (en) Photoelectric conversion device
KR101251870B1 (en) Solar cell apparatus and method of fabricating the same
JP4646724B2 (en) Chalcopyrite solar cell
JP2013219118A (en) Solar battery and manufacturing method of the same
JP4969337B2 (en) Photoelectric conversion device
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP2004259835A (en) Photoelectric converter and its manufacturing method
JP2011249494A (en) Photoelectric conversion device
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP2006147685A (en) Photoelectric converter, manufacturing method thereof, and optical power generator
JP2003133566A (en) Photoelectric converter
JP5057745B2 (en) Method for manufacturing photoelectric conversion device
JP2002141519A (en) Photoelectric conversion device
JP2003318426A (en) Photoelectric converter and method of manufacturing same
JP2002222967A (en) Photoelectric converter
JP2003197933A (en) Photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909