JP2003318426A - Photoelectric converter and method of manufacturing same - Google Patents

Photoelectric converter and method of manufacturing same

Info

Publication number
JP2003318426A
JP2003318426A JP2002123939A JP2002123939A JP2003318426A JP 2003318426 A JP2003318426 A JP 2003318426A JP 2002123939 A JP2002123939 A JP 2002123939A JP 2002123939 A JP2002123939 A JP 2002123939A JP 2003318426 A JP2003318426 A JP 2003318426A
Authority
JP
Japan
Prior art keywords
substrate
aluminum
layer
photoelectric conversion
semiconductor particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002123939A
Other languages
Japanese (ja)
Inventor
Jun Fukuda
潤 福田
Koichi Hayashi
孝一 林
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002123939A priority Critical patent/JP2003318426A/en
Publication of JP2003318426A publication Critical patent/JP2003318426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable photoelectric converter by relieving difference of thermal expansion of a material of substrate, a material of insulation layer and crystalline semiconductor particle with plastic deformation of aluminum (Al) and suppressing generation of warpage and crack. <P>SOLUTION: The photoelectric converter comprises a large amount of crystalline semiconductor particle 5 of a first conductivity type provided on a substrate as one electrode layer, an insulation substance 4 provided in the space among the crystalline semiconductor particle 5 and a semiconductor layer 5 of a second conductivity type formed on the crystalline semiconductor particle 5. The substrate 1 is formed of an aluminum substance 2 and this substrate 1 is moreover formed at least of two layers of an alloy layer 3 which is mainly composed of aluminum (Al) and silicon (Si) and the aluminum (Al) substance layer 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽光発電に使用さ
れる光電変換装置とその製造方法に関し、特に結晶半導
体粒子を用いた光電変換装置とその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device used for photovoltaic power generation and a manufacturing method thereof, and more particularly to a photoelectric conversion device using crystalline semiconductor particles and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の結晶半導体粒子を用いた光電変換
装置を図2、図3、図4に示す。図2に示すように、米
国特許第4514580号公報には、鋼基板11の表面
にアルミニウム膜12を形成し、このアルミニウム膜1
2に粉砕シリコン粒子13を接合し、絶縁体層4、n形
シリコン部14、透明導電層15を順次形成した光電変
換装置が開示されている。
2. Description of the Related Art A conventional photoelectric conversion device using crystalline semiconductor particles is shown in FIGS. As shown in FIG. 2, in US Pat. No. 4,514,580, an aluminum film 12 is formed on the surface of a steel substrate 11, and the aluminum film 1 is formed.
There is disclosed a photoelectric conversion device in which pulverized silicon particles 13 are bonded to 2 and an insulator layer 4, an n-type silicon portion 14, and a transparent conductive layer 15 are sequentially formed.

【0003】また、図3に示すように、特開昭61−1
24179号公報には、第1のアルミニウム箔21に開
口部を形成し、その開口部にp形シリコン部22の上に
n形表皮部23を持つシリコン球を結合し、球の裏側の
n形表皮部23を除去し、アルミニウム箔21上に酸化
物層24をコーティングし、球裏側のp形シリコン部2
2近傍の酸化物層24を除去し、第2のアルミニウム箔
25と接合する光電変換装置が開示されている。
Further, as shown in FIG.
In Japanese Patent No. 24179, an opening is formed in a first aluminum foil 21, and a silicon sphere having an n-type skin portion 23 on a p-type silicon portion 22 is bonded to the opening to form an n-type on the back side of the sphere. The skin 23 is removed, the aluminum foil 21 is coated with an oxide layer 24, and the p-type silicon portion 2 on the back side of the ball is removed.
There is disclosed a photoelectric conversion device in which the oxide layer 24 in the vicinity of 2 is removed and the second aluminum foil 25 is bonded.

【0004】また、図4に示すように、特許26418
00号公報には、ステンレス基板32上に低融点のSn
層31を形成し、このSn層31上に第1導電形の結晶
半導体粒子5を配設し、この結晶半導体粒子5上に第2
導電形の半導体層6をSn層31との間に絶縁層4を介
して形成する光電変換装置が開示されている。なお、図
4中、7は透明導電膜である。
Further, as shown in FIG. 4, Japanese Patent No. 26418
No. 00 discloses a low melting point Sn on a stainless steel substrate 32.
The layer 31 is formed, the crystal semiconductor particles 5 of the first conductivity type are disposed on the Sn layer 31, and the second semiconductor layer 5 is formed on the crystal semiconductor particles 5.
A photoelectric conversion device is disclosed in which a conductive semiconductor layer 6 is formed between the semiconductor layer 6 and the Sn layer 31 with an insulating layer 4 interposed therebetween. In addition, in FIG. 4, 7 is a transparent conductive film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図2に
示す米国特許第4514580号公報の光電変換装置で
は、基板として鋼基板11の表面にアルミニウム膜12
を形成し、基板11上に絶縁層4と粉砕シリコン粒子1
3を配置した構成であり、絶縁層4にガラス質層を選択
した場合、基板11、絶縁層4、結晶半導体粒子12の
熱膨張率の違いから製造工程中に基板11にソリが発生
したり、また、使用環境下での温度サイクルで結晶半導
体粒子13や絶縁層4にクラックが発生するという問題
があった。
However, in the photoelectric conversion device of US Pat. No. 4,514,580 shown in FIG. 2, the aluminum film 12 is formed on the surface of the steel substrate 11 as a substrate.
To form the insulating layer 4 and the crushed silicon particles 1 on the substrate 11.
3 is arranged, and when a glassy layer is selected as the insulating layer 4, warpage may occur in the substrate 11 during the manufacturing process due to the difference in the thermal expansion coefficient between the substrate 11, the insulating layer 4, and the crystalline semiconductor particles 12. Further, there is a problem that cracks occur in the crystalline semiconductor particles 13 and the insulating layer 4 due to the temperature cycle under the use environment.

【0006】また、図3に示す特開昭61−12417
9号公報の光電変換素子では、基板としてアルミニウム
箔21を使用し、基板21上に酸化物から成る絶縁層2
4とp形シリコン部22を配置した構成であり、同様に
基板21のソリやp形シリコン部22や絶縁層24にク
ラックが発生するという問題があった。
Further, Japanese Patent Laid-Open No. 61-2417 shown in FIG.
In the photoelectric conversion element disclosed in Japanese Patent Publication No. 9, an aluminum foil 21 is used as a substrate, and an insulating layer 2 made of oxide is formed on the substrate 21.
4 and the p-type silicon portion 22 are arranged, and similarly, there is a problem that the warp of the substrate 21, the p-type silicon portion 22 and the insulating layer 24 are cracked.

【0007】また、図4に示す特許2641800号公
報の光電変換装置においては、ステンレスから成る基板
32上に低融点のSn層31を形成し、この基板32上
に絶縁層4と第1導電形の結晶半導体粒子5を配置した
構成であり、上記と同様に基板21のソリやp形シリコ
ン部22及び絶縁層24にクラックが発生するという問
題があった。
In the photoelectric conversion device of Japanese Patent No. 2641800 shown in FIG. 4, a Sn layer 31 having a low melting point is formed on a substrate 32 made of stainless steel, and the insulating layer 4 and the first conductivity type are formed on the substrate 32. In the same manner as described above, there is a problem that the warp of the substrate 21, the p-type silicon portion 22 and the insulating layer 24 are cracked.

【0008】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は、基板となる材料
と絶縁層となる材料と結晶半導体粒子との熱膨張差をア
ルミニウム(Al)の塑性変形で緩和し、ソリやクラッ
クの発生を抑えて高信頼性の光電変換装置を提供するこ
とにある。
The present invention has been made in view of the above problems in the prior art, and an object thereof is to reduce the difference in thermal expansion between the material of the substrate, the material of the insulating layer and the crystalline semiconductor particles of aluminum (Al). An object of the present invention is to provide a highly reliable photoelectric conversion device that is relaxed by plastic deformation and suppresses warpage and cracks.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光電変換装置によれば、一方の電極層とな
る基板上に、第1導電形の結晶半導体粒子を多数配設
し、前記結晶半導体粒子間に絶縁物質を介在させ、前記
結晶半導体粒子上に第2導電形の半導体層を形成した光
電変換装置に於いて、前記基板が純度98%以上のアル
ミニウムから成り、かつ前記基板の表面にアルミニウム
(Al)と珪素(Si)を主成分とする合金層が形成さ
れていることを特徴とする。
In order to achieve the above object, according to the photoelectric conversion device of the present invention, a large number of first-conductivity-type crystalline semiconductor particles are provided on a substrate to be one electrode layer. In a photoelectric conversion device in which an insulating material is interposed between the crystalline semiconductor particles and a semiconductor layer of the second conductivity type is formed on the crystalline semiconductor particles, the substrate is made of aluminum having a purity of 98% or more, and An alloy layer containing aluminum (Al) and silicon (Si) as main components is formed on the surface of the substrate.

【0010】上記光電変換装置では、前記基板厚みが
0.1mm以上であることが望ましい。
In the above photoelectric conversion device, the substrate thickness is preferably 0.1 mm or more.

【0011】また、上記光電変換装置では、前記絶縁物
質がガラス質であることが望ましい。
In the above photoelectric conversion device, it is desirable that the insulating material is glassy.

【0012】また、請求項5に係る光電変換装置の製造
方法では、アルミニウム基板上に結晶半導体粒子を多数
配設し、アルミニウム基板と結晶半導体粒子を加熱溶着
し、この溶着部分にアルミニウム(Al)と珪素(S
i)を主成分とする合金層を生成することを特徴とす
る。
In the method for manufacturing a photoelectric conversion device according to a fifth aspect of the present invention, a large number of crystal semiconductor particles are arranged on an aluminum substrate, the aluminum substrate and the crystal semiconductor particles are heat-welded, and aluminum (Al) is attached to the welded portion. And silicon (S
It is characterized in that an alloy layer containing i) as a main component is generated.

【0013】[0013]

【発明の実施の形態】以下、図面に基づいて本発明を詳
細に説明する。なお、本発明は以下の例に限定されるも
のではなく、本発明の主旨を逸脱しない範囲で変更・改
良を施すことは何ら差し支えない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. The present invention is not limited to the following examples, and modifications and improvements can be made without departing from the spirit of the present invention.

【0014】図1は、本発明の光電変換装置の一実施形
態を示す図であり、1は基板、2はアルミニウム、3は
アルミニウムとシリコンの合金層、4は絶縁物質、5は
結晶半導体粒子、6は第2導電形半導体層、7は保護層
である。
FIG. 1 is a diagram showing an embodiment of a photoelectric conversion device of the present invention, in which 1 is a substrate, 2 is aluminum, 3 is an alloy layer of aluminum and silicon, 4 is an insulating material, and 5 is crystalline semiconductor particles. , 6 is a second conductivity type semiconductor layer, and 7 is a protective layer.

【0015】ここで、アルミニウム2の純度は98%以
上のものを用いる。アルミニウム純度が98%より悪く
なると、材料物性である耐力値が上昇し、塑性変形し難
くなり、基板1と絶縁物質の熱膨張率の差から基板1に
反り等が発生する。
Here, the aluminum 2 having a purity of 98% or more is used. If the aluminum purity is lower than 98%, the proof stress, which is a physical property of the material, increases and it becomes difficult to plastically deform, and the substrate 1 is warped due to the difference in thermal expansion coefficient between the substrate 1 and the insulating material.

【0016】基板1は、アルミニウム層2の一方の表層
に珪素(Si)から成る結晶半導体粒子5を溶着するこ
とによって、アルミニウム(Al)と珪素(Si)を主
成分とする合金層3を形成し、アルミニウム2部分と合
金層3部分を有する基板1となる。アルミニウム(A
l)と珪素(Si)を主成分とする合金層3とアルミニ
ウム(Al)層2の境界には、アルミニウム(Al)と
珪素(Si)の合金層3の生成を制御するためにバリア
層として任意の薄肉中間層(不図示)を設けることも可
能である。
The substrate 1 is formed with an alloy layer 3 containing aluminum (Al) and silicon (Si) as main components by welding crystalline semiconductor particles 5 made of silicon (Si) to one surface layer of the aluminum layer 2. Then, the substrate 1 having the aluminum 2 part and the alloy layer 3 part is obtained. Aluminum (A
l) a barrier layer for controlling the generation of the alloy layer 3 of aluminum (Al) and silicon (Si) at the boundary between the alloy layer 3 mainly containing silicon (Si) and the aluminum (Al) layer 2. It is also possible to provide an optional thin intermediate layer (not shown).

【0017】基板1の厚みとしては、0.1mm以上で
あることが望ましい。基板1の厚みが0.1mmより小
さいとアルミニウム(Al)と珪素(Si)を主成分と
する合金層3とアルミニウム(Al)質層2の2層以上
を有する基板1にすることが困難であるため、好ましく
ない。この基板1の厚みは0.2mm以上であることが
好ましい。 絶縁体4は、正極負極の分離を行うための
絶縁材料からなる。例えば酸化珪素(SiO2)、酸化
アルミニウム(Al23)、酸化鉛(PbO)、酸化硼
素(B23)、酸化亜鉛(ZnO)等を任意な成分とす
るガラスを用いた絶縁体等がある。
The thickness of the substrate 1 is preferably 0.1 mm or more. If the thickness of the substrate 1 is smaller than 0.1 mm, it is difficult to form the substrate 1 having two or more layers of the alloy layer 3 containing aluminum (Al) and silicon (Si) as main components and the aluminum (Al) layer 2. Therefore, it is not preferable. The thickness of this substrate 1 is preferably 0.2 mm or more. The insulator 4 is made of an insulating material for separating the positive electrode and the negative electrode. For example, an insulator using glass containing silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), lead oxide (PbO), boron oxide (B 2 O 3 ), zinc oxide (ZnO), etc. as an arbitrary component. Etc.

【0018】第1導電形結晶半導体粒子5は、珪素(S
i)にp形を呈する硼素(B)、アルミニウム(A
l)、ガリウム(Ga)等、又はn形を呈するリン
(P)、砒素(As)等が微量元素含まれているもので
ある。結晶半導体粒子5の形状としては多角形を持つも
の、曲面を持つもの等がある。結晶半導体粒子5の粒径
としては、0.1〜0.6mmがよく、0.6mmを越
えると従来型の結晶板系の光電変換素子の珪素(Si)
使用量と変わらなくなり、結晶半導体粒子を用いるメリ
ットが少なくなる。また、0.1mmよりも小さいと光
透過等の光エネルギーロスが大きくなり、光電変換効率
が低下する。
The first conductivity type crystal semiconductor particles 5 are made of silicon (S
i) p-type boron (B), aluminum (A)
1), gallium (Ga), etc., or phosphorus (P), arsenic (As), etc. exhibiting n-type are contained in trace elements. The crystal semiconductor particles 5 may have a polygonal shape, a curved surface, or the like. The grain size of the crystalline semiconductor particles 5 is preferably 0.1 to 0.6 mm, and if it exceeds 0.6 mm, silicon (Si) of the conventional crystal plate type photoelectric conversion element is used.
The amount is the same as the amount used, and the merit of using crystalline semiconductor particles is reduced. On the other hand, if it is smaller than 0.1 mm, the light energy loss such as light transmission increases, and the photoelectric conversion efficiency decreases.

【0019】第2導電形半導体層6は、気相成長法等に
より例えばシラン化合物の気相にn形を呈するリン系化
合物の気相、又はp形を呈する硼素系化合物の気相を微
量導入して形成する。第2導電系半導体層は、シリコ
ン、シリコンカーバイト、ゲルマニウム等からなる。な
お、半導体層6は、非晶質、単結晶質、多結晶質、又は
微結晶質いずれを用いてもよい。半導体層6中の微量元
素の濃度は、例えば1×1016〜1021atm/cm3
程度である。膜厚は10nm以上500nm以下が好適
である。膜厚が10nm以下の時、膜欠陥によるリーク
が増大し変換効率が低下するため好ましくなく、膜厚が
500nm以上の時、第2導電形半導体層6の光吸収が
大きくなり変換効率が低下する為好ましくない。
The second conductivity type semiconductor layer 6 is introduced by a vapor phase growth method or the like, for example, by introducing a small amount of a vapor phase of a phosphorus compound which exhibits an n-type or a vapor phase of a boron compound which exhibits a p-type to the vapor phase of a silane compound. To form. The second conductive semiconductor layer is made of silicon, silicon carbide, germanium or the like. The semiconductor layer 6 may be amorphous, single crystalline, polycrystalline, or microcrystalline. The concentration of the trace element in the semiconductor layer 6 is, for example, 1 × 10 16 to 10 21 atm / cm 3
It is a degree. The film thickness is preferably 10 nm or more and 500 nm or less. When the film thickness is 10 nm or less, leakage due to film defects increases and conversion efficiency decreases, which is not preferable. When the film thickness is 500 nm or more, light absorption of the second conductivity type semiconductor layer 6 increases and conversion efficiency decreases. Therefore, it is not preferable.

【0020】保護膜7は透明体の特性を持つものがよ
く、例えば酸化錫、酸化亜鉛、酸化インジウム、酸化チ
タン、酸化珪素、酸化セシウム、酸化アルミニウム、窒
化珪素、酸化チタン、酸化タンタル、酸化イットリウム
等を単一組成又は複数組成で単層又は組み合わせてCV
D法やPVD法等により半導体層6上に形成する。保護
膜7は光の入射面に接しているために透明性が必要であ
る。なお、保護膜7の膜厚を最適化すれば反射防止膜と
しての機能も期待できる。
It is preferable that the protective film 7 has a characteristic of a transparent body, for example, tin oxide, zinc oxide, indium oxide, titanium oxide, silicon oxide, cesium oxide, aluminum oxide, silicon nitride, titanium oxide, tantalum oxide, yttrium oxide. CV with a single composition or multiple compositions in a single layer or in combination
It is formed on the semiconductor layer 6 by the D method, the PVD method, or the like. Since the protective film 7 is in contact with the light incident surface, it needs to be transparent. If the thickness of the protective film 7 is optimized, the function as an antireflection film can be expected.

【0021】なお、直列抵抗値を低くするために半導体
層6又は保護膜7の上に一定間隔のフィンガーやバスバ
ーといったパターン電極を設け、変換効率を向上させる
ことも可能である。
It is also possible to improve the conversion efficiency by providing pattern electrodes such as fingers or bus bars at regular intervals on the semiconductor layer 6 or the protective film 7 in order to reduce the series resistance value.

【0022】次に、本発明の製造方法を工程順に説明す
る。アルミニウム基板上に第一導電形結晶半導体粒子5
を多数配設し、580℃〜660℃で1〜20分加熱し
て第一導電形結晶半導体粒子5とアルミニウム基板を溶
着させ、溶着部分にアルミニウム(Al)と珪素(S
i)を主成分とする合金層3を形成する。アルミニウム
基板上に第一導電形結晶半導体粒子5を配設する場合、
第一導電形結晶半導体粒子5の固定の為に、樹脂等をア
ルミニウム基板と第一導電形結晶半導体粒子5の間に介
在させ、加熱溶着させることも可能である。
Next, the manufacturing method of the present invention will be described in the order of steps. First-conductivity-type crystalline semiconductor particles 5 on an aluminum substrate
And a first conductivity type crystal semiconductor particle 5 and an aluminum substrate are welded to each other by heating at 580 ° C. to 660 ° C. for 1 to 20 minutes, and aluminum (Al) and silicon (S
An alloy layer 3 containing i) as a main component is formed. When the first conductivity type crystalline semiconductor particles 5 are arranged on an aluminum substrate,
In order to fix the first-conductivity-type crystal semiconductor particles 5, it is possible to interpose a resin or the like between the aluminum substrate and the first-conductivity-type crystal semiconductor particles 5 and heat-weld them.

【0023】その後、絶縁物質4を配設した第一導電形
結晶半導体粒子5間に、下面側が埋まる程度の高さに充
填形成し焼成固化させる。アルミニウム基板の塑性変形
を助成するために絶縁物質焼成時に基板反りを抑制する
様に機械的に加重することも可能である。また、絶縁物
質4はガラス質であり、ガラス質とは無機分と有機分の
混合系での構わない。
After that, the insulating material 4 is filled and formed between the first-conductivity-type crystalline semiconductor particles 5 having a height such that the lower surface side is filled, and then baked and solidified. In order to promote plastic deformation of the aluminum substrate, it is also possible to mechanically add weight so as to suppress substrate warpage during firing of the insulating material. Further, the insulating material 4 is vitreous, and the vitreous substance may be a mixed system of inorganic and organic components.

【0024】その後、第二導電形半導体層6、保護膜7
を順次形成し本発明の光電変換装置を作製する。
After that, the second conductivity type semiconductor layer 6 and the protective film 7 are formed.
Are sequentially formed to manufacture the photoelectric conversion device of the present invention.

【0025】[0025]

【実施例】次に、本発明の光電変換装置の実施例を説明
する。表1に示すように、150mm×150mmで数
種の厚みのアルミニウム(Al)質基板を用意し、その
上に直径約0.3mmのp形シリコン粒子を多数配置し
て600℃の温度で1〜10分加熱してシリコン粒子を
基板1に接合させ、アルミニウム(Al)と珪素(S
i)を主成分とする合金層3とアルミニウム(Al)質
層を有する基板1を作製した。絶縁体層としてガラスペ
ーストを用いてシリコン粒子間に約150μmの厚みに
なるように塗布して、基板1を塑性変形させるためにお
もしによる加重をして焼成した。ガラスペーストに用い
たガラスは軟化温度が約500℃付近のものを使用し
た。そして、上記シリコン粒子と絶縁体層上にn形非晶
質シリコン層を約40nmの厚みに形成し、更に保護膜
として酸化亜鉛膜を形成した。
EXAMPLES Next, examples of the photoelectric conversion device of the present invention will be described. As shown in Table 1, an aluminum (Al) substrate having a size of 150 mm × 150 mm and several kinds of thickness is prepared, and a large number of p-type silicon particles having a diameter of about 0.3 mm are arranged on the substrate, and the temperature is set to 600 ° C. The silicon particles are bonded to the substrate 1 by heating for 10 minutes, and aluminum (Al) and silicon (S
A substrate 1 having an alloy layer 3 containing i) as a main component and an aluminum (Al) layer was prepared. A glass paste was used as an insulating layer so as to have a thickness of about 150 μm between silicon particles, and the substrate 1 was fired with a weight applied to it for plastic deformation. The glass used for the glass paste had a softening temperature of about 500 ° C. Then, an n-type amorphous silicon layer having a thickness of about 40 nm was formed on the silicon particles and the insulating layer, and a zinc oxide film was further formed as a protective film.

【0026】以上のようにして作製した試料の反り及び
初期と−40℃〜90℃の温度サイクル200サイクル
後の結晶半導体粒子及びガラス絶縁層を100倍の双眼
顕微鏡でクラックの観察を行い、クラックの発生してい
るものは×、クラックの発生していないものは○とし、
その結果を表1に示す。
The warp of the sample produced as described above and the initial stage and the crystalline semiconductor particles and the glass insulating layer after the temperature cycle of −40 ° C. to 90 ° C. for 200 cycles were observed with a 100 × binocular microscope for cracks. If there is a crack, it is ×, if there is no crack, it is ○,
The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】サンプルNo.1、2の基板では、反り量
が17.1〜18.6mmと非常に大きく、ガラス絶縁
層のクラックも多数発生し、ガラス絶縁層の剥離も部分
的に発生した。サンプルNo.3、4は、反り量は6.
5〜9.2mmで若干大きいがガラス絶縁層のクラック
は初期、温度サイクル後共に確認できなかった。一方、
サンプルNo.5〜9では、反り量は5mm以下と非常
に小さく抑えることができ、またガラス絶縁層のクラッ
クも初期、温度サイクル後共に確認できなかった。
Sample No. In the No. 1 and No. 2 substrates, the warpage amount was extremely large at 17.1 to 18.6 mm, many cracks were generated in the glass insulating layer, and peeling of the glass insulating layer was also partially generated. Sample No. The warpage amount of 3 and 4 is 6.
Although it was slightly large at 5 to 9.2 mm, cracks in the glass insulating layer could not be confirmed both at the initial stage and after the temperature cycle. on the other hand,
Sample No. In Nos. 5 to 9, the amount of warpage could be suppressed to a very small value of 5 mm or less, and cracks in the glass insulating layer could not be confirmed both at the initial stage and after the temperature cycle.

【0029】これにより、本発明の光電変換素子は、高
い信頼性を維持することができる光電変換装置となるこ
とが確認できた。なお、以上はあくまで本発明の実施の
形態の例示であって、本発明はこれらに限定されるもの
ではなく、本発明の要旨を逸脱しない範囲で種々の変更
や改良を加えることは何ら差し支えない。
From this, it was confirmed that the photoelectric conversion element of the present invention was a photoelectric conversion device capable of maintaining high reliability. Note that the above is merely an example of the embodiment of the present invention, and the present invention is not limited thereto, and various modifications and improvements may be added without departing from the gist of the present invention. .

【0030】[0030]

【発明の効果】以上のように、本発明の光電変換装置に
よれば、一方の電極層となる基板上に、第1導電形の結
晶半導体粒子を多数配設し、この結晶半導体粒子間に絶
縁物質を介在させ、この結晶半導体粒子上に第2導電形
の半導体層を形成した光電変換装置において、上記基板
がアルミニウムであることによって、アルミニウム基板
と絶縁物質の熱膨張差をアルミニウム(Al)の塑性変
形で緩和し、基板のソリ量を抑制し、温度サイクルによ
る結晶半導体粒子と絶縁層のクラックの発生を防止でき
る光電変換装置を提供することができる。
As described above, according to the photoelectric conversion device of the present invention, a large number of first-conductivity-type crystal semiconductor particles are provided on the substrate which is one of the electrode layers, and between the crystal semiconductor particles. In a photoelectric conversion device in which a semiconductor layer of the second conductivity type is formed on the crystalline semiconductor particles with an insulating material interposed, the substrate is made of aluminum, and the difference in thermal expansion between the aluminum substrate and the insulating material is aluminum (Al). It is possible to provide a photoelectric conversion device that can be relaxed by the plastic deformation, suppress the warp amount of the substrate, and prevent the generation of cracks in the crystalline semiconductor particles and the insulating layer due to the temperature cycle.

【0031】また、本発明の光電変換装置の製造方法に
よれば、アルミニウム基板上に結晶半導体粒子を多数配
設し、アルミニウム基板と結晶半導体粒子を加熱溶着
し、溶着部分である表層にアルミニウム(Al)と珪素
(Si)を主成分とする合金層を生成させたことから、
アルミニウム基板と絶縁物質の熱膨張差をアルミニウム
(Al)の塑性変形で緩和し、基板のソリ量を抑制し、
温度サイクルによる結晶半導体粒子と絶縁層のクラック
の発生を防止できる光電変換装置を提供することができ
る。
According to the method for manufacturing a photoelectric conversion device of the present invention, a large number of crystal semiconductor particles are arranged on an aluminum substrate, the aluminum substrate and the crystal semiconductor particles are heat-welded, and aluminum ( Since an alloy layer containing Al) and silicon (Si) as main components was generated,
The difference in thermal expansion between the aluminum substrate and the insulating material is mitigated by plastic deformation of aluminum (Al), and the warpage amount of the substrate is suppressed,
It is possible to provide a photoelectric conversion device capable of preventing the generation of cracks in the crystalline semiconductor particles and the insulating layer due to the temperature cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換装置の実施の形態の一例を示
す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a photoelectric conversion device of the present invention.

【図2】従来の光電変換装置の形態の一例を示す断面図
である。
FIG. 2 is a cross-sectional view showing an example of the form of a conventional photoelectric conversion device.

【図3】従来の光電変換装置の形態の他の例を示す断面
図である。
FIG. 3 is a cross-sectional view showing another example of the form of a conventional photoelectric conversion device.

【図4】従来の光電変換装置の形態の他の例を示す断面
図である。
FIG. 4 is a cross-sectional view showing another example of the form of a conventional photoelectric conversion device.

【符号の説明】[Explanation of symbols]

1・・・・基板 、2・・・・アルミニウム質
層、3・・・・合金層、4・・・・絶縁体層、5・・・
・第1導電形結晶質半導体粒子、6・・・・第2導電形
半導体層、7・・・・保護層
1 ... Substrate 2. Aluminum layer 3 ... Alloy layer 4 ... Insulator layer 5 ...
・ First conductivity type crystalline semiconductor particles, 6 ... Second conductivity type semiconductor layer, 7 ... Protective layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA02 AA03 BA18 CA20 CB12 CB13 CB29 CB30 DA02 DA09 EA18 FA06 GA02 GA06 GA20 HA03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5F051 AA02 AA03 BA18 CA20 CB12                       CB13 CB29 CB30 DA02 DA09                       EA18 FA06 GA02 GA06 GA20                       HA03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極層となる基板上に、第1導電
形の結晶半導体粒子を多数配設し、前記結晶半導体粒子
間に絶縁物質を介在させ、前記結晶半導体粒子上に第2
導電形の半導体層を形成した光電変換装置に於いて、前
記基板が純度98%以上のアルミニウムから成り、かつ
前記基板の表面にアルミニウム(Al)と珪素(Si)
を主成分とする合金層が形成されていることを特徴とす
る光電変換装置。
1. A large number of crystal semiconductor particles of the first conductivity type are provided on a substrate to be one electrode layer, an insulating material is interposed between the crystal semiconductor particles, and a second semiconductor is formed on the crystal semiconductor particles.
In a photoelectric conversion device having a conductive semiconductor layer, the substrate is made of aluminum having a purity of 98% or more, and aluminum (Al) and silicon (Si) are formed on the surface of the substrate.
A photoelectric conversion device, wherein an alloy layer containing as a main component is formed.
【請求項2】 前記基板厚みが0.1mm以上であるこ
とを特徴とする請求項1に記載の光電変換装置。
2. The photoelectric conversion device according to claim 1, wherein the substrate thickness is 0.1 mm or more.
【請求項3】 前記絶縁物質がガラス質であることを特
徴とする請求項1に記載の光電変換装置。
3. The photoelectric conversion device according to claim 1, wherein the insulating material is glassy.
【請求項4】 前記結晶半導体粒子の粒径が0.1〜
0.6mmであることを特徴とする請求項1に記載の光
電変換装置。
4. The crystalline semiconductor particles have a particle size of 0.1 to 0.1.
It is 0.6 mm, The photoelectric conversion apparatus of Claim 1 characterized by the above-mentioned.
【請求項5】 アルミニウム基板上に結晶半導体粒子を
多数配設し、アルミニウム基板と結晶半導体粒子を加熱
溶着し、この溶着部分にアルミニウム(Al)と珪素
(Si)を主成分とする合金層を生成させ、その後結晶
半導体粒子間に絶縁物質を充填し、第2導電形半導体
層、保護膜を順次形成したことを特徴とする光電変換装
置の製造方法。
5. A large number of crystal semiconductor particles are provided on an aluminum substrate, the aluminum substrate and the crystal semiconductor particles are heat-welded, and an alloy layer containing aluminum (Al) and silicon (Si) as main components is formed on the welded portion. A method for manufacturing a photoelectric conversion device, wherein the second conductive type semiconductor layer and the protective film are sequentially formed by generating the crystalline semiconductor particles and then filling the crystalline semiconductor particles with an insulating material.
JP2002123939A 2002-04-25 2002-04-25 Photoelectric converter and method of manufacturing same Pending JP2003318426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123939A JP2003318426A (en) 2002-04-25 2002-04-25 Photoelectric converter and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123939A JP2003318426A (en) 2002-04-25 2002-04-25 Photoelectric converter and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2003318426A true JP2003318426A (en) 2003-11-07

Family

ID=29539086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123939A Pending JP2003318426A (en) 2002-04-25 2002-04-25 Photoelectric converter and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2003318426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159879A (en) * 2006-12-25 2008-07-10 Kyocera Corp Conductive paste for photoelectric conversion element, photoelectric conversion element, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159879A (en) * 2006-12-25 2008-07-10 Kyocera Corp Conductive paste for photoelectric conversion element, photoelectric conversion element, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5090716B2 (en) Method for producing single crystal silicon solar cell
TWI485873B (en) A single crystal silicon solar cell manufacturing method and a single crystal silicon solar cell
EP1935034B1 (en) Method of manufacturing n-type multicrystalline silicon solar cells
US6620996B2 (en) Photoelectric conversion device
JP2008112843A (en) Process for manufacturing singly crystal silicon solar cell and single crystal silicon solar cell
JP2008112848A (en) Process for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
US20020036009A1 (en) Photoelectric conversion device and manufacturing method thereof
JP3679771B2 (en) Photovoltaic device and method for manufacturing photovoltaic device
KR20130033348A (en) Photovoltaic cell
JP2003318426A (en) Photoelectric converter and method of manufacturing same
JP4955367B2 (en) Method for producing single crystal silicon solar cell
JP2013539242A (en) Solar cell and manufacturing method thereof
JP2001313401A (en) Photoelectric conversion device
JP2008159920A (en) Conductive paste for photoelectric conversion device, the photoelectric conversion device, and method of constructing the photoelectric conversion device
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP2003197933A (en) Photoelectric converter
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JP2003133566A (en) Photoelectric converter
JP5057745B2 (en) Method for manufacturing photoelectric conversion device
JP2005159168A (en) Photoelectric converter and its manufacturing method
JP2002016270A (en) Photoelectric conversion device
JP2002141519A (en) Photoelectric conversion device
JP2006156874A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701