JP2006156581A - Photoelectric conversion module - Google Patents

Photoelectric conversion module Download PDF

Info

Publication number
JP2006156581A
JP2006156581A JP2004342826A JP2004342826A JP2006156581A JP 2006156581 A JP2006156581 A JP 2006156581A JP 2004342826 A JP2004342826 A JP 2004342826A JP 2004342826 A JP2004342826 A JP 2004342826A JP 2006156581 A JP2006156581 A JP 2006156581A
Authority
JP
Japan
Prior art keywords
solar cell
photoelectric conversion
metal member
heat
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004342826A
Other languages
Japanese (ja)
Inventor
Kenji Tomita
賢時 富田
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004342826A priority Critical patent/JP2006156581A/en
Publication of JP2006156581A publication Critical patent/JP2006156581A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film laminate type solar cell module excellent in mechanical load strength and improved in photoelectric conversion efficiency by suppressing temperature rise. <P>SOLUTION: A solar cell module as the photoelectric conversion module comprises: a transparent substrate including a plate-shaped solar cell element 1 embedded therein; a protective layer 4 stacked on a principal surface located on the opposite side to a light receiving surface side of the transparent substrate; and a metal member 5 installed on the surface of the protective layer 4 such that it overlaps on the solar cell element 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽電池等の光電変換装置をモジュール化して成る光電変換モジュールに関する。   The present invention relates to a photoelectric conversion module formed by modularizing a photoelectric conversion device such as a solar cell.

近年、太陽電池等に用いられる光電変換装置は、環境に対する負荷が少ないエネルギー源として利用が増えている。さらに、光電変換装置に要請される課題として、光電変換効率等の性能面の向上、製造コスト低減等が挙げられ、これらの改善に向けた絶え間ない開発努力が続けられている。また、光電変換モジュールとして、耐候性はもちろん機械的な強度も要請されている。   In recent years, photoelectric conversion devices used for solar cells and the like have been increasingly used as energy sources with a low environmental load. Furthermore, the problems required for the photoelectric conversion device include improvement in performance such as photoelectric conversion efficiency, reduction in manufacturing cost, etc., and continuous development efforts for these improvements are continued. Further, as a photoelectric conversion module, not only weather resistance but also mechanical strength is required.

従来の太陽電池モジュールとしての光電変換モジュールの構成を図2に示す。強化白板ガラスから成るガラス板2の片方の主面に、光電変換素子としてシリコン多結晶基板型の太陽電池素子1をEVA樹脂中に埋め込んで成る透光性基板3を設け、透光性基板3のガラス板2と反対側の主面に樹脂製の保護層4を設けて熱硬化させ、周囲にアルミニウム製の枠を取り付けた太陽電池モジュールである。この太陽電池モジュールには、130km/時の風圧にも耐え得るように、2400Paの荷重に耐え得る機械的負荷強度が要求される。フィルムラミネート型の太陽電池モジュールでは、このような機械的負荷には耐えられないため、価格、重量の点で課題はあるものの利用されている大半の太陽電池モジュールは強化ガラスを用いたものとなっている。
実開1990−129745号公報 実用新案登録第3039163号公報 特開1999−37570号公報
The structure of the photoelectric conversion module as a conventional solar cell module is shown in FIG. On one main surface of the glass plate 2 made of tempered white plate glass, a translucent substrate 3 in which a solar cell element 1 of a silicon polycrystalline substrate type is embedded in an EVA resin as a photoelectric conversion element is provided. This is a solar cell module in which a protective layer 4 made of resin is provided on the main surface opposite to the glass plate 2 and thermally cured, and an aluminum frame is attached to the periphery. This solar cell module is required to have a mechanical load strength capable of withstanding a load of 2400 Pa so that it can withstand a wind pressure of 130 km / hour. Film-laminated solar cell modules cannot withstand such mechanical loads, so most of the solar cell modules in use are made of tempered glass, although there are problems in terms of price and weight. ing.
Japanese Utility Model Publication No. 1990-129745 Utility Model Registration No. 3039163 Japanese Unexamined Patent Publication No. 1999-37570

しかしながら、従来の光電変換モジュールにおいては、そのほとんどが強化ガラスを受光面側に配した構造となっているが、重量が重く、高価格であるという点で問題がある。   However, most conventional photoelectric conversion modules have a structure in which tempered glass is disposed on the light receiving surface side, but there is a problem in that the weight is heavy and the price is high.

また、太陽光を受光した光電変換モジュールは温度が上昇し、このため光電変換効率が大きく低下するという問題があった。この低下率は数十%に及んでおり、クリーンエネルギーが望ましい効率で発電し得ないという問題があった。   In addition, the photoelectric conversion module that receives sunlight has a problem that the temperature rises and the photoelectric conversion efficiency is greatly reduced. This reduction rate has reached several tens of percent, and there has been a problem that clean energy cannot be generated with the desired efficiency.

例えば、図2の太陽電池モジュールにおいては、太陽光はガラス板2側より入射し、発電するための15〜20%以外の光エネルギーは一部が熱となるため、太陽電池素子1の温度は上昇する。従来の構造では熱はガラス板2または裏面側の樹脂製の保護層4からの熱放散しかなく、しかもガラスおよび樹脂は熱伝導が金属に比べて極めて悪いので、よく晴れた日では太陽電池モジュールの基板温度が80℃近くまで上昇してしまう。市場の大半を占めるシリコン太陽電池においては、基板の作動温度が1℃上昇するごとに光電変換効率は0.5%低下するといわれている。測定温度25℃との温度差が55℃あるため、変換効率は27.5%低下する。その結果、太陽電池の光電変換効率15%が実質10.9%程度しか得られないことになってしまう。   For example, in the solar cell module of FIG. 2, sunlight enters from the glass plate 2 side, and light energy other than 15 to 20% for power generation partially becomes heat, so the temperature of the solar cell element 1 is To rise. In the conventional structure, heat is only dissipated from the glass plate 2 or the resin protective layer 4 on the back side, and since the heat conduction of glass and resin is extremely poor compared to that of metal, a solar cell module on a sunny day The substrate temperature increases to nearly 80 ° C. In silicon solar cells, which occupy most of the market, it is said that the photoelectric conversion efficiency decreases by 0.5% every time the operating temperature of the substrate increases by 1 ° C. Since the temperature difference from the measurement temperature of 25 ° C is 55 ° C, the conversion efficiency is reduced by 27.5%. As a result, the photovoltaic conversion efficiency of 15% of the solar cell can be obtained only about 10.9%.

したがって、本発明は、上記従来の技術の問題点に鑑みて完成されたものであり、その目的は、低価格で高強度の光電変換モジュールを得ることである。また、熱を効率的に伝導させて放散し、光電変換素子の温度上昇を防ぐことによって、本来の光電変換装置の能力を十分に発揮させ、高光電変換効率の光電変換モジュールを提供することである。   Therefore, the present invention has been completed in view of the problems of the conventional techniques described above, and an object thereof is to obtain a low-cost and high-intensity photoelectric conversion module. In addition, by efficiently conducting and dissipating heat and preventing the temperature rise of the photoelectric conversion element, the ability of the original photoelectric conversion device can be fully exerted, and a photoelectric conversion module with high photoelectric conversion efficiency can be provided. is there.

本発明の光電変換モジュールは、内部に板状の光電変換素子が埋め込まれている透光性基板と、該透光性基板の受光面側と反対側の主面に積層された保護層と、該保護層の表面に前記光電変換素子と重なるように設置された金属部材とを具備していることを特徴とする。   The photoelectric conversion module of the present invention includes a translucent substrate in which a plate-like photoelectric conversion element is embedded, a protective layer laminated on the main surface opposite to the light receiving surface side of the translucent substrate, A metal member is provided on the surface of the protective layer so as to overlap the photoelectric conversion element.

本発明の光電変換モジュールにおいて好ましくは、前記光電変換素子は、多数個の結晶半導体粒子を用いたものであることを特徴とする。   In the photoelectric conversion module of the present invention, preferably, the photoelectric conversion element uses a large number of crystal semiconductor particles.

また、本発明の光電変換モジュールにおいて好ましくは、前記金属部材は、放熱部材に接続されていることを特徴とする。   In the photoelectric conversion module of the present invention, preferably, the metal member is connected to a heat radiating member.

本発明の光電変換モジュールによれば、内部に板状の光電変換素子が埋め込まれている透光性基板と、透光性基板の受光面側と反対側の主面に積層された保護層と、保護層の表面に光電変換素子と重なるように設置された金属部材とを具備していることにより、例えばフィルムラミネート型の光電変換モジュールとして構成した場合に、金属部材によって強度が向上し保持される。また、熱伝導性の良好な金属部材によって光電変換素子の温度上昇を抑制することができ、光電変換素子の作動温度が高くなることに起因する光電変換効率の低下を防ぎ、発電能力ロスを減少させることによって、高光電変換効率の光電変換モジュールを提供することができる。   According to the photoelectric conversion module of the present invention, a translucent substrate in which a plate-like photoelectric conversion element is embedded, and a protective layer laminated on the main surface opposite to the light receiving surface side of the translucent substrate, By providing a metal member installed on the surface of the protective layer so as to overlap the photoelectric conversion element, for example, when configured as a film laminate type photoelectric conversion module, the strength is improved and held by the metal member. The In addition, a metal member with good thermal conductivity can suppress the temperature rise of the photoelectric conversion element, prevent a decrease in photoelectric conversion efficiency due to an increase in the operating temperature of the photoelectric conversion element, and reduce power generation capacity loss. Thus, a photoelectric conversion module with high photoelectric conversion efficiency can be provided.

本発明の光電変換モジュールにおいて好ましくは、光電変換素子は、多数個の結晶半導体粒子を用いたものであることにより、結晶半導体粒子を設置するための基板が金属基板であることから、熱伝導性が良くかつ外力による曲げ応力に対し強いものとなる。従って、金属部材による熱伝達性が良好であり、かつ金属部材による補強効果に併せて光電変換素子自体による補強効果が働くため、外力による曲げ応力に対しても高強度のものとなり、電気的特性および機械的特性が劣化することがない。   In the photoelectric conversion module of the present invention, preferably, the photoelectric conversion element uses a large number of crystal semiconductor particles, and the substrate on which the crystal semiconductor particles are placed is a metal substrate, so that the thermal conductivity. And is strong against bending stress due to external force. Therefore, the heat transferability by the metal member is good, and the reinforcement effect by the photoelectric conversion element itself works in addition to the reinforcement effect by the metal member, so that it has high strength against bending stress due to external force, and electrical characteristics And the mechanical properties are not deteriorated.

また、本発明の光電変換モジュールにおいて好ましくは、金属部材は、放熱部材に接続されていることにより、光電変換素子で受光し光電変換しきれずに熱エネルギーとなった太陽エネルギーを放熱部材に伝熱して外部に効率的に放散させることができる。   In the photoelectric conversion module of the present invention, preferably, the metal member is connected to the heat radiating member so that the solar energy received by the photoelectric conversion element and converted into thermal energy without being completely converted to the heat is transferred to the heat radiating member. Can be efficiently dissipated to the outside.

本発明の光電変換モジュールについて図面に基づいて以下に詳細に説明する。   The photoelectric conversion module of the present invention will be described in detail below based on the drawings.

本発明の光電変換モジュールとしての太陽電池モジュールの構成を図1に示す。図1の太陽電池モジュールは、基本的構成は図2のものと同様であるが、保護層4の表面に光電変換素子である太陽電池素子1と重なるように設置された金属部材5を有する。また、従来のガラス板ではなく樹脂製の保護層6が受光側に設けられている。このように、本発明の太陽電池モジュールは、フィルムラミネート型であり、太陽電池素子1のすぐ裏側に金属部材5を貼り付けている。これにより、太陽電池モジュールの機械的負荷強度を維持し、太陽電池素子で発生する熱を金属部材5によって外部に熱伝導し、有効に放散させることができる。   The structure of the solar cell module as a photoelectric conversion module of the present invention is shown in FIG. The solar cell module of FIG. 1 has the same basic configuration as that of FIG. 2, but has a metal member 5 installed on the surface of the protective layer 4 so as to overlap the solar cell element 1 that is a photoelectric conversion element. Further, a resin protective layer 6 is provided on the light receiving side instead of the conventional glass plate. Thus, the solar cell module of the present invention is a film laminate type, and the metal member 5 is attached to the back side of the solar cell element 1. Thereby, the mechanical load intensity | strength of a solar cell module is maintained, the heat which generate | occur | produces in a solar cell element can be thermally conducted outside by the metal member 5, and can be dissipated effectively.

受光面側の保護層6として、耐候性のあるフッ素系樹脂フィルムを用い、その下にEVA樹脂などの熱硬化型樹脂、太陽電池素子1を複数接続した太陽電池素子アレイ、EVA樹脂などの熱硬化型樹脂、受光面側と反対側の樹脂製の保護層4を重ねて、真空に引きながら加熱して一体となった板状の太陽電池モジュールを作製する。この太陽電池モジュールの周囲にアルミニウム製の枠を設けただけでは好適な機械的負荷強度を得るには不十分である。そこで、本発明においては、引き抜き法で作製された断面形状がT型、L型またはコ字型の長板状の金属部材5を太陽電池モジュールの長さ分に切断し、互いに接続されて成る太陽電池素子アレイの各列の裏面側に、太陽電池素子の少なくとも一部に重なるようにシリコーン樹脂等で接着する。そして、金属部材5の端部を周囲の枠に嵌め込むか組み付ける構造とし、金属部材5を補強部材として付加する。   As the protective layer 6 on the light receiving surface side, a weather-resistant fluorine-based resin film is used, and a thermosetting resin such as EVA resin, a solar cell element array in which a plurality of solar cell elements 1 are connected, and heat such as EVA resin. A protective layer 4 made of a curable resin and a resin opposite to the light-receiving surface is overlaid, and heated while drawing in a vacuum to produce an integrated plate-like solar cell module. Simply providing an aluminum frame around the solar cell module is not sufficient to obtain a suitable mechanical load strength. Therefore, in the present invention, the long plate-like metal member 5 having a T-shaped, L-shaped or U-shaped cross-section produced by the drawing method is cut into the length of the solar cell module and connected to each other. The back surface side of each column of the solar cell element array is bonded with a silicone resin or the like so as to overlap at least part of the solar cell elements. And it is set as the structure where the edge part of the metal member 5 is engage | inserted to a surrounding frame, or is assembled | attached, and the metal member 5 is added as a reinforcement member.

金属部材5は、上記のように断面形状がT型、L型またはコ字型の長板状のものが好ましい。金属部材5が単なる平板状のものである場合、外力によって大きく撓み易く、強度的に弱い。また、金属部材5は、その裏面全面に放熱フィンの付いた金属板とすると重量が増えるため好ましくない。この金属部材5の材質はアルミニウム、鉄、銅またはこれらの金属を一部含有する合金が適している。   The metal member 5 is preferably a long plate having a T-shaped, L-shaped or U-shaped cross section as described above. When the metal member 5 is a simple flat plate, it is easily bent greatly by an external force and weak in strength. Moreover, since the weight will increase when the metal member 5 is a metal plate with the radiation fins on the entire back surface, it is not preferable. The material of the metal member 5 is suitably aluminum, iron, copper, or an alloy partially containing these metals.

本発明において、光電変換素子は、多数個の結晶半導体粒子を用いたものであることが好ましい。すなわち、従来のシリコン製の板状の太陽電池素子を用いた太陽電池モジュールは、厚みが薄く若干の撓みがあっても容易に割れず、しなうことができる。しかしながら、撓みとその開放が長期間繰り返されると、クラックが入って最後には割れてしまい、断線する可能性もある。これに対して、アルミニウム製の導電性基板上にシリコン製の結晶半導体粒子を多数個配設したボール型の太陽電池は、結晶半導体粒子を設置するための導電性基板が金属基板であることから、熱伝導性が良くかつ外力による曲げ応力に対し強いものとなる。従って、金属部材5による熱伝達性が良好であり、かつ金属部材5による補強効果に併せて光電変換素子自体による補強効果が働くため、外力による曲げ応力に対しても高強度のものとなり、電気的特性および機械的特性が向上する。   In the present invention, the photoelectric conversion element preferably uses a large number of crystal semiconductor particles. That is, a conventional solar cell module using a silicon plate-like solar cell element is thin and can be easily cracked even if it is slightly bent. However, if the bending and the opening thereof are repeated for a long period of time, there is a possibility of cracking and finally cracking and disconnection. On the other hand, in a ball-type solar cell in which a large number of silicon crystal semiconductor particles are arranged on an aluminum conductive substrate, the conductive substrate for installing the crystal semiconductor particles is a metal substrate. It has good thermal conductivity and is strong against bending stress due to external force. Accordingly, the heat transferability by the metal member 5 is good, and the reinforcement effect by the photoelectric conversion element itself works in addition to the reinforcement effect by the metal member 5, so that it has high strength against bending stress due to external force. And mechanical and mechanical properties are improved.

本発明の金属部材5は、太陽光を受光したとき発生する熱を外部に有効に伝熱させ放散させる役割も担っている。金属部材5は、太陽電池素子1と反対側の主面の一部にフィンを設けることもでき、その場合太陽電池素子1から受け取った熱をフィンで放散するとともに、太陽電池モジュール周囲の枠に伝熱する効果もある。熱をさらに有効に放散させるためには、金属部材5を太陽電池モジュールよりも外部に延出させ、金属部材5を流水に浸して冷却したり、あるいは金属部材5の延出した端部を土壌に埋めることにより地中に放熱することも効果的である。   The metal member 5 of the present invention also plays a role of effectively transferring and dissipating heat generated when sunlight is received to the outside. The metal member 5 can also be provided with fins on a part of the main surface opposite to the solar cell element 1, in which case the heat received from the solar cell element 1 is dissipated by the fins, and the frame around the solar cell module 1 There is also an effect of heat transfer. In order to dissipate heat more effectively, the metal member 5 is extended to the outside of the solar cell module, the metal member 5 is immersed in running water to be cooled, or the extended end of the metal member 5 is soiled. It is also effective to dissipate heat into the ground by burying it in the ground.

本発明においては、太陽電池モジュール周囲の枠に伝熱管(ヒートパイプ)を接続し、金属部材5で伝導された熱をさらに有効に外部に放散させることもできる。また、ヒートパイプを太陽電池モジュールの面に敷き詰めると高価となってしまうので、太陽電池モジュールの枠の部分からのみ熱を取り出す構成が良い。また、ヒートパイプの熱を放出する他端部を水冷したり、風通しのよい場所に空冷フィンを取り付けて放熱することもできる。とりわけ、年間を通じて地下の温度が上らないことを利用して、ヒートパイプの熱を放出する他端部を地中に埋め込んで放散する構成が好ましい。また、ヒートパイプの熱を放出する他端部を地中を長く伸びている水道管に接続し、金属製の水道管の熱伝導で地中に熱放散することも有効である。特に、温水用の水道管に適用すればエネルギーの節約にもつながる。   In the present invention, a heat transfer tube (heat pipe) is connected to the frame around the solar cell module, and the heat conducted by the metal member 5 can be more effectively dissipated to the outside. Moreover, since it will become expensive if a heat pipe is spread | laid on the surface of a solar cell module, the structure which takes out heat | fever only from the frame part of a solar cell module is good. Moreover, the other end part which discharge | releases the heat of a heat pipe can be water-cooled, or an air-cooling fin can be attached to a well-ventilated place to radiate heat. In particular, a configuration in which the other end of the heat pipe that releases heat is buried in the ground and dissipated by utilizing the fact that the underground temperature does not rise throughout the year is preferable. It is also effective to connect the other end of the heat pipe that releases heat to a water pipe that extends long in the ground and dissipate heat into the ground by heat conduction of a metal water pipe. In particular, if it is applied to hot water pipes, it will lead to energy savings.

金属部材5は、保護層4の裏面に太陽電池素子1と重なるように設置される。金属部材5は太陽電池素子1の中央に設置された方が好ましいが、金属部材5の少なくとも一部が光電変換素子と重なればよい。また、太陽電池素子1に対して金属部材5が複数本設置されていても良く、その場合熱放散性が向上する。例えば、太陽電池素子1の中央のみならず、左右端にも金属部材5が設置されれば、放散熱が分散できるので効率的に伝熱させることができる。さらに、金属部材5の3本で太陽電池素子1を保持することにより、太陽電池素子1の耐曲げ性を向上させることができる。なお、金属部材5は、平面視でその幅が太陽電池素子1とほぼ同じであってよいが、補強効果および良好な放熱性の点では金属部材5の幅が太陽電池素子1よりも若干広い方がよい。   The metal member 5 is installed on the back surface of the protective layer 4 so as to overlap the solar cell element 1. The metal member 5 is preferably installed at the center of the solar cell element 1, but it is sufficient that at least a part of the metal member 5 overlaps the photoelectric conversion element. In addition, a plurality of metal members 5 may be installed with respect to the solar cell element 1, and in that case, heat dissipation is improved. For example, if the metal member 5 is installed not only at the center of the solar cell element 1 but also at the left and right ends, the dissipated heat can be dispersed, so that heat can be transferred efficiently. Furthermore, the bending resistance of the solar cell element 1 can be improved by holding the solar cell element 1 with the three metal members 5. The metal member 5 may have substantially the same width as that of the solar cell element 1 in plan view, but the width of the metal member 5 is slightly wider than that of the solar cell element 1 in terms of the reinforcing effect and good heat dissipation. Better.

上述したように、本発明の太陽電池モジュールは、機械的負荷強度が向上するとともに、コスト的に主要な部品である太陽電池素子の光電変換効率を改善することで、エネルギー供給能力を向上させることができる。   As described above, the solar cell module of the present invention improves the energy supply capability by improving the mechanical load strength and improving the photoelectric conversion efficiency of the solar cell element, which is a major component in terms of cost. Can do.

本発明の光電変換モジュールとしての太陽電池モジュールの実施例を以下に説明する。   Examples of the solar cell module as the photoelectric conversion module of the present invention will be described below.

図1に示すように、受光面側の樹脂製のコートフィルム(保護層6)と、受光面と反対側の主面の樹脂製の保護層4との間に、太陽電池素子1をEVA樹脂(透光性基板3)で挟み込んだラミネート型の太陽電池モジュールを作製した。これに、引き抜き法で作製したアルミニウム製の断面形状T型の長板状の金属部材5を太陽電池モジュールの長さ分に切断し、シリコーン樹脂で太陽電池モジュールの保護層4の表面に接着した。金属部材5の幅は50mm程度、長さは1000mm程度であり、太陽電池素子1よりも平面視で若干小さく、かつ金属部材5の中心部が太陽電池素子1の中心部に重なるように取り付けた。   As shown in FIG. 1, the solar cell element 1 is placed between an EVA resin between a resin-coated film (protective layer 6) on the light-receiving surface side and a resin-made protective layer 4 on the main surface opposite to the light-receiving surface. A laminate type solar cell module sandwiched between (translucent substrate 3) was produced. To this, a long plate-like metal member 5 having a cross-sectional shape made of aluminum and made by a drawing method was cut into the length of the solar cell module and adhered to the surface of the protective layer 4 of the solar cell module with a silicone resin. . The metal member 5 has a width of about 50 mm and a length of about 1000 mm, is slightly smaller than the solar cell element 1 in plan view, and is attached so that the center of the metal member 5 overlaps the center of the solar cell element 1. .

このような本発明のフィルムラミネート型の太陽電池モジュールでは、従来ガラス板によって得られていた強度よりも劣るという課題があったが、本発明の金属部材5の補強効果により太陽電池モジュール全体の強度が大きく向上した。また、多結晶シリコンを用いた板状の太陽電池素子は、撓みによって太陽電池モジュールの基板が割れたり、クラックが入るなどの危険性が残るが、本発明のボール型の太陽電池素子は0.5mm程度の厚さのアルミニウム製の導電性基板上に形成しているため、撓みに強く、信頼性が優れていることが確認された。   In such a film laminate type solar cell module of the present invention, there has been a problem that it is inferior to the strength conventionally obtained by the glass plate, but due to the reinforcing effect of the metal member 5 of the present invention, the strength of the entire solar cell module Has greatly improved. In addition, the plate-like solar cell element using polycrystalline silicon has a risk that the substrate of the solar cell module is cracked or cracked due to bending, but the ball type solar cell element of the present invention is 0.5 mm. Since it was formed on a conductive substrate made of aluminum having a certain thickness, it was confirmed that it was strong against bending and excellent in reliability.

太陽電池素子1で発生する熱は、保護層4,6表面からの放散に加え、金属部材5による熱伝導で枠に伝わり、また金属部材5に設けられたフィンの放熱効果で熱放散が促進された。この結果、太陽電池モジュールの温度は、風速1m/sの状態で、従来の太陽電池モジュールの温度よりも18℃以上低下していることが確認された。このことにより、光電変換効率は12%を維持できることがわかった。   The heat generated in the solar cell element 1 is transmitted to the frame by heat conduction by the metal member 5 in addition to the heat dissipation from the surfaces of the protective layers 4 and 6, and the heat dissipation is promoted by the heat dissipation effect of the fins provided on the metal member 5. It was done. As a result, it was confirmed that the temperature of the solar cell module was lower by 18 ° C. or more than the temperature of the conventional solar cell module at a wind speed of 1 m / s. Thus, it was found that the photoelectric conversion efficiency can be maintained at 12%.

なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施しても何ら差し支えない。   The present invention is not limited to the above-described embodiment and examples, and various modifications may be made without departing from the scope of the present invention.

本発明の太陽電池モジュールについて実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the solar cell module of this invention. 従来の太陽電池モジュールの例を示す断面図である。It is sectional drawing which shows the example of the conventional solar cell module.

符号の説明Explanation of symbols

1・・・太陽電池素子
3・・・透光性基板
4・・・保護層
5・・・金属部材
6・・・保護層
DESCRIPTION OF SYMBOLS 1 ... Solar cell element 3 ... Translucent substrate 4 ... Protective layer 5 ... Metal member 6 ... Protective layer

Claims (3)

内部に板状の光電変換素子が埋め込まれている透光性基板と、該透光性基板の受光面側と反対側の主面に積層された保護層と、該保護層の表面に前記光電変換素子と重なるように設置された金属部材とを具備していることを特徴とする光電変換モジュール。 A translucent substrate having a plate-like photoelectric conversion element embedded therein, a protective layer laminated on the main surface opposite to the light-receiving surface side of the translucent substrate, and the photoelectric layer on the surface of the protective layer A photoelectric conversion module comprising a metal member installed so as to overlap with the conversion element. 前記光電変換素子は、多数個の結晶半導体粒子を用いたものであることを特徴とする請求項1記載の光電変換モジュール。 The photoelectric conversion module according to claim 1, wherein the photoelectric conversion element uses a large number of crystal semiconductor particles. 前記金属部材は、放熱部材に接続されていることを特徴とする請求項1または請求項2記載の光電変換モジュール。 The photoelectric conversion module according to claim 1, wherein the metal member is connected to a heat dissipation member.
JP2004342826A 2004-11-26 2004-11-26 Photoelectric conversion module Withdrawn JP2006156581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342826A JP2006156581A (en) 2004-11-26 2004-11-26 Photoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342826A JP2006156581A (en) 2004-11-26 2004-11-26 Photoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2006156581A true JP2006156581A (en) 2006-06-15

Family

ID=36634491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342826A Withdrawn JP2006156581A (en) 2004-11-26 2004-11-26 Photoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2006156581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283165A (en) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd Solar cell module and method of forming the same
WO2012169418A1 (en) 2011-06-06 2012-12-13 信越化学工業株式会社 Solar cell module and method for manufacturing same
EP2595200A2 (en) 2011-11-18 2013-05-22 Shin-Etsu Chemical Co., Ltd. Solar cell module and light control sheet for solar cell module
JP2017073903A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 Solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283165A (en) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd Solar cell module and method of forming the same
WO2012169418A1 (en) 2011-06-06 2012-12-13 信越化学工業株式会社 Solar cell module and method for manufacturing same
EP2595200A2 (en) 2011-11-18 2013-05-22 Shin-Etsu Chemical Co., Ltd. Solar cell module and light control sheet for solar cell module
JP2017073903A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 Solar cell module

Similar Documents

Publication Publication Date Title
CN100561756C (en) Photovoltaic laminate backplane with optical concentrator
JP5589201B2 (en) Solar cogeneration module with heat sink
EP2450965A2 (en) Photovoltaic power-generating apparatus
US20110114155A1 (en) Solar energy use
EP2273561A1 (en) Thermally mounting electronics to a photovoltaic panel
JP2011077310A (en) Solar cell module
JPWO2006019091A1 (en) Solar cell hybrid module
TW201124684A (en) Solar panel heat-dissipating device and related solar panel module
JP4898145B2 (en) Concentrating solar cell module
KR20130085110A (en) Floating solar battery
KR101382990B1 (en) Solar cell module
JPH09186353A (en) Solar cell module
JP2006156581A (en) Photoelectric conversion module
JP2006064203A (en) Solar battery module
JP2013207079A (en) Concentrating solar power generation panel and concentrating solar power generation apparatus
JP6292266B2 (en) Concentrating solar power generation panel and concentrating solar power generation device
JP2017015357A (en) Photovoltaic power generation/solar heat collection panel hybrid system
JP4206265B2 (en) Solar cell module
US20120227937A1 (en) Heat dissipation structure for photovoltaic inverter
JP2004342986A (en) Solar cell module and structure for installing solar cell module
JP2010147129A (en) Photovoltaic cogeneration module
KR101205093B1 (en) Heat Radiation Device for Photovolatic Power Generation Micro-Inverter
JPH1187757A (en) Heat conductive member spacer for solar battery module
JP2009182103A (en) Heat sink for solar power generation, and system for solar power generation
CN212810315U (en) Photovoltaic module based on graphene reinforced heat dissipation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909