JP2006156507A - Method of exposing substrate coated with photosensitive resin - Google Patents

Method of exposing substrate coated with photosensitive resin Download PDF

Info

Publication number
JP2006156507A
JP2006156507A JP2004341294A JP2004341294A JP2006156507A JP 2006156507 A JP2006156507 A JP 2006156507A JP 2004341294 A JP2004341294 A JP 2004341294A JP 2004341294 A JP2004341294 A JP 2004341294A JP 2006156507 A JP2006156507 A JP 2006156507A
Authority
JP
Japan
Prior art keywords
substrate
mask
exposure
photosensitive resin
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004341294A
Other languages
Japanese (ja)
Other versions
JP4622482B2 (en
Inventor
Tadahiro Yamaji
忠寛 山路
Nobuyuki Miyagawa
展幸 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004341294A priority Critical patent/JP4622482B2/en
Publication of JP2006156507A publication Critical patent/JP2006156507A/en
Application granted granted Critical
Publication of JP4622482B2 publication Critical patent/JP4622482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of exposing substrate coated with photosensitive resin by which the highly accurate three-dimensional shape of a pattern can be formed uniformly on the whole surface of a substrate. <P>SOLUTION: In this method of exposing substrate coated with photosensitive resin, such exposure that prevents the deterioration of pattern accuracy caused by the hardening trouble of a photosensitive resin 3 caused by oxygen is realized by raising the concentration of an inert gas, and surely lowering the concentration of oxygen by injecting the inert gas into a hermetically sealed space 11 between a mask 4 for exposure and a substrate 2 while exhausting the air in the space 11. In addition, the method includes: a mask arranging step of arranging the mask 4 at a prescribed interval from the main surface of the substrate 2 arranged on a substrate holder 1 in the hermetically sealed space 11 formed by a pumpable hermetically sealed container 10; a purging step of injecting the inert gas into the hermetically sealed space 11 while the air in the space 11 is exhausted so as to change the atmosphere in the space 11 to an inert gas atmosphere; and an exposing step of patterning the photosensitive resin 3 by irradiating light L upon the resin 3 through the mask 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、感光性樹脂にマスクパターンを転写するための基板の露光方法に関する。   The present invention relates to a substrate exposure method for transferring a mask pattern to a photosensitive resin.

従来から、露光用マスクを介して感光性樹脂に光エネルギを与える露光を行うことにより、マスクパターンを感光性樹脂に転写するパターニング工法は、電気回路形成用エッチングマスクの形成のためレジストをパターニングする場合や、微細構造体形成用の微細金型を電鋳などで作るためのマスタ構造体を形成する場合などに、広く応用されている。感光性樹脂の使用形態には、粘度調整した液体樹脂を基材に均一塗布したり、フィルム状樹脂を基材に貼り付けたりする形態があり、感光性樹脂の材料特性や基材の種類に応じて使い分けられている。また、パターニングの結果、すなわちパターン形状の仕上がり具合は、感光性樹脂の特性に依存して露光中の条件により大きく影響される。   Conventionally, a patterning method for transferring a mask pattern to a photosensitive resin by performing exposure that gives light energy to the photosensitive resin through an exposure mask patterns the resist to form an etching mask for forming an electric circuit. This method is widely applied to the case of forming a master structure for making a fine mold for forming a fine structure by electroforming or the like. The usage form of the photosensitive resin includes a form in which a liquid resin whose viscosity is adjusted is uniformly applied to the base material, or a film-like resin is attached to the base material. It is properly used according to the situation. Further, the patterning result, that is, the finish of the pattern shape, is greatly influenced by the conditions during exposure depending on the characteristics of the photosensitive resin.

例えば、光エネルギを与えてラジカル重合による架橋を生成して硬化させるアクリル基をもつ感光性樹脂の場合、露光中に酸素が存在すると架橋反応が阻害され、その結果、硬化が不充分となる。基板に塗布され空気層と接している状態の感光性樹脂を露光すると表面のみが未硬化状態となる。この場合、露光工程の次の工程である未硬化部を除去する現像工程において、本来除去すべきでないパターンの表面部分が未硬化のため除去されてしまい、パターンの表層部が丸みをおびてしまう。パターン形状として、パターンが基板と接している部分の面状(2次元)のパターン精度の他に、感光性樹脂の厚み方向の3次元形状についても加工精度を必要とする場合、このパターン表層部の丸みはパターン形状の劣化として問題となる。例えば、光透過性の感光性樹脂を用いて光導波路を形成する場合、パターンの3次元形状が光導波路の形状であって光導波特性に直接影響するため、高精度の3次元形状が要求される。   For example, in the case of a photosensitive resin having an acrylic group that is cured by applying radical energy to generate crosslinks by radical polymerization, the presence of oxygen during exposure inhibits the crosslinking reaction, resulting in insufficient curing. When the photosensitive resin applied to the substrate and in contact with the air layer is exposed, only the surface becomes uncured. In this case, in the development process that removes the uncured portion, which is the next step of the exposure step, the surface portion of the pattern that should not be removed is removed due to uncured, and the surface layer portion of the pattern is rounded. . If the processing accuracy is required for the three-dimensional shape in the thickness direction of the photosensitive resin in addition to the planar (two-dimensional) pattern accuracy of the portion where the pattern is in contact with the substrate, the pattern surface layer portion The roundness becomes a problem as deterioration of the pattern shape. For example, when an optical waveguide is formed using a light-transmitting photosensitive resin, a highly accurate three-dimensional shape is required because the three-dimensional shape of the pattern is the shape of the optical waveguide and directly affects the optical waveguide characteristics. Is done.

上述のような、酸素による硬化阻害に対しては、感光性樹脂が空気層と接しない構成を取ることで解決できる。例えば、感光性樹脂層に露光用マスクを密着させた状態で露光する、いわゆるコンタクト露光の方法がある。しかしながら、コンタクト露光を適用する場合、感光後に感光性樹脂と露光用マスクとを容易に離せることが必要であり、マスクとの接着性がない硬化済み状態にある乾質の感光性樹脂を使わなければならない等の制約条件がある。そこで、酸素による硬化阻害が想定される光硬化性樹脂の露光方法として、空気を窒素等の不活性ガスによってパージすることにより露光雰囲気における酸素濃度を下げる方法が一般に行われている(例えば、特許文献1参照)。   The above-described curing inhibition by oxygen can be solved by adopting a configuration in which the photosensitive resin does not contact the air layer. For example, there is a so-called contact exposure method in which exposure is performed in a state where an exposure mask is in close contact with the photosensitive resin layer. However, when applying contact exposure, it is necessary to easily separate the photosensitive resin from the exposure mask after exposure, and use a dry photosensitive resin that is in a cured state and has no adhesion to the mask. There are constraints such as having to. Therefore, as a method for exposing a photocurable resin that is supposed to be inhibited by oxygen, a method of lowering the oxygen concentration in the exposure atmosphere by purging air with an inert gas such as nitrogen is generally used (for example, patents). Reference 1).

上述の不活性ガスでパージして露光する例を、図9を参照して説明する。開放空間におかれた基板ホルダ91上に、感光性樹脂93が塗布された基板92が載置され、その上方には露光用マスク94が配置されている。この状態で、基板92の外周部に設けられた給気孔96からバルブV1を介して窒素ガスを基板92上に供給するとともに、同じく基板92の外周部に設けられた排気孔97からバルブV2を介して空気及び窒素ガスを排気する。所定時間経過の後に露光が行われる。
特開平5−335201号公報
An example in which exposure is performed by purging with the above-described inert gas will be described with reference to FIG. A substrate 92 coated with a photosensitive resin 93 is placed on a substrate holder 91 placed in an open space, and an exposure mask 94 is disposed above the substrate 92. In this state, nitrogen gas is supplied onto the substrate 92 from the air supply hole 96 provided in the outer peripheral portion of the substrate 92 via the valve V1, and the valve V2 is supplied from the exhaust hole 97 also provided in the outer peripheral portion of the substrate 92. And exhaust air and nitrogen gas. Exposure is performed after a predetermined time.
JP-A-5-335201

しかしながら、上述したような特許文献1や図9に示されるような露光方法においては、開放空間において基板の周辺から窒素を吹き付けるような構成のため、大気中の酸素の流入の可能性があり、生産される製品品質の安定性に欠けるという問題がある。また、不完全なパージやパージに伴う気流などに起因する不活性ガスの濃度ムラの存在などにより、例えば、図9に示す給気孔96の近傍と排気孔97の近傍において露光条件に差ができ、露光現像の結果、図9に示すように、本来、同一断面形状のパターンが並んでいるはずの3次元形状に対して、基板上の場所によって形状がばらつくという問題がある。   However, in the exposure method as shown in Patent Document 1 and FIG. 9 as described above, there is a possibility of inflow of oxygen in the atmosphere because of the configuration in which nitrogen is blown from the periphery of the substrate in an open space. There is a problem that the quality of the produced product is not stable. Further, due to the presence of inactive gas concentration unevenness due to incomplete purging or air flow accompanying purging, for example, there can be a difference in exposure conditions in the vicinity of the air supply hole 96 and the exhaust hole 97 shown in FIG. As a result of the exposure and development, as shown in FIG. 9, there is a problem that the shape varies depending on the location on the substrate with respect to the three-dimensional shape that should have the same cross-sectional pattern.

本発明は、上記課題を解消するものであって、露光されたパターンの高精度な3次元形状を基板前面にわたって均一に実現できる感光性樹脂が塗布された基板の露光方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an exposure method for a substrate coated with a photosensitive resin capable of uniformly realizing a highly accurate three-dimensional shape of an exposed pattern over the front surface of the substrate. And

上記課題を達成するために、請求項1の発明は、感光性樹脂が塗布された基板の露光方法であって、給排気可能な密閉空間内において、感光性樹脂が塗布され該空間内に配置された基板の主面から所定の間隔を持たせて露光用のマスクを配置するマスク配置工程と、前記密閉空間内の雰囲気を不活性ガス雰囲気にするため、その空間内の空気を排気しつつ不活性ガスを注入するパージ工程と、前記基板の主面に塗布された感光性樹脂に前記マスクを通して光を照射することによりパターニングする露光工程と、を有するものである。   In order to achieve the above object, the invention of claim 1 is a method for exposing a substrate coated with a photosensitive resin, wherein the photosensitive resin is applied and disposed in a sealed space that can be supplied and exhausted. A mask placement step of placing a mask for exposure with a predetermined distance from the main surface of the substrate, and an atmosphere in the sealed space to make an inert gas atmosphere, while exhausting air in the space A purge process for injecting an inert gas, and an exposure process for patterning by irradiating the photosensitive resin applied to the main surface of the substrate with light through the mask.

請求項2の発明は、請求項1に記載の基板の露光方法において、前記基板は平板状の基板ホルダに載置され、前記密閉空間は、前記基板ホルダと、前記基板ホルダに載置される基板の周囲を包囲するように基板ホルダに立設されるスペーサと、前記マスクと、で形成されるものである。   According to a second aspect of the present invention, in the substrate exposure method according to the first aspect, the substrate is placed on a flat substrate holder, and the sealed space is placed on the substrate holder and the substrate holder. It is formed by a spacer standing on a substrate holder so as to surround the periphery of the substrate and the mask.

請求項3の発明は、請求項2に記載の基板の露光方法において、前記基板ホルダは、前記密閉空間内を給排気するための給排気路に連通する貫通孔が形成され、前記スペーサは、可撓性を有する材料で形成され、前記貫通孔より排気して前記密閉空間内を減圧することにより、前記スペーサの高さが低くなって前記基板と前記マスクとの間隔が小さくなるものである。   According to a third aspect of the present invention, in the substrate exposure method according to the second aspect, the substrate holder has a through hole communicating with a supply / exhaust passage for supplying / exhausting the inside of the sealed space, and the spacer includes: The spacer is made of a flexible material and exhausted from the through hole to decompress the sealed space, thereby reducing the height of the spacer and reducing the distance between the substrate and the mask. .

請求項4の発明は、請求項2又は請求項3に記載の基板の露光方法において、前記基板ホルダは、前記密閉空間を給排気するための給気路及び排気路にそれぞれ連通する給気孔及び排気孔が形成され、前記給気孔又は排気孔は、当該基板ホルダに載置される基板の周囲に略等間隔に複数個形成されているものである。   According to a fourth aspect of the present invention, in the substrate exposure method according to the second or third aspect, the substrate holder includes an air supply hole for supplying and exhausting the sealed space, and an air supply hole and an air supply passage communicating with the exhaust path, respectively. Exhaust holes are formed, and a plurality of the air supply holes or exhaust holes are formed at substantially equal intervals around the substrate placed on the substrate holder.

請求項5の発明は、請求項3又は請求項4に記載の基板の露光方法において、前記パージ工程は、不活性ガスの注入を空気の排気よりも先に開始するものである。   According to a fifth aspect of the present invention, in the substrate exposure method according to the third or fourth aspect, the purge step starts the injection of the inert gas prior to the exhaust of the air.

請求項6の発明は、請求項1乃至請求項5のいずれかに記載の基板の露光方法において、前記露光工程は、前記パージ工程が終了した後に行うものである。   A sixth aspect of the present invention is the substrate exposure method according to any one of the first to fifth aspects, wherein the exposure step is performed after the purge step is completed.

請求項1の発明によれば、密閉空間内の酸素濃度を低くし結果的に不活性ガスの濃度を高めることで、感光性樹脂がマスクを通した光照射により硬化する際に、基板全体において感光性樹脂表層が架橋反応を阻害されることがなくなり、パターン精度の劣化を防止できる。特に、基板面の2次元的なパターン精度(ライン&スペース)だけでなく、感光性樹脂層の断面方向の3次元的な精度が確保される。光導波路の形成には光の伝搬方向に対して等方的形状であるほど伝搬損失を小さくすることができ、感光性樹脂層を光導波路としてリッジ状に形成した場合、表層付近のコーナー部に至るまで3次元的な精度が求められる。従って、本発明により、光導波路となる感光性樹脂層の表層付近を十分に露光時に光硬化させることができ、導波路コア形状として伝搬損失を小さくできる。また、光導波路の設計を3次元的にシュミレーションにより行う場合、マスクは2次元であることから、実際の加工された3次元形状と差異が生じやすいが、本発明により事前にシュミレーション設計したマスク通りのパターニングを行うことができる。また、一般に基板面内で相応の面積(距離)に渡り均一な形状を前提として配置されている光導波路に対し、本発明は、、その前提を満足して基板全面の領域においてパターニング加工の均一性を得ることができる。このように、マスクと基板間の感光性樹脂の存在する空間を密閉空間とし、その密閉空間の空気を排気しつつ不活性ガスを注入することにより、不活性ガスの濃度を従来例と比較して高くし、酸素による感光性樹脂の硬化阻害を防止して高精度のパターン形状を形成できる。   According to the invention of claim 1, when the photosensitive resin is cured by light irradiation through the mask by lowering the oxygen concentration in the sealed space and consequently increasing the concentration of the inert gas, The photosensitive resin surface layer is not hindered by the cross-linking reaction, and deterioration of pattern accuracy can be prevented. In particular, not only two-dimensional pattern accuracy (line and space) on the substrate surface but also three-dimensional accuracy in the cross-sectional direction of the photosensitive resin layer is ensured. In the formation of the optical waveguide, the isotropic shape with respect to the light propagation direction can reduce the propagation loss. When the photosensitive resin layer is formed in the ridge shape as the optical waveguide, the corner is near the surface layer. 3D accuracy is required. Therefore, according to the present invention, the vicinity of the surface layer of the photosensitive resin layer serving as the optical waveguide can be sufficiently photocured during exposure, and the propagation loss can be reduced as the waveguide core shape. Further, when the optical waveguide is designed three-dimensionally by simulation, since the mask is two-dimensional, it is likely to be different from the actual processed three-dimensional shape. Can be patterned. Further, for an optical waveguide that is generally arranged on the premise of a uniform shape over a corresponding area (distance) in the substrate surface, the present invention satisfies the premise and the patterning process is uniform over the entire area of the substrate. Sex can be obtained. In this way, the space where the photosensitive resin exists between the mask and the substrate is a sealed space, and the inert gas is injected while exhausting the air in the sealed space, thereby comparing the concentration of the inert gas with that of the conventional example. Therefore, it is possible to form a highly accurate pattern shape by preventing inhibition of curing of the photosensitive resin by oxygen.

請求項2の発明によれば、密閉空間を小さい領域で形成できるので、パージ工程をより高速化することができる。   According to the invention of claim 2, since the sealed space can be formed in a small region, the purge process can be further speeded up.

請求項3の発明によれば、基板とマスク間のギャップを調整するための特段の制御機構を必要とすることなく、パージ工程に連動して露光時に基板とマスクをより近接させて露光の精度を向上させることができる。   According to the invention of claim 3, without requiring a special control mechanism for adjusting the gap between the substrate and the mask, the substrate and the mask are brought closer to each other at the time of exposure in conjunction with the purge process. Can be improved.

請求項4の発明によれば、複数の給気孔から不活性ガスを注入することにより、密閉空間内の流れの偏りを少なくできるので、不活性ガスの濃度ムラを少なくでき、パターンの高精度な3次元形状を基板前面にわたって均一に実現できる。また、各給気孔と排気孔の給気量及び排気量を個別に調整できるので、さらに不活性ガスの濃度ムラを低減できる。   According to the fourth aspect of the present invention, since the bias of the flow in the sealed space can be reduced by injecting the inert gas from the plurality of air supply holes, the concentration unevenness of the inert gas can be reduced, and the pattern can be highly accurate. A three-dimensional shape can be realized uniformly over the front surface of the substrate. In addition, since the air supply amount and the exhaust amount of each air supply hole and exhaust hole can be individually adjusted, the concentration unevenness of the inert gas can be further reduced.

請求項5の発明によれば、不活性ガスが密閉空間内全体を少し満たしてから排気を開始することになるので、不活性ガスの濃度ムラを少なくでき、パターンの高精度な3次元形状を基板前面にわたって均一に実現できる。   According to the invention of claim 5, since the exhaust gas is started after the inert gas fills the entire sealed space a little, the concentration variation of the inert gas can be reduced, and a highly accurate three-dimensional shape of the pattern can be obtained. It can be realized uniformly over the front surface of the substrate.

請求項6の発明によれば、密閉空間内のガスの流れによる不活性ガスの濃度ムラが少なくなるので、露光ムラが少なくなり、パターンの高精度な3次元形状を基板前面にわたって均一に実現できる。   According to the invention of claim 6, since the non-uniformity of the inert gas concentration due to the gas flow in the sealed space is reduced, the exposure non-uniformity is reduced, and a highly accurate three-dimensional shape of the pattern can be realized uniformly over the front surface of the substrate. .

以下、本発明の実施形態に係る感光性樹脂が塗布された基板の露光方法について、図面を参照して説明する。図1は、本発明の露光方法に用いられる露光装置を示し、図2はその露光方法のフローチャートを示す。本発明の露光方法は、給排気可能な密閉容器10によって形成された密閉空間11内において、感光性樹脂3が塗布され空間11内の基板ホルダ1上に配置された基板2の主面(図の上方の面)から所定の間隔を持たせて露光用のマスク4を配置するマスク配置工程(S1)と、密閉空間11内の雰囲気を不活性ガス雰囲気にするため、その空間11内の空気を排気しつつ不活性ガスを注入するパージ工程(S2)と、基板2の主面に塗布された感光性樹脂3にマスク4を通して光Lを照射することによりパターニングする露光工程(S3)と、を有している。次に各工程の詳細を述べる。   Hereinafter, an exposure method for a substrate coated with a photosensitive resin according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an exposure apparatus used in the exposure method of the present invention, and FIG. 2 shows a flowchart of the exposure method. In the exposure method of the present invention, a photosensitive resin 3 is applied in a sealed space 11 formed by a sealed container 10 capable of supplying and exhausting air, and the main surface of the substrate 2 disposed on the substrate holder 1 in the space 11 (see FIG. A mask placement step (S1) for placing the exposure mask 4 at a predetermined distance from the upper surface of the air), and the air in the space 11 to make the atmosphere in the sealed space 11 an inert gas atmosphere. A purge process (S2) for injecting an inert gas while exhausting gas, an exposure process (S3) for patterning by irradiating the photosensitive resin 3 applied to the main surface of the substrate 2 with light L through a mask 4, and have. Next, details of each step will be described.

(マスク配置工程S1)
図1における基板2は、例えば、シリコン基板やガラス等の平滑な基板であり、基板2上の感光性樹脂3は、例えばスピンコート法、スプレーコート法、浸漬法等の塗布方法を用いて塗布形成されたものである。本発明における露光の対象となる感光性樹脂3の材料として、アクリル系、エポキシ系、シリコーン系、ポリィミド系などの高分子樹脂材料、又はそれらにSiO等の高透光性無機材料のネットワークを取り入れた複合樹脂材料を用いることができる。また、感光性樹脂3の厚みを制御するために、溶剤により粘度調整を行ってもよい。このような感光性樹脂3が塗布された基板2を基板ホルダ1上に載置し、基板2とマスク4とを所定のギャップを備えるよう配置する。
(Mask placement step S1)
The substrate 2 in FIG. 1 is a smooth substrate such as a silicon substrate or glass, and the photosensitive resin 3 on the substrate 2 is applied using a coating method such as spin coating, spray coating, or dipping. It is formed. As a material of the photosensitive resin 3 to be exposed in the present invention, a polymer resin material such as acrylic, epoxy, silicone, and polyimide, or a network of highly transparent inorganic materials such as SiO 2 is added thereto. The incorporated composite resin material can be used. Moreover, in order to control the thickness of the photosensitive resin 3, you may adjust a viscosity with a solvent. The substrate 2 coated with such a photosensitive resin 3 is placed on the substrate holder 1, and the substrate 2 and the mask 4 are arranged so as to have a predetermined gap.

(パージ工程S2)
次に、バルブV2を備えた配管系を介して、図示しない排気ポンプにより密閉空間11内を排気しつつ、バルブV1を備えた配管系から窒素ガスN等の不活性ガスを注入し、感光性樹脂3の硬化阻害を引き起こす酸素O濃度を減少させる。この際、排気系における流量計14と不活性ガス供給系における流量計12を用いることにより、密閉空間11内を、例えば略大気圧に保った状態で、空気を不活性ガスによって置換する。不活性ガスへの置換は、空間11の容積によるが、例えば、直径150mm×高さ10mm程度であれば約5min以内で十分に置換可能である。排気系に設けた酸素濃度計13を用いて排気中の酸素濃度を監視することにより、より確実な置換の判断ができる。
(Purge step S2)
Next, an inert gas such as nitrogen gas N 2 is injected from the piping system provided with the valve V1 through the piping system provided with the valve V2 while exhausting the inside of the sealed space 11 by an exhaust pump (not shown). The oxygen O 2 concentration causing the curing inhibition of the functional resin 3 is decreased. At this time, by using the flow meter 14 in the exhaust system and the flow meter 12 in the inert gas supply system, the air is replaced with the inert gas while the sealed space 11 is maintained at, for example, substantially atmospheric pressure. The replacement with the inert gas depends on the volume of the space 11. For example, if the diameter is about 150 mm × the height is about 10 mm, the replacement can be sufficiently performed within about 5 minutes. More reliable replacement can be determined by monitoring the oxygen concentration in the exhaust gas using the oxygen concentration meter 13 provided in the exhaust system.

(露光工程S3)
密閉空間11において、パージ工程S2により酸素が不活性ガスに置換された状態の基板に露光を実施する。このように、マスク4と基板2間の空間を密閉空間11とし、その密閉空間11の空気を排気しつつ不活性ガスを注入することにより、不活性ガスの濃度を従来例と比較して高くし、従って酸素濃度を確実に低くして、酸素による感光性樹脂の硬化阻害によるパターン精度の劣化を防止した露光を実施できる。
(Exposure step S3)
In the sealed space 11, exposure is performed on the substrate in which oxygen is replaced with an inert gas in the purge step S2. As described above, the space between the mask 4 and the substrate 2 is the sealed space 11, and the inert gas is injected while exhausting the air in the sealed space 11, so that the concentration of the inert gas is higher than that of the conventional example. Therefore, it is possible to carry out exposure by reliably reducing the oxygen concentration and preventing deterioration of pattern accuracy due to inhibition of curing of the photosensitive resin by oxygen.

上述の露光工程S3は、パージ工程S2の後に基板2とマスク4とのギャップを小さくする工程を行ってその後に行うようにするのが好ましい。これは次の理由による。パージ工程S2における不活性ガス置換の際には、感光性樹脂3が塗布された基板2とマスク4のギャップは、ガスの置換不足を防止するため、50μm以上設けることが望ましい。一方、基板2とマスク4のギャップは、例えば、波長λ=350〜450nmの紫外線光を用いて10μm以下のパターンを形成する場合、50μm以下のギャップとすることが望ましい。そこで、大きなギャップのもとでパージ工程を行い、小さなギャップのもとで露光工程を行うことにより、効率的なパージ工程と、パターン精度の向上する露光工程とを行うことができる。   The above-described exposure step S3 is preferably performed after a purge step S2 and after that a step of reducing the gap between the substrate 2 and the mask 4 is performed. This is due to the following reason. When the inert gas is replaced in the purge step S2, the gap between the substrate 2 coated with the photosensitive resin 3 and the mask 4 is desirably set to 50 μm or more in order to prevent insufficient gas replacement. On the other hand, the gap between the substrate 2 and the mask 4 is preferably 50 μm or less when a pattern of 10 μm or less is formed using, for example, ultraviolet light having a wavelength λ = 350 to 450 nm. Therefore, by performing the purge process under a large gap and performing the exposure process under a small gap, an efficient purge process and an exposure process that improves pattern accuracy can be performed.

次に、図3(a)(b)、図4を参照して、本発明の露光方法の他の例を説明する。この露光方法では、図3(a)(b)に示すように、基板2は平板状の基板ホルダ1に載置され、密閉空間11は、基板ホルダ1と、基板ホルダ1に載置される基板2の周囲を包囲するように基板ホルダ1に立設されるスペーサ5と、マスク4と、で形成される。不活性ガスの供給は、基板ホルダ1に設けられた給気孔6から行われ、空間11の排気は排気孔7から行われる。このような装置を用いた露光方法のマスク配置工程S1では、感光性樹脂3を形成した基板2を基板ホルダ1にセットし、所定のギャップとなるように基板ホルダ1の上にスペーサ5を設置し、スペーサ5の上にマスク4を設置することで、密閉された露光空間11が形成される。その後、上述と同様に、パージ工程S2と露光工程S3が行われる。密閉空間11をこのような構成により形成すると、小さい密閉空間11を形成できるので、パージ工程を高速化することができる。なお、図4に示すように、不活性ガスの給気孔6と排気孔7を、スペーサ5に設けてもよい。また、マスク4に給気孔6、排気孔7を設けてもよい。   Next, another example of the exposure method of the present invention will be described with reference to FIGS. In this exposure method, as shown in FIGS. 3A and 3B, the substrate 2 is placed on a flat substrate holder 1, and the sealed space 11 is placed on the substrate holder 1 and the substrate holder 1. The spacer 5 and the mask 4 are provided on the substrate holder 1 so as to surround the periphery of the substrate 2. The inert gas is supplied from the air supply hole 6 provided in the substrate holder 1, and the space 11 is exhausted from the exhaust hole 7. In the mask arrangement step S1 of the exposure method using such an apparatus, the substrate 2 on which the photosensitive resin 3 is formed is set on the substrate holder 1, and the spacer 5 is installed on the substrate holder 1 so as to form a predetermined gap. Then, by placing the mask 4 on the spacer 5, a sealed exposure space 11 is formed. Thereafter, the purge process S2 and the exposure process S3 are performed as described above. When the sealed space 11 is formed with such a configuration, a small sealed space 11 can be formed, and thus the purge process can be speeded up. As shown in FIG. 4, an inert gas supply hole 6 and an exhaust hole 7 may be provided in the spacer 5. Further, the air supply holes 6 and the exhaust holes 7 may be provided in the mask 4.

次に、図5(a)(b)を参照して、本発明の露光方法のさらに他の例を説明する。この露光方法では、基板ホルダ1は、図5(a)に示すように、密閉空間11内を給排気するための給排気路に連通する貫通孔(給気孔6と排気孔7)が形成され、高さd1のスペーサ5は、可撓性を有する材料で形成されており、排気孔7より排気して密閉空間11内を減圧することにより、図5(b)に示すように、大気圧Pによって圧力を受けたスペーサ5の高さが、低くなって高さd2(d2<d1)となり、基板2とマスク4との間隔(ギャップ)が小さくされる。つまり、密閉空間11内圧力変化によるギャップ調整が行われる。   Next, another example of the exposure method of the present invention will be described with reference to FIGS. In this exposure method, as shown in FIG. 5A, the substrate holder 1 is formed with through holes (air supply holes 6 and exhaust holes 7) communicating with an air supply / exhaust path for supplying and exhausting air in the sealed space 11. The spacer 5 having a height d1 is formed of a flexible material, and is evacuated from the exhaust hole 7 to depressurize the sealed space 11, whereby the atmospheric pressure is obtained as shown in FIG. The height of the spacer 5 subjected to pressure by P is reduced to a height d2 (d2 <d1), and the distance (gap) between the substrate 2 and the mask 4 is reduced. That is, the gap adjustment is performed by changing the pressure in the sealed space 11.

このような装置を用いた露光方法のマスク配置工程S1において、感光性樹脂3を形成した基板2が基板ホルダ1にセットされ、可撓性を有する材料で形成されてスペーサ5が設置される。さらに、スペーサ5の上にマスク4を設置することにより、密閉された露光空間11を形成する。給気孔6からの不活性ガスの供給量、及び排気孔7からの排気量を、それぞれ流量計12,14を参照して調整することにより、密閉空間11内の圧力を適宜低下させ、スペーサ5の高さをd2として、基板2とマスク4を所定のギャップまで近づける。このような方法によると、ギャップを調整するための特段の制御機構を用いることなく、空間11内の圧力調整によって基板2とマスク4がより近接した所望のギャップを実現して、パターン精度を向上させることができる。この場合、スペーサ5に隣接した位置に、所定の高さd2を有する剛体からなる高さ固定用の第2のスペーサ(不図示)を援用してもよい。   In the mask arrangement step S1 of the exposure method using such an apparatus, the substrate 2 on which the photosensitive resin 3 is formed is set on the substrate holder 1, formed of a flexible material, and the spacer 5 is installed. Further, by installing the mask 4 on the spacer 5, a sealed exposure space 11 is formed. By adjusting the supply amount of the inert gas from the air supply hole 6 and the exhaust amount from the exhaust hole 7 with reference to the flow meters 12 and 14 respectively, the pressure in the sealed space 11 is appropriately reduced, and the spacer 5 Is set to d2, and the substrate 2 and the mask 4 are brought close to a predetermined gap. According to such a method, a desired gap in which the substrate 2 and the mask 4 are closer to each other is realized by adjusting the pressure in the space 11 without using a special control mechanism for adjusting the gap, thereby improving the pattern accuracy. Can be made. In this case, a second spacer for fixing the height (not shown) made of a rigid body having a predetermined height d2 may be used at a position adjacent to the spacer 5.

次に、図6、図7を参照して本発明におけるパージ工程を説明する。パージ工程において密閉空間内に供給される不活性ガス又は密閉空間から排気される気体の流れに偏りが有ると、図6(a)に示す領域Dのように、不活性ガスの濃度ムラが発生する。このような不活性ガスの濃度ムラは、感光性樹脂に形成されるパターン形状に形状不良や形状不均一性を発生させる。このような濃度ムラを低減するため、図6(b)に示すように、密閉空間を給排気するための給気路及び排気路にそれぞれ連通する給気孔6及び排気孔7のうち、給気孔6を基板ホルダ1に載置される基板2の周囲に略等間隔に複数個形成し、これらの複数の不活性ガス給気孔6を用いて密閉空間に不活性ガスを注入する。これにより、濃度ムラを低減してパターン形状精度を向上することができる。   Next, the purge process in the present invention will be described with reference to FIGS. If there is a bias in the flow of the inert gas supplied into the sealed space or the gas exhausted from the sealed space in the purge process, the concentration of the inert gas is uneven as shown in region D of FIG. To do. Such concentration unevenness of the inert gas causes a shape defect or shape non-uniformity in the pattern shape formed on the photosensitive resin. In order to reduce such density unevenness, as shown in FIG. 6B, among the air supply holes 6 and the exhaust holes 7 respectively communicating with the air supply path and the exhaust path for supplying and exhausting the sealed space, the air supply holes 6 is formed around the substrate 2 placed on the substrate holder 1 at substantially equal intervals, and an inert gas is injected into the sealed space using the plurality of inert gas supply holes 6. Thereby, density unevenness can be reduced and pattern shape accuracy can be improved.

また、給気孔6の給気流量を調整することにより、密閉空間内の不活性ガスの濃度ムラをさらに低減できる。その方法として、給気孔6それぞれに流量計を設置して個別にバルブ開閉を行って随時個別に流量調整を行う他、給気孔6の配管径の大小を事前に設定しておき、これにより流量調整を行うことができる。この場合、気流の流れを予めシミュレーションにより求めて、その結果を参考にすることが有効である。これらのことは、排気孔7についても同様に行って不活性ガスの濃度ムラを低減することができる。   Further, by adjusting the air supply flow rate of the air supply holes 6, the concentration unevenness of the inert gas in the sealed space can be further reduced. As a method, a flow meter is installed in each of the air supply holes 6 and the valves are individually opened and closed to individually adjust the flow as needed. In addition, the pipe diameter of the air supply holes 6 is set in advance and the flow rate is thereby adjusted. Adjustments can be made. In this case, it is effective to obtain the flow of the airflow by simulation in advance and refer to the result. These things can be performed in the same way for the exhaust holes 7 to reduce the concentration unevenness of the inert gas.

また、密閉空間内の雰囲気を不活性ガス雰囲気にするために、図7の左に示すように、空間内の空気を排気孔7から排気しつつ給気孔6から不活性ガスを給気し、かつ、図7の右に示すように、その排気孔7と給気孔6とを順次切換えることが有効である。このように、排気孔7と給気孔6の位置を順次切換えることにより、密閉空間内の気体の流れの偏りを少なくでき、不活性ガスの濃度ムラを低減できる。   Further, in order to make the atmosphere in the sealed space an inert gas atmosphere, as shown on the left side of FIG. 7, while the air in the space is exhausted from the exhaust hole 7, the inert gas is supplied from the supply hole 6, In addition, it is effective to sequentially switch the exhaust hole 7 and the air supply hole 6 as shown on the right side of FIG. In this way, by sequentially switching the positions of the exhaust hole 7 and the air supply hole 6, the deviation of the gas flow in the sealed space can be reduced, and the concentration unevenness of the inert gas can be reduced.

次に、上述した何れかの給気孔6及び排気孔7の構成と密閉空間の構成のもとで行う露光方法について、高精度のパターン形状を得るために有効なパージ工程に関連する事項を説明する。例えば、パージ工程において、不活性ガスの注入を空気の排気よりも先に開始する。この方法によると、不活性ガスが密閉空間内全体を少し満たしてから排気が開始されるので、不活性ガスの濃度ムラを少なくできる。また、露光工程を、パージ工程が終了した後に行う。パージ工程を停止する際は、不活性ガスの給気停止よりも空気の排気停止を先に行うことが望ましい。これにより、不活性ガスの注入を先に停止したとき発生する密閉空間内の急激な圧力低下とこれに伴う外部からの汚染物質の混入を防止することができる。   Next, with regard to the exposure method performed under the configuration of any one of the air supply holes 6 and the exhaust holes 7 described above and the configuration of the sealed space, matters related to a purge process effective for obtaining a highly accurate pattern shape will be described. To do. For example, in the purge process, the inert gas injection is started before the air is exhausted. According to this method, since the exhaust gas is started after the inert gas fills the entire sealed space a little, the concentration unevenness of the inert gas can be reduced. The exposure process is performed after the purge process is completed. When stopping the purge process, it is desirable to stop the exhaust of air before stopping the supply of inert gas. As a result, it is possible to prevent a sudden pressure drop in the sealed space that occurs when the injection of the inert gas is stopped first, and the accompanying contamination from the outside.

また、パージ工程は、密閉空間内の雰囲気を不活性ガス雰囲気にするために、空間内の空気を排気しつつ複数の給気孔から不活性ガスを給気して行う。このとき、各給気孔は、互いに均一な配管径を有し、かつ各給気孔からの配管距離が略等しい位置にあるガス溜め部(バッファー)に接続されており、このガス溜め部を介して給気を行うものとする。このような給気方法によるパージ工程では、給気する不活性ガスの流量を各給気孔間で均一にすることができ、従って、不活性ガスの濃度ムラを低減することができる。   Further, the purge process is performed by supplying an inert gas from a plurality of supply holes while exhausting the air in the space in order to make the atmosphere in the sealed space an inert gas atmosphere. At this time, each air supply hole is connected to a gas reservoir (buffer) having a uniform pipe diameter from each other, and the pipe distance from each air supply hole is substantially equal, and through this gas reservoir Air supply shall be performed. In the purge step by such an air supply method, the flow rate of the inert gas to be supplied can be made uniform between the air supply holes, and therefore the concentration unevenness of the inert gas can be reduced.

次に、上述した本発明の何れかの露光方法を用いて光導波路を形成する例を説明する。光導波路板は、クラッド材そのものからなるクラッド基板、又はシリコン基板やガラス基板等の平滑な基板上にクラッド材を層形成したクラッド基板を用いて形成される。クラッド材の厚みは、コア材との屈折率差にもよるが、偏波依存損失を小さくするため10μm以上が望ましい。準備されたクラッド基板上に、導波路となるコアを形成するためのコア層を感光性樹脂によって形成する。波長1.3〜1.6μmの光をシングルモードでコア内を伝搬させるには、コアの高さ及び幅は3〜10μm程度が良い。より安定な光の伝搬には、伝搬方向の中心軸に対して等方向なコア形状で、例えば矩形の場合、コアの縦横比が1であることが望ましいが、必要とする光回路パターンによりその限りではない。上述のコア層を形成したクラッド基板を、基板ホルダにセットする。その後、上述のマスク配置工程(S1)、パージ工程(S2)、及び露光工程(S3)を経て、露光されて導波路コアの形状にパターニングされたコア層を有するクラッド基板を得る。その後、コア層の可溶部位をエッチング等により除去して、光導波路としてのコア部が形成され、良好な矩形形状の導波路コアを有する光導波路板が得られる。図8は、導波路コアの光軸に直交する面における導波路コア断面の例を示す。図の中央の矩形形状がコア部であり、コア部の下はクラッド材からなる基板である。基板上のいずれの場所においてもこのように良好な断面形状の導波路コアが形成されている。参考のため、6μの寸法スケールが添えられている。本発明の露光方法によると、基板面内で偏りのない2次元的なパターン形状の精度に加えて、導波路コアの断面形状つまり3次元の形状精度を保って、設計形状に近い導波路コアを作製することができるので、光損失の少ない良好な光導波路板を得ることができる。なお、本発明は、上記構成に限られることなく種々の変形が可能である。   Next, an example in which an optical waveguide is formed using any of the exposure methods of the present invention described above will be described. The optical waveguide plate is formed using a clad substrate made of the clad material itself or a clad substrate in which a clad material is formed on a smooth substrate such as a silicon substrate or a glass substrate. The thickness of the clad material is preferably 10 μm or more in order to reduce polarization dependent loss, although it depends on the refractive index difference with the core material. On the prepared clad substrate, a core layer for forming a core to be a waveguide is formed with a photosensitive resin. In order to propagate light having a wavelength of 1.3 to 1.6 μm through the core in a single mode, the height and width of the core are preferably about 3 to 10 μm. For more stable light propagation, it is desirable that the core shape is isotropic with respect to the central axis of the propagation direction, for example, in the case of a rectangle, the aspect ratio of the core is 1. However, depending on the required optical circuit pattern, Not as long. The clad substrate on which the core layer is formed is set on a substrate holder. Thereafter, a clad substrate having a core layer that is exposed and patterned into the shape of a waveguide core is obtained through the above-described mask placement step (S1), purge step (S2), and exposure step (S3). Thereafter, the soluble portion of the core layer is removed by etching or the like to form a core portion as an optical waveguide, and an optical waveguide plate having a favorable rectangular waveguide core is obtained. FIG. 8 shows an example of a waveguide core cross section in a plane orthogonal to the optical axis of the waveguide core. The rectangular shape in the center of the figure is the core portion, and the substrate below the core portion is a clad material. A waveguide core having a good cross-sectional shape is thus formed at any location on the substrate. For reference, a 6 μ dimension scale is attached. According to the exposure method of the present invention, in addition to the accuracy of the two-dimensional pattern shape without deviation in the substrate plane, the waveguide core is close to the design shape while maintaining the cross-sectional shape of the waveguide core, that is, the three-dimensional shape accuracy. Thus, a good optical waveguide plate with little optical loss can be obtained. The present invention is not limited to the above-described configuration, and various modifications can be made.

本発明に係る基板の露光方法に用いられる露光装置の断面図。Sectional drawing of the exposure apparatus used for the exposure method of the board | substrate which concerns on this invention. 同上露光方法を示すフローチャート。The flowchart which shows an exposure method same as the above. (a)は本発明の露光方法の他の例に用いられる露光装置のマスクを外した状態の平面図、(b)は(a)のA−A断面図。(A) is a top view of the state which removed the mask of the exposure apparatus used for the other example of the exposure method of this invention, (b) is AA sectional drawing of (a). 本発明の露光方法のさらに他の例に用いられる露光装置の断面図。Sectional drawing of the exposure apparatus used for the further another example of the exposure method of this invention. (a)は本発明の露光方法のさらに他の例に用いられる露光装置のパージ工程前の状態の断面図、(b)は同露光装置のパージ工程後の断面図。(A) is sectional drawing of the state before the purge process of the exposure apparatus used for the further another example of the exposure method of this invention, (b) is sectional drawing after the purge process of the exposure apparatus. (a)は本発明の露光方法のさらに他の例におけるパージ工程を説明する露光装置の内部平面図、(b)はパージ工程の不具合を説明する露光装置の内部平面図。(A) is an internal top view of the exposure apparatus explaining the purge process in the further another example of the exposure method of this invention, (b) is an internal top view of the exposure apparatus explaining the malfunction of a purge process. 本発明の露光方法のさらに他の例におけるパージ工程を時系列で示した露光装置の内部平面図。The internal top view of the exposure apparatus which showed the purge process in the further another example of the exposure method of this invention in time series. 本発明の露光方法により露光して現像した感光性樹脂の断面を拡大撮像して示した図。The figure which expanded and imaged and showed the cross section of the photosensitive resin exposed and developed by the exposure method of this invention. 従来の露光方法を示す露光装置の断面図とその露光方法により露光して現像した感光性樹脂の断面を拡大撮像して示した図。Sectional drawing of the exposure apparatus which shows the conventional exposure method, and the figure which expanded and imaged and showed the cross section of the photosensitive resin exposed and developed by the exposure method.

符号の説明Explanation of symbols

1 基板ホルダ
2 基板
3 感光性樹脂
4 マスク
5 スペーサ
6、6a 給気孔
7、7a 排気孔
11 密閉空間
DESCRIPTION OF SYMBOLS 1 Board | substrate holder 2 Board | substrate 3 Photosensitive resin 4 Mask 5 Spacer 6, 6a Air supply hole 7, 7a Exhaust hole 11 Sealed space

Claims (6)

感光性樹脂が塗布された基板の露光方法であって、
給排気可能な密閉空間内において、感光性樹脂が塗布され該空間内に配置された基板の主面から所定の間隔を持たせて露光用のマスクを配置するマスク配置工程と、
前記密閉空間内の雰囲気を不活性ガス雰囲気にするため、その空間内の空気を排気しつつ不活性ガスを注入するパージ工程と、
前記基板の主面に塗布された感光性樹脂に前記マスクを通して光を照射することによりパターニングする露光工程と、を有することを特徴とする基板の露光方法。
An exposure method for a substrate coated with a photosensitive resin,
In a sealed space where air can be supplied and exhausted, a mask placement step of placing a mask for exposure with a predetermined distance from the main surface of a substrate coated with a photosensitive resin and placed in the space;
In order to make the atmosphere in the sealed space an inert gas atmosphere, a purge step of injecting an inert gas while exhausting air in the space;
And an exposure step of patterning the photosensitive resin applied to the main surface of the substrate by irradiating light through the mask.
前記基板は平板状の基板ホルダに載置され、前記密閉空間は、前記基板ホルダと、前記基板ホルダに載置される基板の周囲を包囲するように基板ホルダに立設されるスペーサと、前記マスクと、で形成されることを特徴とする請求項1に記載の基板の露光方法。   The substrate is placed on a flat substrate holder, and the sealed space includes the substrate holder, a spacer standing on the substrate holder so as to surround the substrate placed on the substrate holder, The substrate exposure method according to claim 1, wherein the substrate exposure method is a mask. 前記基板ホルダは、前記密閉空間内を給排気するための給排気路に連通する貫通孔が形成され、前記スペーサは、可撓性を有する材料で形成され、前記貫通孔より排気して前記密閉空間内を減圧することにより、前記スペーサの高さが低くなって前記基板と前記マスクとの間隔が小さくなることを特徴とする請求項2に記載の基板の露光方法。   The substrate holder is formed with a through hole communicating with an air supply / exhaust passage for supplying and exhausting the inside of the sealed space, and the spacer is formed of a flexible material, and is exhausted from the through hole and sealed. 3. The method of exposing a substrate according to claim 2, wherein the space is reduced in pressure to reduce the height of the spacer and reduce the distance between the substrate and the mask. 前記基板ホルダは、前記密閉空間を給排気するための給気路及び排気路にそれぞれ連通する給気孔及び排気孔が形成され、前記給気孔又は排気孔は、当該基板ホルダに載置される基板の周囲に略等間隔に複数個形成されていることを特徴とする請求項2又は請求項3に記載の基板の露光方法。   The substrate holder has an air supply hole and an exhaust hole communicating with an air supply path and an exhaust path for supplying and exhausting the sealed space, respectively, and the air supply hole or the exhaust hole is a substrate placed on the substrate holder. The substrate exposure method according to claim 2, wherein a plurality of wafers are formed at substantially equal intervals around the substrate. 前記パージ工程は、不活性ガスの注入を空気の排気よりも先に開始することを特徴とする請求項3又は請求項4に記載の基板の露光方法。   5. The substrate exposure method according to claim 3, wherein the purging step starts injection of an inert gas prior to air exhaust. 前記露光工程は、前記パージ工程が終了した後に行うこと特徴とする請求項1乃至請求項5のいずれかに記載の基板の露光方法。
6. The substrate exposure method according to claim 1, wherein the exposure step is performed after the purge step is completed.
JP2004341294A 2004-11-25 2004-11-25 Method for exposing substrate coated with photosensitive resin Expired - Fee Related JP4622482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341294A JP4622482B2 (en) 2004-11-25 2004-11-25 Method for exposing substrate coated with photosensitive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341294A JP4622482B2 (en) 2004-11-25 2004-11-25 Method for exposing substrate coated with photosensitive resin

Publications (2)

Publication Number Publication Date
JP2006156507A true JP2006156507A (en) 2006-06-15
JP4622482B2 JP4622482B2 (en) 2011-02-02

Family

ID=36634427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341294A Expired - Fee Related JP4622482B2 (en) 2004-11-25 2004-11-25 Method for exposing substrate coated with photosensitive resin

Country Status (1)

Country Link
JP (1) JP4622482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134005A (en) * 2007-11-29 2009-06-18 Nsk Ltd Proximity exposure device and proximity exposure method
JP2010040831A (en) * 2008-08-06 2010-02-18 Orc Mfg Co Ltd Exposing method for substrate in exposing device
JP2012109553A (en) * 2010-10-22 2012-06-07 Canon Inc Exposure device and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151150A (en) * 1984-08-21 1986-03-13 Sony Corp Formation of pattern and exposing device
JPH05335201A (en) * 1992-06-01 1993-12-17 Dainippon Screen Mfg Co Ltd Purging method of inert gas in proximity aligner
JPH0943861A (en) * 1995-08-02 1997-02-14 Dainippon Screen Mfg Co Ltd Aligning method and aligning device for opposite plate
JPH10106920A (en) * 1996-09-27 1998-04-24 Ushio Inc Proximity exposure method
JP2000131770A (en) * 1998-10-22 2000-05-12 Dainippon Printing Co Ltd Method and device for vacuum contact exposure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151150A (en) * 1984-08-21 1986-03-13 Sony Corp Formation of pattern and exposing device
JPH05335201A (en) * 1992-06-01 1993-12-17 Dainippon Screen Mfg Co Ltd Purging method of inert gas in proximity aligner
JPH0943861A (en) * 1995-08-02 1997-02-14 Dainippon Screen Mfg Co Ltd Aligning method and aligning device for opposite plate
JPH10106920A (en) * 1996-09-27 1998-04-24 Ushio Inc Proximity exposure method
JP2000131770A (en) * 1998-10-22 2000-05-12 Dainippon Printing Co Ltd Method and device for vacuum contact exposure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134005A (en) * 2007-11-29 2009-06-18 Nsk Ltd Proximity exposure device and proximity exposure method
JP2010040831A (en) * 2008-08-06 2010-02-18 Orc Mfg Co Ltd Exposing method for substrate in exposing device
JP2012109553A (en) * 2010-10-22 2012-06-07 Canon Inc Exposure device and device manufacturing method

Also Published As

Publication number Publication date
JP4622482B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5275399B2 (en) Method for reducing the gas trapped in an imprint layer
JP5184508B2 (en) Imprint lithography system
JP6294679B2 (en) Imprint apparatus and article manufacturing method
US20100164146A1 (en) Imprinting mold and pattern formation method
JP2009241330A (en) Fine structure transferring stamper and fine structure transferring apparatus
KR20120090804A (en) Mold, imprint method, and method of manufacturing article
US20110111593A1 (en) Pattern formation method, pattern formation system, and method for manufacturing semiconductor device
KR20090119041A (en) Method of manufacturing imprint substrate and method of imprinting
US20170217054A1 (en) Imprint apparatus, control method, and method for manufacturing article
JP5182097B2 (en) Manufacturing method of optical waveguide module
JP4622482B2 (en) Method for exposing substrate coated with photosensitive resin
JP2016054231A (en) Imprint device
KR101319353B1 (en) Apparatus and method of fabricating flat display device
WO2014127582A1 (en) Method and device for determining photolithography process parameter
JP6115300B2 (en) Imprint mold, imprint method, pattern forming body
KR100699092B1 (en) Apparatus and method for making pattern
WO2015141604A1 (en) Imprint apparatus and method of manufacturing article
JP2018093182A (en) System for adjusting position of template and method
JP5481438B2 (en) Imprint mold and pattern forming method
TW202347022A (en) Transfer apparatus and method of manufacturing a transferred wafer using the same
US9250467B2 (en) Manufacturing mold and manufacturing method for color filter
US20230305388A1 (en) Imprint apparatus, imprint method, storage medium, and method of manufacturing article
JP2018006560A (en) Lithographic apparatus and manufacturing method of article
KR100599927B1 (en) Resist baking apparatus for manufacturing photomask
KR20240027543A (en) Film forming apparatus, film forming method, manufacturing method of article, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees