JP2006155724A - 磁気ディスク装置の製造方法 - Google Patents

磁気ディスク装置の製造方法 Download PDF

Info

Publication number
JP2006155724A
JP2006155724A JP2004343288A JP2004343288A JP2006155724A JP 2006155724 A JP2006155724 A JP 2006155724A JP 2004343288 A JP2004343288 A JP 2004343288A JP 2004343288 A JP2004343288 A JP 2004343288A JP 2006155724 A JP2006155724 A JP 2006155724A
Authority
JP
Japan
Prior art keywords
magnetic head
gas cluster
ion beam
air bearing
bearing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004343288A
Other languages
English (en)
Inventor
Shigeru Ono
茂 大野
Shinji Sasaki
新治 佐々木
Kenji Furusawa
賢司 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004343288A priority Critical patent/JP2006155724A/ja
Publication of JP2006155724A publication Critical patent/JP2006155724A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

【課題】磁気ディスク記録装置の記録密度向上に伴い、これに搭載される磁気ヘッドの磁気ディスクからの浮上量及び加工損傷深さの低減が求められている。しかしながら、従来から用いられている研磨加工やモノマーイオンビームの斜め照射等では、加工損傷深さを1nm程度まで低減するのは困難である。
【解決手段】磁気ヘッド浮上面の法線方向を回転軸として磁気ヘッドを回転させながら、イオンの運動エネルギーが所望の値に調整されたガスクラスターイオンビームを、磁気ヘッド浮上面の法線に対する角度(照射角)が50°以上90°以下となる方向から照射して、磁気ディスク装置の磁気ヘッド浮上面を平坦化加工する方法を提供する。
【選択図】図1

Description

本発明は、ガスクラスターイオンビームを用いて磁気ディスク装置の部品、特に磁気ヘッドの表面を平坦化する工程を含む磁気ディスク装置の製造方法に関するものである。
半導体装置の配線微細化や磁気記録装置の記録密度向上に伴い、半導体装置や磁気ディスク装置の製造方法としてガスクラスターイオンビームが注目されるようになってきた。ガスクラスターは、気体原子または分子(以後、モノマーという)が数百〜数千個の塊になったものである。換言すれば、ガスクラスターを構成する多数の気体原子又は分子は、互いに化学結合を形成せず、単に凝集して一つの塊をなすにすぎない。その発生方法は、特許文献1に述べられている。イオン化されたガスクラスターイオンは加速電圧により加速され、ワークに照射される。ガスクラスターイオンがワークに衝突すると、入射エネルギーはガスクラスターイオンを構成する個々の原子に分配されるので、モノマーイオンビームに比べて高密度、低エネルギーでの照射が可能となる。
上記のようにして発生させたガスクラスターイオンビームは、従来のモノマーイオンビームとは異なった特徴を持つことが非特許文献1に示されている。例えば、従来のモノマーイオンビームをワーク表面に垂直に照射すると表面荒れが発生するのに対し、ガスクラスターイオンビームをワーク表面に垂直に照射するとラテラルスパッタ効果により、凹凸面の平坦化が可能である。ガスクラスターイオンビームを用いると、平均表面粗さを1nm以下まで低減することが容易である。また、ガスクラスターイオンは大きな質量を持つため、同じ加速電圧を与えてもモノマーイオンに比べ、低速での照射が可能である。そのため、モノマーイオンを用いるプロセスに比べて、加工損傷深さを小さくすることができる。さらに、ガスクラスターイオンを構成する原子が多重衝突することに起因する非線形効果により、モノマーイオンビームプロセスに比べて約1桁高いスパッタ率が得られる。
平坦化技術としては、化学的機械的研磨(CMP)等の研磨技術の他、イオンビームを用いる方法として特許文献2で述べられているように、従来のモノマーイオンビームを斜めから照射する方法が知られている。特許文献2の方法によれば、モノマーイオンを斜めから照射することにより、突起を選択的にエッチングできるとされている。
特開平4−354865号公報 特開平10−200169号公報 I.Yamada,et al,Mater.Sci.Eng.,R.34,(2001)pp.231−295
磁気ディスク記録装置(HDD)の記録密度は、年率60〜100%で増加しており、今後もその傾向は続くとされている。それに伴い、磁気ヘッド浮上面(磁気ヘッドの磁気ディスクと対向する部分の表面)と磁気ディスク間の距離(ヘッド浮上量)は小さくなってきており、磁気ヘッド浮上面の表面粗さと加工損傷深さの低減が必須である。将来的には、表面粗さや加工損傷深さは1nm程度までに抑制する必要がある。
現在、磁気ヘッド浮上面の平坦化加工プロセスで用いられている研磨では、加工損傷が発生する。スラリーや砥粒径、研磨方法等の改善により、加工損傷深さは低減されてきたものの、その値は一般に5〜10nm程度と推定されている。
モノマーイオンビームを用いて加工を行った場合も、加工損傷は発生する。モノマーイオンビームを用いて高いスパッタレートで加工するには、高エネルギーのイオンを照射する必要がある。これにより、被加工物にモノマーイオンが1次イオンとして打ち込まれる(侵入する)という問題が生じる。モノマーイオンビームを被加工物の表面に対して斜め方向から照射することによって、被加工物への1次イオン(モノマーイオン)の侵入深さは多少低減できるが、衝突カスケード現象(collision cascade phenomenon)によってスパッタリングが進行するため、1次イオンの侵入を防止することは不可能である。例えば、材料表面に照射されたイオンの挙動を求めるシミュレーション(TRIM,copyrighted by IBM)によれば、Arイオンビームを400eVでNiFeに照射する場合、表面に対して垂直に照射すると、最大で深さ約30nmまで打ち込まれる。同じイオンビームをNiFe表面の法線方向に対して85°の方向から照射した場合でも、約21nmまで打ち込まれるものもあり、照射角の効果は限定的である。
さらに、モノマーイオンビームを用いたスパッタの問題点として、被スパッタ材料原子のミキシングがある。照射するイオンのエネルギーを低減したり、斜め照射を行うことで、ミキシング層深さを低減することができる。照射表面の法線に対して60°の方向から、1次イオンを500eVで照射した場合のミキシング層深さは2〜5nm程度と推定される。
ミキシングは、ガスクラスターイオンビームを用いても防止することはできない。クラスターサイズ2,000程度のArガスクラスターイオンビームを10keVで照射した場合、ミキシング層の厚さは約10nmとなることが実験的に確認された。
さらに、磁気ヘッド浮上面をモノマーイオンビームの斜め照射で加工する場合に特有の水平方向のミキシングがある。磁気ヘッド浮上面には金属や金属酸化物等の極薄膜で構成された多層積層膜の断面が露出している。モノマーイオンビームを斜めから照射した場合は、衝突カスケードによってノックオン原子(knock on atom,反跳原子)が隣り合った層に移動して、水平方向のミキシングが起こる。これによって、最表面層では、所望の磁気特性を失うことになり、磁気ヘッド製造上の課題である。
上述のいかなる方法を用いても、加工損傷層深さを1nm程度に抑制するのは困難である。モノマーイオンビームであっても、ガスクラスターイオンビームであっても、照射するイオンビームのエネルギーを低下させることによって、加工損傷深さをある程度まで小さくすることは可能である。しかし、モノマーイオンビームの場合には、数10eV程度の低エネルギー且つ大電流のモノマーイオンビームを得ることは、空間電荷効果により技術的に困難である。一方、数千個の原子の集合体をイオン化したガスクラスターイオンビームでは、原子1個あたりのエネルギーを数10eV程度にすることは容易であるが、2〜10nm程度の加工損傷が形成される。すなわち、従来の研磨技術やイオンビーム技術では、加工損傷深さが1nmレベルに抑制された磁気ヘッド浮上面を得るのは困難である。
上記課題を解決するために、本発明による磁気ディスク装置の製造方法では、磁気ディスク装置を構成する部材で且つその表面の平坦性が要請される、例えば磁気ヘッドの浮上面(所定の間隙を以って磁気ディスクと対向させられる部分の表面)を、この浮上面の法線方向を回転軸として磁気ヘッドを回転させながら、イオンの運動エネルギーが所望の値に調整されたガスクラスターイオンビームを、磁気ヘッド浮上面の法線に対する角度(照射角)が50°以上90°以下となる方向から磁気ヘッド浮上面に照射して、その平坦化加工を行う。
また、磁気ヘッド浮上面の法線方向を回転軸として磁気ヘッドを回転させながら、照射するガスクラスターイオンのサイズ(N)と照射エネルギー(E)と照射角(θ°)の関係を、0.02eV≦(E/N)×cosθ≦0.5eVとすることによっても同等の効果を実現できる。
本発明により、従来のモノマーイオンビームと比べて1桁高いスパッタ率が得られるというガスクラスターイオンビームの特長を生かしつつ、ヘッド浮上面に対して垂直方向へのエネルギー成分を低減することで、モノマーイオンビームでは実現し得ない低損傷での平坦化加工が可能となる。具体的には、従来のモノマーイオンビームでは斜めから照射しても、1次イオンの侵入が避けられなかったが、ガスクラスターイオンビームでは本質的に1次イオンの侵入を抑制することができる。さらに、ガスクラスターイオンビームのスパッタリングは、衝突カスケードやノックオン現象(イオン照射された物質における反跳ミキシング)によらず、ガスクラスターイオンの衝突地点が局所的に高温高圧になることに起因しているため、斜めからガスクラスターイオンを入射させることにより、高温領域が浅くなるため、ミキシング深さを低減することができる。さらに、本発明によれば、ガスクラスターイオンビームの照射角を適正値にすることにより、水平方向のミキシングも防止することができる。また、ヘッド浮上面に存在する突起に対しては、ヘッド浮上面に対する場合よりは小さな照射角となり、スパッタ率が大きくなるため、従来のモノマーイオンビームに比べて高いスパッタ率で、突起部を選択的に平坦化することができる。すなわち、本方法によれば、磁気ヘッド浮上面のように、硬さやスパッタレートの異なる材料が露出する面であっても、突起部を選択的に平坦化することができるため、従来方法では得られない平坦な表面を得ることができる。また、ガスクラスターイオンビームを磁気ヘッド浮上面の法線方向に対して斜め方向から照射しながら、磁気ヘッドを磁気ヘッド浮上面の法線方向を回転軸として回転させることによって、ある突起が別な突起の陰になることにより加工が進まない現象を防止できる。
以下、図面を用いて実施例を示す。
図1を用いて、本発明の第1の実施例を説明する。図示されていないクラスター発生機構において、アルゴン(Ar)ガスを供給して発生させた中性クラスターを、図示されていないイオン化機構により電離させてガスクラスターイオンとし、さらに図示されていないイオン加速機構によって所望の運動エネルギーまで加速したガスクラスターイオンビーム4を、ステージ1に固定した磁気ヘッド2の浮上面に照射する。ステージ1は図示されていない照射角調整機構及びステージ回転機構を有し、磁気ヘッド2の浮上面の法線3とガスクラスターイオンビーム4とがなす角(照射角:θ)の値が、50°以上90°以下となるように照射角を調整し、磁気ヘッド浮上面の法線3を軸として回転させながら加工を行う。
照射角が50°より小さい場合、照射角を0°から増加させるに従って、加工面の表面粗さが増加し、図4(a)を参照して後述する加工条件と同様に、被加工物(磁気ヘッド2)における加工損傷深さが増加する。
図2は、ガスクラスターイオンビームを照射している磁気ヘッド2の浮上面付近の拡大図である。磁気ヘッド2の浮上面5上は、本発明によるガスクラスターイオンビーム4を照射する前の工程において、研磨加工等によってある程度の平坦化がなされている。本方法で磁気ヘッド2の浮上面5を加工することによって、当該浮上面5(表面)に生じた突起50の表面へのガスクラスターイオンビーム4の照射角θ'(突起50の表面の法線30に対する角度)が磁気ヘッド2の浮上面5に対する当該ガスクラスターイオンビーム4の照射角θより小さくなるため、この突起50をなす材料にはクラスターイオンのエネルギーが効率よく伝わる。そのため、ガスクラスターイオンビーム4は、突起50を磁気ヘッド2の浮上面5より高いスパッタレートで削ることができ、突起部分50を選択的に加工することができる。特に、磁気ヘッド浮上面のように硬さやスパッタレートの異なる材料が露出した面を加工する場合、従来の方法では、硬い材料やスパってレートの低い材料が突起として残りやすいが、本方法を用いることで、突起部を選択的に削ることができるため、従来方法では得られない平坦面を得ることができる。また、ワークホルダー(ステージ1)を、磁気ヘッド2の浮上面5の法線3を回転軸として回転させることによって、磁気ヘッド2の浮上面5に対するガスクラスターイオンビーム4の入射方向が一方向に固定されたときは、当該一方向から見て突起50の一つの陰に入るような突起(図示されず)もガスクラスターイオンビーム4で加工することができる。
本方法による平坦化加工の効果について、図3、4を用いて説明する。磁気ヘッド2の上記浮上面5に形成されるセンサー部分は微細構造であるため、当該センサー部分に生じるミキシングや組成ずれ等のダメージを実際の磁気ヘッド2のデバイス上で直接評価することは難しい。ここでは、実際の磁気ヘッド2に代えて、磁性材料の一つであるニッケル−鉄合金(NiFe)の膜をシリコン(Si)ウェハ上に形成した擬似的なサンプル(以下、NiFe膜サンプル)を用いて評価した結果について示す。図3は、二次イオン質量分析計(以下、SIMSと記す)を用いて、上記NiFe膜サンプルの表面からの深さ方向に沿って測定した結果が示される。SIMSは、NiFe膜サンプルの表面に酸素(O)、ガリウム(Ga)、セシウム(Cs)等の一次イオンを照射して、当該NiFe膜サンプルを掘りながら、掘削された深さに存在する元素をイオン化し、これを二次イオンとして同定する。図3(a)はArのガスクラスターイオンビームで照射されたNiFe膜の、図3(b)はArのモノマーイオンビームで照射されたNiFe膜の深さプロファイルを夫々示す。各々のNiFe膜の厚みは50nmであり、これに対するイオンビームの照射条件は、照射エネルギー(加速電圧)が20keVであり、そのドーズ量(イオンビームの進行方向に直交する単位断面積当たりのイオン量)は5×1015ions/cmである。一方、図3(c)は、斯様なイオンビームのいずれも照射されないNiFe膜の深さプロファイルである。図3(a)乃至(c)に示す夫々の深さプロファイルには、NiFe膜の厚み方向(深さ方向)に対するNi、Fe、Arの各元素の検出量(任意単位)の変化が示される。
Arのガスクラスターイオンにもモノマーイオンにも照射されないNiFe膜の深さプロファイル(図3(c))にて、その深さ(厚さ:0〜50nm)の全域に亘り、任意単位にして50前後の強度で検出されたArは、ニッケル(Ni)及び鉄(Fe)を含むスパッタリング・ターゲットをArのイオンでスパッタしながらSiウェハ表面上にNi原子やFe原子を堆積する工程(NiFe膜の形成工程)で、このNiFe膜に取り込まれたものである。
Arのモノマーイオンビームで照射されたNiFe膜では、図3(b)に示すように、その厚さ(50nm)全域に亘り、任意単位にして5,000〜50,000のArイオンが検出された。一方、Arのガスクラスターイオンビームで照射されたNiFe膜では、図3(a)に示すように、任意単位にして最大でも100程度のArイオンが検出されたに過ぎず、その値は図3(c)に示されたArイオンと略同程度と見なせる。従って、Arのモノマーイオンビームで照射されたNiFe膜では、図3(b)に示されるように、その厚さ(50nm)全体に亘りArが打ち込まれているのに対し、Arのガスクラスターイオンビームで照射されたNiFe膜では、図3(a)に示されるように、Arの侵入がほぼ抑制されている。
図4の(a)及び(b)には、照射エネルギー20keV、ドーズ量1×1015ions/cmでアルゴン原子のガスクラスターイオンビームが照射された膜厚50nmのNiFe膜におけるNi、Fe、Oの深さプロファイルが示される。図4(a)の深さプロファイルを示すNiFe膜には照射角0°で、図4(b)の深さプロファイルを示すNiFe膜には照射角60°で、ガスクラスターイオンビームが夫々照射されている。図4(c)にはガスクラスターイオンビーム照射前のNiFe膜のNi、Fe、Oの深さプロファイルを示す。いずれの深さプロファイルも図3を参照して説明されたように、SIMSにより得られている。図4(c)に示すように、照射前の膜には自然酸化膜9が形成されている。このミキシング層は表面の自然酸化膜に含まれる酸素原子や表面に吸着している水分子等の酸素原子が、ガスクラスターイオンの衝突に伴って、NiFe膜中に侵入したものである。図4(a)に示すように照射角0°で照射した場合は、表面の自然酸化膜とNiFe膜のミキシング層7が形成され、組成ずれも見られる。それに対し、図4(b)に示すように照射角60°で照射した場合は、図4(c)と比較して、ミキシングによる酸化膜厚の増加もなく、組成ずれも抑制されており、加工損傷が1nm以下で加工することができた。図4(b)の酸化膜6(膜厚は約1nm)は加工後に大気に曝したことによって形成された自然酸化膜である。
また、磁気ヘッド浮上面には図2に示すように磁性膜を含む多層積層膜6の断面が露出している。磁気ヘッドとして、GMRヘッド(Giant MagnetoResistive Head,再生用磁気ヘッドの一種)を例に説明すると、61及び67が磁気シールド膜、62及び66が絶縁膜、63が自由層、64が固定層、65が反強磁性層等から構成されている。膜によっては、その厚さは1nm程度のものもある。磁気ヘッド浮上面の平坦化加工を行う場合には、前述のように多層積層膜の断面にガスクラスターイオンビームを照射することになり、深さ方向のミキシングだけではなく、積層膜間のミキシングを防止する必要がある。本方法は、酸素のミキシングがないことから明らかなように、モノマーイオンビームによるスパッタと異なり、ノックオン現象に基づかないスパッタメカニズムである。そのため、ノックオンされた原子が隣り合った層に入り込むなどの現象、すなわち積層膜間のミキシングも起こらない。この現象は、ほかの構造の磁気ヘッドであっても同様の効果が得られる。
上記と同様の加工は、照射するガスクラスターイオンのサイズ(N)と照射エネルギー(E)と照射角(θ°)の関係を、0.02eV≦(E/N)×cosθ≦0.5eVとすることによっても実現できる。ここで、ガスクラスターイオンの運動エネルギーEとは、加速電圧にガスクラスターイオンの電荷素量(質量電荷比:m/zとも記される)を乗じたものである。運動エネルギーEが上述の関係を満たす下限値より小さいと、ガスクラスターイオンの照射エネルギーが小さすぎて、磁気ヘッド2(浮上面5)の加工が進まない。また、運動エネルギーEが上述の関係を満たす上限値より大きいと、磁気ヘッド2を高いエッチレートでエッチングできるものの、図4(a)に示したものと同様に、膜表面に2〜10nm程度の加工損傷が残る。
ところで、実際のビームに含まれるガスクラスターイオンのサイズ(Arの場合、ガスクラスターイオンに含まれるAr原子数)は、単分散ではなく、分布を持っている。本発明による磁気ディスク装置の製造方法に用いるガスクラスターイオンのサイズNは、平均値や最頻値等、その分布の特徴的な数値とする。
このような条件で本発明による磁気ディスク装置の製造方法を実施すると、1次イオン(即ち、磁気ヘッドの浮上面に照射されるイオン)の磁気ヘッド内部への侵入を防止でき、磁気ヘッドにおけるミキシングや組成ずれ等の加工損傷が生じる深さを1nm以下に抑えながら、平坦性に優れた磁気ヘッド浮上面を得ることができる。
以上の説明においては、本発明による磁気ディスク装置の製造方法により、その浮上面を平坦化する例を述べたが、本発明による磁気ディスク装置の製造方法(平坦化技術)は、磁気ヘッドのウェハ工程にも用いることができる。例えば、磁性膜の平坦化工程において、CMP等の研磨工程の仕上げ加工または代替プロセスとして用いることで、研磨加工による加工損傷層を低減することができる。さらに、磁気ディスクの磁性膜の平坦化にも用いることができる。また、半導体プロセスにおいても、CMP等の平坦化工程の仕上げ加工又は代替プロセスとして用いることができる。本実施例においてはArガスクラスターイオンを用いた例を示したが、他の不活性ガスやSF等の反応性ガスを用いても同様の効果が得られる。
図5は、本発明の第2の実施例の説明図である。本方法では、加工能率(スループット,throughput)の高い粗加工10と加工能率は低いが加工損傷のきわめて少ない仕上げ加工11の少なくとも2ステップ以上のプロセスから構成されるマルチステッププロセスとする。このとき、プロセスパラメータとして、少なくとも照射角、照射エネルギー、クラスターサイズの制御を行うことを特徴とする。さらに図5のプロセスの仕上げ加工11のステップにおいては、少なくとも照射角(θ)が50°以上、90°以下であることを特徴とする。
粗加工10における照射角(θ)は、50°以上、90°以下にこだわらずに設定してもよい。スパッタレートは0°から40°付近まで増加し、その後減少するという角度依存性を持つ。そこで、スパッタレートの高い角度にθを設定し、照射エネルギー(E)、クラスターサイズ(N)を適切な値に制御することによって、高能率で表面粗さ及び加工損傷深さを低減する。その後、仕上げ加工11においては、照射角(θ)を50°以上、90°以下に設定し、低損傷での加工を行う。
仕上げ加工は、図6に示すように、照射角(θ°)、照射エネルギー(E)、クラスターサイズ(N)の値が、0.02eV≦(E/N)×cosθ≦0.5eVになるように設定しても、同様の効果が得られる。
粗加工から仕上げ加工にいたるまでに、クラスターサイズや加速電圧、照射角等の調整をきめ細かく行い、ステップ数を3つ以上にしてもよい。その場合、少なくとも最後のステップは、照射角(θ)を50°以上、90°以下か、または、照射角(θ°)、照射エネルギー(E)、クラスターサイズ(N)の値が、0.02eV≦(E/N)×cosθ≦0.5eVになるように設定する。即ち、磁気ヘッド(被加工物)の所望の部分を平坦化するいずれの工程においても、この工程をなす複数のステップの夫々において、ガスクラスターのサイズ(N)、このガスクラスターのイオンが被加工物(被加工部分)を照射するエネルギー(E)、及び被加工物(被加工部分)の表面の法線とこれに入射するガスクラスターイオンのなす角(照射角:θ°)の夫々の因子の少なくとも2つが調整される。これらの因子は、真空内にて被加工物(被加工部分)にガスクラスターイオンを照射するときも、当該真空を破る(被加工物を大気圧の雰囲気に曝す)ことなく、その真空環境の外部から各ステップ毎に制御される。
本実施例においても、実際のビームに含まれるガスクラスターイオンのサイズは、単分散ではなく、分布を持っているため、被加工物の平坦化に用いるガスクラスターイオンのサイズNは、その平均値や最頻値等、その分布の特徴的な数値とする。
上記は磁気ヘッド浮上面の平坦化方法として用途を述べたが、磁気ヘッドのウェハ工程にも用いることができる。例えば、磁性膜の平坦化工程において、CMP等の研磨工程の仕上げ加工または代替プロセスとして用いることで、研磨加工による加工損傷層を低減することができる。さらに、磁気ディスクの磁性膜の平坦化にも用いることができる。また、半導体プロセスにおいても、CMP等の平坦化工程の仕上げ加工又は代替プロセスとして用いることができる。本実施例においてはArガスクラスターイオンを用いた例を示したが、他の不活性ガスやSF等の反応性ガスを用いても同様の効果が得られる。
本発明は、加工損傷をナノメートルレベルに低減することを目的としている。半導体や磁気ヘッド、磁気ディスク等、また液晶ディスプレイをはじめとする表示デバイス等の高性能化に伴って、低加工損傷で加工する必要が増加する。これらのデバイスにおいて、加工損傷を抑制しつつ、平坦化を行う工程に適用することができる。
照射角調整機構及び回転機構を有するワークホルダーの概略図。 ガスクラスターイオンビーム照射中のワーク表面の説明図。 SIMSにより測定したNi、Fe、Arの深さプロファイル。 SIMSにより測定したNi、Fe、Oの深さプロファイル。 マルチステッププロセスのブロックダイヤグラム。 マルチステッププロセスのブロックダイヤグラム。
符号の説明
1…ステージ、2…磁気ヘッド、3…磁気ヘッド表面の法線、4…ガスクラスターイオンビーム、5…磁気ヘッド表面、6…多層積層膜、7…ミキシング層、8,9…自然酸化膜、10,12…粗加工、11,13…仕上げ加工、 61,62,63,64,65,66,67…機能性薄膜。

Claims (4)

  1. ガスクラスターイオンビームを用いて磁気ヘッドの浮上面を平坦化する工程を含む磁気ディスク装置の製造方法であって、前記平坦化工程にて、前記磁気ヘッド浮上面の法線と前記ガスクラスターイオンビームのなす角(照射角:θ)の値が、50°以上90°以下となるように照射角を調整し、且つ該磁気ヘッド浮上面を、該法線を軸として回転させながら該ガスクラスターイオンビームで照射して加工する磁気ディスク装置の製造方法。
  2. ガスクラスターイオンビームを用いて磁気ヘッドの浮上面を平坦化する工程を含む磁気ディスク装置の製造方法であって、前記平坦化工程にて、前記磁気ヘッドの浮上面に照射される前記ガスクラスターイオンのサイズ(N)並びに照射エネルギー(E)、及び該磁気ヘッド浮上面の法線と前記ガスクラスターイオンビームのなす角(照射角:θ°)とが、0.02eV≦(E/N)×cosθ≦0.5eVなる関係を満たすように設定される磁気ディスク装置の製造方法。
  3. 真空内にて磁気ヘッドの浮上面をガスクラスターイオンビームで照射して平坦化する工程を含む磁気ディスク装置の製造方法であって、前記平坦化工程にて、少なくとも前記ガスクラスターのサイズ(N)並びにその照射エネルギー(E)、及び前記磁気ヘッド浮上面の法線と前記ガスクラスターイオンビームのなす角(照射角:θ°)の夫々の因子を、前記真空を破ることなく該真空の外部から制御して、該因子(N、E、θ)の2つ以上を組み合わせて調整しながら複数回の加工ステップを順次行い、且つ該複数の加工ステップの最後の一つを、前記照射角(θ)を50°以上且つ90°以下の範囲に調整して行なう磁気ディスク装置の製造方法。
  4. 真空内にて磁気ヘッドの浮上面をガスクラスターイオンビームで照射して平坦化する工程を含む磁気ディスク装置の製造方法であって、前記平坦化工程にて、少なくとも前記ガスクラスターのサイズ(N)並びにその照射エネルギー(E)、及び前記磁気ヘッド浮上面の法線と前記ガスクラスターイオンビームのなす角(照射角:θ°)の夫々の因子を、前記真空を破ることなく該真空の外部から制御して、該因子(N、E、θ)の2つ以上を組み合わせて調整しながら複数回の加工ステップを順次行い、且つ該複数の加工ステップの少なくとも最後の一つにおいて、該因子(N、E、θ)が0.02eV≦(E/N)×cosθ≦0.5eVなる関係を満たすように調整される磁気ディスク装置の製造方法。
JP2004343288A 2004-11-29 2004-11-29 磁気ディスク装置の製造方法 Pending JP2006155724A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343288A JP2006155724A (ja) 2004-11-29 2004-11-29 磁気ディスク装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343288A JP2006155724A (ja) 2004-11-29 2004-11-29 磁気ディスク装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006155724A true JP2006155724A (ja) 2006-06-15

Family

ID=36633843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343288A Pending JP2006155724A (ja) 2004-11-29 2004-11-29 磁気ディスク装置の製造方法

Country Status (1)

Country Link
JP (1) JP2006155724A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231238B2 (ja) * 2006-10-30 2013-07-10 日本航空電子工業株式会社 ガスクラスターイオンビームによる固体表面の平坦化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231238B2 (ja) * 2006-10-30 2013-07-10 日本航空電子工業株式会社 ガスクラスターイオンビームによる固体表面の平坦化方法

Similar Documents

Publication Publication Date Title
Glöersen Ion− beam etching
US9852750B2 (en) Method and apparatus for controlling topographical variation on a milled cross-section of a structure
JP2013012546A (ja) 不揮発性記憶装置の製造方法
US6592728B1 (en) Dual collimated deposition apparatus and method of use
US20140017817A1 (en) Techniques for treating sidewalls of patterned structures using angled ion treatment
US8679356B2 (en) Mask system and method of patterning magnetic media
JP5829357B2 (ja) 磁気メモリ及びその形成方法
JP2004250778A (ja) 原子スケールの表面平滑化方法および装置
JP2007026506A (ja) 磁気ヘッドスライダの製造方法及び磁気ヘッドスライダ
Gierak et al. Exploration of the ultimate patterning potential achievable with high resolution focused ion beams
US20200027707A1 (en) Techniques, system and appratus for selective deposition of a layer using angled ions
JP2008052840A (ja) 磁気ヘッドスライダの製造方法
JP2013197524A (ja) 磁気抵抗効果素子の製造方法
US9396965B2 (en) Techniques and apparatus for anisotropic metal etching
JP4636862B2 (ja) ガスクラスターイオンビーム照射装置
US20100096566A1 (en) Reducing Line Edge Roughness by Particle Beam Exposure
JP2006155724A (ja) 磁気ディスク装置の製造方法
CN100594587C (zh) 干蚀刻方法
JP2003208703A (ja) 磁気記録ヘッド及びその製造方法並び炭素保護膜形成装置
US20040084407A1 (en) Method for surface preparation to enable uniform etching of polycrystalline materials
Velthaus et al. Mitigation of ion-induced desorption for accelerator components by surface treatment and annealing
US8354034B2 (en) Method of manufacturing a magnetic head
JP2004118954A (ja) 薄膜磁気ヘッド装置の製造方法
Seki Nano-processing with gas cluster ion beams
Srinivasan et al. Ion beam etch for patterning of resistive ram (reram) devices

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425