JP2006153738A - Integrating sphere type turbidimeter - Google Patents

Integrating sphere type turbidimeter Download PDF

Info

Publication number
JP2006153738A
JP2006153738A JP2004346849A JP2004346849A JP2006153738A JP 2006153738 A JP2006153738 A JP 2006153738A JP 2004346849 A JP2004346849 A JP 2004346849A JP 2004346849 A JP2004346849 A JP 2004346849A JP 2006153738 A JP2006153738 A JP 2006153738A
Authority
JP
Japan
Prior art keywords
integrating sphere
calibration
light
cell window
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004346849A
Other languages
Japanese (ja)
Inventor
Masuhito Watanabe
益人 渡辺
Yukiro Hashizume
幸郎 橋詰
Takeshi Ishitobi
毅 石飛
Shinya Kasai
信弥 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2004346849A priority Critical patent/JP2006153738A/en
Publication of JP2006153738A publication Critical patent/JP2006153738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/152Scraping; Brushing; Moving band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrating sphere type turbidimeter having a simple structure and capable of automatically realizing calibration or the washing of a cell window. <P>SOLUTION: The integrating sphere type turbidimeter is equipped with a detection cell 131 constituted so as to irradiate internal sample water with the light from a light source 11 through one cell window 133 to emit the scattered light and transmitted light, which occur from the sample water through another cell window 133 and an integrating sphere 15 for collecting the scattered light and transmitted light emitted from another cell window 133. The turbidity of the sample water is measured on the basis of the ratio of the respective detection currents obtained by photoelectric conversion of the scattered light and transmitted light collected by the integrating sphere 15. A calibration filter 138 for calibrating the ratio of the respective detection currents is arranged between another cell window 133 and the light incident port 15A of the integrating sphere 15 in a detachable manner and a washing wiper 136C coming into contact with the inner surface of the cell window 133 to move is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料水の濁度を光学的に測定する積分球式濁度計に関し、詳しくは、濁度の測定精度を向上させるための洗浄・校正手段及び洗浄・校正方法に関するものである。   The present invention relates to an integrating sphere turbidimeter that optically measures the turbidity of sample water, and more particularly to a cleaning / calibration means and a cleaning / calibration method for improving the turbidity measurement accuracy.

積分球式濁度計は、検出セル内の試料水を透過した光を積分球内に導入し、受光素子により散乱光を光電変換した検出電流と透過光を光電変換した検出電流との比に基づいて試料水の濁度を測定するものとして知られている。
この積分球式濁度計によれば、色の影響が少なく、低濁度から高濁度までを高精度に測定することが可能である。
The integrating sphere turbidimeter introduces light that has passed through the sample water in the detection cell into the integrating sphere, and the ratio of the detected current obtained by photoelectrically converting the scattered light to the detected current obtained by photoelectrically converting the transmitted light. It is known to measure the turbidity of sample water based on it.
According to this integrating sphere turbidimeter, it is possible to measure from low turbidity to high turbidity with high accuracy with little influence of color.

この種の濁度計では、長期間の使用により検出セルのセル窓に試料水の汚れが付着したり、また、一時的であっても試料水中の気泡や微粒子がセル窓に付着することによって、セル窓の透過光量が減少する。更に、光源として用いられるタングステンランプ等の光量が長期の使用によって減少する等の理由により、濁度測定誤差が発生する。
従って上記の測定誤差を低減するために、検出セルブロックを分解してセル窓を洗浄したり、ゼロ校正やスパン校正を定期的に行う等のメンテナンスが必要とされている。
In this type of turbidimeter, dirt in the sample water adheres to the cell window of the detection cell due to long-term use, and bubbles and fine particles in the sample water adhere to the cell window even temporarily. The amount of light transmitted through the cell window is reduced. Furthermore, a turbidity measurement error occurs due to the reason that the amount of light of a tungsten lamp or the like used as a light source is reduced by long-term use.
Therefore, in order to reduce the above measurement error, maintenance such as disassembling the detection cell block to clean the cell window or periodically performing zero calibration or span calibration is required.

なお、下記の特許文献1には、計測シリンダー内をブラシが回転及び上下動して計測シリンダーの内壁を洗浄する洗浄手段を備えたサンプリング形の濁度計等の水質測定装置が記載されている。
また、下記の特許文献2には、円柱形空洞部内を回転して空洞部内の周壁面に接触しつつ洗浄するワイパー部材を備えたプロセス用色度計、濁度計等のフローセル装置が記載されている。
Patent Document 1 listed below describes a water quality measurement device such as a sampling turbidimeter equipped with a cleaning means for cleaning the inner wall of the measurement cylinder by rotating and moving the brush up and down in the measurement cylinder. .
Patent Document 2 below describes a flow cell device such as a process chromaticity meter and a turbidity meter provided with a wiper member that rotates in a cylindrical cavity and cleans while contacting the peripheral wall surface in the cavity. ing.

特開平7−243964号公報(段落[0015]〜[0022],[0036],[0037],[0049]、図1等)Japanese Patent Laid-Open No. 7-243964 (paragraphs [0015] to [0022], [0036], [0037], [0049], FIG. 1, etc.) 特開2002−131221号公報(段落[0005]〜[0007],[0017],[0018],[0026],[0027]、図1、図2等)Japanese Unexamined Patent Publication No. 2002-131221 (paragraphs [0005] to [0007], [0017], [0018], [0026], [0027], FIG. 1, FIG. 2, etc.)

上記各特許文献には、計測シリンダーやフローセルの内面をブラシやワイパー部材によって洗浄する技術が開示されており、セル窓の汚れを除去する手段については記載されているものの、積分球式濁度計においてスパン校正等を簡易な構成によって自動的に実現する手段は開示されていない。
すなわち、従来の積分球式濁度計では、通常、人手により周期的にゼロ校正・スパン校正を行っているが、例えばスパン校正時には校正用フィルタを検出セルと積分球との間に配置するといった作業が煩雑であり、これらの校正作業を自動化することが効率化、省力化の観点から強く望まれていた。
Each of the above patent documents discloses a technique for cleaning the inner surface of a measurement cylinder or a flow cell with a brush or a wiper member, and although means for removing dirt on the cell window is described, an integrating sphere turbidimeter No means for automatically realizing span calibration or the like with a simple configuration is disclosed.
That is, in the conventional integrating sphere turbidimeter, the zero calibration and the span calibration are usually periodically performed manually. For example, at the time of span calibration, a calibration filter is arranged between the detection cell and the integrating sphere. The work is complicated, and it has been strongly desired to automate these calibration work from the viewpoint of efficiency and labor saving.

そこで本発明の解決課題は、校正作業をセル窓の洗浄と共に容易かつ自動的に実現可能とした積分球式濁度計及びその洗浄・校正方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an integrating sphere turbidimeter and a cleaning / calibration method thereof that can easily and automatically realize calibration work together with cleaning of a cell window.

上記課題を解決するため、請求項1に記載した積分球式濁度計は、光源からの光が一方のセル窓を介して内部の試料水に照射され、かつ、試料水から発生した散乱光及び透過光が他方のセル窓を介して出射する検出セルと、
前記他方のセル窓から出射した散乱光及び透過光を捕集する積分球と、を備え、
積分球により捕集された散乱光及び透過光をそれぞれ光電変換して得た各検出電流の比に基づいて試料水の濁度を測定する積分球式濁度計において、
前記各検出電流の比を校正するための校正用フィルタを、前記他方のセル窓と積分球の入射口との間に着脱可能に配置したものである。
In order to solve the above-described problem, the integrating sphere turbidimeter according to claim 1 scatters the light from the light source irradiated to the internal sample water through one cell window and the scattered light generated from the sample water. And a detection cell through which transmitted light exits through the other cell window;
An integrating sphere that collects scattered light and transmitted light emitted from the other cell window,
In an integrating sphere turbidimeter that measures the turbidity of sample water based on the ratio of each detected current obtained by photoelectrically converting scattered light and transmitted light collected by an integrating sphere,
A calibration filter for calibrating the ratio of the detection currents is detachably disposed between the other cell window and the entrance of the integrating sphere.

請求項2に記載した積分球式濁度計は、請求項1において、セル窓の内面に接触して移動する洗浄用のワイパーを備えたものである。   According to a second aspect of the present invention, the integrating sphere turbidimeter comprises the cleaning wiper according to the first aspect, which moves in contact with the inner surface of the cell window.

請求項3に記載した積分球式濁度計の洗浄・校正方法は、検出セル内にゼロ水または洗浄液を供給しながら請求項2記載のワイパーによりセル窓の内面を洗浄し、その後、検出セル内にゼロ水を供給して測定値のゼロ校正を行い、更に請求項1記載の校正用フィルタを用いてスパン校正を行うものである。   The method of cleaning and calibrating an integrating sphere turbidimeter according to claim 3 is to clean the inner surface of the cell window with the wiper according to claim 2 while supplying zero water or a cleaning liquid into the detection cell, and then to the detection cell. Zero water is supplied into the inside to perform zero calibration of the measured value, and further, span calibration is performed using the calibration filter according to claim 1.

請求項4に記載した積分球式濁度計の洗浄・校正方法は、請求項3において、ワイパーによる洗浄、ゼロ校正及びスパン校正を、濁度測定シーケンス内で自動的かつ周期的に実行するものである。   The cleaning / calibration method for an integrating sphere turbidimeter according to claim 4 is the method according to claim 3, wherein the cleaning by the wiper, the zero calibration and the span calibration are automatically and periodically executed in the turbidity measurement sequence. It is.

本発明によれば、セル窓内面の洗浄、ゼロ校正及びスパン校正を自動的に行うことができ、積分球式濁度計のメンテナンスや校正作業に伴う手間や労力を大幅に削減することができる。
また、洗浄手段、校正手段の構造が簡単であり、既存の濁度計に若干の部材を付加するだけで構成可能であるから、低コストにて提供することができる。
According to the present invention, cleaning of the inner surface of the cell window, zero calibration and span calibration can be automatically performed, and labor and labor associated with maintenance and calibration work of the integrating sphere turbidimeter can be greatly reduced. .
In addition, since the structure of the cleaning means and the calibration means is simple and can be configured by adding a few members to the existing turbidimeter, it can be provided at low cost.

以下、図に沿って本発明の実施形態を説明する。まず、図1は本発明の実施形態にかかる積分球式濁度計の全体構成図であり、主要部の内部構造を概略的に示したものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 is an overall configuration diagram of an integrating sphere turbidimeter according to an embodiment of the present invention, and schematically shows an internal structure of a main part.

図1において、10は検出器であり、この検出器10は、タングステンランプ等の光源11と、光源11の光軸上に配置されたコンデンサレンズ、ピンホール、コリメータレンズ等を有するレンズ部12と、検出セルブロック13と、このブロック13内に配置されて試料水が導入され、かつ検出光が透過する検出セル131と、検出セルブロック13の後段に配置された積分球15と、前記光軸に平行な透過光が入射する光トラップ16と、透過光を光電変換する受光素子17T及び散乱光を光電変換する受光素子17Rと、アンプ18T,18Rと、乾燥剤が収容される乾燥剤収容室19と、乾燥剤を通過した検出器10の内部空気を検出セル131のセル窓に噴射するためのポンプ20A,20Bと、を備えている。
なお、136は検出セル131の内部において前記セル窓の内面を清掃するワイパー部材、138は検出セルブロック13と積分球15との間の隙間に着脱配置される校正用フィルタ(標準散乱板)であり、これらの構成、作用については後述する。
In FIG. 1, reference numeral 10 denotes a detector. The detector 10 includes a light source 11 such as a tungsten lamp, and a lens unit 12 having a condenser lens, a pinhole, a collimator lens, and the like disposed on the optical axis of the light source 11. The detection cell block 13, the detection cell 131 that is arranged in the block 13 and into which the sample water is introduced and through which the detection light is transmitted, the integrating sphere 15 that is arranged downstream of the detection cell block 13, and the optical axis , A light receiving element 17T that photoelectrically converts the transmitted light, a light receiving element 17R that photoelectrically converts the scattered light, amplifiers 18T and 18R, and a desiccant storage chamber that stores the desiccant. 19 and pumps 20A and 20B for injecting the internal air of the detector 10 that has passed the desiccant into the cell window of the detection cell 131.
Reference numeral 136 denotes a wiper member that cleans the inner surface of the cell window inside the detection cell 131. Reference numeral 138 denotes a calibration filter (standard scattering plate) that is detachably disposed in the gap between the detection cell block 13 and the integrating sphere 15. These configurations and operations will be described later.

また、21はバルブ23を介して試料水が供給される配管、30は試料水中の気泡を除去する脱泡槽、24はオーバーフロー用のバルブ、31は気泡捕捉フィルタ、22は脱泡槽30内の試料水を前記検出セル131に導入するための配管、40はオプションとして取付可能な脱気装置である。
更に、50は、前記アンプ18R,18Tから出力される散乱光検出電流Iと透過光検出電流Iとの比(I/I)に所定の係数K(濁度標準液を用いて予め算出)を乗じて試料水の濁度を演算する変換器であり、演算された濁度を表示部51にディジタル表示するように構成されている。なお、この変換器50は、前記光源11の制御も行っている。
21 is a pipe through which a sample water is supplied via a valve 23, 30 is a defoaming tank for removing bubbles in the sample water, 24 is an overflow valve, 31 is a bubble trapping filter, and 22 is in the defoaming tank 30. A pipe 40 for introducing the sample water into the detection cell 131 is a deaeration device which can be attached as an option.
Furthermore, 50 is the amplifier 18R, using the scattered light detection current I R and the ratio of the transmitted light detection current I T (I R / I T ) to a predetermined coefficient K (turbidity standard solution output from 18T It is a converter that calculates the turbidity of the sample water by multiplying it in advance, and is configured to digitally display the calculated turbidity on the display unit 51. The converter 50 also controls the light source 11.

次に、図2、図3は図1における主要部の構成図であり、主として校正用フィルタ138の着脱構造を説明するための図である。
検出セルブロック13の筐体132の側面には、ロータリーソレノイド137が取り付けられており、図3に示すように、上記ソレノイド137によってアーム139Aが所定角度回動し、その先端のアーム139Bが水平方向に移動可能となっている。アーム139Bの先端部には擦りガラス等からなる校正用フィルタ138が配置されており、アーム139Bが水平移動することにより、校正用フィルタ138が検出セルブロック13と積分球15の光入射口15Aとの間の隙間に移動して密着し、セル窓133とほぼ重なり合うものである。これにより、セル窓133から出射する光は、外部に漏れることなく校正用フィルタ138を通過して積分球15に入射するように構成されている。
Next, FIGS. 2 and 3 are configuration diagrams of the main part in FIG. 1, mainly for explaining the attachment / detachment structure of the calibration filter 138.
A rotary solenoid 137 is attached to the side surface of the casing 132 of the detection cell block 13, and as shown in FIG. 3, the arm 139A is rotated by a predetermined angle by the solenoid 137, and the arm 139B at the tip of the arm 139B is in the horizontal direction. It is possible to move to. A calibration filter 138 made of frosted glass or the like is disposed at the tip of the arm 139B, and the calibration filter 138 moves between the detection cell block 13 and the light entrance 15A of the integrating sphere 15 by moving the arm 139B horizontally. It moves to the gap between the two and closely contacts the cell window 133. Thus, the light emitted from the cell window 133 passes through the calibration filter 138 and enters the integrating sphere 15 without leaking outside.

26は逆浸透膜またはメンブレンフィルタからなるゼロ水生成部であり、水道水が導入されてゼロ校正用のゼロ水を生成するためのものである。このゼロ水生成部26により生成されたゼロ水は電磁弁25に送られ、試料水またはゼロ水の何れかが電磁弁25を介して検出セル131内に導入されるようになっている。
なお、図1では、上記電磁弁25、ゼロ水生成部26等の図示を便宜上、省略してある。
Reference numeral 26 denotes a zero water generating unit composed of a reverse osmosis membrane or a membrane filter, which is used to generate zero water for zero calibration by introducing tap water. The zero water generated by the zero water generator 26 is sent to the electromagnetic valve 25, and either sample water or zero water is introduced into the detection cell 131 via the electromagnetic valve 25.
In addition, in FIG. 1, illustration of the said solenoid valve 25, the zero water production | generation part 26, etc. is abbreviate | omitted for convenience.

次いで、図4は、検出セル131内のワイパー部材136の構成を示すもので、図4(a)は内部正面図、図4(b)は内部側面図である。
図示するように、検出セル131の側面にはモータ135が固定され、その回転軸136Aには、検出セル131内においてアーム136Bが連結されている。このアーム136Bの先端部には合成樹脂製のワイパー136Cが固着されている。なお、図4において、134Aは試料水またはゼロ水等の供給口、134Bは排出口を示す。
4 shows the configuration of the wiper member 136 in the detection cell 131. FIG. 4 (a) is an internal front view and FIG. 4 (b) is an internal side view.
As shown in the figure, a motor 135 is fixed to the side surface of the detection cell 131, and an arm 136B is connected to the rotation shaft 136A in the detection cell 131. A wiper 136C made of synthetic resin is fixed to the tip of the arm 136B. In FIG. 4, 134A indicates a supply port for sample water or zero water, and 134B indicates a discharge port.

上記のように構成することにより、モータ135の回転に伴ってアーム136B及びワイパー136Cが回動または回転し、ワイパー136Cが、検出セル131の正面及び背面に配置されたセル窓133の内面に接触しながら移動することにより、セル窓133の内面に付着した汚れを除去することができる。また、セル窓133以外の部分であって、ワイパー136Cの移動経路上にある検出セル内面の汚れも、同様にして除去可能である。
なお、セル窓133の洗浄時には、電磁弁25により試料水をゼロ水に切り替えてゼロ水を検出セル131内に導入しながらワイパー136Cを回動させるものであるが、別途用意した洗浄液を検出セル131内に導入しても良い。
With the configuration described above, the arm 136B and the wiper 136C rotate or rotate as the motor 135 rotates, and the wiper 136C contacts the inner surface of the cell window 133 disposed on the front and back surfaces of the detection cell 131. By moving while moving, dirt attached to the inner surface of the cell window 133 can be removed. Further, the dirt on the inner surface of the detection cell other than the cell window 133 and on the movement path of the wiper 136C can be similarly removed.
When the cell window 133 is cleaned, the sample water is switched to zero water by the electromagnetic valve 25 and the wiper 136C is rotated while introducing zero water into the detection cell 131. It may be introduced in 131.

次に、この実施形態の動作を説明する。
試料水の濁度測定時には、従来と同様に検出セル131内に試料水を供給し、変換器50が、積分球15により捕集した散乱光及び透過光の各検出電流の比(I/I)に係数Kを乗じて試料水の濁度を演算し、表示部51に表示する。このとき、前述した校正用フィルタ138は光路上から除去されている。
Next, the operation of this embodiment will be described.
When measuring the turbidity of the sample water, the sample water is supplied into the detection cell 131 as in the prior art, and the ratio of each detected current of the scattered light and transmitted light collected by the integrating sphere 15 by the converter 50 (I R / Multiply I T ) by the coefficient K to calculate the turbidity of the sample water and display it on the display unit 51. At this time, the calibration filter 138 described above is removed from the optical path.

また、一定周期もしくは適時に、電磁弁25により試料水をゼロ水または洗浄液に切り替えて検出セル131内に導入すると共に、これと同期させてモータ135を駆動することにより、セル窓133内面のワイパー洗浄を実行する。この洗浄動作により、セル窓133の内面の汚れは勿論のこと、検出セル131内に滞留しているゴミ等の不純物、浮遊物、気泡等を洗い流し、検出セル131内を清浄に保つことができる。   In addition, the sample water is switched to zero water or cleaning liquid by the electromagnetic valve 25 and introduced into the detection cell 131 at a certain period or timely, and the motor 135 is driven in synchronism with this to thereby wipe the wiper on the inner surface of the cell window 133. Perform cleaning. By this cleaning operation, not only dirt on the inner surface of the cell window 133 but also impurities such as dust, floating matters, bubbles, etc. staying in the detection cell 131 can be washed away to keep the detection cell 131 clean. .

更に、上記洗浄動作が終了したらモータ135を停止してワイパー136Cを止め、引き続きゼロ水を検出セル131内に供給しながらゼロ校正を行う。すなわち、積分球15により捕集された散乱光及び透過光をそれぞれ受光素子17R,17Tにより光電変換し、これによって得た各検出電流の比(I/I)に基づいて濁度を測定し、そのときの濁度がゼロとなるように変換器50を調整してゼロ校正を行う。 Further, when the cleaning operation is completed, the motor 135 is stopped to stop the wiper 136C, and zero calibration is performed while continuously supplying zero water into the detection cell 131. That is, the scattered light and the transmitted light collected by the integrating sphere 15 are photoelectrically converted by the light receiving elements 17R and 17T, respectively, and the turbidity is measured based on the ratio (I R / I T ) of each detected current obtained thereby. Then, the converter 50 is adjusted so that the turbidity at that time becomes zero, and zero calibration is performed.

次に、図2,図3に示したロータリーソレノイド137に通電してアーム139A,139Bを駆動し、校正用フィルタ138をセル窓133の光路上に配置する。
この状態で、検出セル131からセル窓133及び校正用フィルタ138を介して検出光を積分球15内に入射させ、変換器50により散乱光及び透過光の各検出電流の比(I/I)を演算する。
校正用フィルタ138として、例えば擦りガラス(43721−Dエドモンド)を使用した場合の、試験開始からの経過日数、各検出電流の比(I/I)、比(I/I)の誤差(試験開始時を0%とする)は、以下の表1に示すとおりである。
Next, the rotary solenoid 137 shown in FIGS. 2 and 3 is energized to drive the arms 139 A and 139 B, and the calibration filter 138 is disposed on the optical path of the cell window 133.
In this state, the detection light is made to enter the integrating sphere 15 from the detection cell 131 via the cell window 133 and the calibration filter 138, and the ratio (I R / I) of each detection current of the scattered light and the transmitted light is converted by the converter 50. T ) is calculated.
As the calibration filter 138, for example, when frosted glass (43721-D Edmond) is used, the number of days elapsed from the start of the test, the ratio of each detected current (I R / I T ), and the ratio (I R / I T ) The error (0% at the start of the test) is as shown in Table 1 below.

Figure 2006153738
Figure 2006153738

表1によれば、日数が経過しても比(I/I)の誤差は最大でも1.2%とほとんどなく、校正用フィルタ138の特性が安定していることが判る。
従って、校正用フィルタ138を使用した場合の各検出電流の比(I/I)に基づき測定当初からの比(I/I)の誤差を求め、この誤差を濁度演算式の係数Kに含めることでスパン校正を行い、経時的な感度の低下を補正することができる。
According to Table 1, it can be seen that the error of the ratio (I R / I T ) is almost 1.2% at the maximum even when the number of days elapses, and the characteristics of the calibration filter 138 are stable.
Accordingly, an error of the ratio (I R / I T ) from the initial measurement is obtained based on the ratio (I R / I T ) of each detected current when the calibration filter 138 is used, and this error is calculated using the turbidity calculation formula. By including it in the coefficient K, span calibration can be performed and the decrease in sensitivity over time can be corrected.

なお、試料水と検出器10内部との温度差によりセル窓133の外表面に結露が発生するのを防止するため、図1における乾燥剤収容室19内の乾燥剤を経た検出器10内の乾燥空気を、ポンプ20A,20Bによりセル窓133の外表面に噴射させて結露を防止することが望ましい。この結露防止動作は、ワイパー洗浄、ゼロ校正・スパン校正と同期させて行うか、あるいは必要に応じて適宜行えば良い。このように乾燥空気を検出器10の内部に循環させることにより、検出器10の内部全体の除湿も促進される。   In order to prevent dew condensation from occurring on the outer surface of the cell window 133 due to a temperature difference between the sample water and the inside of the detector 10, the inside of the detector 10 that has passed through the desiccant in the desiccant storage chamber 19 in FIG. Desirably, dry air is sprayed onto the outer surface of the cell window 133 by the pumps 20A and 20B to prevent condensation. This condensation prevention operation may be performed in synchronism with wiper cleaning, zero calibration / span calibration, or may be appropriately performed as necessary. By circulating the dry air inside the detector 10 in this way, dehumidification of the entire inside of the detector 10 is also promoted.

ワイパー洗浄及びゼロ校正・スパン校正の各処理は、一連の濁度測定シーケンスにおいて一定周期で行えば良く、電磁弁25やロータリーソレノイド137、モータ135の駆動制御、変換器50による校正演算等は、図示されていないコントローラのプログラムにより自動的に実行可能である。   The wiper cleaning, zero calibration, and span calibration processes may be performed at regular intervals in a series of turbidity measurement sequences. The drive control of the solenoid valve 25, the rotary solenoid 137, and the motor 135, the calibration calculation by the converter 50, etc. It can be automatically executed by a controller program (not shown).

以上のように、本実施形態によれば、ゼロ校正・スパン校正及びセル窓の洗浄作業を自動的に行うことができ、メンテナンス作業の負担を軽減できると共に、従来の積分球式濁度計に付加する構造部材も簡単なもので済むため、低コストにて実現することができる。   As described above, according to the present embodiment, zero calibration / span calibration and cell window cleaning work can be automatically performed, the maintenance work can be reduced, and a conventional integrating sphere turbidimeter can be used. Since the structural member to be added is simple, it can be realized at low cost.

本発明の実施形態を示す概略的な全体構成図である。1 is a schematic overall configuration diagram showing an embodiment of the present invention. 図1における主要部の側面図である。It is a side view of the principal part in FIG. 図2における主要部の正面図である。It is a front view of the principal part in FIG. 図1における検出セル内のワイパー部材の構成図である。It is a block diagram of the wiper member in the detection cell in FIG.

符号の説明Explanation of symbols

10:検出器
11:光源
12:レンズ部
13:検出セルブロック
131:検出セル
132:筐体
133:セル窓
134A:供給口
134B:排出口
135:モータ
136:ワイパー部材
136A:回転軸
136B:アーム
136C:ワイパー
137:ロータリーソレノイド
138:校正用フィルタ
139A,139B:アーム
15:積分球
15A:光入射口
16:光トラップ
17R,17T:受光素子
18R,18T:アンプ
19:乾燥剤収容室
20A,20B:ポンプ
21,22:配管
23,24:バルブ
25:電磁弁
26:ゼロ水生成部
30:脱泡槽
31:気泡捕捉フィルタ
40:脱気装置
50:変換器
51:表示部
DESCRIPTION OF SYMBOLS 10: Detector 11: Light source 12: Lens part 13: Detection cell block 131: Detection cell 132: Case 133: Cell window 134A: Supply port 134B: Discharge port 135: Motor 136: Wiper member 136A: Rotating shaft 136B: Arm 136C: Wiper 137: Rotary solenoid 138: Calibration filter 139A, 139B: Arm 15: Integrating sphere 15A: Light entrance 16: Optical trap 17R, 17T: Light receiving element 18R, 18T: Amplifier 19: Desiccant storage chamber 20A, 20B : Pumps 21, 22: Pipes 23, 24: Valves 25: Solenoid valves 26: Zero water generation unit 30: Defoaming tank 31: Bubble trapping filter 40: Deaeration device 50: Converter 51: Display unit

Claims (4)

光源からの光が一方のセル窓を介して内部の試料水に照射され、かつ、試料水から発生した散乱光及び透過光が他方のセル窓を介して出射する検出セルと、
前記他方のセル窓から出射した散乱光及び透過光を捕集する積分球と、を備え、
積分球により捕集された散乱光及び透過光をそれぞれ光電変換して得た各検出電流の比に基づいて試料水の濁度を測定する積分球式濁度計において、
前記各検出電流の比を校正するための校正用フィルタを、前記他方のセル窓と積分球の光入射口との間に着脱可能に配置したことを特徴とする積分球式濁度計。
A detection cell in which light from the light source is irradiated to the internal sample water through one cell window, and scattered light and transmitted light generated from the sample water are emitted through the other cell window;
An integrating sphere that collects scattered light and transmitted light emitted from the other cell window,
In an integrating sphere turbidimeter that measures the turbidity of sample water based on the ratio of each detected current obtained by photoelectrically converting scattered light and transmitted light collected by an integrating sphere,
An integrating sphere turbidimeter characterized in that a calibration filter for calibrating the ratio of each detected current is detachably disposed between the other cell window and the light entrance of the integrating sphere.
請求項1に記載した積分球式濁度計において、
セル窓の内面に接触して移動する洗浄用のワイパーを備えたことを特徴とする積分球式濁度計。
In the integrating sphere turbidimeter according to claim 1,
An integrating sphere turbidimeter comprising a cleaning wiper that moves in contact with the inner surface of the cell window.
検出セル内にゼロ水または洗浄液を供給しながら請求項2記載のワイパーによりセル窓の内面を洗浄し、その後、検出セル内にゼロ水を供給して測定値のゼロ校正を行い、更に請求項1記載の校正用フィルタを用いてスパン校正を行うことを特徴とする積分球式濁度計の洗浄・校正方法。   The inner surface of the cell window is cleaned with the wiper according to claim 2 while supplying zero water or cleaning liquid into the detection cell, and then zero water is supplied into the detection cell to perform zero calibration of the measured value. A method for cleaning and calibrating an integrating sphere turbidimeter, comprising performing span calibration using the calibration filter according to 1. 請求項3に記載した積分球式濁度計の洗浄・校正方法において、
ワイパーによる洗浄、ゼロ校正及びスパン校正を、濁度測定シーケンス内で自動的かつ周期的に実行することを特徴とする積分球式濁度計の洗浄・校正方法。
In the integrating sphere turbidimeter cleaning and calibration method according to claim 3,
A cleaning / calibration method for an integrating sphere turbidimeter, characterized in that cleaning with a wiper, zero calibration and span calibration are automatically and periodically executed within a turbidity measurement sequence.
JP2004346849A 2004-11-30 2004-11-30 Integrating sphere type turbidimeter Pending JP2006153738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346849A JP2006153738A (en) 2004-11-30 2004-11-30 Integrating sphere type turbidimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346849A JP2006153738A (en) 2004-11-30 2004-11-30 Integrating sphere type turbidimeter

Publications (1)

Publication Number Publication Date
JP2006153738A true JP2006153738A (en) 2006-06-15

Family

ID=36632217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346849A Pending JP2006153738A (en) 2004-11-30 2004-11-30 Integrating sphere type turbidimeter

Country Status (1)

Country Link
JP (1) JP2006153738A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157057A1 (en) * 2008-06-24 2009-12-30 株式会社島津製作所 Ultraviolet absorbance measuring instrument
EP2171430A1 (en) * 2007-07-19 2010-04-07 3M Innovative Properties Company Optical property sensor
CN103472000A (en) * 2013-09-25 2013-12-25 北京无线电计量测试研究所 Method and device for detecting ratio of components of buffer gas-containing atomic gas
CN104122231A (en) * 2014-08-07 2014-10-29 北京华源精益传感技术有限公司 On-line self-calibration water quality turbidity detection system
WO2015043675A1 (en) * 2013-09-30 2015-04-02 Hach Lange Gmbh Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
JP2019052972A (en) * 2017-09-15 2019-04-04 スガ試験機株式会社 Optical characteristic measuring device
WO2021108422A1 (en) * 2019-11-27 2021-06-03 Hach Company Turbidimeter cleaning
KR102607667B1 (en) * 2023-04-10 2023-11-30 주식회사 워터비 Method for measurement of turbidity
KR102615508B1 (en) * 2023-04-10 2023-12-20 주식회사 워터비 System for diagnosis and turbidity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939471A (en) * 1972-08-14 1974-04-12
JPS5438087U (en) * 1977-08-22 1979-03-13
JPS55129728A (en) * 1979-03-30 1980-10-07 Nec Corp Standard cell for turbidimeter calibration
JPH06123702A (en) * 1992-10-09 1994-05-06 Mitsubishi Kasei Corp Turbidimeter
JPH0989758A (en) * 1995-09-19 1997-04-04 Kubota Corp Measuring cell for turbidity sensor
JPH09184801A (en) * 1995-12-28 1997-07-15 Nikkiso Co Ltd Sample analyzer
JP2002517717A (en) * 1998-06-01 2002-06-18 ハッチ カンパニー Turbidimeter calibration test system
JP2002340787A (en) * 2001-05-18 2002-11-27 Fuji Electric Co Ltd Apparatus for measuring absorbance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939471A (en) * 1972-08-14 1974-04-12
JPS5438087U (en) * 1977-08-22 1979-03-13
JPS55129728A (en) * 1979-03-30 1980-10-07 Nec Corp Standard cell for turbidimeter calibration
JPH06123702A (en) * 1992-10-09 1994-05-06 Mitsubishi Kasei Corp Turbidimeter
JPH0989758A (en) * 1995-09-19 1997-04-04 Kubota Corp Measuring cell for turbidity sensor
JPH09184801A (en) * 1995-12-28 1997-07-15 Nikkiso Co Ltd Sample analyzer
JP2002517717A (en) * 1998-06-01 2002-06-18 ハッチ カンパニー Turbidimeter calibration test system
JP2002340787A (en) * 2001-05-18 2002-11-27 Fuji Electric Co Ltd Apparatus for measuring absorbance

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171430A1 (en) * 2007-07-19 2010-04-07 3M Innovative Properties Company Optical property sensor
EP2171430A4 (en) * 2007-07-19 2010-12-22 3M Innovative Properties Co Optical property sensor
US7969560B2 (en) 2007-07-19 2011-06-28 3M Innovative Properties Company Optical property sensor
WO2009157057A1 (en) * 2008-06-24 2009-12-30 株式会社島津製作所 Ultraviolet absorbance measuring instrument
JP5013000B2 (en) * 2008-06-24 2012-08-29 株式会社島津製作所 UV absorbance measuring device
CN103472000B (en) * 2013-09-25 2015-11-18 北京无线电计量测试研究所 Containing detection method and the device of component ratio each in the atomic gas of cushion gas
CN103472000A (en) * 2013-09-25 2013-12-25 北京无线电计量测试研究所 Method and device for detecting ratio of components of buffer gas-containing atomic gas
WO2015043675A1 (en) * 2013-09-30 2015-04-02 Hach Lange Gmbh Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
JP2016532128A (en) * 2013-09-30 2016-10-13 ハッハ ランゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングHach Lange Gmbh Nephelometric turbidimeter and method for detection of contamination of a nephelometric turbidimeter sample cuvette
US9851297B2 (en) 2013-09-30 2017-12-26 Hach Lange Gmbh Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
US10126236B2 (en) 2013-09-30 2018-11-13 Hach Lange Gmbh Method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
CN104122231A (en) * 2014-08-07 2014-10-29 北京华源精益传感技术有限公司 On-line self-calibration water quality turbidity detection system
JP2019052972A (en) * 2017-09-15 2019-04-04 スガ試験機株式会社 Optical characteristic measuring device
WO2021108422A1 (en) * 2019-11-27 2021-06-03 Hach Company Turbidimeter cleaning
KR102607667B1 (en) * 2023-04-10 2023-11-30 주식회사 워터비 Method for measurement of turbidity
KR102615508B1 (en) * 2023-04-10 2023-12-20 주식회사 워터비 System for diagnosis and turbidity

Similar Documents

Publication Publication Date Title
JP2006153738A (en) Integrating sphere type turbidimeter
KR20160132043A (en) Substrate processing system and substrate processing method
US20010011474A1 (en) Trace-level gas analysis apparatus and method
CN101971005B (en) Ultraviolet absorbance measuring instrument
JP4591702B2 (en) Film processing apparatus and film damage detection method
CN115235990A (en) Intelligent grinding workpiece quality detection system based on machine vision
CN201110840Y (en) PH value on-line measuring apparatus with self cleaning function
CN114544903A (en) Ecological environment water quality monitoring equipment with blowdown function
JPH09113440A (en) Optical concentration measuring apparatus
CN218995311U (en) Gas concentration detection device
JPH0587725A (en) Grain size distribution measuring device
JPH0714880Y2 (en) Residual chlorine meter with electrode dirt check function
JPS60128333A (en) Water quality densitometer
JPS5920662Y2 (en) Water quality measuring device
JP2000146833A (en) Abnormality detecting method of test water passage in continuous organic pollution monitor
JP2002098628A (en) Excrement measuring apparatus
JPH09292329A (en) Turbidimeter
JPH09292328A (en) Turbidimeter
CN217765964U (en) Large-traffic low concentration smoke and dust flue gas tester
JP2005274400A (en) Ultrapure water evaluating apparatus and ultrapure water manufacturing system
JPH0416746A (en) Bubble-cleaning device
CN206095917U (en) Oil content concentration meter detection loop self - cleaning device
CN117907175A (en) Lampblack detection device and lampblack detection method
CN220040162U (en) Dust detection device with cleaning function
JPH03251744A (en) Measuring apparatus of concentration of organic substance provided with washing function

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071115

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330