JP2006153511A - Humidity sensor - Google Patents

Humidity sensor Download PDF

Info

Publication number
JP2006153511A
JP2006153511A JP2004341075A JP2004341075A JP2006153511A JP 2006153511 A JP2006153511 A JP 2006153511A JP 2004341075 A JP2004341075 A JP 2004341075A JP 2004341075 A JP2004341075 A JP 2004341075A JP 2006153511 A JP2006153511 A JP 2006153511A
Authority
JP
Japan
Prior art keywords
heater
sensitive
forming substrate
element forming
sensitive part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004341075A
Other languages
Japanese (ja)
Inventor
Takashi Okuto
崇史 奥戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004341075A priority Critical patent/JP2006153511A/en
Publication of JP2006153511A publication Critical patent/JP2006153511A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidity sensor constituted so as to lower power consumption without lowering sensitivity as compared with a constitution that a heater is formed to the periphery of a sensitive part on one side of a conventional element forming substrate. <P>SOLUTION: The humidity sensor is equipped with an element forming substrate 1 comprising a single crystal silicon substrate, the sensitive part 2, which comprises a porous silicon layer, formed on one side of the element forming substrate 1, a pair of comb tooth-shaped electrodes 3 and 4 for detecting a change in capacity formed on the side in the thickness direction of the sensitive part 2 and the zigzag heater 7 formed on the other side of the element forming substrate 1. The heater 7 is provided in order to evaporate the moisture adsorbed on the sensitive part 2 and formed on the region overlapped with the sensitive part 2 on the other side in the thickness direction of the sensitive part 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、湿度センサに関するものである。   The present invention relates to a humidity sensor.

従来から、水分に感応する感応部の材料に多孔質材料を採用した湿度センサが知られている(例えば、非特許文献1参照)。   Conventionally, a humidity sensor that employs a porous material as a material of a sensitive part that is sensitive to moisture is known (for example, see Non-Patent Document 1).

この種の湿度センサは、例えば、図15に示すように、単結晶のシリコン基板からなる素子形成基板1の一表面側の一部を多孔質化することにより形成された多孔質シリコン層からなる感応部2と、感応部2上に形成された容量変化検知用の一対の電極3,4と、素子形成基板1の上記一表面上で感応部2の周囲に形成されたリフレッシュ用の2つのヒータ7,7とを備えている。ここにおいて、電極3,4の材料としてはアルミニウムが採用されている。   For example, as shown in FIG. 15, this type of humidity sensor includes a porous silicon layer formed by making a part of one surface side of the element forming substrate 1 made of a single crystal silicon substrate porous. The sensing part 2, a pair of capacitance change detection electrodes 3 and 4 formed on the sensing part 2, and two refreshing electrodes formed around the sensing part 2 on the one surface of the element forming substrate 1 Heaters 7 and 7 are provided. Here, aluminum is adopted as the material of the electrodes 3 and 4.

図15に示した湿度センサでは、一対の電極3,4それぞれの平面形状を櫛形状として、各電極3,4の櫛骨部3a,4aが対向し、各電極3,4それぞれの櫛歯部3b,4bが他方の電極4,3の櫛溝部4c,3cに入り組むように両電極3,4のレイアウトを設計することにより、チップサイズ(素子形成基板1の平面サイズ)の小型化を図りながらも一対の電極3,4間の容量を比較的大きくできるという利点がある。   In the humidity sensor shown in FIG. 15, the planar shape of each of the pair of electrodes 3, 4 is a comb shape, the comb bone portions 3 a, 4 a of each electrode 3, 4 face each other, and the comb teeth of each electrode 3, 4 By designing the layout of both electrodes 3 and 4 so that 3b and 4b enter the comb grooves 4c and 3c of the other electrode 4 and 3, the chip size (planar size of the element forming substrate 1) can be reduced. There is also an advantage that the capacity between the pair of electrodes 3 and 4 can be made relatively large.

上述の湿度センサにおける感応部2の形成にあたっては、素子形成基板1の上記一表面上に電極3,4を形成した後で、素子形成基板1の上記一表面側に各電極3,4と感応部2の形成予定部位の周囲とを保護するようにパターニングされたシリコン窒化膜からなる保護膜(図示せず)を形成した後で、素子形成基板1の一部を陽極酸化処理することにより多孔質シリコン層からなる感応部2を形成している。なお、上述の各櫛歯部3b,4bの幅寸法(線幅)は10〜12μm程度に設定され、保護膜の膜厚は500nmに設定されている。
P.Furjes,et al,「Porous Silicon Based Humidity Sensor with Interdigital Electrodes and Internal Heaters」,The 16th European Conference on Solid-State Transducers, September 15-18,2002,Prague,Czech Republic,Abstract No.6-58
In forming the sensitive portion 2 in the humidity sensor described above, after forming the electrodes 3 and 4 on the one surface of the element forming substrate 1, the electrodes 3 and 4 are sensitive to the one surface side of the element forming substrate 1. After forming a protective film (not shown) made of a silicon nitride film patterned so as to protect the periphery of the portion where the portion 2 is to be formed, a part of the element forming substrate 1 is anodized to make it porous. A sensitive part 2 made of a quality silicon layer is formed. Note that the width dimension (line width) of each of the comb teeth portions 3b and 4b is set to about 10 to 12 μm, and the thickness of the protective film is set to 500 nm.
P. Furjes, et al, “Porous Silicon Based Humidity Sensor with Interdigital Electrodes and Internal Heaters”, The 16th European Conference on Solid-State Transducers, September 15-18,2002, Prague, Czech Republic, Abstract No.6-58

ところで、図15に示した湿度センサでは、素子形成基板1の上記一表面側において感応部2の周囲にヒータ7,7が形成されているが、感応部2を構成する多孔質シリコン層は素子形成基板1である単結晶のシリコン基板に比べて熱伝導率および熱容量が小さいので、ヒータ7,7で発生した熱が感応部2の中央部まで伝わりにくく、消費電力が大きくなってしまうという不具合があった。また、上記非特許文献1には、感応部2上で一対の電極3,4の間の空間にヒータを形成した湿度センサも開示されているが、この湿度センサでは、感応部2の必要な露出面積(センシング面積)を確保したりヒータと各櫛歯部3b,4bとの相対的な位置合わせ精度を確保するために、対向する櫛歯部3b,4b間の距離が大きくなってしまうので、一対の電極3,4間の容量が小さくなって感度が低下してしまう。   In the humidity sensor shown in FIG. 15, heaters 7 are formed around the sensitive portion 2 on the one surface side of the element forming substrate 1, but the porous silicon layer constituting the sensitive portion 2 is an element. Since the thermal conductivity and heat capacity are smaller than the single crystal silicon substrate which is the formation substrate 1, the heat generated by the heaters 7 and 7 is difficult to be transmitted to the central portion of the sensitive portion 2 and the power consumption is increased. was there. Moreover, although the said nonpatent literature 1 also discloses the humidity sensor which formed the heater in the space between a pair of electrodes 3 and 4 on the sensitive part 2, in this humidity sensor, the sensitive part 2 is required. In order to secure the exposed area (sensing area) and ensure the relative alignment accuracy between the heater and each comb tooth portion 3b, 4b, the distance between the facing comb tooth portions 3b, 4b becomes large. The capacity between the pair of electrodes 3 and 4 is reduced, and the sensitivity is lowered.

本発明は上記事由に鑑みて為されたものであり、その目的は、従来の素子形成基板の一表面上で感応部の周囲にヒータが形成されている構成に比べて感度を低下させることなく低消費電力化が可能な湿度センサを提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to reduce the sensitivity as compared with a configuration in which a heater is formed around a sensitive portion on one surface of a conventional element forming substrate. An object of the present invention is to provide a humidity sensor capable of reducing power consumption.

請求項1の発明は、素子形成基板の一表面側に形成された多孔質層からなる感応部と、感応部の厚み方向の一面側に形成された一対の櫛形状の電極であって各電極それぞれの櫛歯部が他方の電極の櫛溝部に入り込んだ一対の櫛形状の電極と、感応部に吸着した水分を蒸発させるためのヒータとを備え、ヒータが、感応部の厚み方向の他面側において感応部に重複する領域に形成されてなることを特徴とする。   The invention according to claim 1 is a sensitive part formed of a porous layer formed on one surface side of the element forming substrate, and a pair of comb-shaped electrodes formed on one surface side in the thickness direction of the sensitive part. Each comb tooth portion includes a pair of comb-shaped electrodes that enter the comb groove portion of the other electrode, and a heater for evaporating moisture adsorbed on the sensitive portion, and the heater is provided on the other surface in the thickness direction of the sensitive portion. It is formed in the area | region which overlaps with a sensitive part in the side.

この発明によれば、ヒータが、感応部の厚み方向の他面側において感応部に重複する領域に形成されていることによって、一対の櫛形状の電極の櫛歯部間にヒータを設けることなく、従来の素子形成基板の一表面上で感応部の周囲にヒータが形成されている構成に比べてヒータの熱が感応部の全体に均一に伝わりやすくなるので、従来に比べて感度を低下させることなく低消費電力化が可能となる。   According to the present invention, the heater is formed in a region overlapping the sensitive portion on the other surface side in the thickness direction of the sensitive portion, so that the heater is not provided between the comb tooth portions of the pair of comb-shaped electrodes. Compared to the conventional structure in which the heater is formed around the sensitive part on the surface of the element forming substrate, the heat of the heater is more easily transmitted to the entire sensitive part, so the sensitivity is lowered compared to the conventional case. The power consumption can be reduced without any problem.

請求項2の発明は、請求項1の発明において、前記ヒータが前記感応部の前記他面に接してなることを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the heater is in contact with the other surface of the sensitive portion.

この発明によれば、前記感応部の厚み方向において前記ヒータと前記感応部との間に前記素子形成基板の一部が介在している場合に比べて、前記ヒータの熱が前記感応部に伝わりやすく熱効率が高くなるので、消費電力をより低減可能となる。   According to the present invention, the heat of the heater is transmitted to the sensitive part as compared with the case where a part of the element forming substrate is interposed between the heater and the sensitive part in the thickness direction of the sensitive part. Since heat efficiency is easily increased, power consumption can be further reduced.

請求項3の発明は、請求項2の発明において、前記素子形成基板の他表面に前記感応部の前記他面を露出させる凹所が形成され、当該凹所の内底面である前記感応部の前記他面に前記ヒータが接してなることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the invention, a recess is formed on the other surface of the element forming substrate to expose the other surface of the sensitive portion, and the sensitive portion is an inner bottom surface of the concave portion. The heater is in contact with the other surface.

この発明によれば、前記感応部の前記他面側に前記素子形成基板の一部が存在する場合に比べて前記ヒータの熱が前記感応部へより一層伝わりやすくなり、消費電力をさらに低減可能となる。   According to the present invention, the heat of the heater is more easily transmitted to the sensitive part than in the case where a part of the element forming substrate exists on the other surface side of the sensitive part, and the power consumption can be further reduced. It becomes.

請求項4の発明は、素子形成基板の一表面側に形成された多孔質層からなる感応部と、感応部の厚み方向の一面側に形成された一対の櫛形状の電極であって各電極それぞれの櫛歯部が他方の電極の櫛溝部に入り込んだ一対の櫛形状の電極と、感応部に吸着した水分を蒸発させるためのヒータとを備え、ヒータが素子形成基板の前記一表面側において感応部の周囲に形成され、素子形成基板の他表面に感応部の厚み方向の他面を露出させる凹所が形成されてなることを特徴とする。   The invention according to claim 4 is a sensitive part formed of a porous layer formed on one surface side of the element forming substrate, and a pair of comb-shaped electrodes formed on one surface side in the thickness direction of the sensitive part. Each comb tooth part includes a pair of comb-shaped electrodes that enter the comb groove part of the other electrode, and a heater for evaporating water adsorbed on the sensitive part, and the heater is disposed on the one surface side of the element forming substrate. A recess is formed around the sensitive portion, and a recess is formed on the other surface of the element formation substrate to expose the other surface in the thickness direction of the sensitive portion.

この発明によれば、ヒータが素子形成基板の前記一表面側において感応部の周囲に形成され、素子形成基板の他表面に感応部の厚み方向の他面を露出させる凹所が形成されているので、従来の素子形成基板の一表面上で感応部の周囲にヒータが形成されている構成に比べてヒータの熱が感応部の全体に均一に伝わりやすくなるから、従来に比べて感度を低下させることなく低消費電力化が可能となる。   According to this invention, the heater is formed around the sensitive portion on the one surface side of the element forming substrate, and a recess is formed on the other surface of the element forming substrate to expose the other surface in the thickness direction of the sensitive portion. Therefore, compared to the conventional structure where the heater is formed around the sensitive part on the surface of the element forming substrate, the heat of the heater is more easily transmitted to the entire sensitive part, so the sensitivity is lower than the conventional one. It is possible to reduce power consumption without reducing the power consumption.

請求項5の発明は、素子形成基板の一表面側に多孔質層からなる感応部が形成され、素子形成基板の他表面に感応部の厚み方向の一面を露出させる凹所が形成され、感応部の前記一面側に一対の櫛形状の電極であって各電極それぞれの櫛歯部が他方の電極の櫛溝部に入り込んだ一対の櫛形状の電極が形成され、感応部の厚み方向の他面に感応部に吸着した水分を蒸発させるためのヒータが形成された2つの単位センサ構造体をヒータ同士が重なる形で固着してなることを特徴とする。   According to a fifth aspect of the present invention, a sensitive portion made of a porous layer is formed on one surface side of the element forming substrate, and a recess is formed on the other surface of the element forming substrate to expose one surface in the thickness direction of the sensitive portion. A pair of comb-shaped electrodes, each having a comb-tooth portion of each electrode inserted into a comb groove portion of the other electrode, is formed on the one surface side of the portion, and the other surface in the thickness direction of the sensitive portion The two unit sensor structures formed with heaters for evaporating the moisture adsorbed on the sensitive part are fixed so that the heaters overlap each other.

この発明によれば、各単位センサ構造体それぞれにおいて感応部に対して一対の電極とヒータとが互いに異なる面に接しているので、一対の櫛形状の電極の櫛歯部間にヒータを設けることなく、従来の素子形成基板の一表面上で感応部の周囲にヒータが形成されている構成に比べてヒータの熱が感応部の全体に均一に伝わりやすくなり、しかも、素子形成基板の平面サイズを大きくすることなく感応部のセンシング面積を増加させることができ、従来に比べて高感度化が図れ且つ低消費電力化が可能となる。   According to the present invention, since the pair of electrodes and the heater are in contact with different surfaces with respect to the sensitive portion in each unit sensor structure, the heater is provided between the comb teeth of the pair of comb-shaped electrodes. Compared to a conventional structure in which a heater is formed around the sensitive part on one surface of the element formation substrate, the heat of the heater is more easily transmitted to the entire sensitive part, and the planar size of the element formation substrate The sensing area of the sensitive part can be increased without increasing the value of the sensor, so that the sensitivity can be increased and the power consumption can be reduced as compared with the prior art.

請求項6の発明は、請求項5の発明において、前記2つの単位センサ構造体をヒータ同士が重なる形で固着した積層構造体が複数個積層され、積層された2つの積層構造体の感応部間に形成される空間を外部と連通させる連通部が積層構造体の要所に設けられてなることを特徴とする。   According to a sixth aspect of the present invention, in the fifth aspect of the invention, a plurality of laminated structures in which the two unit sensor structures are fixed so that the heaters overlap each other are stacked, and the sensitive portion of the two laminated structures laminated. A communication portion that communicates the space formed between the outside and the outside is provided at a key point of the laminated structure.

この発明によれば、請求項5の発明に比べて前記素子形成基板の平面サイズを大きくすることなくセンシング面積を大きくすることができ、より一層の高感度化を図れる。   According to the present invention, the sensing area can be increased without increasing the planar size of the element formation substrate as compared with the invention of claim 5, and further higher sensitivity can be achieved.

請求項1,4の発明では、従来の素子形成基板の一表面上で感応部の周囲にヒータが形成されている構成に比べて感度を低下させることなく低消費電力化が可能となるという効果がある。   According to the first and fourth aspects of the invention, it is possible to reduce the power consumption without lowering the sensitivity as compared with the configuration in which the heater is formed around the sensitive portion on the surface of the conventional element forming substrate. There is.

請求項5の発明では、従来に比べて高感度化が図れ且つ低消費電力化が可能となるという効果がある。   According to the invention of claim 5, it is possible to achieve higher sensitivity and lower power consumption than in the prior art.

(実施形態1)
本実施形態の湿度センサは、図1および図2に示すように、単結晶のシリコン基板からなる素子形成基板1と、素子形成基板1の一表面側(図2における上面側)に形成された多孔質シリコン層からなる感応部2と、感応部2の厚み方向の一面側(図2における上面側)に形成された容量変化検知用の一対の電極3,4と、素子形成基板1の他表面(図2における下面)に形成されたヒータ7とを備えている。なお、本実施形態では、多孔質シリコン層が多孔質層を構成している。
(Embodiment 1)
As shown in FIGS. 1 and 2, the humidity sensor of the present embodiment is formed on an element forming substrate 1 made of a single crystal silicon substrate and on one surface side (upper surface side in FIG. 2) of the element forming substrate 1. A sensitive portion 2 made of a porous silicon layer, a pair of electrodes 3 and 4 for detecting a change in capacitance formed on one surface side of the sensitive portion 2 in the thickness direction (upper surface side in FIG. 2), and other elements forming substrate 1 The heater 7 formed in the surface (lower surface in FIG. 2) is provided. In the present embodiment, the porous silicon layer constitutes the porous layer.

素子形成基板1の平面形状は矩形状であり、感応部2の平面形状も矩形状としてある。ここにおいて、感応部2は、素子形成基板1の上記一表面側の一部を陽極酸化処理により多孔質化することによって形成されている。   The planar shape of the element forming substrate 1 is rectangular, and the planar shape of the sensitive portion 2 is also rectangular. Here, the sensitive portion 2 is formed by making a part of the one surface side of the element forming substrate 1 porous by anodizing treatment.

上述の一対の電極3,4は、それぞれの平面形状が櫛形状であって、感応部2の上記一面上において、各電極3,4の櫛骨部3a,4aが互いに対向し、各電極3,4それぞれの櫛歯部3b,4bが他方の電極4,3の櫛溝部4c,3cに入り組むように配置されている。ここにおいて、各電極3,4はそれぞれ、素子形成基板1の上記一表面上で配線31,41を介してワイヤボンディング用のパッド32,42と電気的に接続されている。要するに、パッド32,42は、素子形成基板1の上記一表面上において感応部2の周囲に形成されている。なお、各パッド32,42および各配線31,41は、各電極3,4と同じ材料により形成されている。また、各パッド32,42の平面形状は矩形状としてある。   Each of the pair of electrodes 3 and 4 has a comb shape in plan view, and on the one surface of the sensitive portion 2, the comb bone portions 3 a and 4 a of the electrodes 3 and 4 face each other. , 4 are arranged so that the respective comb teeth 3b, 4b enter the comb grooves 4c, 3c of the other electrodes 4, 3. Here, the electrodes 3 and 4 are electrically connected to the pads 32 and 42 for wire bonding via the wirings 31 and 41 on the one surface of the element forming substrate 1, respectively. In short, the pads 32 and 42 are formed around the sensitive portion 2 on the one surface of the element forming substrate 1. The pads 32 and 42 and the wirings 31 and 41 are made of the same material as the electrodes 3 and 4. The planar shape of each pad 32, 42 is rectangular.

また、ヒータ7は、感応部2に吸着した水分を蒸発させるため(湿度測定後の感応部2のリフレッシュ用)に設けたものであって、平面形状がつづら折れ状の形状に形成されており、両端部それぞれが素子形成基板1の上記他表面に形成されたワイヤボンディング用のパッド72,72に繋がっている。したがって、パッド72,72間に通電することによりヒータ7を発熱させることができる。ここにおいて、ヒータ7は、感応部2の厚み方向の上記他面側において感応部2に重複する領域に形成されている。なお、各パッド72,72は、ヒータ7と同じ材料により形成されている。また、各パッド72,72の平面形状は矩形状としてある。   The heater 7 is provided to evaporate the moisture adsorbed on the sensitive part 2 (for refreshing the sensitive part 2 after humidity measurement), and the planar shape is formed into a folded shape. Both end portions are connected to wire bonding pads 72, 72 formed on the other surface of the element forming substrate 1. Therefore, the heater 7 can generate heat by energizing between the pads 72 and 72. Here, the heater 7 is formed in a region overlapping the sensitive portion 2 on the other surface side in the thickness direction of the sensitive portion 2. The pads 72 and 72 are made of the same material as the heater 7. The planar shape of each pad 72, 72 is rectangular.

上述の感応部2の厚さは、6μmに設定してあるが感応部2の厚さは特に限定するものではない。また、各電極3,4は、厚さが0.03μmのCr膜と厚さが0.4μmのAu膜との積層膜により構成されて、櫛歯部3b,4bの幅寸法(線幅)が10〜12μm程度に設定されており、ヒータ7は、厚さが1μmのA−Si膜により構成してあり、幅寸法(線幅)が10μm程度に設定してあるが、これらの材料および数値は特に限定するものではない。   Although the thickness of the sensitive part 2 is set to 6 μm, the thickness of the sensitive part 2 is not particularly limited. Each of the electrodes 3 and 4 is composed of a laminated film of a Cr film having a thickness of 0.03 μm and an Au film having a thickness of 0.4 μm, and the width dimension (line width) of the comb teeth portions 3b and 4b. Is set to about 10 to 12 μm, and the heater 7 is composed of an A-Si film having a thickness of 1 μm and the width dimension (line width) is set to about 10 μm. The numerical value is not particularly limited.

以下、本実施形態の湿度センサの製造方法について図3を参照しながら説明する。   Hereinafter, the manufacturing method of the humidity sensor of this embodiment is demonstrated, referring FIG.

まず、単結晶のシリコン基板からなる素子形成基板1の上記一表面側に第1の所定膜厚(例えば、0.03μm)のCr膜と第2の所定膜厚(例えば、0.4μm)のAu膜との積層膜をスパッタ法により成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して上記積層膜をパターニングすることで電極3,4および各配線31,41および各パッド32,42を形成することによって、図3(a)に示す構造を得る。   First, a Cr film having a first predetermined film thickness (for example, 0.03 μm) and a second predetermined film thickness (for example, 0.4 μm) are formed on the one surface side of the element formation substrate 1 made of a single crystal silicon substrate. After the laminated film with the Au film is formed by sputtering, the laminated film is patterned by using a photolithography technique and an etching technique, whereby the electrodes 3 and 4 and the wirings 31 and 41 and the pads 32 and 42 are formed. By forming, the structure shown in FIG.

次に、素子形成基板1の上記他表面に第3の所定膜厚(例えば、0.4μm)の導電性層(例えば、Ag膜/Ni膜/NiCr膜/Cr膜のような多層膜)からなる裏面電極(図示せず)を蒸着法により形成した後、裏面電極を定電流源のプラス側と配線を介して接続し、素子形成基板1において陽極酸化処理を行う部分の表面以外の部位を、陽極酸化処理にて用いる電解液(HFとエタノールとを1:1で混合した混合液)に触れないように耐フッ酸性を有するシール材(例えば、テフロン(登録商標)のようなフッ素樹脂からなるシール材)によりシールする。そして、素子形成基板1を主構成とする被処理物を処理槽に入れられた電解液に浸漬する。その後、定電流源のマイナス側に配線を介して接続された白金電極を電解液中において素子形成基板1の上記一表面側に対向するように配置し、続いて、裏面電極を陽極、白金電極を陰極として、定電流源から陽極と陰極との間に所定の定電流(例えば、電流密度が5mA/cmの電流)を所定時間(例えば、20分)だけ流す陽極酸化処理を行うことにより素子形成基板1の上記一表面側に所定厚さ(例えば、6μm)の多孔質シリコン層からなる感応部2を形成し、その後、処理槽から取り出した被処理物の上記シール材を剥がし、裏面電源に接続していた配線を外してから、裏面電極を除去することによって、図3(b)に示す構造を得る。 Next, a conductive layer (for example, a multilayer film such as an Ag film / Ni film / NiCr film / Cr film) having a third predetermined thickness (for example, 0.4 μm) is formed on the other surface of the element formation substrate 1. After forming the back electrode (not shown) to be formed by the vapor deposition method, the back electrode is connected to the positive side of the constant current source through the wiring, and a portion other than the surface of the portion where the anodizing treatment is performed on the element forming substrate 1 is formed. In addition, a sealant having hydrofluoric acid resistance (for example, a fluororesin such as Teflon (registered trademark)) so as not to touch an electrolytic solution used in anodizing treatment (a mixed solution of HF and ethanol mixed at 1: 1). To be sealed. And the to-be-processed object which makes the element formation board | substrate 1 the main structure is immersed in the electrolyte solution put into the processing tank. Thereafter, a platinum electrode connected to the negative side of the constant current source via a wiring is disposed so as to face the one surface side of the element forming substrate 1 in the electrolytic solution, and subsequently the back electrode is an anode, a platinum electrode Is used as a cathode, and a predetermined constant current (for example, a current having a current density of 5 mA / cm 2 ) is passed between the anode and the cathode from a constant current source for a predetermined time (for example, 20 minutes). The sensitive part 2 made of a porous silicon layer having a predetermined thickness (for example, 6 μm) is formed on the one surface side of the element forming substrate 1, and then the sealing material of the object to be processed taken out from the processing tank is peeled off, The wiring shown in FIG. 3B is obtained by removing the back electrode after removing the wiring connected to the power source.

さらにその後、素子形成基板1の上記他表面に第4の所定膜厚(例えば、1μm)の金属膜(例えば、Al−Si膜)をスパッタ法によって成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して上記金属膜をパターニングすることでヒータ7および各パッド72,72を形成することによって、図3(c)に示す構造を得る。   Further, after a metal film (for example, Al-Si film) having a fourth predetermined film thickness (for example, 1 μm) is formed on the other surface of the element formation substrate 1 by a sputtering method, a photolithography technique and an etching technique are then performed. The heater 7 and the pads 72 and 72 are formed by patterning the metal film using the above, thereby obtaining the structure shown in FIG.

以上説明した本実施形態の湿度センサでは、ヒータ7が、感応部2の厚み方向の他面側において感応部2に重複する領域に形成されていることによって、一対の櫛形状の電極3,4の櫛歯部3b,4b間にヒータを設けることなく、従来の素子形成基板1の上記一表面上で感応部2の周囲にヒータ7,7が形成されている構成に比べてヒータ7の熱が感応部2の全体(感応部2の上記他面の面内全体)に均一に伝わりやすくなるので、従来に比べて感度を低下させることなく低消費電力化が可能となる。   In the humidity sensor of the present embodiment described above, the heater 7 is formed in a region overlapping the sensitive part 2 on the other surface side in the thickness direction of the sensitive part 2, so that a pair of comb-shaped electrodes 3, 4 is formed. Compared to the structure in which the heaters 7 are formed around the sensitive portion 2 on the one surface of the conventional element forming substrate 1 without providing a heater between the comb teeth portions 3b and 4b, the heat of the heater 7 is increased. Can easily be transmitted uniformly to the entire sensitive portion 2 (the entire other surface of the sensitive portion 2), so that the power consumption can be reduced without lowering the sensitivity as compared with the conventional case.

ところで、上述の例では、ヒータ7の平面形状をつづら折れ状の形状としてあるが、ヒータ7の熱が感応部2の全体に均一に伝わるような形状であればよく、例えば、図4に示すような梯子状の平面形状としてもよい。   By the way, in the above-described example, the planar shape of the heater 7 is a folded shape, but it may be a shape that allows the heat of the heater 7 to be transmitted uniformly to the entire sensitive portion 2, for example, as shown in FIG. Such a ladder-like planar shape may be used.

(実施形態2)
本実施形態の湿度センサについて図5を参照しながら説明するが、実施形態1の湿度センサと同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The humidity sensor of the present embodiment will be described with reference to FIG. 5, but the same components as those of the humidity sensor of the first embodiment are denoted by the same reference numerals and description thereof will be omitted as appropriate.

本実施形態の湿度センサは、単結晶のシリコン基板1aと当該シリコン基板1aの一表面上にエピタキシャル成長させた単結晶のシリコン層1bとで素子形成基板1を構成しており、シリコン層1bに感応部2が形成され、感応部2の厚み方向の一面(図5における上面)に一対の櫛形状の電極3,4が形成される一方で感応部2の厚み方向の他面(図5における下面)に高不純物濃度拡散層からなるヒータ7が接している点に特徴がある。なお、ヒータ7の平面形状は実施形態1と同様につづら折れ状の形状に形成されており、ヒータ7の両端部に接続されるパッド(図示せず)については、例えば、シリコン層1bにコンタクトホールを形成しコンタクトホールを通してヒータ7の両端部と接続すればよい。   In the humidity sensor of this embodiment, an element forming substrate 1 is constituted by a single crystal silicon substrate 1a and a single crystal silicon layer 1b epitaxially grown on one surface of the silicon substrate 1a, and is sensitive to the silicon layer 1b. Part 2 is formed, and a pair of comb-shaped electrodes 3 and 4 are formed on one surface in the thickness direction of the sensitive portion 2 (upper surface in FIG. 5), while the other surface in the thickness direction of the sensitive portion 2 (lower surface in FIG. 5) ) Is in contact with the heater 7 made of a high impurity concentration diffusion layer. The planar shape of the heater 7 is formed in a folded shape as in the first embodiment, and pads (not shown) connected to both ends of the heater 7 are in contact with, for example, the silicon layer 1b. A hole may be formed and connected to both ends of the heater 7 through the contact hole.

以下、本実施形態の湿度センサの製造方法について図6を参照しながら説明するが、製造方法に関しても実施形態1と同様の工程については説明を適宜省略する。   Hereinafter, the manufacturing method of the humidity sensor according to the present embodiment will be described with reference to FIG. 6, but the description of the steps similar to those of the first embodiment will be appropriately omitted regarding the manufacturing method.

まず、シリコン基板1aの一表面側にフォトリソグラフィ技術および不純物拡散技術を利用して高濃度不純物拡散層からなるヒータ7を形成し、その後、シリコン基板1aの上記一表面上に感応部2の規定厚さ(例えば、6μm)のシリコン層1bを例えばMBE法によってエピタキシャル成長させることでシリコン基板1aとシリコン層1bとからなる素子形成基板1にヒータ7が埋設された図6(a)に示す構造を得る。   First, a heater 7 made of a high-concentration impurity diffusion layer is formed on one surface side of the silicon substrate 1a using photolithography technology and impurity diffusion technology, and then the sensitive portion 2 is defined on the one surface of the silicon substrate 1a. A structure shown in FIG. 6A in which a heater 7 is embedded in an element formation substrate 1 composed of a silicon substrate 1a and a silicon layer 1b by epitaxially growing a silicon layer 1b having a thickness (for example, 6 μm) by, for example, MBE. obtain.

その後、素子形成基板1の一表面側(図6(a)における上面側)にCr膜とAu膜との積層膜をスパッタ法により成膜し、フォトリソグラフィ技術およびエッチング技術を利用して上記積層膜をパターニングすることで電極3,4および各配線31,41(図1(a)参照)および各パッド32,42(図1(a)参照)を形成することによって、図6(b)に示す構造を得る。   Thereafter, a laminated film of a Cr film and an Au film is formed on one surface side of the element formation substrate 1 (upper surface side in FIG. 6A) by sputtering, and the above-mentioned lamination is performed using a photolithography technique and an etching technique. By patterning the film, the electrodes 3 and 4 and the wirings 31 and 41 (see FIG. 1A) and the pads 32 and 42 (see FIG. 1A) are formed, so that FIG. Get the structure shown.

次に、素子形成基板1の他表面(図6(b)における下面)に裏面電極を蒸着法により形成した後、裏面電極を定電流源のプラス側と配線を介して接続し、素子形成基板1において陽極酸化処理を行う部分の表面以外の部位を、陽極酸化処理にて用いる電解液(HFとエタノールとを1:1で混合した混合液)に触れないように耐フッ酸性を有するシール材によりシールしてから素子形成基板1を主構成とする被処理物を処理槽に入れられた電解液に浸漬する。その後、定電流源のマイナス側に配線を介して接続された白金電極を電解液中において素子形成基板1の上記一表面側に対向するように配置し、続いて、裏面電極を陽極、白金電極を陰極として、定電流源から陽極と陰極との間に所定の定電流(例えば、電流密度が5mA/cmの電流)を所定時間(例えば、20分)だけ流す陽極酸化処理を行うことにより素子形成基板1の上記一表面側に上記規定厚さ(例えば、6μm)の多孔質シリコン層からなる感応部2を形成し(つまり、素子形成基板1のシリコン層1bの一部を表面からヒータ7に到達する深さまで多孔質化し)、その後、処理槽から取り出した被処理物の上記シール材を剥がし、裏面電源に接続していた配線を外してから、裏面電極を除去することによって、図6(c)に示す構造を得る。 Next, after forming a back electrode on the other surface (the lower surface in FIG. 6B) of the element formation substrate 1 by vapor deposition, the back electrode is connected to the positive side of the constant current source via a wiring, and the element formation substrate The sealing material having hydrofluoric acid resistance so that the portion other than the surface of the portion to be anodized in 1 does not come into contact with the electrolytic solution used in the anodizing treatment (mixed solution of HF and ethanol mixed 1: 1) After being sealed, the object to be processed mainly comprising the element forming substrate 1 is immersed in an electrolytic solution placed in a processing tank. Thereafter, a platinum electrode connected to the negative side of the constant current source via a wiring is disposed so as to face the one surface side of the element forming substrate 1 in the electrolytic solution, and subsequently the back electrode is an anode, a platinum electrode Is used as a cathode, and a predetermined constant current (for example, a current having a current density of 5 mA / cm 2 ) is passed between the anode and the cathode from a constant current source for a predetermined time (for example, 20 minutes). The sensitive part 2 made of a porous silicon layer having the specified thickness (for example, 6 μm) is formed on the one surface side of the element forming substrate 1 (that is, a part of the silicon layer 1b of the element forming substrate 1 is heated from the surface to the heater). 7), and after removing the sealing material of the workpiece taken out from the processing tank, removing the wiring connected to the back surface power supply, and then removing the back surface electrode, 6 (c) Obtain to structure.

以上説明した本実施形態の湿度センサでは、ヒータ7が、感応部2の厚み方向の他面側において感応部2に重複する領域に形成されていることによって、一対の櫛形状の電極3,4の櫛歯部3b,4b間にヒータを設けることなく、従来の素子形成基板1の上記一表面上で感応部2の周囲にヒータ7,7が形成されている構成に比べてヒータ7の熱が感応部2の全体(感応部2の上記他面の面内全体)に均一に伝わりやすくなるので、従来に比べて感度を低下させることなく低消費電力化が可能となる。また、本実施形態の湿度センサでは、ヒータ7が感応部2の厚み方向の上記他面に接しているので、実施形態1のように感応部2の厚み方向においてヒータ7と感応部2との間にシリコン基板からなる素子形成基板1の一部が介在している場合に比べて、ヒータ7の熱が感応部2に伝わりやすく熱効率が高くなるので、消費電力をより低減可能となる。   In the humidity sensor of the present embodiment described above, the heater 7 is formed in a region overlapping the sensitive part 2 on the other surface side in the thickness direction of the sensitive part 2, so that a pair of comb-shaped electrodes 3, 4 is formed. Compared to the structure in which the heaters 7 are formed around the sensitive portion 2 on the one surface of the conventional element forming substrate 1 without providing a heater between the comb teeth portions 3b and 4b, the heat of the heater 7 is increased. Can easily be transmitted uniformly to the entire sensitive portion 2 (the entire other surface of the sensitive portion 2), so that the power consumption can be reduced without lowering the sensitivity as compared with the conventional case. Moreover, in the humidity sensor of this embodiment, since the heater 7 is in contact with the other surface in the thickness direction of the sensitive portion 2, the heater 7 and the sensitive portion 2 are arranged in the thickness direction of the sensitive portion 2 as in the first embodiment. Compared with the case where a part of the element formation substrate 1 made of a silicon substrate is interposed, the heat of the heater 7 is easily transmitted to the sensitive part 2 and the thermal efficiency is increased, so that the power consumption can be further reduced.

(実施形態3)
本実施形態の湿度センサについて図7を参照しながら説明するが、図15に示した従来例や実施形態1の湿度センサと同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 3)
The humidity sensor of the present embodiment will be described with reference to FIG. 7, but the same components as those of the conventional example shown in FIG. 15 and the humidity sensor of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate. .

本実施形態の湿度センサは、図15に示した従来例と同様に2つのヒータ7を備え、ヒータ7の両端部それぞれに接続されるパッド(図示せず)が素子形成基板1の一表面(図7における上面)上で感応部2の周囲に配置されている点、ヒータ7およびヒータ7の両端部それぞれに接続されるパッド(以下、ヒータ用パッドと称す)が各電極3,4と同じ材料により形成されている点、素子形成基板1の他表面(図7における下面)に感応部2の他面(図7における下面)を露出させる凹所11が形成されている点などが相違する。なお、素子形成基板1の上記他表面の凹所11は、感応部2に達する深さに形成されている。また、各ヒータ7は、図15に示した従来例と同様につづら折れ状の形状に形成されている。   The humidity sensor of the present embodiment includes two heaters 7 as in the conventional example shown in FIG. 15, and pads (not shown) connected to both ends of the heater 7 are on one surface of the element forming substrate 1 ( The upper surface in FIG. 7 is arranged around the sensitive portion 2, and the heater 7 and pads connected to both ends of the heater 7 (hereinafter referred to as heater pads) are the same as the electrodes 3 and 4. The difference is that it is formed of a material, and that a recess 11 that exposes the other surface (lower surface in FIG. 7) of the sensitive portion 2 is formed on the other surface (lower surface in FIG. 7) of the element formation substrate 1. . The recess 11 on the other surface of the element forming substrate 1 is formed to a depth reaching the sensitive portion 2. Further, each heater 7 is formed in a folded shape like the conventional example shown in FIG.

以下、本実施形態の湿度センサの製造方法について図8を参照しながら説明するが、製造方法に関しても実施形態1と同様の工程については説明を適宜省略する。   Hereinafter, the manufacturing method of the humidity sensor of the present embodiment will be described with reference to FIG. 8, but the description of the same steps as those of the first embodiment will be appropriately omitted regarding the manufacturing method.

まず、素子形成基板1の上記一表面側に第1の所定膜厚(例えば、0.03μm)のCr膜と第2の所定膜厚(例えば、0.4μm)のAu膜との積層膜をスパッタ法により成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して上記積層膜をパターニングすることで一対の櫛形状の電極3,4、各配線31,41、各パッド32,42、各ヒータ7,7、各ヒータ用パッドを形成することによって、図8(a)に示す構造を得る。   First, a laminated film of a Cr film having a first predetermined film thickness (for example, 0.03 μm) and an Au film having a second predetermined film thickness (for example, 0.4 μm) is formed on the one surface side of the element forming substrate 1. After the film is formed by sputtering, the laminated film is patterned by using a photolithography technique and an etching technique, whereby a pair of comb-shaped electrodes 3 and 4, wirings 31 and 41, pads 32 and 42, and heaters By forming the heater pads 7 and 7, the structure shown in FIG. 8A is obtained.

次に、素子形成基板1の上記他表面に裏面電極(図示せず)を蒸着法により形成した後、裏面電極を定電流源のプラス側と配線を介して接続し、素子形成基板1において陽極酸化処理を行う部分の表面以外の部位を、陽極酸化処理にて用いる電解液に触れないように耐フッ酸性を有するシール材によりシールしてから素子形成基板1を主構成とする被処理物を処理槽に入れられた電解液に浸漬する。その後、定電流源のマイナス側に配線を介して接続された白金電極を電解液中において素子形成基板1の上記一表面側に対向するように配置し、続いて、裏面電極を陽極、白金電極を陰極として、定電流源から陽極と陰極との間に所定の定電流を所定時間だけ流す陽極酸化処理を行うことにより素子形成基板1の上記一表面側に多孔質シリコン層からなる感応部2を形成し、その後、処理槽から取り出した被処理物の上記シール材を剥がし、裏面電源に接続していた配線を外してから、裏面電極を除去することによって、図8(b)に示す構造を得る。   Next, after forming a back electrode (not shown) on the other surface of the element forming substrate 1 by vapor deposition, the back electrode is connected to the positive side of the constant current source via wiring, and the anode is formed on the element forming substrate 1. A part other than the surface of the part to be oxidized is sealed with a sealing material having hydrofluoric acid resistance so as not to come into contact with the electrolytic solution used in the anodizing process, and then an object to be processed mainly comprising the element formation substrate 1 is prepared. Immerse in the electrolyte placed in the treatment tank. Thereafter, a platinum electrode connected to the negative side of the constant current source via a wiring is disposed so as to face the one surface side of the element forming substrate 1 in the electrolytic solution, and subsequently the back electrode is an anode, a platinum electrode The sensitive part 2 made of a porous silicon layer on the one surface side of the element forming substrate 1 by performing an anodic oxidation treatment using a constant current source between the anode and the cathode as a cathode for a predetermined time. After that, the sealing material of the object to be processed taken out from the processing tank is peeled off, the wiring connected to the back surface power supply is removed, and then the back surface electrode is removed, whereby the structure shown in FIG. Get.

さらにその後、素子形成基板1の全体を保護膜(例えば、シリコン窒化膜など)で覆ってから、フォトリソグラフィ技術およびエッチング技術を利用して素子形成基板1の上記他表面における凹所11の形成予定部位が露出するように保護膜をパターニングし、アルカリ系溶液(例えば、70℃に加熱したKOH溶液など)により素子形成基板1を上記他表面から感応部2に達する深さまで異方性エッチングすることで凹所11を形成し、続いて、保護膜を除去することによって、図8(c)に示す構造を得る。   Thereafter, the entire element forming substrate 1 is covered with a protective film (for example, a silicon nitride film), and then the recess 11 is formed on the other surface of the element forming substrate 1 using a photolithography technique and an etching technique. The protective film is patterned so that the part is exposed, and the element forming substrate 1 is anisotropically etched from the other surface to a depth reaching the sensitive portion 2 with an alkaline solution (for example, a KOH solution heated to 70 ° C.). Then, the recess 11 is formed, and then the protective film is removed to obtain the structure shown in FIG.

以上説明した本実施形態の湿度センサでは、ヒータ7が素子形成基板1の上記一表面側において感応部2の周囲に形成され、素子形成基板1の上記他表面に感応部2の厚み方向の上記他面を露出させる凹所11が形成されているので、従来の素子形成基板1の一表面上で感応部2の周囲にヒータ7,7が形成されている構成に比べてヒータ7の熱が感応部2の全体に均一に伝わりやすくなるので、従来に比べて感度を低下させることなく低消費電力化が可能となる。   In the humidity sensor of the present embodiment described above, the heater 7 is formed around the sensitive portion 2 on the one surface side of the element forming substrate 1, and the above-mentioned thickness direction of the sensitive portion 2 is formed on the other surface of the element forming substrate 1. Since the recess 11 exposing the other surface is formed, the heat of the heater 7 is higher than that of the conventional structure in which the heaters 7 are formed around the sensitive portion 2 on one surface of the element forming substrate 1. Since it becomes easy to transmit to the whole of the sensitive part 2, it becomes possible to reduce power consumption without lowering the sensitivity as compared with the prior art.

(実施形態4)
本実施形態の湿度センサについて図9を参照しながら説明するが、実施形態1の湿度センサと同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 4)
The humidity sensor of the present embodiment will be described with reference to FIG. 9, but the same components as those of the humidity sensor of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態の湿度センサの基本構成は実施形態1と略同じであって、図9に示すように、素子形成基板1の上記他表面(図9における下面)に感応部2の厚み方向の上記他面(図9における下面)を露出させる凹所11が形成され、当該凹所11の内底面である感応部2の上記他面にヒータ7が接している点などが相違する。   The basic configuration of the humidity sensor of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 9, the other surface (the lower surface in FIG. 9) of the element forming substrate 1 is arranged in the thickness direction of the sensitive portion 2. A recess 11 that exposes the other surface (the lower surface in FIG. 9) is formed, and the heater 7 is in contact with the other surface of the sensitive portion 2 that is the inner bottom surface of the recess 11.

以下、本実施形態の湿度センサの製造方法について図10を参照しながら説明するが、製造方法に関しても実施形態1と同様の工程については説明を適宜省略する。   Hereinafter, the manufacturing method of the humidity sensor of the present embodiment will be described with reference to FIG. 10, but the description of the same steps as those of the first embodiment will be appropriately omitted regarding the manufacturing method.

まず、素子形成基板1の上記一表面側(図9における上面側)に第1の所定膜厚(例えば、0.03μm)のCr膜と第2の所定膜厚(例えば、0.4μm)のAu膜との積層膜をスパッタ法により成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して上記積層膜をパターニングすることで電極3,4、各配線31,41、各パッド32,42を形成することによって、図10(a)に示す構造を得る。   First, a Cr film having a first predetermined film thickness (for example, 0.03 μm) and a second predetermined film thickness (for example, 0.4 μm) are formed on the one surface side (the upper surface side in FIG. 9) of the element formation substrate 1. After the laminated film with the Au film is formed by sputtering, the electrodes 3 and 4, the wirings 31 and 41, and the pads 32 and 42 are formed by patterning the laminated film using a photolithography technique and an etching technique. By forming, the structure shown in FIG.

次に、素子形成基板1の上記他表面に裏面電極(図示せず)を蒸着法により形成した後、裏面電極を定電流源のプラス側と配線を介して接続し、素子形成基板1において陽極酸化処理を行う部分の表面以外の部位を、陽極酸化処理にて用いる電解液に触れないように耐フッ酸性を有するシール材によりシールしてから素子形成基板1を主構成とする被処理物を処理槽に入れられた電解液に浸漬する。その後、定電流源のマイナス側に配線を介して接続された白金電極を電解液中において素子形成基板1の上記一表面側に対向するように配置し、続いて、裏面電極を陽極、白金電極を陰極として、定電流源から陽極と陰極との間に所定の定電流を所定時間だけ流す陽極酸化処理を行うことにより素子形成基板1の上記一表面側に多孔質シリコン層からなる感応部2を形成し、その後、処理槽から取り出した被処理物の上記シール材を剥がし、裏面電源に接続していた配線を外してから、裏面電極を除去することによって、図10(b)に示す構造を得る。   Next, after forming a back electrode (not shown) on the other surface of the element forming substrate 1 by vapor deposition, the back electrode is connected to the positive side of the constant current source via wiring, and the anode is formed on the element forming substrate 1. A part other than the surface of the part to be oxidized is sealed with a sealing material having hydrofluoric acid resistance so as not to come into contact with the electrolytic solution used in the anodizing process, and then an object to be processed mainly comprising the element formation substrate 1 is prepared. Immerse in the electrolyte placed in the treatment tank. Thereafter, a platinum electrode connected to the negative side of the constant current source via a wiring is disposed so as to face the one surface side of the element forming substrate 1 in the electrolytic solution, and subsequently the back electrode is an anode, a platinum electrode The sensitive part 2 made of a porous silicon layer on the one surface side of the element forming substrate 1 by performing an anodic oxidation treatment using a constant current source between the anode and the cathode as a cathode for a predetermined time. After that, the sealing material of the object to be processed taken out from the processing tank is peeled off, the wiring connected to the back surface power supply is removed, and then the back surface electrode is removed, whereby the structure shown in FIG. Get.

さらにその後、素子形成基板1の全体を保護膜(例えば、シリコン窒化膜など)で覆ってから、フォトリソグラフィ技術およびエッチング技術を利用して素子形成基板1の上記他表面における凹所11の形成予定部位が露出するように保護膜をパターニングし、アルカリ系溶液(例えば、70℃に加熱したKOH溶液など)により素子形成基板1を上記他表面から感応部2に達する深さまで異方性エッチングすることで凹所11を形成し、続いて、保護膜を除去する。その後、素子形成基板1の上記他表面側に所定膜厚(例えば、1μm)の金属膜(例えば、Al−Si膜)をスパッタ法によって成膜した後、リソグラフィ技術およびエッチング技術を利用して上記金属膜をパターニングすることでヒータ7および各パッド72,72(図1(b)参照)を形成することによって、図10(c)に示す構造を得る。   Thereafter, the entire element forming substrate 1 is covered with a protective film (for example, a silicon nitride film), and then the recess 11 is formed on the other surface of the element forming substrate 1 using a photolithography technique and an etching technique. The protective film is patterned so that the part is exposed, and the element forming substrate 1 is anisotropically etched from the other surface to a depth reaching the sensitive portion 2 with an alkaline solution (for example, a KOH solution heated to 70 ° C.). Then, the recess 11 is formed, and then the protective film is removed. Thereafter, a metal film (for example, an Al—Si film) having a predetermined film thickness (for example, 1 μm) is formed on the other surface side of the element formation substrate 1 by a sputtering method, and then the above-mentioned film is formed using a lithography technique and an etching technique. By patterning the metal film to form the heater 7 and the pads 72 and 72 (see FIG. 1B), the structure shown in FIG. 10C is obtained.

しかして、本実施形態の湿度センサでは、素子形成基板1の上記他表面に感応部2の上記他面を露出させる凹所11が形成され、当該凹所11の内底面である感応部2の上記他面にヒータ7が接しているので、実施形態1のように感応部2の上記他面側にシリコン基板からなる素子形成基板1の一部が存在する場合に比べてヒータ7の熱が感応部2へより一層伝わりやすくなり、消費電力をさらに低減可能となる。   Thus, in the humidity sensor of the present embodiment, the recess 11 that exposes the other surface of the sensitive portion 2 is formed on the other surface of the element forming substrate 1, and the sensitive portion 2 that is the inner bottom surface of the concave portion 11 is formed. Since the heater 7 is in contact with the other surface, the heat of the heater 7 is higher than that when the element forming substrate 1 made of a silicon substrate is present on the other surface side of the sensitive portion 2 as in the first embodiment. It becomes easier to be transmitted to the sensitive part 2, and the power consumption can be further reduced.

(実施形態5)
本実施形態の湿度センサについて図11を参照しながら説明するが、実施形態1の湿度センサと同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 5)
Although the humidity sensor of this embodiment is demonstrated referring FIG. 11, the same code | symbol is attached | subjected to the component similar to the humidity sensor of Embodiment 1, and description is abbreviate | omitted suitably.

本実施形態の湿度センサは、図11に示すように、シリコン基板からなる素子形成基板1の一表面側(図12(c)における上面側)に多孔質シリコン層からなる感応部2が形成され、素子形成基板1の他表面(図12(c)における下面)に感応部2の厚み方向の一面(図12(c)における下面)を露出させる凹所11が形成され、感応部2の上記一面側に一対の櫛形状の電極3,4が形成され、感応部2の厚み方向の他面(図12(c)における上面)にヒータ7が形成された2つの単位センサ構造体10をヒータ7同士が重なる形で固着してある。ここで、2つの単位センサ構造体10は周知の張り合わせ技術により張り合わせればよい。   In the humidity sensor of the present embodiment, as shown in FIG. 11, a sensitive portion 2 made of a porous silicon layer is formed on one surface side of the element forming substrate 1 made of a silicon substrate (the upper surface side in FIG. 12C). A recess 11 is formed on the other surface of the element forming substrate 1 (the lower surface in FIG. 12C) to expose one surface in the thickness direction of the sensitive portion 2 (the lower surface in FIG. 12C). Two unit sensor structures 10 each having a pair of comb-shaped electrodes 3 and 4 formed on one surface and a heater 7 formed on the other surface in the thickness direction of the sensitive portion 2 (upper surface in FIG. 12C) 7 are fixed in an overlapping manner. Here, the two unit sensor structures 10 may be bonded by a known bonding technique.

以下、本実施形態の湿度センサの製造方法について図12を参照しながら説明するが、製造方法に関しても実施形態1と同様の工程については説明を適宜省略する。   Hereinafter, the manufacturing method of the humidity sensor of the present embodiment will be described with reference to FIG. 12, but the description of the same steps as those of the first embodiment will be appropriately omitted regarding the manufacturing method.

まず、素子形成基板1の上記一表面側に第1の所定膜厚(例えば、0.03μm)のCr膜と第2の所定膜厚(例えば、0.4μm)のAu膜との積層膜をスパッタ法により成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して上記積層膜をパターニングすることでヒータ7および各パッド72,72(図1(b)参照)を形成することによって、図12(a)に示す構造を得る。   First, a laminated film of a Cr film having a first predetermined film thickness (for example, 0.03 μm) and an Au film having a second predetermined film thickness (for example, 0.4 μm) is formed on the one surface side of the element forming substrate 1. After the film formation by the sputtering method, the heater 7 and the pads 72 and 72 (see FIG. 1B) are formed by patterning the laminated film using the photolithography technique and the etching technique, thereby forming the structure shown in FIG. The structure shown in (a) is obtained.

次に、素子形成基板1の上記他表面に裏面電極(図示せず)を蒸着法により形成した後、裏面電極を定電流源のプラス側と配線を介して接続し、素子形成基板1において陽極酸化処理を行う部分の表面以外の部位を、陽極酸化処理にて用いる電解液に触れないように耐フッ酸性を有するシール材によりシールしてから素子形成基板1を主構成とする被処理物を処理槽に入れられた電解液に浸漬する。その後、定電流源のマイナス側に配線を介して接続された白金電極を電解液中において素子形成基板1の上記一表面側に対向するように配置し、続いて、裏面電極を陽極、白金電極を陰極として、定電流源から陽極と陰極との間に所定の定電流を所定時間だけ流す陽極酸化処理を行うことにより素子形成基板1の上記一表面側に多孔質シリコン層からなる感応部2を形成し、その後、処理槽から取り出した被処理物の上記シール材を剥がし、裏面電源に接続していた配線を外してから、裏面電極を除去することによって、図12(b)に示す構造を得る。   Next, after forming a back electrode (not shown) on the other surface of the element forming substrate 1 by vapor deposition, the back electrode is connected to the positive side of the constant current source via wiring, and the anode is formed on the element forming substrate 1. A part other than the surface of the part to be oxidized is sealed with a sealing material having hydrofluoric acid resistance so as not to come into contact with the electrolytic solution used in the anodizing process, and then an object to be processed mainly comprising the element formation substrate 1 is prepared. Immerse in the electrolyte placed in the treatment tank. Thereafter, a platinum electrode connected to the negative side of the constant current source via a wiring is disposed so as to face the one surface side of the element forming substrate 1 in the electrolytic solution, and subsequently the back electrode is an anode, a platinum electrode The sensitive part 2 made of a porous silicon layer on the one surface side of the element forming substrate 1 by performing an anodic oxidation treatment using a constant current source between the anode and the cathode as a cathode for a predetermined time. After that, the above sealing material of the object to be processed taken out from the processing tank is peeled off, the wiring connected to the back surface power supply is removed, and then the back surface electrode is removed, whereby the structure shown in FIG. Get.

さらにその後、素子形成基板1の全体を保護膜(例えば、シリコン窒化膜など)で覆ってから、フォトリソグラフィ技術およびエッチング技術を利用して素子形成基板1の上記他表面における凹所11の形成予定部位が露出するように保護膜をパターニングし、アルカリ系溶液(例えば、70℃に加熱したKOH溶液など)により素子形成基板1を上記他表面から感応部2に達する深さまで異方性エッチングすることで凹所11を形成し、続いて、保護膜を除去する。その後、素子形成基板1の上記他表面側に所定膜厚(例えば、1μm)の金属膜(例えば、Al−Si膜)をスパッタ法によって成膜した後、リソグラフィ技術およびエッチング技術を利用して上記金属膜をパターニングすることで一対の櫛形状の電極3,4および各配線31,41(図1(a)参照)および各パッド32,42(図1(a)参照)を形成することによって、図12(c)に示す構造の単位センサ構造体10を得る。   Thereafter, the entire element forming substrate 1 is covered with a protective film (for example, a silicon nitride film), and then the recess 11 is formed on the other surface of the element forming substrate 1 using a photolithography technique and an etching technique. The protective film is patterned so that the part is exposed, and the element forming substrate 1 is anisotropically etched from the other surface to a depth reaching the sensitive portion 2 with an alkaline solution (for example, a KOH solution heated to 70 ° C.). Then, the recess 11 is formed, and then the protective film is removed. Thereafter, a metal film (for example, an Al—Si film) having a predetermined film thickness (for example, 1 μm) is formed on the other surface side of the element formation substrate 1 by a sputtering method, and then the above-mentioned film is formed using a lithography technique and an etching technique. By patterning the metal film, a pair of comb-shaped electrodes 3 and 4 and wirings 31 and 41 (see FIG. 1A) and pads 32 and 42 (see FIG. 1A) are formed. A unit sensor structure 10 having the structure shown in FIG.

続いて、2つの単位センサ構造体10をヒータ7同士が重なる形で重ねて単位センサ構造体10の表面同士を接合することで2つの単位センサ構造体10を固着することによって、図12(d)に示す構造を得る。   Subsequently, the two unit sensor structures 10 are bonded together by overlapping the two unit sensor structures 10 so that the heaters 7 overlap each other and joining the surfaces of the unit sensor structures 10 to each other, as shown in FIG. ) Is obtained.

以上説明した本実施形態の湿度センサでは、各単位センサ構造体10それぞれにおいて感応部2に対して一対の櫛形状の電極3,4とつづら折れ状のヒータ7とが互いに異なる面に接しているので、一対の櫛形状の電極3,4の櫛歯部3b,4b間にヒータを設けることなく、従来の素子形成基板1の一表面上で感応部2の周囲にヒータ7,7が形成されている構成に比べてヒータ7の熱が感応部2の全体に均一に伝わりやすくなり、しかも、素子形成基板1の平面サイズを大きくすることなく感応部2のセンシング面積を増加させることができ、従来に比べて高感度化が図れ且つ低消費電力化が可能となる。   In the humidity sensor of the present embodiment described above, the pair of comb-shaped electrodes 3 and 4 and the zigzag heater 7 are in contact with different surfaces with respect to the sensitive portion 2 in each unit sensor structure 10. Therefore, the heaters 7 and 7 are formed around the sensitive portion 2 on one surface of the conventional element forming substrate 1 without providing a heater between the comb teeth 3b and 4b of the pair of comb-shaped electrodes 3 and 4. Compared to the configuration, the heat of the heater 7 is easily transmitted uniformly to the entire sensitive portion 2, and the sensing area of the sensitive portion 2 can be increased without increasing the planar size of the element forming substrate 1, Compared with the prior art, the sensitivity can be increased and the power consumption can be reduced.

(実施形態6)
本実施形態の湿度センサの基本構成は実施形態5と略同じであって、図13に示すように、2つの単位センサ構造体10をヒータ7同士が重なる形で固着した積層構造体(図11参照)が複数個積層され、積層された2つの積層構造体の感応部2,2間に形成される空間を外部と連通させる連通部(図示せず)が積層構造体の要所に設けられている点に特徴がある。
(Embodiment 6)
The basic configuration of the humidity sensor of the present embodiment is substantially the same as that of the fifth embodiment, and as shown in FIG. 13, a laminated structure in which two unit sensor structures 10 are fixed so that the heaters 7 overlap each other (FIG. 11). And a communication portion (not shown) that communicates the space formed between the sensitive portions 2 and 2 of the two laminated structures stacked with the outside is provided at the main point of the laminated structure. There is a feature in that.

以下、本実施形態の湿度センサの製造方法について図14を参照しながら説明するが、製造方法に関しても実施形態5と同様の工程については説明を適宜省略する。   Hereinafter, the manufacturing method of the humidity sensor according to the present embodiment will be described with reference to FIG. 14, but the description of the steps similar to those of the fifth embodiment will be appropriately omitted regarding the manufacturing method.

まず、実施形態5にて説明した製造方法と同様に、素子形成基板1の上記一表面側にヒータ7および各パッド72,72(図1(b)参照)を形成することによって、図14(a)に示す構造を得て、その後、実施形態5にて説明した製造方法と同様に、素子形成基板1の上記一表面側に多孔質シリコン層からなる感応部2を形成することによって、図14(b)に示す構造を得る。さらにその後、実施形態5にて説明した製造方法と同様に、素子形成基板1の上記他表面に凹所11を形成してから、一対の櫛形状の電極3,4および各配線31,41(図1(a)参照)および各パッド32,42(図1(a)参照)を形成することによって、図14(c)に示す構造の単位センサ構造体10を得る。続いて、実施形態5にて説明した製造方法と同様に、2つの単位センサ構造体10をヒータ7同士が重なる形で重ねて単位センサ構造体10の表面同士を接合する(2つの単位センサ構造体10を固着する)ことによって、図14(d)に示す積層構造体を得る。   First, similarly to the manufacturing method described in the fifth embodiment, the heater 7 and the pads 72 and 72 (see FIG. 1B) are formed on the one surface side of the element formation substrate 1 to obtain FIG. By obtaining the structure shown in a) and then forming the sensitive part 2 made of a porous silicon layer on the one surface side of the element forming substrate 1 in the same manner as in the manufacturing method described in the fifth embodiment. The structure shown in 14 (b) is obtained. Thereafter, similar to the manufacturing method described in the fifth embodiment, the recess 11 is formed on the other surface of the element forming substrate 1, and then the pair of comb-shaped electrodes 3 and 4 and the wirings 31 and 41 ( The unit sensor structure 10 having the structure shown in FIG. 14C is obtained by forming the pads 32 and 42 (see FIG. 1A) and the pads 32 and 42 (see FIG. 1A). Subsequently, similarly to the manufacturing method described in the fifth embodiment, the two unit sensor structures 10 are overlapped so that the heaters 7 overlap each other, and the surfaces of the unit sensor structures 10 are joined (two unit sensor structures). By fixing the body 10), a laminated structure shown in FIG. 14D is obtained.

その後、複数個(ここでは、3つ)の積層構造体を積層することによって、図14(e)に示す構造を得る。   Then, a structure shown in FIG. 14E is obtained by laminating a plurality of (here, three) laminated structures.

以上説明した本実施形態の湿度センサでは、実施形態5の湿度センサに比べて素子形成基板1の平面サイズを大きくすることなくセンシング面積を大きくすることができ、より一層の高感度化を図れる(要するに、センサ全体の平面サイズを大きくすることなくセンシング面積を大きくすることができ、より一層の高感度化を図れる)。   In the humidity sensor of the present embodiment described above, the sensing area can be increased without increasing the planar size of the element formation substrate 1 as compared with the humidity sensor of the fifth embodiment, and further higher sensitivity can be achieved ( In short, the sensing area can be increased without increasing the plane size of the entire sensor, and the sensitivity can be further increased.

ところで、上記各実施形態では、素子形成基板1の材料としてSiを採用しているが、素子形成基板1の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよい。要するに、上記各実施形態では、多孔質シリコン層が多孔質層を構成しているが、多孔質層は多孔質シリコン層に限定されるものではない。また、上記各実施形態では、素子形成基板1として、単結晶のシリコン基板や、単結晶のシリコン基板と当該シリコン基板上にエピタキシャル成長させたものを採用しているが、素子形成基板1としては、単結晶のシリコン基板上に多結晶シリコン層を形成したものを採用してもよい。   By the way, in each said embodiment, although Si is employ | adopted as a material of the element formation board | substrate 1, the material of the element formation board | substrate 1 is not restricted to Si, For example, anodic oxidation, such as Ge, SiC, GaP, GaAs, InP, etc. Other semiconductor materials that can be made porous by processing may be used. In short, in each of the above embodiments, the porous silicon layer constitutes the porous layer, but the porous layer is not limited to the porous silicon layer. In each of the above embodiments, the element forming substrate 1 employs a single crystal silicon substrate or a single crystal silicon substrate and a substrate epitaxially grown on the silicon substrate. You may employ | adopt what formed the polycrystalline-silicon layer on the single crystal silicon substrate.

実施形態1を示し、(a)は概略斜視図、(b)は概略下面図である。Embodiment 1 is shown, (a) is a schematic perspective view, (b) is a schematic bottom view. 同上を示す概略断面図である。It is a schematic sectional drawing which shows the same as the above. 同上の製造方法を説明するための主要工程断面図である。It is principal process sectional drawing for demonstrating the manufacturing method same as the above. 同上の他の構成例を示す概略下面図である。It is a schematic bottom view which shows the other structural example same as the above. 実施形態2を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a second embodiment. 同上の製造方法を説明するための主要工程断面図である。It is principal process sectional drawing for demonstrating the manufacturing method same as the above. 実施形態3を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a third embodiment. 同上の製造方法を説明するための主要工程断面図である。It is principal process sectional drawing for demonstrating the manufacturing method same as the above. 実施形態4を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a fourth embodiment. 同上の製造方法を説明するための主要工程断面図である。It is principal process sectional drawing for demonstrating the manufacturing method same as the above. 実施形態5を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a fifth embodiment. 同上の製造方法を説明するための主要工程断面図である。It is principal process sectional drawing for demonstrating the manufacturing method same as the above. 実施形態6を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing a sixth embodiment. 同上の製造方法を説明するための主要工程断面図である。It is principal process sectional drawing for demonstrating the manufacturing method same as the above. 従来例を示し、(a)は概略斜視図、(b)は概略断面図である。A prior art example is shown, (a) is a schematic perspective view, (b) is a schematic sectional view.

符号の説明Explanation of symbols

1 素子形成基板
2 感応部
3,4 電極
3a,4a 櫛骨部
3b,4b 櫛歯部
3c,4c 櫛溝部
7 ヒータ
31,41 配線
32,42,72 パッド
DESCRIPTION OF SYMBOLS 1 Element formation board 2 Sensing part 3, 4 Electrode 3a, 4a Comb bone part 3b, 4b Comb tooth part 3c, 4c Comb groove part 7 Heater 31, 41 Wiring 32, 42, 72 Pad

Claims (6)

素子形成基板の一表面側に形成された多孔質層からなる感応部と、感応部の厚み方向の一面側に形成された一対の櫛形状の電極であって各電極それぞれの櫛歯部が他方の電極の櫛溝部に入り込んだ一対の櫛形状の電極と、感応部に吸着した水分を蒸発させるためのヒータとを備え、ヒータが、感応部の厚み方向の他面側において感応部に重複する領域に形成されてなることを特徴とする湿度センサ。   A sensitive part formed of a porous layer formed on one surface side of the element forming substrate, and a pair of comb-shaped electrodes formed on one surface side in the thickness direction of the sensitive part, each comb tooth part of each electrode being the other And a heater for evaporating the moisture adsorbed on the sensitive part, the heater overlaps the sensitive part on the other side in the thickness direction of the sensitive part. A humidity sensor formed in a region. 前記ヒータが前記感応部の前記他面に接してなることを特徴とする請求項1記載の湿度センサ。   The humidity sensor according to claim 1, wherein the heater is in contact with the other surface of the sensitive portion. 前記素子形成基板の他表面に前記感応部の前記他面を露出させる凹所が形成され、当該凹所の内底面である前記感応部の前記他面に前記ヒータが接してなることを特徴とする請求項2記載の湿度センサ。   A recess is formed on the other surface of the element forming substrate to expose the other surface of the sensitive portion, and the heater is in contact with the other surface of the sensitive portion which is an inner bottom surface of the concave portion. The humidity sensor according to claim 2. 素子形成基板の一表面側に形成された多孔質層からなる感応部と、感応部の厚み方向の一面側に形成された一対の櫛形状の電極であって各電極それぞれの櫛歯部が他方の電極の櫛溝部に入り込んだ一対の櫛形状の電極と、感応部に吸着した水分を蒸発させるためのヒータとを備え、ヒータが素子形成基板の前記一表面側において感応部の周囲に形成され、素子形成基板の他表面に感応部の厚み方向の他面を露出させる凹所が形成されてなることを特徴とする湿度センサ。   A sensitive part formed of a porous layer formed on one surface side of the element forming substrate, and a pair of comb-shaped electrodes formed on one surface side in the thickness direction of the sensitive part, each comb tooth part of each electrode being the other And a heater for evaporating the moisture adsorbed on the sensitive part, and the heater is formed around the sensitive part on the one surface side of the element forming substrate. A humidity sensor, wherein a recess for exposing the other surface in the thickness direction of the sensitive portion is formed on the other surface of the element forming substrate. 素子形成基板の一表面側に多孔質層からなる感応部が形成され、素子形成基板の他表面に感応部の厚み方向の一面を露出させる凹所が形成され、感応部の前記一面側に一対の櫛形状の電極であって各電極それぞれの櫛歯部が他方の電極の櫛溝部に入り込んだ一対の櫛形状の電極が形成され、感応部の厚み方向の他面に感応部に吸着した水分を蒸発させるためのヒータが形成された2つの単位センサ構造体をヒータ同士が重なる形で固着してなることを特徴とする湿度センサ。   A sensitive part made of a porous layer is formed on one surface side of the element forming substrate, a recess is formed on the other surface of the element forming substrate to expose one surface in the thickness direction of the sensitive part, and a pair is formed on the one surface side of the sensitive part. A pair of comb-shaped electrodes in which each comb tooth portion of each electrode enters the comb groove portion of the other electrode is formed, and moisture adsorbed by the sensitive portion on the other surface in the thickness direction of the sensitive portion A humidity sensor characterized in that two unit sensor structures each having a heater for evaporating water are fixed so that the heaters overlap each other. 前記2つの単位センサ構造体をヒータ同士が重なる形で固着した積層構造体が複数個積層され、積層された2つの積層構造体の感応部間に形成される空間を外部と連通させる連通部が積層構造体の要所に設けられてなることを特徴とする請求項5記載の湿度センサ。   A plurality of laminated structures in which the two unit sensor structures are fixed so that the heaters overlap each other are stacked, and a communication portion that communicates the space formed between the sensitive portions of the two laminated structures stacked with the outside is provided. The humidity sensor according to claim 5, wherein the humidity sensor is provided at an important point of the laminated structure.
JP2004341075A 2004-11-25 2004-11-25 Humidity sensor Withdrawn JP2006153511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341075A JP2006153511A (en) 2004-11-25 2004-11-25 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341075A JP2006153511A (en) 2004-11-25 2004-11-25 Humidity sensor

Publications (1)

Publication Number Publication Date
JP2006153511A true JP2006153511A (en) 2006-06-15

Family

ID=36632012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341075A Withdrawn JP2006153511A (en) 2004-11-25 2004-11-25 Humidity sensor

Country Status (1)

Country Link
JP (1) JP2006153511A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002335A (en) * 2008-06-20 2010-01-07 New Cosmos Electric Corp Gas detection element
JP2015122426A (en) * 2013-12-24 2015-07-02 セイコーエプソン株式会社 Heating element, vibration device, and electronic equipment and mobile body
CN105674603A (en) * 2016-01-13 2016-06-15 邱林新 Solar heat collector with automatic gas detecting function
CN114858874A (en) * 2022-07-07 2022-08-05 苏州敏芯微电子技术股份有限公司 Humidity sensing structure, humidity sensor and manufacturing method of humidity sensing structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002335A (en) * 2008-06-20 2010-01-07 New Cosmos Electric Corp Gas detection element
JP2015122426A (en) * 2013-12-24 2015-07-02 セイコーエプソン株式会社 Heating element, vibration device, and electronic equipment and mobile body
CN105674603A (en) * 2016-01-13 2016-06-15 邱林新 Solar heat collector with automatic gas detecting function
CN105674603B (en) * 2016-01-13 2017-12-08 泰兴市城东绿化工程有限公司 A kind of solar thermal collector with automatic gas detection function
CN114858874A (en) * 2022-07-07 2022-08-05 苏州敏芯微电子技术股份有限公司 Humidity sensing structure, humidity sensor and manufacturing method of humidity sensing structure

Similar Documents

Publication Publication Date Title
JP4325133B2 (en) Gas sensor and manufacturing method thereof
EP2375228B1 (en) Optical sensor
JP4801396B2 (en) Gas sensor and gas sensor manufacturing method
JP2006153512A (en) Humidity sensor
JP2009289770A (en) Resistor
JP2007278996A (en) Contact combustion type gas sensor and manufacturing method therefor
JP2006153511A (en) Humidity sensor
JP5419336B2 (en) Sensitive sensor and manufacturing method thereof
JP2002359376A5 (en)
JP2004525389A (en) Electrode system for electrochemical sensor
JPS5837907A (en) Method of producing anodic oxidized aluminum humidity sensitive film
JP2007127440A (en) Capacitive pressure sensor
JP2010225608A (en) Thermoelectric conversion element
JP2011082195A (en) Semiconductor device and method for manufacturing the same
JP2010045064A (en) Solid vacuum device
JP2008064516A (en) Infrared sensor and manufacturing method of infrared sensor
JP4841316B2 (en) Diamond electrode
JP3246167B2 (en) Oxygen concentration sensor
JP6701810B2 (en) Structure and manufacturing method thereof
JP5230833B2 (en) Contact combustion type gas sensor
JP5144046B2 (en) Contact combustion type gas sensor
JP2005283159A (en) Humidity sensor
JP3831650B2 (en) Pressure sensor and manufacturing method thereof
JP2007324566A (en) Semiconductor strain gauge and manufacturing method therefor
JP2010225609A (en) Thermoelectric conversion element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205