JP2006153433A - Thermal storage device - Google Patents

Thermal storage device Download PDF

Info

Publication number
JP2006153433A
JP2006153433A JP2005311954A JP2005311954A JP2006153433A JP 2006153433 A JP2006153433 A JP 2006153433A JP 2005311954 A JP2005311954 A JP 2005311954A JP 2005311954 A JP2005311954 A JP 2005311954A JP 2006153433 A JP2006153433 A JP 2006153433A
Authority
JP
Japan
Prior art keywords
heat
water
heat storage
water tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005311954A
Other languages
Japanese (ja)
Other versions
JP4663480B2 (en
Inventor
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2005311954A priority Critical patent/JP4663480B2/en
Publication of JP2006153433A publication Critical patent/JP2006153433A/en
Application granted granted Critical
Publication of JP4663480B2 publication Critical patent/JP4663480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal storage device which can be miniaturized, and capable of storing cold and heat. <P>SOLUTION: A thermal storage tank 10 housing a thermal storage material M having potassium dititanate as a main component, and having an electric resistance heating heater 32 and a heat absorber 34h, and a tank 12 housing water W, having a heat absorber 24w, and formed with uneven parts on an inner wall surface 14 are connected by a conduit 46a having opening and closing valves 44a and 44b, and a pressure-reduced and sealed thermal storage tank 10 interior is communicated with a tank 12 interior. When the thermal storage material M occludes water molecules between layers of crystals, the heat absorber 34w recovers latent heat of vaporization dissipated from the water W vaporizing in the tank 12 as cold, and the heat absorber 24h recovers heating of the thermal storage material M in the thermal storage tank 10 as heat. When water molecules are released from the thermal storage material M, the heat absorber 34w recovers latent heat of condensation dissipated from water vapor V condensed in the tank 12 as heat. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温熱及び冷熱を回収可能であり、温熱及び冷熱を適時利用可能な蓄熱装置に関する。   The present invention relates to a heat storage device that can collect hot and cold heat and can use hot and cold heat in a timely manner.

環境問題が盛んに取り上げられる昨今、エネルギーの有効利用が大きな関心事となっている。日本で消費される全一次供給エネルギーの約66%が廃熱となり利用されていないという統計があるが、これらの廃熱の多くは低品位廃熱であり、再利用が困難であるという問題を有している。
一方、住宅、オフィス、工場等において、空調機器、給湯器、ボイラー等が必要不可欠な機器となっており、これらの機器によるエネルギー消費量の増大が環境問題のみならず電力安定供給の不安をもたらしていることから、エネルギー消費量削減に向けてこれら機器の省エネルギー対策が盛んに行われている。
In recent years, when environmental problems are actively taken up, the effective use of energy has become a major concern. There are statistics that about 66% of all primary energy consumed in Japan is waste heat and not used, but many of these waste heat is low-grade waste heat and difficult to reuse. Have.
On the other hand, air conditioners, water heaters, boilers, etc. are indispensable devices in homes, offices, factories, etc., and the increase in energy consumption by these devices brings about not only environmental problems but also concerns about stable power supply. Therefore, energy saving measures for these devices are being actively implemented to reduce energy consumption.

特に、空調機器の稼働率がピークを迎える夏季の正午付近の時間帯は、電力消費量が急増して電力の安定供給に多大な影響を及ぼしており、電力消費平準化が標榜される原因にもなっている。電力消費平準化対策に関する技術として、氷蓄熱システムがある。
氷蓄熱システムは、夏季の間、安価な夜間電力を利用して冷熱源となる氷を作って貯蔵し、空調機器を稼働させる昼間に、貯蔵しておいた氷の融解潜熱を利用して冷房を行う。そして、冬季の間、安価な夜間電力を利用して温熱源となる温水を作って貯蔵し、空調機器を稼働させる昼間に、温水の顕熱を利用して暖房を行う。しかし、氷蓄熱システムは設備が大きく、初期投資も高額になる欠点がある他、従来の空調機器と同様、圧縮機が必要であり、冬季には、冷水から温水を作りその温度を維持するための消費電力が大きい。したがって、冬季に氷蓄熱システムが達成する電力コスト低減は、夏季には及ばない。このような問題があるので、現状の氷蓄熱システムの普及率はパッケージエアコン出荷台数の1%程度に過ぎない。
In particular, during the summer time around noon when the operating rate of air-conditioning equipment reaches its peak, power consumption increases rapidly and has a great influence on the stable supply of power. It is also. There is an ice heat storage system as a technology for leveling power consumption.
The ice heat storage system creates and stores ice as a cold heat source using cheap nighttime electricity during the summer, and uses the melting latent heat of the stored ice for cooling during the daytime when the air conditioner is operated. I do. Then, during the winter season, warm water as a heat source is created and stored using inexpensive nighttime electric power, and heating is performed using the sensible heat of hot water during the daytime when the air conditioner is operated. However, the ice heat storage system has the disadvantages of large facilities and high initial investment, and, like conventional air conditioners, requires a compressor. In winter, hot water is made from cold water to maintain its temperature. The power consumption is large. Therefore, the power cost reduction achieved by the ice heat storage system in winter is not as good as in summer. Because of these problems, the current penetration rate of ice heat storage systems is only about 1% of the shipments of packaged air conditioners.

そこで、氷蓄熱システムが有する消費電力低減の問題を解決するために、水を利用した潜熱蓄熱システムに関する技術が開発されている。かかる技術の一例として特許文献1に提唱されている潜熱蓄熱システムは、内部の水を蒸発させ、その蒸発潜熱により氷を生成して冷熱蓄熱する氷蓄熱槽と、氷蓄熱槽に接続する容器内に氷蓄熱槽からの水蒸気を吸着する吸着剤を収納してなる吸着ユニットと、吸着ユニットと氷蓄熱槽の間に介装されて弁を開く時には吸着ユニットと氷蓄熱槽を相互に連通するように接続し、弁を閉じる時にはその接続を遮断する開閉弁と、開閉弁を閉じる時に吸着剤を加熱する加熱手段と、を備え、前記加熱手段を作動させつつ前記容器内の吸着剤から容器外へ水蒸気を排出させて吸着剤を再生する。なお、吸着ユニットに収容されている吸着剤は、シリカゲルやゼオライト等を主成分としている。   Therefore, in order to solve the problem of power consumption reduction of the ice heat storage system, a technology related to a latent heat storage system using water has been developed. As an example of such a technique, the latent heat storage system proposed in Patent Document 1 has an ice storage tank that evaporates internal water, generates ice by the latent heat of evaporation, and stores cold heat, and a container connected to the ice storage tank. An adsorption unit that contains an adsorbent that adsorbs water vapor from the ice storage tank, and an adsorption unit and an ice storage tank that communicate with each other when the valve is opened between the adsorption unit and the ice storage tank. And an opening / closing valve that shuts off the connection when the valve is closed, and a heating means that heats the adsorbent when the opening / closing valve is closed, and operates the heating means from the adsorbent in the container to the outside of the container. The adsorbent is regenerated by discharging water vapor. In addition, the adsorbent accommodated in the adsorption unit is mainly composed of silica gel, zeolite, or the like.

この潜熱蓄熱システムでは、吸着剤が水蒸気を連続して吸着し、平衡状態が維持されるように氷蓄熱槽に収容された水は蒸発潜熱を奪い水蒸気となり、やがて氷が生成し、冷熱蓄熱が行われる。吸着剤がその吸着能の限界近くまで水分を吸着したら、開閉弁を閉じて吸着剤を加熱手段によって加熱し、吸着剤から発生する水蒸気を容器外へ取り出して吸着剤をほぼ当初の状態に再生し、再生した吸着剤によって冷熱蓄熱を継続して行う。加熱手段として廃熱等を利用することが可能である。   In this latent heat storage system, the adsorbent adsorbs water vapor continuously, and the water stored in the ice heat storage tank takes away the latent heat of vaporization and becomes water vapor so that the equilibrium state is maintained. Done. When the adsorbent has adsorbed moisture to the limit of its adsorption capacity, the on-off valve is closed and the adsorbent is heated by heating means, and the water vapor generated from the adsorbent is taken out of the container to regenerate the adsorbent to its original state. Then, cold heat storage is continuously performed by the regenerated adsorbent. Waste heat or the like can be used as the heating means.

また、特許文献2に提唱されている潜熱蓄熱システムは、内部の水を蒸発させ、その蒸発潜熱によって氷を生成して冷熱蓄熱する氷蓄熱槽と、氷蓄熱槽に接続され、太陽光を受けて集熱する集熱容器と、集熱容器内に設けられ、氷蓄熱槽からの水蒸気を吸着する吸着剤と、集熱容器の集熱時には閉弁して集熱容器と氷蓄熱槽の接続を遮断し、非集熱時には開弁して集熱容器と氷蓄熱槽を互いに接続するよう集熱容器と氷蓄熱槽の間に介装された開閉弁と、集熱容器での集熱時に集熱容器内の吸着剤から排出される水蒸気を集熱容器外へ排出する排出手段とを備える。   Moreover, the latent heat storage system proposed in Patent Document 2 is connected to an ice storage tank that evaporates internal water and generates ice by the latent heat of evaporation to store cold energy, and an ice storage tank, and receives sunlight. A heat collecting container that collects heat, an adsorbent that is installed in the heat collecting container and adsorbs water vapor from the ice heat storage tank, and connects the heat collecting container and the ice heat storage tank when the heat collecting container collects heat. And when the heat is collected in the heat collection container, the valve is opened between the heat collection container and the ice heat storage tank so that the heat collection container and the ice heat storage tank are connected to each other. And a discharge means for discharging water vapor discharged from the adsorbent in the heat collection container to the outside of the heat collection container.

この潜熱蓄熱システムでは、特許文献1に提唱されているものとほぼ同様にして冷熱蓄熱を行い、吸着剤の再生には太陽熱を利用している。
これらの潜熱蓄熱システムは、氷蓄熱システムとは異なり、氷の生成に冷凍機を使用しないので、消費電力が小さくてすみ、真空ポンプ等の排気手段を使用して氷蓄熱槽内で発生する水蒸気を外部に排出する必要がない。
特開平7−167463号公報 特開平7−167466号公報
In this latent heat storage system, cold heat storage is performed in substantially the same manner as proposed in Patent Document 1, and solar heat is used for regeneration of the adsorbent.
Unlike the ice heat storage system, these latent heat storage systems do not use a refrigerator to generate ice, so power consumption is small, and the water vapor generated in the ice heat storage tank using an exhaust means such as a vacuum pump. Need not be discharged to the outside.
JP-A-7-167463 JP-A-7-167466

前述の潜熱蓄熱システムでは、吸着剤による水蒸気の吸着がシステムの駆動力となっており、氷蓄熱槽に収容された水が蒸発する際の蒸発潜熱によって氷の生成が行われる。しかしながら、シリカゲルやゼオライト等からなる吸着剤は、単位体積当たりの水吸着量が小さい。このため、氷蓄熱槽での氷の生成には極めて多量の吸着剤が必要であり、潜熱蓄熱システムが大型化するという問題がある。また、潜熱蓄熱システムが蓄熱するのは冷熱のみであるので、実用にあたってその適用分野が限定されてしまうという問題もある。
本発明は、上記問題を解決するものであり、その目的とするところは、小型化でき、冷熱及び温熱を蓄熱可能とし、大きな温熱及び冷熱を適時利用可能な蓄熱装置を提供することである。
In the above-described latent heat storage system, the adsorption of water vapor by the adsorbent serves as a driving force for the system, and ice is generated by the latent heat of vaporization when the water stored in the ice heat storage tank evaporates. However, an adsorbent made of silica gel or zeolite has a small amount of water adsorbed per unit volume. For this reason, the production | generation of the ice in an ice thermal storage tank requires a very large quantity of adsorbent, and there exists a problem that a latent-heat thermal storage system enlarges. In addition, since the latent heat storage system stores only cold heat, there is a problem that the application field is limited in practical use.
The present invention solves the above problems, and an object of the present invention is to provide a heat storage device that can be reduced in size, can store cold and heat, and can use large heat and cold in a timely manner.

本発明は、その課題を解決するために以下のような構成をとる。請求項1の発明に係る蓄熱装置は、一般式K2Ti25-x・nH2O(ただし、0≦x≦1、0≦n≦2.7)により表される二チタン酸カリウムを主成分とする蓄熱材料を収容し、加熱手段及び熱吸収手段を有する蓄熱槽と、水を収容し、熱吸収手段を有する水槽と、蓄熱槽と水槽を連結し、開閉弁を有する導管と、蓄熱槽内と水槽内を減圧可能に構成された減圧手段とを有し、蓄熱槽内及び水槽内を大気圧以下に減圧して密閉し、水槽内で水が蒸発する際の蒸発潜熱を冷熱として水槽の熱吸収手段により回収しつつ、開閉弁を開いて水蒸気を水槽から蓄熱槽に導き、蓄熱槽内で蓄熱材料が水分子を結晶の層間に吸蔵する際の水和熱を温熱として蓄熱槽の熱吸収手段により回収し、水分子を結晶の層間に吸蔵した蓄熱材料を加熱手段によって加熱し、加熱された蓄熱材料から発生する水蒸気を水槽に導き、水槽内で水蒸気が凝縮する際の凝縮潜熱を温熱として水槽の熱吸収手段により回収し、開閉弁を閉じて蓄熱槽での発熱又は吸熱と水槽での発熱又は吸熱を停止させる。 The present invention adopts the following configuration in order to solve the problem. The heat storage device according to the invention of claim 1 is a potassium dititanate represented by the general formula K 2 Ti 2 O 5 -x · nH 2 O (where 0 ≦ x ≦ 1, 0 ≦ n ≦ 2.7). A heat storage tank containing a heat storage material mainly comprising: a water storage tank having a heating means and a heat absorption means; a water tank containing water; a heat absorption means; a conduit connecting the heat storage tank and the water tank and having an on-off valve; And a pressure reducing means configured to be able to depressurize the inside of the heat storage tank and the water tank, and the inside of the heat storage tank and the water tank are reduced to an atmospheric pressure or lower and sealed, and the latent heat of evaporation when water evaporates in the water tank While recovering by the heat absorption means of the water tank as cold heat, open the on-off valve to guide the water vapor from the water tank to the heat storage tank, and the heat of hydration when the heat storage material occludes water molecules between the crystal layers in the heat storage tank as the heat The heat storage material collected by the heat absorption means of the heat storage tank and occluded with water molecules between the crystal layers is heated by the heating means. The water vapor generated from the heated heat storage material is guided to the water tank, and the latent heat of condensation when the water vapor condenses in the water tank is recovered as heat by the heat absorption means of the water tank. Stop heat generation or heat absorption and heat generation or heat absorption in the water tank.

蓄熱材料の主成分をなす二チタン酸カリウムは、水分子が結晶の層間に吸蔵されると発熱し、水分子が結晶中から離脱すると吸熱する。活性アルミナやゼオライトと同様に、二チタン酸カリウムは吸熱過程と発熱過程において固体であり、取り扱いが容易である。また、水分子を吸着する活性アルミナやゼオライトと比較すると、二チタン酸カリウムは単位体積当たりの重量が2倍以上あるため、単位体積当たりの蓄熱量が大きくなる。したがって、同じ蓄熱量の活性アルミナやゼオライトと二チタン酸カリウムを比較すると、二チタン酸カリウムは小容積で良く、蓄熱装置の小型化を可能とする。   Potassium dititanate, which is the main component of the heat storage material, generates heat when water molecules are occluded between crystal layers, and absorbs heat when water molecules are detached from the crystal. Like activated alumina and zeolite, potassium dititanate is a solid in the endothermic and exothermic processes and is easy to handle. In addition, compared with activated alumina or zeolite that adsorbs water molecules, potassium dititanate has a weight per unit volume that is twice or more, so the amount of heat stored per unit volume is large. Therefore, when comparing activated alumina or zeolite having the same heat storage amount with potassium dititanate, the potassium dititanate may have a small volume, and the heat storage device can be downsized.

二チタン酸カリウムの結晶構造は、TiO5三角両錐体からなる層と層との間にK+イオンが配置されていると考えられている。かかる結晶構造では、層間に配置されたK+イオンが容易に水和され、一般式K2Ti25-x・nH2Oにより表記される二チタン酸カリウム水和物となる。このとき、水分子はK+イオンに誘導されるようにTiO5三角両錐体からなる層間に吸蔵される。水分子が吸蔵されてTiO5三角両錐体からなる層の間隔は伸長するが、結晶構造は維持されている。なお、実験データではあるが、H2Oの量nが取り得る最大値として2.7が求められている。 In the crystal structure of potassium dititanate, it is considered that K + ions are arranged between layers composed of TiO 5 triangular bipyramids. In such a crystal structure, K + ions arranged between the layers are easily hydrated to form potassium dititanate hydrate represented by the general formula K 2 Ti 2 O 5-x · nH 2 O. At this time, water molecules are occluded between layers made of TiO 5 triangular both pyramids so as to be induced by K + ions. Although the water molecules are occluded and the interval between the layers made of TiO 5 triangular bipyramids is extended, the crystal structure is maintained. Although there is experimental data, 2.7 is obtained as the maximum value that can take the amount n of H 2 O.

2Ti25-xは雰囲気中の水分子を速く結晶の層間に吸蔵し、K2Ti25-x・nH2Oを生成する。生成したK2Ti25-x・nH2Oを20℃、相対湿度50%の大気中で250℃まで加熱すると、K2Ti25-x・nH2Oの質量の約15%に相当するnH2Oが離脱し、TiO5三角両錐体からなる層間の間隔が収縮し、K2Ti25-xに戻る。この反応は一種のトポケミカルな反応と考えられ、結晶構造の変化を伴わないため、二チタン酸カリウムは水分子の吸蔵と離脱の繰り返しに対して極めて安定である。 K 2 Ti 2 O 5-x quickly absorbs water molecules in the atmosphere between crystal layers, and produces K 2 Ti 2 O 5-x · nH 2 O. When the produced K 2 Ti 2 O 5-x · nH 2 O is heated to 250 ° C. in the atmosphere of 20 ° C. and 50% relative humidity, it is about 15% of the mass of K 2 Ti 2 O 5-x · nH 2 O. NH 2 O corresponding to the above is detached, the interval between the layers made of TiO 5 triangular bipyramids contracts, and returns to K 2 Ti 2 O 5-x . This reaction is considered to be a kind of topochemical reaction and is not accompanied by a change in crystal structure. Therefore, potassium dititanate is extremely stable against repeated insertion and removal of water molecules.

20℃、相対湿度50%の大気中で、n=2.6のK2Ti25-x・nH2Oを10℃/minの速さで30℃から250℃まで加熱し、K2Ti25-x・nH2OからnH2Oが離脱するときの吸熱量を測定した結果、306J/g(=780J/cm3)の値が確認され、吸熱が30〜215℃の温度域において認められた。したがって、二チタン酸カリウムは30〜215℃の温度域において蓄熱材料として機能する。 20 ° C., 50% relative humidity in the atmosphere, heated n = 2.6 for the K 2 Ti 2 O 5-x · nH 2 O from 30 ° C. at a rate of 10 ° C. / min up to 250 ° C., K 2 As a result of measuring the endothermic amount when nH 2 O is desorbed from Ti 2 O 5-x · nH 2 O, a value of 306 J / g (= 780 J / cm 3 ) is confirmed, and the endothermic temperature is 30 to 215 ° C. Recognized in the area. Therefore, potassium dititanate functions as a heat storage material in a temperature range of 30 to 215 ° C.

また、二チタン酸カリウムの結晶構造において、TiO5三角両錐体からなる層間にあるK+イオンが水分子と強く結合するので、特に130℃未満では雰囲気の水蒸気圧や温度が変動しても、ほぼ一定の速度で結晶の層間に水分子を吸蔵し続けて発熱する。したがって、活性アルミナやゼオライトとは異なり、二チタン酸カリウムは雰囲気の水蒸気圧や温度の変動によって顕著な影響を受けない。 In addition, in the crystal structure of potassium dititanate, K + ions existing between layers of TiO 5 triangular bipyramids are strongly bonded to water molecules, so even if the temperature is lower than 130 ° C., the water vapor pressure and temperature of the atmosphere fluctuate. The water molecules are continuously occluded between the crystal layers at a substantially constant rate, and heat is generated. Therefore, unlike activated alumina or zeolite, potassium dititanate is not significantly affected by changes in atmospheric water vapor pressure or temperature.

蓄熱槽内及び水槽内を真空ポンプ等によって大気圧以下に減圧した後密閉し、導管の開閉弁を開くと、水槽内は飽和水蒸気圧になるまで水が速やかに気化して水蒸気となり、水蒸気は蓄熱槽内に流れる。蓄熱槽内の蓄熱材料は結晶の層間に水分子を高速で吸蔵するので、蓄熱槽内及び水槽内は飽和水蒸気圧を維持するため水の気化が一層促進される。蓄熱槽内及び水槽内が飽和水蒸気圧に達するまで、水は蒸発潜熱を吸収し、その蒸発潜熱を冷熱として水槽の熱吸収手段が回収する。一方、蓄熱槽内では、水分子を結晶の層間に吸蔵することで蓄熱材料が発熱して温熱を放出し、この放出された温熱を蓄熱槽の熱吸収手段が回収する。蓄熱材料の主成分をなす二チタン酸カリウムは、二チタン酸カリウム1モルあたり最大2.7モルの水分子を結晶の層間に吸蔵すると発熱を停止する。   When the inside of the heat storage tank and the water tank are reduced to below atmospheric pressure with a vacuum pump or the like and sealed, and the open / close valve of the conduit is opened, the water quickly vaporizes into the water vapor until the saturated water vapor pressure is reached. It flows in the heat storage tank. Since the heat storage material in the heat storage tank occludes water molecules between the crystal layers at a high speed, vaporization of water is further promoted in order to maintain the saturated water vapor pressure in the heat storage tank and the water tank. Until the inside of the heat storage tank and the water tank reach the saturated water vapor pressure, the water absorbs the latent heat of vaporization, and the latent heat of vaporization is used as a cold heat and is recovered by the heat absorption means of the water tank. On the other hand, in the heat storage tank, the water storage material generates heat by releasing water molecules between the crystal layers and releases the heat, and the heat absorption means of the heat storage tank collects the released heat. Potassium dititanate, which is the main component of the heat storage material, stops heating when a maximum of 2.7 moles of water molecules per mole of potassium dititanate are occluded between crystal layers.

次に、蓄熱槽の加熱手段が水分子を吸蔵した蓄熱材料を加熱すると、二チタン酸カリウムの結晶内の水分子が水蒸気となって結晶外に離脱し、離脱した水蒸気が蓄熱槽内から導管を通って水槽内に流れる。
したがって、蓄熱材料を加熱するための熱を加熱手段によって外部から蓄熱装置に導入しさえすれば、冷熱と温熱を得ることができ、しかも、冷熱と温熱の放出を繰り返し行うことができる。
Next, when the heating means of the heat storage tank heats the heat storage material that has occluded water molecules, the water molecules in the potassium dititanate crystal become water vapor and leave the crystal, and the separated water vapor is discharged from the heat storage tank into the conduit. Flows through the water tank.
Therefore, as long as heat for heating the heat storage material is introduced from the outside into the heat storage device by the heating means, cold heat and warm heat can be obtained, and furthermore, cold heat and warm heat can be repeatedly released.

請求項2の発明に係る蓄熱装置は、請求項1記載の蓄熱装置であり、水槽の内壁表面は平滑ではなく凹凸が形成されており、凹凸の凹部で水槽内に流れた水蒸気が毛管凝縮して水となる。毛管凝縮する水蒸気が凝縮潜熱を放出し、この凝縮潜熱を温熱として水槽の熱吸収手段が回収する。水槽の内壁表面上の凹凸の凹部では毛管凝縮した水の付着力が強く、凹部に付着した水の蒸気圧が水槽の底部に収容されている水の蒸気圧よりも小さいので、水蒸気の毛管凝縮と凝縮潜熱の放出が効率的に行われる。
蓄熱槽が有する加熱手段として、例えば、電気抵抗加熱ヒータ、給湯器やボイラー等の廃熱を用いる加熱機器、太陽集光熱を用いる加熱機器等を挙げることができる。蓄熱装置の稼働時間帯に応じて適切な加熱手段を選択活用すれば、コストの低廉化が可能となる。
A heat storage device according to a second aspect of the present invention is the heat storage device according to the first aspect, wherein the inner wall surface of the aquarium is not smooth but has irregularities, and the water vapor that has flowed into the aquarium by the irregularities is capillary condensed. It becomes water. The water vapor that condenses in the capillaries releases latent heat of condensation, and the heat absorption means of the water tank collects the latent heat of condensation as heat. Capacitive condensation of water vapor is caused by the strong adhesion of water condensed in the capillaries in the concave and convex recesses on the inner wall surface of the aquarium, and the vapor pressure of water adhering to the recesses is smaller than the vapor pressure of the water stored in the bottom of the aquarium. And the latent heat of condensation is released efficiently.
Examples of the heating means of the heat storage tank include an electric resistance heater, a heating device that uses waste heat such as a water heater and a boiler, and a heating device that uses solar concentrated heat. If an appropriate heating means is selected and used according to the operating time zone of the heat storage device, the cost can be reduced.

請求項3の発明に係る蓄熱装置は、請求項2記載の蓄熱装置であって、非平滑形状が、水槽の内壁表面に形成された上下方向の微細線状の溝である。
水槽の内壁表面に上下方向の微細線状の溝を形成すると、内壁表面上の溝部で水蒸気から毛管凝縮して生じた水は溝を伝わりスムーズに水槽の底部に流れて溝部から排除されるので毛管凝縮が促進される。また、溝は微細であるので内壁の比表面積が大きくなり水蒸気の毛管凝縮が効率的に行われる。溝の幅は、例えば、0.1〜2mm程度である。溝の断面形状は特に限定されず、溝の断面形状として、例えば、三角形状、四角形状、半円形状、楕円形状を挙げることができる。
A heat storage device according to a third aspect of the present invention is the heat storage device according to the second aspect, wherein the non-smooth shape is a fine linear groove in the vertical direction formed on the inner wall surface of the water tank.
If a fine linear groove in the vertical direction is formed on the inner wall surface of the aquarium, the water generated by capillary condensation from water vapor in the groove on the inner wall surface will flow along the groove and smoothly flow to the bottom of the aquarium and be removed from the groove. Capillary condensation is promoted. Further, since the groove is fine, the specific surface area of the inner wall is increased, and the capillary condensation of water vapor is efficiently performed. The width of the groove is, for example, about 0.1 to 2 mm. The cross-sectional shape of the groove is not particularly limited, and examples of the cross-sectional shape of the groove include a triangular shape, a quadrangular shape, a semicircular shape, and an elliptical shape.

請求項4の発明に係る蓄熱装置は、請求項2記載の蓄熱装置であって、非平滑形状が、水槽の内壁表面に密着し、銅線又は耐腐食処理を表面に施したアルミニウム線で形成された網である。
銅は熱伝導率が高いので、銅線で形成された網上で水蒸気が毛管凝縮しやすい。また、網を形成する銅線を細径とした方が、網の比表面積が大きくなり、水蒸気が毛管凝縮しやすい。しかし、網の強度を考慮すると、網を形成する銅線の径を、例えば0.01〜0.3mmとすることが好ましい。
A heat storage device according to a fourth aspect of the present invention is the heat storage device according to the second aspect, wherein the non-smooth shape is in close contact with the inner wall surface of the water tank and is formed of a copper wire or an aluminum wire subjected to corrosion resistance treatment on the surface. Net.
Since copper has a high thermal conductivity, water vapor tends to be capillary condensed on a net formed of copper wire. Further, when the diameter of the copper wire forming the net is reduced, the specific surface area of the net increases, and water vapor tends to condense in the capillaries. However, considering the strength of the net, the diameter of the copper wire forming the net is preferably set to 0.01 to 0.3 mm, for example.

アルミニウムも熱伝導率が高いので、アルミニウム線で形成された網上で水蒸気が毛管凝縮しやすい。網を形成するアルミニウム線の表面に耐腐食処理を施すことによって、網が水によって腐食されることを防止できる。 高い熱伝導率を有する金や銀は高価であり、銅線又はアルミニウム線で網を形成することによって網のコストの低廉化が可能となる。銅線又はアルミニウム線は、銅又はアルミニウムを主成分とする合金を材料としてもかまわない。
なお、網の形状は、網目間に微小空間を形成でき、大きな表面積を有するものであればよい。網の形状として、例えば、平織、綾織、平畳織、綾畳織、蓮織等を挙げることができ、パンチングメタルを積層する構造としてもよい。
Since aluminum also has a high thermal conductivity, water vapor tends to be condensed on the net formed by the aluminum wire. By subjecting the surface of the aluminum wire forming the net to corrosion resistance, the net can be prevented from being corroded by water. Gold and silver having a high thermal conductivity are expensive, and the cost of the net can be reduced by forming the net with a copper wire or an aluminum wire. The copper wire or aluminum wire may be made of a copper or aluminum alloy as a main component.
The net shape may be any shape as long as it can form a minute space between the nets and has a large surface area. Examples of the shape of the net include plain weave, twill weave, plain tatami weave, twill tatami weave, lotus weave, and the like, and a structure in which punching metal is laminated may be used.

請求項5の発明に係る蓄熱装置は、請求項2記載の蓄熱装置であって、水槽がアルミニウム製であり、水槽の内壁表面を電解エッチングした後にアノード酸化処理することで非平滑形状を形成する。
電解エッチングした後にアノード酸化処理したアルミニウムは、陽極酸化アルミナ又は陽極酸化ポーラスアルミナと呼ばれ、その箔はアルミ電解コンデンサの電極として使用されている。アルミニウムに電解エッチングを施すことによって、アルミニウムの表面には細孔が形成される。この細孔は表面に対して直交するシリンダ状のセルが規則的に六方配列したハニカム構造を形成しており、比表面積が大きくなっている。電解エッチングによって形成される細孔の孔径は、電解エッチング条件によって異なるが、一般に0.1μm程度である。アルミニウム製の水槽に電解エッチングを施すときは、HCl、NaCl、NH4Cl、ClCH2COOH等の水溶液をこの水槽に入れ、水槽を陽極とし、陰極を水溶液に入れて、直流、交流又は交流重畳電流を流す。
The heat storage device according to the invention of claim 5 is the heat storage device according to claim 2, wherein the water tank is made of aluminum, and the inner wall surface of the water tank is electrolytically etched and then anodized to form a non-smooth shape. .
Aluminum that has been anodized after electrolytic etching is called anodized alumina or anodized porous alumina, and its foil is used as an electrode of an aluminum electrolytic capacitor. By subjecting aluminum to electrolytic etching, pores are formed on the surface of the aluminum. These pores form a honeycomb structure in which cylindrical cells orthogonal to the surface are regularly arranged in a hexagonal manner, and have a large specific surface area. The pore diameter of the pores formed by electrolytic etching varies depending on the electrolytic etching conditions, but is generally about 0.1 μm. When electrolytic etching is performed on an aluminum water tank, an aqueous solution such as HCl, NaCl, NH 4 Cl, or ClCH 2 COOH is placed in the water tank, the water tank is used as an anode, and the cathode is placed in the aqueous solution. Apply current.

電解エッチングを施したアルミニウムにアノード酸化処理を施すと、アルミニウムの表面にあるシリンダ状のセルの表面がアルミナによって被覆され、アルミニウムの表面が水によって腐食されることを抑制できる。アルミニウム製の水槽に電解エッチングを施した後にアノード酸化処理を施すときは、この水槽に沸騰した水を入れ、Al23・mH2O(ただし、1.0≦m≦2.7)の擬ベーマイト皮膜を形成した後、水槽の水を排出してから、水槽にホウ酸アンモニウム水溶液や燐酸アンモニウム水溶液を入れ、水槽を陽極とし、陰極を水溶液に入れて、両極の間に600V程度の直流電圧を印加する。
水槽をアルミニウム製とし、水槽の内壁表面に電解エッチングを施し、さらにアノード酸化処理を施すと、水槽の内壁表面で水蒸気が毛管凝縮しやすくなるとともに、水槽の内壁表面の腐食を防止できる。
When anodizing is applied to aluminum that has been subjected to electrolytic etching, the surface of a cylindrical cell on the surface of the aluminum is covered with alumina, and corrosion of the aluminum surface with water can be suppressed. When anodizing is performed after electrolytic etching is performed on an aluminum water tank, boiling water is put into the water tank, and Al 2 O 3 .mH 2 O (where 1.0 ≦ m ≦ 2.7) is added. After forming the pseudo boehmite film, the water in the water tank is discharged, and then an aqueous ammonium borate solution or an aqueous ammonium phosphate solution is placed in the water tank, the water tank is used as the anode, the cathode is placed in the aqueous solution, and a direct current of about 600 V between the two electrodes. Apply voltage.
When the water tank is made of aluminum, the inner wall surface of the water tank is subjected to electrolytic etching, and further subjected to an anodic oxidation treatment, water vapor is easily condensed on the inner wall surface of the water tank, and corrosion of the inner wall surface of the water tank can be prevented.

請求項6の発明に係る蓄熱装置は、請求項1から請求項5記載の蓄熱装置であり、水槽内に0.01テックス未満の繊維で作製された布を充填すると、水蒸気が水槽内壁で毛管凝縮する際、生成した水が水槽内壁から素早く吸い取られるため毛管凝縮を促進させることができ、その結果凝縮潜熱の回収速度が向上する。さらに高い保水性によって蓄熱装置もしくは水槽を傾斜しても水が蓄熱槽に流れ込むことを防ぐことができ、その結果蓄熱材料の主成分をなす二チタン酸カリウムの分解を防ぐことができる。   A heat storage device according to a sixth aspect of the present invention is the heat storage device according to any one of the first to fifth aspects, wherein when the water tank is filled with a fabric made of fibers of less than 0.01 tex, water vapor is capillary on the inner wall of the water tank. When condensing, the generated water is quickly taken up from the inner wall of the aquarium, so that capillary condensation can be promoted, and as a result, the recovery rate of condensation latent heat is improved. Furthermore, even if the heat storage device or the water tank is inclined due to high water retention, water can be prevented from flowing into the heat storage tank, and as a result, decomposition of potassium dititanate which is the main component of the heat storage material can be prevented.

0.01テックス未満の繊維は超極細繊維と呼ばれ、繊維断面を真円と仮定すると直径約5μm以下の繊維に相当し、繊維間の隙間で起こる毛管現象によって水を素早く吸収し、大きな比表面積を有するため高い保水性も具備している。超極細繊維の多くは複雑な断面形状を有しており、その断面形状から分割型や海島型などに分けられる。繊維の太さは繊度で表現されるが、その表現方法には素材ごとに異なる太さの表記を統一するために導入された単位としてtex(テックス)がある。
tex(テックス)は、(1)式で表す。
tex(テックス)=1000×W(g)/L(m) ・・・・・(1)式
L:糸の長さ(m)、W:糸の重さ(g)である。
水を素早く吸収し、高い保水性を有する素材としては、高吸水性樹脂が一般的である。しかし高吸水性樹脂は吸水した水を素早く放出する性質を具備しておらず、本発明の蓄熱装置の水槽において水の蒸発熱を利用する操作が十分機能しなくなる。
なお、0.01テックス未満の繊維で作製された布は、織布又は不織布の形態を取り得る。
Fibers with a diameter of less than 0.01 tex are called ultra-fine fibers. If the cross section of the fiber is assumed to be a perfect circle, it corresponds to a fiber with a diameter of about 5 μm or less. Since it has a surface area, it also has high water retention. Most of the ultrafine fibers have a complicated cross-sectional shape, and can be divided into a split type and a sea-island type from the cross-sectional shape. The thickness of the fiber is expressed in terms of fineness, and the expression method is tex as a unit introduced to unify the notation of different thickness for each material.
tex is expressed by equation (1).
tex (tex) = 1000 x W (g) / L (m) Equation (1)
L: Yarn length (m), W: Yarn weight (g).
A highly water-absorbing resin is generally used as a material that absorbs water quickly and has high water retention. However, the highly water-absorbent resin does not have the property of quickly releasing the absorbed water, and the operation using the evaporation heat of water in the water tank of the heat storage device of the present invention does not function sufficiently.
In addition, the cloth produced with the fiber below 0.01 tex can take the form of a woven fabric or a nonwoven fabric.

本発明は、上記のような蓄熱装置であるので、小型化でき、冷熱及び温熱を蓄熱可能であり、温熱及び冷熱を適時利用可能である。   Since the present invention is a heat storage device as described above, it can be miniaturized, can store cold and warm heat, and can use warm and cold timely.

本発明を実施するための最良の形態を図1及び図2を参照しつつ説明する。図1は本発明に係る蓄熱装置の構成図、図2は水槽の説明図であり、(i)は水槽の構造図、(ii)は(i)のI−I線断面である。
蓄熱装置1は、蓄熱槽10、水槽12、熱交換器24h、24w、真空ポンプ26、循環ポンプ28h、28w、貯槽30h、30w、導管46を有する。
The best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a heat storage device according to the present invention, FIG. 2 is an explanatory diagram of a water tank, (i) is a structural diagram of the water tank, and (ii) is a cross-sectional view taken along line II of (i).
The heat storage device 1 includes a heat storage tank 10, a water tank 12, heat exchangers 24h and 24w, a vacuum pump 26, circulation pumps 28h and 28w, storage tanks 30h and 30w, and a conduit 46.

蓄熱槽10内には、一般式K2Ti25-x・nH2O(ただし、0≦x≦1、0≦n≦2.7)により表記される二チタン酸カリウムを主成分とする蓄熱材料Mが収容されている。蓄熱槽10は、250℃までの範囲で温度制御可能な電気抵抗加熱ヒータ32を有し、蓄熱材料Mを加熱可能に構成されており、蓄熱槽10に設置された温度計(図示せず)によって蓄熱槽10内の温度を測定可能に構成されている。また、熱吸収器34hの導管36hが蓄熱槽10に密着して螺旋状に配設されている。 In the heat storage tank 10, the main component is potassium dititanate represented by the general formula K 2 Ti 2 O 5-x · nH 2 O (where 0 ≦ x ≦ 1, 0 ≦ n ≦ 2.7). The heat storage material M to be stored is accommodated. The heat storage tank 10 includes an electric resistance heater 32 capable of controlling the temperature in a range up to 250 ° C., is configured to be able to heat the heat storage material M, and is a thermometer (not shown) installed in the heat storage tank 10. Thus, the temperature in the heat storage tank 10 can be measured. Further, the conduit 36h of the heat absorber 34h is disposed in close contact with the heat storage tank 10 and spirally disposed.

貯槽30h、循環ポンプ28h、熱交換器24hが蓄熱槽10に隣接して配置されている。貯槽30h、循環ポンプ28h、熱交換器24h及び熱吸収器34hの導管36hが配管によって互いに接続されている。貯槽30hが循環ポンプ28hの吸引側に接続され、循環ポンプ28hの吐出側が熱交換器24hを介して熱吸収器34hの導管36hの入側に接続され、熱吸収器34hの導管36hの出側が貯槽30hに接続されている。   A storage tank 30 h, a circulation pump 28 h, and a heat exchanger 24 h are arranged adjacent to the heat storage tank 10. The storage tank 30h, the circulation pump 28h, the heat exchanger 24h, and the conduit 36h of the heat absorber 34h are connected to each other by piping. The storage tank 30h is connected to the suction side of the circulation pump 28h, the discharge side of the circulation pump 28h is connected to the inlet side of the conduit 36h of the heat absorber 34h via the heat exchanger 24h, and the outlet side of the conduit 36h of the heat absorber 34h is It is connected to the storage tank 30h.

開閉弁38aが循環ポンプ28hの吐出側と熱交換器24hとの間の配管に配置され、開閉弁38b、38cが熱交換器24hと熱吸収器34hの導管36hの入側との間の配管に順番に配置され、開閉弁38dが熱吸収器34hの導管36hの出側と貯槽30hとの間の配管に配置されている。
配管が循環ポンプ28hの吐出側と開閉弁38aとの間から分岐して開閉弁38bと開閉弁38cとの間に接続されており、開閉弁38e、38fがこの分岐した配管に配置されている。別の配管が開閉弁38bと開閉弁38cとの間から分岐して開閉弁38dと貯槽30hとの間に接続されており、開閉弁38g、38iがこの分岐した配管に配置されている。
The on-off valve 38a is arranged in a pipe between the discharge side of the circulation pump 28h and the heat exchanger 24h, and the on-off valves 38b and 38c are pipes between the heat exchanger 24h and the inlet side of the conduit 36h of the heat absorber 34h. The on-off valve 38d is arranged in the piping between the outlet side of the conduit 36h of the heat absorber 34h and the storage tank 30h.
The pipe branches from between the discharge side of the circulation pump 28h and the on-off valve 38a and is connected between the on-off valve 38b and the on-off valve 38c, and the on-off valves 38e and 38f are arranged in this branched pipe. . Another pipe branches from between the on-off valve 38b and the on-off valve 38c and is connected between the on-off valve 38d and the storage tank 30h, and the on-off valves 38g and 38i are arranged in this branched pipe.

貯槽30h内には熱媒体Tが貯留されている。
熱交換器24hは一次側を流れる熱媒体Tから二次側を流れる水に温熱を伝達可能に構成されている。
水槽12内の底部には水Wが収容されており、水槽12内の上部が空間13となっている。ただし、水槽内に0.01テックス未満の繊維で作製された布を充填する場合は、水Wの一部または全部が布に保水されており、空間13も布で占められる。水槽12の内壁表面14上には上下方向に連続し、幅が0.1〜2mmである溝16が形成されている。また、水槽12に設置された温度計(図示せず)によって空間13内の温度を測定可能となっており、熱吸収器34wの導管36wが水槽12に密着して螺旋状に配設されている。
A heat medium T is stored in the storage tank 30h.
The heat exchanger 24h is configured to be able to transfer heat from the heat medium T flowing on the primary side to the water flowing on the secondary side.
Water W is accommodated in the bottom of the water tank 12, and the upper part of the water tank 12 is a space 13. However, in the case where a cloth made of fibers of less than 0.01 tex is filled in the water tank, part or all of the water W is retained by the cloth, and the space 13 is also occupied by the cloth. On the inner wall surface 14 of the water tank 12, a groove 16 that is continuous in the vertical direction and has a width of 0.1 to 2 mm is formed. Further, the temperature in the space 13 can be measured by a thermometer (not shown) installed in the water tank 12, and the conduit 36 w of the heat absorber 34 w is arranged in a spiral manner in close contact with the water tank 12. Yes.

貯槽30w、循環ポンプ28w、熱交換器24wが水槽12に隣接して設置されている。貯槽30w、循環ポンプ28w、熱交換器24w及び熱吸収器34wの導管36wが配管によって互いに接続されており、貯槽30wが循環ポンプ28wの吸引側に接続され、循環ポンプ28wの吐出側が熱交換器24wを介して熱吸収器34wの導管36wの入側に接続され、熱吸収器34wの導管36wの出側が貯槽30wに接続されている。   A storage tank 30w, a circulation pump 28w, and a heat exchanger 24w are installed adjacent to the water tank 12. The storage tank 30w, the circulation pump 28w, the heat exchanger 24w and the conduit 36w of the heat absorber 34w are connected to each other by piping, the storage tank 30w is connected to the suction side of the circulation pump 28w, and the discharge side of the circulation pump 28w is the heat exchanger. 24w is connected to the inlet side of the conduit 36w of the heat absorber 34w, and the outlet side of the conduit 36w of the heat absorber 34w is connected to the storage tank 30w.

開閉弁40aが循環ポンプ28wの吐出側と熱交換器24wとの間の配管に配置され、開閉弁40b、40cが熱交換器24wと熱吸収器34wの導管36wの入側との間の配管に順番に配置され、開閉弁40dが熱吸収器34wの導管36wの出側と貯槽30wとの間の配管に配置されている。
配管が循環ポンプ28wの吐出側と開閉弁40aとの間から分岐して開閉弁40bと開閉弁40cとの間に接続されており、開閉弁40e、40fがこの分岐した配管に配置されている。別の配管が開閉弁40bと開閉弁40cとの間から分岐して開閉弁40dと貯槽30wとの間に接続されており、開閉弁40g、40iがこの分岐した配管に配置されている。
The on-off valve 40a is disposed in a pipe between the discharge side of the circulation pump 28w and the heat exchanger 24w, and the on-off valves 40b and 40c are pipes between the heat exchanger 24w and the inlet side of the conduit 36w of the heat absorber 34w. The on-off valve 40d is arranged in the piping between the outlet side of the conduit 36w of the heat absorber 34w and the storage tank 30w.
A pipe branches from between the discharge side of the circulation pump 28w and the on-off valve 40a and is connected between the on-off valve 40b and the on-off valve 40c, and the on-off valves 40e, 40f are arranged in this branched pipe. . Another pipe branches from between the on-off valve 40b and the on-off valve 40c and is connected between the on-off valve 40d and the storage tank 30w, and the on-off valves 40g and 40i are arranged in this branched pipe.

貯槽30w内には熱媒体Tが貯留されている。
熱交換器24wは一次側を流れる熱媒体Tから二次側を流れる水に冷熱を伝達可能に構成されている。
配管が熱吸収器34wの導管36wの出側と開閉弁40dとの間から分岐して開閉弁38dと貯槽30hとの間に接続されており、開閉弁42aがこの分岐した配管に配置されている。別の配管が開閉弁38bと開閉弁38cとの間から分岐して熱吸収器34wの導管36wの入側と開閉弁40cとの間に接続されており、開閉弁42b、42cがこの分岐した配管に配置されている。
導管46aが水槽12内上部の空間13から蓄熱槽10内に接続されており、開閉弁44a、44bが導管46aに配置されている。導管46bが開閉弁44aと開閉弁44bの間の導管46aから分岐して真空ポンプ26に接続されており、開閉弁44cが導管46bに配置されている。
A heat medium T is stored in the storage tank 30w.
The heat exchanger 24w is configured to be able to transmit cold heat from the heat medium T flowing on the primary side to the water flowing on the secondary side.
The pipe branches from the outlet side of the conduit 36w of the heat absorber 34w and the on-off valve 40d and is connected between the on-off valve 38d and the storage tank 30h, and the on-off valve 42a is arranged in this branched pipe. Yes. Another pipe branches from between the on-off valve 38b and the on-off valve 38c and is connected between the inlet side of the conduit 36w of the heat absorber 34w and the on-off valve 40c, and the on-off valves 42b and 42c branch off. It is arranged in the piping.
A conduit 46a is connected to the heat storage tank 10 from the space 13 in the upper part of the water tank 12, and open / close valves 44a and 44b are arranged in the conduit 46a. A conduit 46b branches from the conduit 46a between the on-off valve 44a and the on-off valve 44b and is connected to the vacuum pump 26, and an on-off valve 44c is disposed in the conduit 46b.

次に、蓄熱装置1の作用について説明する。
蓄熱装置1は、温熱回収工程と温冷熱回収工程の2工程を連続的に繰り返すことで作動する。温熱回収工程とは蓄熱装置1から温熱を回収する工程であり、蓄熱材料Mからは水分子が離脱する。一方、温冷熱回収工程とは蓄熱装置1から温熱と冷熱の両方を回収する工程であり、蓄熱材料Mの結晶の層間には水分子が吸蔵される。すなわち、温熱回収工程と温冷熱回収工程の繰り返しからなる蓄熱装置1の作動サイクルは、蓄熱材料Mへの水分子の授受と相関している。
Next, the operation of the heat storage device 1 will be described.
The heat storage device 1 operates by continuously repeating the two processes of the heat recovery process and the heat / cool recovery process. The heat recovery step is a step of recovering heat from the heat storage device 1, and water molecules are detached from the heat storage material M. On the other hand, the hot / cold heat recovery step is a step of recovering both hot heat and cold heat from the heat storage device 1, and water molecules are occluded between the crystal layers of the heat storage material M. In other words, the operation cycle of the heat storage device 1 including the repetition of the heat recovery process and the heat / cool recovery process correlates with the transfer of water molecules to the heat storage material M.

蓄熱装置1の始動時の状態として温熱回収工程と温冷熱回収工程のどちらも選択可能であるが、蓄熱材料Mの主成分である二チタン酸カリウムは、一般的な条件で製造すると水分子を結晶の層間に吸蔵したK2Ti25-X・nH2O(ただし、0≦X≦1、n≒2.7)で生成するため、始動時の状態として温熱回収工程を行うのが適している。したがって、ここでは始動時の状態として温熱回収工程を行う場合について説明する。 Both the heat recovery process and the heat / cool recovery process can be selected as the start-up state of the heat storage device 1, but potassium dititanate, which is the main component of the heat storage material M, produces water molecules when manufactured under general conditions. Since it is produced with K 2 Ti 2 O 5−X · nH 2 O (where 0 ≦ X ≦ 1, n≈2.7) occluded between the crystal layers, the heat recovery process is performed as a starting state. Is suitable. Therefore, the case where a heat recovery process is performed as a state at the time of starting will be described here.

まず、開閉弁44a、44cを開き、開閉弁44bを閉じ、真空ポンプ26を駆動して水槽12内を減圧する。水槽12内が所定の真空度に達したら、開閉弁44aを閉じ、開閉弁44bを開き、蓄熱槽10内を減圧する。蓄熱槽10内が所定の真空度に達したら、開閉弁44b、44cを閉じ、真空ポンプ26を停止する。なお、この段階で、蓄熱槽10内の蓄熱材料Mが可能な限り水分子を結晶の層間に吸蔵し、K2Ti25-x・2.7H2O(ただし、0≦x≦1)となっていることが好ましい。 First, the on-off valves 44a and 44c are opened, the on-off valve 44b is closed, and the vacuum pump 26 is driven to depressurize the water tank 12. When the inside of the water tank 12 reaches a predetermined degree of vacuum, the on-off valve 44a is closed, the on-off valve 44b is opened, and the inside of the heat storage tank 10 is decompressed. When the inside of the heat storage tank 10 reaches a predetermined degree of vacuum, the on-off valves 44b and 44c are closed and the vacuum pump 26 is stopped. At this stage, the heat storage material M in the heat storage tank 10 occludes water molecules between the crystal layers as much as possible, and K 2 Ti 2 O 5-x · 2.7H 2 O (where 0 ≦ x ≦ 1 It is preferable that

次いで、開閉弁44a、44bを開き、蓄熱槽10内と水槽12内とを連通させ、電気抵抗加熱ヒータ32によって蓄熱材料Mを250℃まで加熱する。水分子が蓄熱材料Mから離脱して水蒸気Vとなり、水蒸気Vが蓄熱槽10内から水槽12内の空間13に流れる。空間13に流れた水蒸気Vが水槽12の内壁表面14上の溝16で毛管凝縮して水Wとなり、毛管凝縮した水Wが溝16を伝って水槽12の底部に流れ排除される。ただし、水槽12内に0.01テックス未満の繊維で作製された布を充填する場合は、水Wの一部または全部が溝16を伝わって水槽12の底部に流れる間に布に吸水され、水Wは溝16から素早く排除される。毛管凝縮する水蒸気Vから凝縮潜熱が温熱として水槽12内に放出され、放出された温熱が水槽12に密着する熱吸収器34wの導管36wに伝達される。   Next, the on-off valves 44 a and 44 b are opened, the heat storage tank 10 and the water tank 12 are communicated, and the heat storage material M is heated to 250 ° C. by the electric resistance heater 32. Water molecules are detached from the heat storage material M to become water vapor V, and the water vapor V flows from the heat storage tank 10 to the space 13 in the water tank 12. The water vapor V that has flowed into the space 13 condenses in the capillaries in the grooves 16 on the inner wall surface 14 of the water tank 12 to become water W, and the water W that has undergone capillary condensate flows through the grooves 16 and is discharged to the bottom of the water tank 12. However, when filling the fabric made of fibers of less than 0.01 tex in the aquarium 12, water is absorbed into the fabric while part or all of the water W flows through the groove 16 to the bottom of the aquarium 12, Water W is quickly removed from the groove 16. Condensation latent heat is released as heat from the steam V condensed in the capillary into the water tank 12, and the released heat is transmitted to the conduit 36 w of the heat absorber 34 w in close contact with the water tank 12.

水槽12内に放出された温熱を直ちに温水として取り出すときは、開閉弁38a、38b、42a、42b、42cを開き、開閉弁38c、38d、38e、38f、38g、38i、40c、40dを閉じ、熱媒体Tの第1の循環経路を形成する。第1の循環経路は、貯槽30hから、循環ポンプ28h、開閉弁38a、熱交換器24h、開閉弁38b、42b、42c、熱吸収器34wの導管36w、開閉弁42aを順番に通って、貯槽30hに戻る経路である。第1の循環経路を形成したら、循環ポンプ28hを駆動し、第1の循環経路で熱媒体Tを循環させる。   When taking out the warm heat released into the water tank 12 as hot water immediately, the on-off valves 38a, 38b, 42a, 42b, 42c are opened, the on-off valves 38c, 38d, 38e, 38f, 38g, 38i, 40c, 40d are closed, A first circulation path of the heat medium T is formed. The first circulation path starts from the storage tank 30h through the circulation pump 28h, the open / close valve 38a, the heat exchanger 24h, the open / close valves 38b, 42b, 42c, the conduit 36w of the heat absorber 34w, and the open / close valve 42a in order. This is a route back to 30h. When the first circulation path is formed, the circulation pump 28h is driven, and the heat medium T is circulated through the first circulation path.

温熱が水槽12内で毛管凝縮する水蒸気Vから熱吸収器34wの導管36wに伝達され、さらに導管36wから導管36wを流れる熱媒体Tに伝達される。温熱を伝達された熱媒体Tは昇温し、昇温した熱媒体Tが熱交換器24hの一次側に流れ、熱交換器24hの二次側の水が熱媒体Tから温熱を伝達されて温水となり、温熱が熱交換器24hから温水として取り出される。
蓄熱材料Mからの水分子の離脱が終了すると、凝縮潜熱を放出する水蒸気Vによって水槽12内で生じていた発熱が収束し、水槽12内の温度が徐々に低下する。水槽12の温度計によって水槽12内の温度低下を検出したら、開閉弁44a、44bを閉じ、循環ポンプ28hを停止する。
Warm heat is transmitted from the water vapor V condensed in the water tank 12 to the conduit 36w of the heat absorber 34w, and further transmitted from the conduit 36w to the heat medium T flowing through the conduit 36w. The heat medium T to which the warm heat is transmitted rises in temperature, the heated heat medium T flows to the primary side of the heat exchanger 24h, and the water on the secondary side of the heat exchanger 24h is transmitted the warm heat from the heat medium T. It becomes warm water, and the heat is taken out from the heat exchanger 24h as warm water.
When the detachment of water molecules from the heat storage material M is completed, the heat generated in the water tank 12 is converged by the water vapor V that releases the latent heat of condensation, and the temperature in the water tank 12 gradually decreases. When the temperature drop in the water tank 12 is detected by the thermometer of the water tank 12, the on-off valves 44a and 44b are closed and the circulation pump 28h is stopped.

水槽12内に放出された温熱を直ちに温水として取り出さず、温熱を必要時に温水として取り出すときは、開閉弁38e、38f、42a、42b、42cを開き、開閉弁38a、38b、38c、38d、38g、38i、40c、40dを閉じ、熱媒体Tの第2の循環経路を形成する。第2の循環経路は、貯槽30hから、循環ポンプ28h、開閉弁38e、38f、42b、42c、熱吸収器34wの導管36w、開閉弁42aを順番に通って、貯槽30hに戻る経路である。第2の循環経路を形成したら、循環ポンプ28hを駆動し、第2の循環経路で熱媒体Tを循環させる。   When the hot heat released into the water tank 12 is not immediately taken out as hot water but is taken out as hot water when necessary, the on-off valves 38e, 38f, 42a, 42b, 42c are opened and the on-off valves 38a, 38b, 38c, 38d, 38g are opened. , 38i, 40c, 40d are closed, and the second circulation path of the heat medium T is formed. The second circulation path is a path that returns from the storage tank 30h to the storage tank 30h through the circulation pump 28h, the open / close valves 38e, 38f, 42b, and 42c, the conduit 36w of the heat absorber 34w, and the open / close valve 42a in order. When the second circulation path is formed, the circulation pump 28h is driven, and the heat medium T is circulated through the second circulation path.

温熱が水槽12内で毛管凝縮する水蒸気Vから熱吸収器34wの導管36wに伝達され、さらに導管36wから導管36wを流れる熱媒体Tに伝達されて、熱媒体Tが昇温する。第2の循環経路を循環する熱媒体Tは熱交換器24hを通らないので、熱媒体Tが温熱を蓄えて高温となったまま貯槽30hに貯まる。ただし、水槽12内で生じていた発熱が収束し、水槽12の温度低下を検出したら、開閉弁38a、38b、38c、38d、38e、38f、38g、38i、40c、40d、42a、42b、42cを閉じ、循環ポンプ28hを停止し、貯槽30hに熱媒体Tを貯める。   Warm heat is transmitted from the steam V condensed in the water tank 12 to the conduit 36w of the heat absorber 34w, and further transmitted from the conduit 36w to the heat medium T flowing through the conduit 36w, so that the temperature of the heat medium T rises. Since the heat medium T circulating in the second circulation path does not pass through the heat exchanger 24h, the heat medium T stores the heat and is stored in the storage tank 30h while maintaining a high temperature. However, if the heat generated in the water tank 12 converges and a temperature drop in the water tank 12 is detected, the on-off valves 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38i, 40c, 40d, 42a, 42b, 42c Is closed, the circulation pump 28h is stopped, and the heat medium T is stored in the storage tank 30h.

貯槽30hの熱媒体Tに蓄えられた温熱を取り出すときは、開閉弁38a、38b、38g、38iを開き、開閉弁38c、38d、38e、38f、42a、42bを閉じて、熱媒体Tの第3の循環経路を形成する。第3の循環経路は、貯槽30hから、循環ポンプ28h、開閉弁38a、熱交換器24h、開閉弁38b、38g、38iを順番に通って、貯槽30hに戻る経路である。第3の循環経路を形成したら、循環ポンプ28hを駆動し、第3の循環経路で熱媒体Tを循環させる。   When taking out the heat stored in the heat medium T of the storage tank 30h, the on-off valves 38a, 38b, 38g, 38i are opened, the on-off valves 38c, 38d, 38e, 38f, 42a, 42b are closed, 3 circulation paths are formed. The third circulation path is a path that returns from the storage tank 30h to the storage tank 30h through the circulation pump 28h, the on-off valve 38a, the heat exchanger 24h, and the on-off valves 38b, 38g, and 38i in order. When the third circulation path is formed, the circulation pump 28h is driven, and the heat medium T is circulated through the third circulation path.

温熱を蓄えている熱媒体Tが貯槽30hから熱交換器24hの一次側に流れ、熱交換器24hの二次側の水が熱媒体Tから温熱を伝達されて温水となり、温熱が熱交換器24hから温水として取り出される。
以上が蓄熱装置1の温熱回収工程である。
温熱回収工程を終了後、温冷熱回収工程に移る。
The heat medium T storing the heat flows from the storage tank 30h to the primary side of the heat exchanger 24h, the water on the secondary side of the heat exchanger 24h is transferred to the heat medium T to become hot water, and the heat is converted into the heat exchanger. It is taken out as hot water from 24h.
The above is the heat recovery process of the heat storage device 1.
After finishing the heat recovery process, the process proceeds to the heat recovery process.

温熱回収工程が終了した段階で、蓄熱槽10内の蓄熱材料Mは水分子が離脱してほぼK2Ti25-X(ただし、0≦X≦1)となっている。
次に、全ての開閉弁が閉じられた状態から開閉弁44a、44bを開き、蓄熱槽10内と水槽12内とを連通させる。蓄熱材料MはほぼK2Ti25-X(ただし、0≦X≦1となっているので、水分子を結晶の層間に吸蔵し、K2Ti25-X・2.7H2O(ただし、0≦X≦1)が生成しようとする反応が開始する。蓄熱槽10内の水蒸気圧は一瞬低下するが、平衡状態を維持しようとするため水槽12内の水Wが気化して、空間13で水蒸気Vとなる。水Wが気化するときに蒸発潜熱を吸収し、その蒸発潜熱は冷熱として水槽12に密着する熱吸収器34wの導管36wに伝達される。
At the stage where the heat recovery process is finished, the heat storage material M in the heat storage tank 10 is almost K 2 Ti 2 O 5-X (where 0 ≦ X ≦ 1) due to the separation of water molecules.
Next, the on-off valves 44a and 44b are opened from a state in which all the on-off valves are closed, and the inside of the heat storage tank 10 and the inside of the water tank 12 are communicated. The heat storage material M is approximately K 2 Ti 2 O 5-X (where 0 ≦ X ≦ 1, so water molecules are occluded between the crystal layers, and K 2 Ti 2 O 5-X · 2.7H 2 is stored. The reaction to generate O (however, 0 ≦ X ≦ 1) starts.The water vapor pressure in the heat storage tank 10 decreases momentarily, but the water W in the water tank 12 vaporizes in order to maintain an equilibrium state. Thus, it becomes steam V in the space 13. When the water W is vaporized, the latent heat of vaporization is absorbed, and the latent heat of vaporization is transmitted as a cold heat to the conduit 36w of the heat absorber 34w that is in close contact with the water tank 12.

水蒸気Vは水槽12内の空間13から蓄熱槽10内に流れ、蓄熱槽10内の蓄熱材料Mと接触する。ただし、水槽12内に0.01テックス未満の繊維で作製された布を充填する場合は、空間13も布で占められている。蓄熱材料Mが水分子を結晶の層間に吸蔵すると発熱し、蓄熱材料Mから蓄熱槽10内に温熱が放出され、放出された温熱が蓄熱槽10に密着する熱吸収器34hの導管36hに伝達される。   The steam V flows from the space 13 in the water tank 12 into the heat storage tank 10 and contacts the heat storage material M in the heat storage tank 10. However, in the case where the water tank 12 is filled with a cloth made of fibers of less than 0.01 tex, the space 13 is also occupied by the cloth. When the heat storage material M occludes water molecules between the crystal layers, it generates heat, and heat is released from the heat storage material M into the heat storage tank 10, and the released heat is transmitted to the conduit 36h of the heat absorber 34h that is in close contact with the heat storage tank 10. Is done.

水槽12内で放出された冷熱を直ちに冷水として取り出すとともに、蓄熱槽10内で放出された温熱を直ちに温水として取り出すときは、開閉弁40a、40b、40c、40dを開き、開閉弁40e、40f、40g、40i、42a、42cを閉じて、熱媒体Tの第4の循環経路を形成するとともに、開閉弁38a、38b、38c、38dを開き、開閉弁38e、38f、38g、38i、42bを閉じて、熱媒体Tの第5の循環経路を形成する。第4の循環経路は、貯槽30wから、循環ポンプ28w、開閉弁40a、熱交換器24w、開閉弁40b、40c、熱吸収器34wの導管36w、開閉弁40dを順番に通って、貯槽30wに戻る経路であり、第5の循環経路は、貯槽30hから、循環ポンプ28h、開閉弁38a、熱交換器24h、開閉弁38b、38c、熱吸収器34hの導管36h、開閉弁38dを順番に通って、貯槽30hに戻る経路である。第4の循環経路と第5の循環経路を形成したら、循環ポンプ28w、28hを駆動し、第4の循環経路と第5の循環経路で熱媒体Tをそれぞれ循環させる。   When the cold heat released in the water tank 12 is immediately taken out as cold water and the hot heat released in the heat storage tank 10 is taken out as hot water immediately, the on-off valves 40a, 40b, 40c, 40d are opened, and the on-off valves 40e, 40f, 40g, 40i, 42a, 42c are closed to form the fourth circulation path of the heat medium T, and the on-off valves 38a, 38b, 38c, 38d are opened, and the on-off valves 38e, 38f, 38g, 38i, 42b are closed. Thus, the fifth circulation path of the heat medium T is formed. The fourth circulation path goes from the storage tank 30w to the storage tank 30w through the circulation pump 28w, the on-off valve 40a, the heat exchanger 24w, the on-off valves 40b and 40c, the conduit 36w of the heat absorber 34w, and the on-off valve 40d in order. The return path is the fifth circulation path, which passes from the storage tank 30h through the circulation pump 28h, the on-off valve 38a, the heat exchanger 24h, the on-off valves 38b and 38c, the conduit 36h of the heat absorber 34h, and the on-off valve 38d in order. This is a path that returns to the storage tank 30h. When the fourth circulation path and the fifth circulation path are formed, the circulation pumps 28w and 28h are driven, and the heat medium T is circulated through the fourth circulation path and the fifth circulation path, respectively.

冷熱が水槽12内で気化した水蒸気Vから熱吸収器34wの導管36wに伝達され、さらに導管36wから導管36wを流れる熱媒体Tに伝達される。冷熱を伝達された熱媒体Tは降温し、降温した熱媒体Tが熱交換器24wの一次側に流れ、熱交換器24wの二次側の水が熱媒体Tから冷熱を伝達されて冷水となり、冷熱が熱交換器24wから冷水として取り出される。   Cold heat is transmitted from the vapor V vaporized in the water tank 12 to the conduit 36w of the heat absorber 34w, and further transmitted from the conduit 36w to the heat medium T flowing through the conduit 36w. The heat medium T to which the cold heat has been transmitted falls, and the heat medium T having been cooled flows to the primary side of the heat exchanger 24w, and the water on the secondary side of the heat exchanger 24w is transferred with the cold heat from the heat medium T to become cold water. The cold heat is taken out as cold water from the heat exchanger 24w.

また、温熱が蓄熱槽10内で発熱する蓄熱材料Mから熱吸収器34hの導管36hに伝達され、さらに導管36hから導管36hを流れる熱媒体Tに伝達される。温熱を伝達された熱媒体Tは昇温し、昇温した熱媒体Tが熱交換器24hの一次側に流れ、熱交換器24hの二次側の水が熱媒体Tから温熱を伝達されて温水となり、温熱が熱交換器24hから温水として取り出される。
蓄熱材料Mの結晶の層間への水分子の吸蔵が終了すると、蓄熱槽10内で蓄熱材料Mからの発熱が収束し、蓄熱槽10内の温度が徐々に低下する。蓄熱槽10の温度計によって蓄熱槽10内の温度低下を検出したら、開閉弁44a、44bを閉じ、循環ポンプ28w、28hを停止する。
Further, the heat is transmitted from the heat storage material M that generates heat in the heat storage tank 10 to the conduit 36h of the heat absorber 34h, and further transmitted from the conduit 36h to the heat medium T flowing through the conduit 36h. The heat medium T to which the warm heat is transmitted rises in temperature, the heated heat medium T flows to the primary side of the heat exchanger 24h, and the water on the secondary side of the heat exchanger 24h is transmitted the warm heat from the heat medium T. It becomes warm water, and the heat is taken out from the heat exchanger 24h as warm water.
When the occlusion of water molecules between the layers of the crystal of the heat storage material M is completed, the heat generation from the heat storage material M converges in the heat storage tank 10, and the temperature in the heat storage tank 10 gradually decreases. When the temperature drop in the heat storage tank 10 is detected by the thermometer of the heat storage tank 10, the on-off valves 44a and 44b are closed and the circulation pumps 28w and 28h are stopped.

水槽12内で放出された冷熱を直ちに冷水として取り出さず、冷熱を必要時に冷水として取り出すときは、開閉弁40c、40d、40e、40fを開き、開閉弁40a、40b、40g、40i、42a、42cを閉じて、熱媒体Tの第6の循環経路を形成する。第6の循環経路は、貯槽30wから、循環ポンプ28w、開閉弁40e、40f、40c、熱吸収器34wの導管36w、開閉弁40dを順番に通って、貯槽30wに戻る経路である。第6の循環経路を形成したら、循環ポンプ28wを駆動し、第6の循環経路で熱媒体Tを循環させる。   When the cold heat released in the water tank 12 is not immediately taken out as cold water but is taken out as cold water when necessary, the on-off valves 40c, 40d, 40e, 40f are opened and the on-off valves 40a, 40b, 40g, 40i, 42a, 42c are opened. Is closed to form the sixth circulation path of the heat medium T. The sixth circulation path is a path that returns from the storage tank 30w to the storage tank 30w through the circulation pump 28w, the open / close valves 40e, 40f, and 40c, the conduit 36w of the heat absorber 34w, and the open / close valve 40d in order. When the sixth circulation path is formed, the circulation pump 28w is driven, and the heat medium T is circulated through the sixth circulation path.

冷熱が水槽12内で気化する水Wから熱吸収器34wの導管36wに伝達され、さらに導管36wから導管36wを流れる熱媒体Tに伝達されて、熱媒体Tが降温する。第6の循環経路を循環する熱媒体Tは熱交換器24wを通らないので、熱媒体Tが冷熱を蓄えて低温となったまま貯槽30wに貯まる。
貯槽30wの熱媒体Tに蓄えられた冷熱を取り出すときは、開閉弁40a、40b、40g、40iを開き、開閉弁40c、40d、40e、40fを閉じて、熱媒体Tの第7の循環経路を形成する。第7の循環経路は、貯槽30wから、循環ポンプ28w、開閉弁40a、熱交換器24w、開閉弁40b、40g、40iを順番に通って、貯槽30wに戻る経路である。第7の循環経路を形成したら、循環ポンプ28wを駆動し、第7の循環経路で熱媒体Tを循環させる。
Cold heat is transmitted from the water W vaporized in the water tank 12 to the conduit 36w of the heat absorber 34w, and further transmitted from the conduit 36w to the heat medium T flowing through the conduit 36w, so that the temperature of the heat medium T drops. Since the heat medium T circulating in the sixth circulation path does not pass through the heat exchanger 24w, the heat medium T stores the cold heat and is stored in the storage tank 30w while being kept at a low temperature.
When the cold stored in the heat medium T of the storage tank 30w is taken out, the on-off valves 40a, 40b, 40g, 40i are opened, the on-off valves 40c, 40d, 40e, 40f are closed, and the seventh circulation path of the heat medium T Form. The seventh circulation path is a path that returns from the storage tank 30w to the storage tank 30w through the circulation pump 28w, the open / close valve 40a, the heat exchanger 24w, the open / close valves 40b, 40g, and 40i in order. When the seventh circulation path is formed, the circulation pump 28w is driven, and the heat medium T is circulated through the seventh circulation path.

冷熱を蓄えている熱媒体Tが貯槽30wから熱交換器24wの一次側に流れ、熱交換器24wの二次側の水が熱媒体Tから冷熱を伝達されて冷水となり、冷熱が熱交換器24wから冷水として取り出される。ただし、蓄熱槽10内でK2Ti25-X(ただし、0≦X≦1)からK2Ti25-X・2.7H2O(ただし、0≦X≦1)が生成する反応が収束することで水Wの気化が停止し、水槽12内の温度上昇を検出したら開閉弁40a、40b、40c、40d、40e、40f、40g、40iを閉じ、循環ポンプ28hを停止し、貯槽30wに熱媒体Tを貯める。 The heat medium T storing cold heat flows from the storage tank 30w to the primary side of the heat exchanger 24w, the water on the secondary side of the heat exchanger 24w is transferred with cold heat from the heat medium T to become cold water, and the cold heat is converted into the heat exchanger. It is taken out as cold water from 24w. However, in the heat storage tank 10 K 2 Ti 2 O 5- X ( provided that, 0 ≦ X ≦ 1) from K 2 Ti 2 O 5-X · 2.7H 2 O ( provided that, 0 ≦ X ≦ 1) is generated When the reaction is completed, the vaporization of the water W stops, and when the temperature rise in the water tank 12 is detected, the on-off valves 40a, 40b, 40c, 40d, 40e, 40f, 40g, 40i are closed, and the circulation pump 28h is stopped. The heat medium T is stored in the storage tank 30w.

蓄熱槽10内で放出された温熱を直ちに温水として取り出さず、温熱を必要時に温水として取り出すときは、開閉弁38c、38d、38e、38fを開き、開閉弁38a、38b、38g、38i、42a、42bを閉じて、熱媒体Tの第8の循環経路を形成する。第8の循環経路は、貯槽30hから、循環ポンプ28h、開閉弁38e、38f、38c、熱吸収器34hの導管36h、開閉弁38dを順番に通って、貯槽30hに戻る経路である。第8の循環経路を形成したら、循環ポンプ28hを駆動し、第8の循環経路で熱媒体Tを循環させる。   When the hot heat released in the heat storage tank 10 is not immediately taken out as hot water but is taken out as hot water when necessary, the on-off valves 38c, 38d, 38e, 38f are opened, and the on-off valves 38a, 38b, 38g, 38i, 42a, 42b is closed and the 8th circulation path of the heat carrier T is formed. The eighth circulation path is a path that returns from the storage tank 30h to the storage tank 30h through the circulation pump 28h, the open / close valves 38e, 38f, and 38c, the conduit 36h of the heat absorber 34h, and the open / close valve 38d in order. When the eighth circulation path is formed, the circulation pump 28h is driven, and the heat medium T is circulated through the eighth circulation path.

温熱が蓄熱槽10内で発熱する蓄熱材料Mから熱吸収器34hの導管36hに伝達され、さらに導管36hから導管36hを流れる熱媒体Tに伝達されて、熱媒体Tが昇温する。第8の循環経路を循環する熱媒体Tは熱交換器24hを通らないので、熱媒体Tが温熱を蓄えて高温となったまま貯槽30hに貯まる。
貯槽30hの熱媒体Tに蓄えられた温熱を取り出すときは、前述の第3の循環経路を形成し、循環ポンプ28hを駆動し、第3の循環経路で熱媒体Tを循環させる。
Warm heat is transmitted from the heat storage material M that generates heat in the heat storage tank 10 to the conduit 36h of the heat absorber 34h, and further transmitted from the conduit 36h to the heat medium T flowing through the conduit 36h, so that the temperature of the heat medium T rises. Since the heat medium T circulating in the eighth circulation path does not pass through the heat exchanger 24h, the heat medium T stores the heat and is stored in the storage tank 30h while maintaining a high temperature.
When the heat stored in the heat medium T of the storage tank 30h is taken out, the above-described third circulation path is formed, the circulation pump 28h is driven, and the heat medium T is circulated through the third circulation path.

温熱を蓄えている熱媒体Tが貯槽30hから熱交換器24hの一次側に流れ、熱交換器24hの二次側の水が熱媒体Tから温熱を伝達されて温水となり、温熱が熱交換器24hから温水として取り出される。ただし、蓄熱槽10内でK2Ti25-X(ただし、0≦X≦1)からK2Ti25-X・2.7H2O(ただし、0≦X≦1)が生成する反応が収束することで蓄熱槽10内の温度低下を検出したら開閉弁38a、38b、38c、38d、38e、38f、38g、38i、40c、40d、42a、42b、42cを閉じ、循環ポンプ28hを停止し、貯槽30hに熱媒体Tを貯める。 The heat medium T storing the heat flows from the storage tank 30h to the primary side of the heat exchanger 24h, the water on the secondary side of the heat exchanger 24h is transferred to the heat medium T to become hot water, and the heat is converted into the heat exchanger. It is taken out as hot water from 24h. However, in the heat storage tank 10 K 2 Ti 2 O 5- X ( provided that, 0 ≦ X ≦ 1) from K 2 Ti 2 O 5-X · 2.7H 2 O ( provided that, 0 ≦ X ≦ 1) is generated When the temperature reduction in the heat storage tank 10 is detected by the convergence of the reaction to be performed, the on-off valves 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38i, 40c, 40d, 42a, 42b, 42c are closed, and the circulation pump 28h And the heat medium T is stored in the storage tank 30h.

以上が蓄熱装置1の温冷熱回収工程である。蓄熱装置1は、この状態で温熱回収工程と温冷熱回収工程とからなる作動サイクルが完了するが、引き続き温熱回収または温冷熱回収を行う場合は、再び温熱回収工程を行う。
なお、蓄熱装置1の始動時の状態として温冷熱回収工程を行う場合は、最初に水槽12に蓄熱材料Mが結晶の層間に吸蔵する水量以上の水を入れておき、蓄熱槽10に入れる蓄熱材料MにはK2Ti25-X(ただし、0≦X≦1)を使用する。
The above is the hot / cold heat recovery process of the heat storage device 1. In this state, the heat storage device 1 completes the operation cycle including the heat recovery process and the heat / cool recovery process. However, when performing heat recovery or heat / cool recovery, the heat storage process is performed again.
In addition, when performing a thermal-cooling-and-recovery process as the state at the time of starting of the thermal storage apparatus 1, the water storage 12 put first into the water tank 12 the water more than the quantity of water which the thermal storage material M occludes between the layers of crystals, and puts into the thermal storage tank 10 As the material M, K 2 Ti 2 O 5-X (where 0 ≦ X ≦ 1) is used.

本実施の形態において、熱交換器24h、24wは、二次側を水が流れているが、熱交換器24h、24wをファンコイルとし、熱交換器24hによって温熱を温風として取り出し、熱交換器24wによって冷熱を冷風として取り出すことも可能である。
本実施の形態において、電気抵抗加熱ヒータ32が蓄熱槽10の蓄熱材料Mを加熱するが、廃熱や集光した太陽熱によって蓄熱材料Mを加熱することも可能である。ただし、夜間に蓄熱材料Mを加熱する場合は、安価な夜間電力を利用できる電気抵抗加熱ヒータ32を用いるのが適当である。
In the present embodiment, the heat exchangers 24h and 24w have water flowing on the secondary side, but the heat exchangers 24h and 24w serve as fan coils, and the heat exchanger 24h takes out hot heat as hot air, and heat exchange is performed. It is also possible to take out cold heat as cold air by the vessel 24w.
In the present embodiment, the electric resistance heater 32 heats the heat storage material M of the heat storage tank 10, but it is also possible to heat the heat storage material M by waste heat or condensed solar heat. However, when heating the heat storage material M at night, it is appropriate to use the electric resistance heater 32 that can use inexpensive nighttime power.

本実施の形態において、熱吸収器34hの導管36hが蓄熱槽10に密着して螺旋状に配設されており、熱吸収器34wの導管36wが水槽12に密着して螺旋状に配設されているが、導管36h、36wは熱伝達に優れるように配設されていればよく、螺旋状の配設に限定されるものではない。例えば、蓄熱槽10の中に導管36hを引き込み、導管36hは水蒸気Vと大きな接触面積を確保できるように多数枚のプレートフィンに配設し、また水槽12の中に導管36wを引き込み、導管36wは水蒸気Vと大きな接触面積を確保できるように多数枚のプレートフィンに配設しても良い。この場合、蓄熱槽10と導管36hおよび水槽12と導管36wは同一体であるので、導管36hの表面やプレートフィンは蓄熱槽10の内壁、また導管36wの表面やプレートフィンは水槽12の内壁と見なすことができる。   In the present embodiment, the conduit 36h of the heat absorber 34h is disposed in a spiral manner in close contact with the heat storage tank 10, and the conduit 36w of the heat absorber 34w is disposed in a spiral manner in close contact with the water tank 12. However, the conduits 36h and 36w may be arranged so as to be excellent in heat transfer, and are not limited to the helical arrangement. For example, the conduit 36h is drawn into the heat storage tank 10, and the conduit 36h is arranged on a large number of plate fins so as to ensure a large contact area with the water vapor V. The conduit 36w is drawn into the water tank 12, and the conduit 36w. May be arranged on a large number of plate fins so as to ensure a large contact area with the water vapor V. In this case, since the heat storage tank 10 and the conduit 36h and the water tank 12 and the conduit 36w are the same body, the surface of the conduit 36h and the plate fin are the inner wall of the heat storage tank 10, and the surface of the conduit 36w and the plate fin are the inner wall of the water tank 12. Can be considered.

本実施の形態において、水槽12の内壁表面14上に、幅0.1〜2mmの上下方向に連続する溝16が形成されているが、代わりに、水槽12を図3(i)及び(ii)の変形例1に示す構成とすることも可能である。変形例1の水槽12内には、銅線又は耐腐食処理を表面に施したアルミニウム線で形成された網18が装着されており、網18が水槽12の内壁表面14に密着している。   In this embodiment, a groove 16 is formed on the inner wall surface 14 of the water tank 12 that is continuous in the vertical direction with a width of 0.1 to 2 mm. Instead, the water tank 12 is formed as shown in FIGS. It is also possible to adopt the configuration shown in the first modification example. In the water tank 12 of Modification 1, a net 18 formed of a copper wire or an aluminum wire subjected to corrosion resistance treatment is attached, and the net 18 is in close contact with the inner wall surface 14 of the water tank 12.

網18を形成する銅線又はアルミニウム線は熱伝導率が高いので、網18の網目上で水蒸気Vが毛管凝縮しやすく、網18から温熱又は冷熱を熱吸収器34wの導管36wに効率よく伝達できる。
水槽12を図4(i)及び(ii)の変形例2に示す構成とすることも可能である。変形例2の水槽12はアルミニウム製であり、水槽12の内壁表面14が電解エッチングされた後にアノード酸化処理されており、内壁表面14にはアルミナによって被覆された多数の細孔20が形成されている。
Since the copper wire or aluminum wire forming the net 18 has high thermal conductivity, the water vapor V tends to be capillary condensed on the net of the net 18, and hot or cold heat is efficiently transferred from the net 18 to the conduit 36w of the heat absorber 34w. it can.
The water tank 12 may be configured as shown in Modification 2 of FIGS. 4 (i) and (ii). The water tank 12 of the modification 2 is made of aluminum, and the inner wall surface 14 of the water tank 12 is anodized after electrolytic etching, and the inner wall surface 14 has a large number of pores 20 covered with alumina. Yes.

水槽12を形成するアルミニウムは熱伝導率が高く、内壁表面14に多数の細孔20が形成されているので、水槽12の内壁表面14で水蒸気Vが毛管凝縮しやすく、内壁表面14から温熱又は冷熱を熱吸収器34wの導管36wに効率よく伝達できる。
開閉弁44a、44bを、ニードル式弁等の開度を調整可能な弁とすると、開閉弁44a、44bの開度を調整して、蓄熱槽10と水槽12との間を流れる水蒸気Vの流量を制御できる。水蒸気Vの流量を制御すると、水槽12内で毛管凝縮する水蒸気Vの量、水槽12内で気化する水Wの量、蓄熱槽10内で蓄熱材料Mの結晶の層間に吸蔵される水分子の量を制御でき、水槽12における単位時間当たりの冷熱及び温熱の放出量や蓄熱槽10における単位時間当たりの温熱の放出量を制御できる。したがって、効率よく目的とする温度の冷熱及び温熱を取り出すことができる。
Aluminum forming the water tank 12 has a high thermal conductivity, and a large number of pores 20 are formed on the inner wall surface 14, so that the water vapor V easily condenses on the inner wall surface 14 of the water tank 12, and heat or Cold heat can be efficiently transmitted to the conduit 36w of the heat absorber 34w.
If the opening / closing valves 44a, 44b are valves such as needle valves, the opening of the opening / closing valves 44a, 44b is adjusted, and the flow rate of water vapor V flowing between the heat storage tank 10 and the water tank 12 is adjusted. Can be controlled. When the flow rate of the water vapor V is controlled, the amount of water vapor V that is capillary condensed in the water tank 12, the amount of water W that is vaporized in the water tank 12, and the amount of water molecules that are occluded between the crystal layers of the heat storage material M in the heat storage tank 10. The amount can be controlled, and the amount of cold and warm heat released per unit time in the water tank 12 and the amount of warm heat released per unit time in the heat storage tank 10 can be controlled. Therefore, it is possible to efficiently extract the cold and warm temperatures of the target temperature.

なお本実施のすべての形態において、水槽12内に0.01テックス未満の繊維で作製された布を水Wの全量を保水できる量以上充填すると、凝縮潜熱の回収効率が向上するだけでなく、水槽12を傾斜しても水Wが蓄熱槽10に流れ込むことがなくなるため蓄熱材料Mの主成分をなす二チタン酸カリウムの分解を防ぐことができる。
0.01テックス未満の繊維は、ポリエステルやナイロン等の有機素材で製造されている場合が多いが、水蒸気の熱で変形・変質せず、耐水性があれば金属等の無機素材で製造しても構わない。
In all of the present embodiments, when the fabric made of fibers of less than 0.01 tex is filled in the water tank 12 in an amount that can retain the entire amount of water W, not only the recovery efficiency of condensation latent heat is improved, Even if the water tank 12 is inclined, the water W does not flow into the heat storage tank 10, so that the decomposition of potassium dititanate which is the main component of the heat storage material M can be prevented.
Fibers of less than 0.01 tex are often made of organic materials such as polyester and nylon, but they are not deformed or altered by the heat of water vapor, and if they are water resistant, they can be made of inorganic materials such as metals. It doesn't matter.

本発明に係る蓄熱装置の構成図である。It is a block diagram of the thermal storage apparatus which concerns on this invention. 水槽の説明図であり、(i)は水槽の構造図、(ii)は(i)のI−I線断面である。It is explanatory drawing of a water tank, (i) is a structural diagram of a water tank, (ii) is the II sectional view of (i). 変形例1に係る水槽の説明図であり、(i)は水槽の構造図、(ii)は(i)のII−II線断面である。It is explanatory drawing of the water tank which concerns on the modification 1, (i) is a structural diagram of a water tank, (ii) is the II-II sectional view taken on the line of (i). 変形例2に係る水槽の説明図であり、(i)は水槽の構造図、(ii)は(i)のIII−III線断面図である。It is explanatory drawing of the water tank which concerns on the modification 2, (i) is a structural diagram of a water tank, (ii) is the III-III sectional view taken on the line of (i).

符号の説明Explanation of symbols

1 蓄熱装置
10 蓄熱槽
12 水槽
13 水槽内上部の空間
14 水槽の内壁表面
15 水槽の外壁表面
16 溝
18 網
20 細孔
24w、24h 熱交換器
26 真空ポンプ
28w、28h 循環ポンプ
30h、30w 貯槽
32 電気抵抗加熱ヒータ
34h、34w 熱吸収器
36h、36w 熱吸収器の導管
38a、38b、38c、38d、38e、38f、38g、38i 開閉弁
40a、40b、40c、40d、40e、40f、40g、40i 開閉弁
42a、42b、42c 開閉弁
44a、44b、44c 開閉弁
46a、46b 導管
M 蓄熱材料
W 水
V 水蒸気
T 熱媒体
DESCRIPTION OF SYMBOLS 1 Heat storage apparatus 10 Thermal storage tank 12 Water tank 13 Upper space in water tank 14 Inner wall surface of water tank 15 Outer wall surface of water tank 16 Groove 18 Net 20 Fine pore 24w, 24h Heat exchanger 26 Vacuum pump 28w, 28h Circulation pump 30h, 30w Storage tank 32 Electric resistance heater 34h, 34w Heat absorber 36h, 36w Heat absorber conduit 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38i On-off valve 40a, 40b, 40c, 40d, 40e, 40f, 40g, 40i On-off valve 42a, 42b, 42c On-off valve 44a, 44b, 44c On-off valve 46a, 46b Pipe M Heat storage material W Water V Steam T Heat medium

Claims (6)

一般式K2Ti25-x・nH2O(ただし、0≦x≦1、0≦n≦2.7)により表される二チタン酸カリウムを主成分とする蓄熱材料を収容し、加熱手段及び熱吸収手段を有する蓄熱槽と、
水を収容し、熱吸収手段を有する水槽と、
蓄熱槽と水槽を連結し、開閉弁を有する導管と、
蓄熱槽内と水槽内を減圧可能に構成された減圧手段とを有し、
蓄熱槽内及び水槽内を大気圧以下に減圧して密閉し、水槽内で水が蒸発する際の蒸発潜熱を冷熱として水槽の熱吸収手段により回収しつつ、開閉弁を開いて水蒸気を水槽から蓄熱槽に導き、蓄熱槽内で蓄熱材料が水分子を結晶の層間に吸蔵する際の水和熱を温熱として蓄熱槽の熱吸収手段により回収し、
水分子を結晶の層間に吸蔵した蓄熱材料を加熱手段によって加熱し、加熱された蓄熱材料から発生する水蒸気を水槽に導き、水槽内で水蒸気が凝縮する際の凝縮潜熱を温熱として水槽の熱吸収手段により回収し、
開閉弁を閉じて蓄熱槽での発熱又は吸熱と水槽での発熱又は吸熱を停止させることを特徴とする蓄熱装置。
Containing a heat storage material mainly composed of potassium dititanate represented by the general formula K 2 Ti 2 O 5-x · nH 2 O (where 0 ≦ x ≦ 1, 0 ≦ n ≦ 2.7); A heat storage tank having heating means and heat absorption means;
A water tank containing water and having heat absorption means;
A conduit connecting the heat storage tank and the water tank, and having an on-off valve;
A pressure reducing means configured to be able to depressurize the heat storage tank and the water tank;
The inside of the heat storage tank and the water tank are sealed at a reduced pressure below the atmospheric pressure, and the latent heat of evaporation when water evaporates in the water tank is recovered as cold heat by the heat absorption means of the water tank, and the open / close valve is opened to release water vapor from the water tank. Lead to the heat storage tank, and the heat storage material in the heat storage tank collects the heat of hydration when water molecules are occluded between the crystal layers as heat and is recovered by the heat absorption means of the heat storage tank,
Heat storage material that stores water molecules between crystal layers is heated by heating means, water vapor generated from the heated heat storage material is guided to the water tank, and the heat of the water tank is absorbed by the latent heat of condensation when water vapor condenses in the water tank. Recovered by means,
An on-off valve is closed to stop heat generation or heat absorption in the heat storage tank and heat generation or heat absorption in the water tank.
水槽の内壁が非平滑面を有することを特徴とする請求項1記載の蓄熱装置。   The heat storage device according to claim 1, wherein an inner wall of the water tank has a non-smooth surface. 非平滑形状が、水槽の内壁表面に形成された上下方向の微細線状の溝であることを特徴とする請求項2記載の蓄熱装置。   The heat storage device according to claim 2, wherein the non-smooth shape is a fine linear groove formed in the vertical direction on the inner wall surface of the water tank. 非平滑形状が、水槽の内壁表面に密着し、銅線又は耐腐食処理を表面に施したアルミニウム線で形成された網であることを特徴とする請求項2記載の蓄熱装置。   3. The heat storage device according to claim 2, wherein the non-smooth shape is a net made of an aluminum wire that is in close contact with the inner wall surface of the water tank and is subjected to a copper wire or an anti-corrosion treatment on the surface. 水槽がアルミニウム製であり、水槽の内壁表面を電解エッチングした後にアノード酸化処理することで非平滑形状を形成することを特徴とする請求項2記載の蓄熱装置。   The heat storage device according to claim 2, wherein the water tank is made of aluminum, and the non-smooth shape is formed by anodizing after electrolytically etching the inner wall surface of the water tank. 水槽内に0.01テックス未満の繊維で作製された布を充填することを特徴とする請求項1から請求項5のいずれか1項に記載の蓄熱装置。   The heat storage device according to any one of claims 1 to 5, wherein the water tank is filled with a cloth made of fibers of less than 0.01 tex.
JP2005311954A 2004-10-26 2005-10-26 Heat storage device Expired - Fee Related JP4663480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311954A JP4663480B2 (en) 2004-10-26 2005-10-26 Heat storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004311112 2004-10-26
JP2005311954A JP4663480B2 (en) 2004-10-26 2005-10-26 Heat storage device

Publications (2)

Publication Number Publication Date
JP2006153433A true JP2006153433A (en) 2006-06-15
JP4663480B2 JP4663480B2 (en) 2011-04-06

Family

ID=36631941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311954A Expired - Fee Related JP4663480B2 (en) 2004-10-26 2005-10-26 Heat storage device

Country Status (1)

Country Link
JP (1) JP4663480B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249276A (en) * 2007-03-30 2008-10-16 Nippon Oil Corp Heat pump unit and hot water supply system
JP2009106893A (en) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp Adsorbing element, refrigerating cycle device, and method of manufacturing adsorbing element
CN108507102A (en) * 2018-05-21 2018-09-07 龙感湖非凡纺织有限公司 A kind of spraying humidification system for spinning and weaving workshop
CN111575159A (en) * 2020-06-03 2020-08-25 王凤霞 Targeting microbial strain self-adjusting anti-pollution culture device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105097A (en) * 1984-10-26 1986-05-23 Sanyo Electric Co Ltd Heat pipe
JPH1089799A (en) * 1996-09-12 1998-04-10 Kyushu Electric Power Co Inc Warm and cold heat generating chemical heat pump
JPH1160416A (en) * 1997-08-14 1999-03-02 Kubota Corp Amorphous antimicrobial titanate compound and its production
JP2000073265A (en) * 1998-06-17 2000-03-07 Mitsubishi Rayon Co Ltd Fiber structure having water absorption and evaporation properties
JP2004278998A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Cooling storage shed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105097A (en) * 1984-10-26 1986-05-23 Sanyo Electric Co Ltd Heat pipe
JPH1089799A (en) * 1996-09-12 1998-04-10 Kyushu Electric Power Co Inc Warm and cold heat generating chemical heat pump
JPH1160416A (en) * 1997-08-14 1999-03-02 Kubota Corp Amorphous antimicrobial titanate compound and its production
JP2000073265A (en) * 1998-06-17 2000-03-07 Mitsubishi Rayon Co Ltd Fiber structure having water absorption and evaporation properties
JP2004278998A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Cooling storage shed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249276A (en) * 2007-03-30 2008-10-16 Nippon Oil Corp Heat pump unit and hot water supply system
JP2009106893A (en) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp Adsorbing element, refrigerating cycle device, and method of manufacturing adsorbing element
CN108507102A (en) * 2018-05-21 2018-09-07 龙感湖非凡纺织有限公司 A kind of spraying humidification system for spinning and weaving workshop
CN108507102B (en) * 2018-05-21 2024-01-23 龙感湖非凡纺织有限公司 A spraying humidification system for weaving workshop
CN111575159A (en) * 2020-06-03 2020-08-25 王凤霞 Targeting microbial strain self-adjusting anti-pollution culture device

Also Published As

Publication number Publication date
JP4663480B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
RU2433360C2 (en) Chemical heat pump operating with hybrid substance
JPS62175562A (en) Adsorption type refrigerator
US6282917B1 (en) Heat exchange method and apparatus
CN210741202U (en) Phase change energy storage device with condensation reflux structure
KR20090024214A (en) Heat pump liquid heater
EP1632734A1 (en) Thermal storage-type heat pump system
JP2005024231A5 (en)
US9855595B2 (en) Solid sorption refrigeration
JP4663480B2 (en) Heat storage device
JP4388596B2 (en) Thermal storage system and thermal storage method
EP0190702A1 (en) Heat storing apparatus
JP6044236B2 (en) Water heater
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JP2008045803A (en) Energy-saving air conditioning system
CN107560159A (en) A kind of automatic waste heat recovery water heater for being embedded in refrigeration system
US9194617B2 (en) Intermittent absorption refrigeration system equipped with a waste energy storage unit
KR101888553B1 (en) Hybrid cooling and heating system using solar heat with thermochemical heat storage tank and a method of cooling and heating using the same
CN209960795U (en) Heat storage type heat pump system
CN102734979A (en) Solar absorption refrigeration system
JPH07301469A (en) Adsorption type refrigerator
Dhokane et al. Design and development of intermittent solid adsorption refrigeration system running on solar energy
CN104110758B (en) Solar-driven efficient moisture-absorption thermal chemical reaction single-stage air conditioning system
US20150143827A1 (en) Economizer for an intermittent absorption refrigeration system
JP2010286168A (en) Heat storage system
CN108613541A (en) A kind of dehumidifying water supply installation absorbing boiling water energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4663480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees