JP2006152371A - Aluminum alloy for food can having excellent casting-crack resistance - Google Patents

Aluminum alloy for food can having excellent casting-crack resistance Download PDF

Info

Publication number
JP2006152371A
JP2006152371A JP2004344449A JP2004344449A JP2006152371A JP 2006152371 A JP2006152371 A JP 2006152371A JP 2004344449 A JP2004344449 A JP 2004344449A JP 2004344449 A JP2004344449 A JP 2004344449A JP 2006152371 A JP2006152371 A JP 2006152371A
Authority
JP
Japan
Prior art keywords
amount
alloy
casting
content
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004344449A
Other languages
Japanese (ja)
Inventor
Kichiji Hashimoto
橋本吉司
Makoto Maruyama
丸山誠
Yoshitoku Namikawa
並河良徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2004344449A priority Critical patent/JP2006152371A/en
Publication of JP2006152371A publication Critical patent/JP2006152371A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the casting-crack resistance of an Al-Mn-Mg-Cu-based alloy used as a material for food cans. <P>SOLUTION: The aluminum alloys for food cans having the excellent casting-crack resistance is characterized by containing 0.1 to 2.8% Mg and 0.1 to 0.5 Cu and containing the amounts of Mn, Fe and Si excluding a region simultaneously satisfying Fe<0.2% and Mn>2Fe+0.8 within a range of 0.8 to 1.5% Mn, 0.1 to 0.3 Fe, and 0.1 to 0.25% Si, respectively and a region simultaneously satisfying Si<0.12% and Si<Fe<Si+0.2 and the balance Al with unavoidable impurities. Further preferably, Ti alone is incorporated into the aluminum alloy or Ti in combination with 0.0001 to 0.2% B or 0.0001 to 0.2% C is incorporated therein at 0.015 to 0.20% in the concentration of Ti. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、製造時に鋳造割れが発生しにくいため製造歩留まりがよく、かつ耐食性、機械的特性に優れた食缶用アルミニウム合金に関する。   The present invention relates to an aluminum alloy for food cans that has a good production yield because it is less prone to casting cracks during production, and has excellent corrosion resistance and mechanical properties.

食缶用アルミニウム合金として、成形性、耐食性と機械的特性とのバランスのよさから、JIS3003合金(Al-Mn-Cu系合金)あるいはJIS3004合金(Al-Mn-Mg系合金)、またそれらの改良合金(Al-Mn-Mg-Cu系合金)が使用されている。   As aluminum alloy for food cans, JIS3003 alloy (Al-Mn-Cu alloy) or JIS3004 alloy (Al-Mn-Mg alloy), and their improvements, due to the good balance between formability, corrosion resistance and mechanical properties An alloy (Al-Mn-Mg-Cu alloy) is used.

例えば特許文献1には「引きさき部分を有するアルミニウムパネルを含む改良された容器」として、本質的に3%までの銅、4%までのマグネシウム、または1.5%までのマンガンの1種または2種以上を合計で1〜7%と残部が本質的にアルミニウムと付随元素および不純物からなり、残部は不可避不純物とすることを特徴とする耐食性および機械的特性に優れる合金が記載されている。   For example, Patent Document 1 describes as “an improved container including an aluminum panel having a lead portion”, essentially one or two of up to 3% copper, up to 4% magnesium, or up to 1.5% manganese. A total of 1 to 7% of the above is described, and an alloy excellent in corrosion resistance and mechanical properties is described, characterized in that the balance is essentially composed of aluminum, an accompanying element and impurities, and the balance is inevitable impurities.

また、特許文献2には「複合アルミ板から成るイージーオープン蓋」として、芯材はCu 0〜0.8%、Mg 0〜2.8%、Mn 0〜1.5%、Fe 0〜0.5%およびSi 0〜0.5%を含有するアルミニウム合金から成るイージーオープン蓋が記載されている。
特開昭52−8388号公報 特公平05−7263号公報
Further, Patent Document 2 discloses an “easy open lid made of a composite aluminum plate” in which the core material is Cu 0 to 0.8%, Mg 0 to 2.8%, Mn 0 to 1.5%, Fe 0 to 0.5%, and Si 0 to 0.5. An easy-open lid made of an aluminum alloy containing% is described.
Japanese Patent Laid-Open No. 52-8388 Japanese Patent Publication No.05-7263

アルミニウム合金板材が食缶用材料として用いられる場合、材料強度や成形性に加え、耐食性に優れていることが望まれる。そのため、各種の成分元素量を適正範囲に調整することによってこれら複数の特性を最適にしている。例えば、Mgは缶材としての強度を向上させるが、耐食性の点では0〜2.8%が望ましい。Mnは強度向上および耐食性の向上に効果があり、加工性の観点から2.0%未満、望ましくは0.8〜1.5%の範囲が良好である。Cuは強度向上に効果があるだけでなく、アルミニウム素材を電気化学的に貴な状態にもたらす作用を示すため、腐食がより有効に防止されることになる。   When an aluminum alloy sheet is used as a food can material, it is desired that it has excellent corrosion resistance in addition to material strength and formability. For this reason, the plurality of characteristics are optimized by adjusting the amounts of various component elements within an appropriate range. For example, Mg improves the strength as a can, but 0 to 2.8% is desirable in terms of corrosion resistance. Mn is effective in improving strength and corrosion resistance, and is preferably less than 2.0%, preferably in the range of 0.8 to 1.5% from the viewpoint of workability. Cu not only has the effect of improving the strength, but also exhibits the effect of bringing the aluminum material into an electrochemically noble state, so that corrosion is more effectively prevented.

このようなAl-Mn-Mg-Cu系合金においては、Cuの添加量が多くなるにつれて鋳塊製造時に鋳造割れを発生する確率が増して、製造歩留を劣化させるとともに生産性に劣る欠点があった。 In such an Al-Mn-Mg-Cu alloy, as the amount of added Cu increases, the probability of occurrence of casting cracks during ingot production increases, and the production yield is degraded and productivity is inferior. there were.

合金の鋳造割れ性を改善するには、Al-Ti-B系の結晶粒微細化剤を添加する方法が従来から知られている。また1000系合金やAl-Mn-Cu系合金などでは、Fe量、Si量およびFe/Si量比を制限する方法も知られている。例えば特許文献3には、「二次電池ケース用アルミニウム合金板およびこれを用いた二次電池ケース」として、Siを0.3〜0.7%、Feを0.2%以下、かつFe/Si比が3以上とし、更にCuを0.4〜0.9%、Mnを0.8〜1.5%含み残部がAlと不純物からなる電池ケース、および前記不純物においてMgを0.01% 以下、Znを0.01%以下、Crを0.01%以下、Tiを0.03%以下となるようにした電池ケースとして、成型加工性、耐圧製に優れ、溶接割れの発生しない、溶接性に優れた二次電池ケース用アルミニウム合金板が記載されている。ここで、溶接割れは固相-液相が共存している状態において凝固収縮応力によって発生する割れであり、鋳造割れと同じメカニズムで発生するものであるため、現象として鋳造割れと溶接割れは同等である。その割れ性改善に対する効果はAl-Fe-Si系晶出物やAl-Mn-Fe-Si系晶出物の影響と記載されているが、その割れ発生メカニズムは明確にはされていない。
特開2004−2985号公報
In order to improve the cast cracking property of an alloy, a method of adding an Al—Ti—B-based crystal grain refining agent has been conventionally known. For 1000 series alloys and Al-Mn-Cu series alloys, methods for limiting the Fe content, Si content and Fe / Si content ratio are also known. For example, Patent Document 3 discloses that “aluminum alloy plate for secondary battery case and secondary battery case using the same” has Si of 0.3 to 0.7%, Fe of 0.2% or less, and Fe / Si ratio of 3 or more. Further, a battery case comprising 0.4 to 0.9% of Cu and 0.8 to 1.5% of Mn and the balance being Al and impurities, and Mg in the impurities is 0.01% or less, Zn is 0.01% or less, Cr is 0.01% or less, and Ti is contained. As a battery case of 0.03% or less, an aluminum alloy plate for a secondary battery case that is excellent in moldability and pressure resistance, does not cause weld cracking, and has excellent weldability is described. Here, weld cracks are cracks generated by solidification shrinkage stress in the coexistence of solid-liquid phases, and are generated by the same mechanism as cast cracks. It is. The effect on the cracking improvement is described as the effect of Al-Fe-Si based crystals and Al-Mn-Fe-Si based crystals, but the crack generation mechanism is not clear.
Japanese Patent Laid-Open No. 2004-2985

そこで、本発明者らは、材料強度や成形性に加え、耐食性に優れた食缶用材料であるAl-Mn-Mg-Cu系合金の鋳造割れ性に及ぼす合金元素の影響を種々検討し、Mnの添加量、Feの添加量、Siの添加量およびTiの添加量の最適化を図ることで、鋳造割れ性が大幅に改善されることを見出したものである。   Therefore, the present inventors examined various effects of the alloying elements on the cast cracking properties of Al-Mn-Mg-Cu based alloys, which are materials for food cans with excellent corrosion resistance, in addition to material strength and formability, It has been found that the cast cracking property is greatly improved by optimizing the addition amount of Mn, the addition amount of Fe, the addition amount of Si, and the addition amount of Ti.

すなわち、 請求項1記載の発明は、
Mg量0.1〜2.8%(mass%、以下同じ)、Cu量0.1〜0.5%を含み、
かつMn量0.8〜1.5%、Fe量0.1〜0.3%、Si量0.1〜0.25%の範囲において
Fe<0.2%かつMn>2Fe+0.8を同時に満足する領域、および
Si<0.12%かつSi<Fe<Si+0.2を同時に満たす領域を除いたMn、Fe、Si量を含有し、
残部はAlおよび不可避不純物からなることを特徴とする鋳造割れ性に優れた食缶用アルミニウム合金
である。
That is, the invention described in claim 1
Mg content 0.1-2.8% (mass%, the same shall apply hereinafter), Cu content 0.1-0.5%,
And in the range of Mn amount 0.8-1.5%, Fe amount 0.1-0.3%, Si amount 0.1-0.25%
Containing Mn, Fe, and Si content excluding a region that simultaneously satisfies Fe <0.2% and Mn> 2Fe + 0.8, and a region that simultaneously satisfies Si <0.12% and Si <Fe <Si + 0.2;
The balance is made of aluminum and inevitable impurities, and is an aluminum alloy for food cans having excellent cast cracking characteristics.

請求項2の発明は、通常知られているAl-Ti-B母合金による結晶粒微細化効果を併用してさらに鋳造割れ性を改善したもので、 請求項1のアルミニウム合金に、さらに、Tiを単独で、もしくはB量0.0001〜0.2%あるいはC量0.0001〜0.2%と併用してTi濃度を0.015%〜0.20%含有することを特徴とする。 The invention of claim 2 further improves the cast cracking property by combining the grain refining effect by the commonly known Al-Ti-B master alloy. The aluminum alloy of claim 1 further includes Ti Alone or in combination with 0.0001 to 0.2% of B or 0.0001 to 0.2% of C, and containing 0.015% to 0.20% of Ti concentration.

本発明によれば従来法においてみられた食缶用アルミニウム合金における鋳造割れ発生率が大幅に低減され、安定した製造が可能となるとともに、処理コストの低減が図れるなど工業上顕著な効果が見られる。   According to the present invention, the occurrence rate of casting cracks in aluminum alloys for cans found in the conventional method is greatly reduced, stable production is possible, and processing costs can be reduced. It is done.

本発明者らは、種々の鋳造割れに関する試験を検討・実施した結果、Al-Mn系合金については割れを発生しにくい領域はMnが0.8〜1.5%であり、より好ましくはMnが1.0〜1.2%である。この合金にMgを添加するとMg添加量が多くなるにつれて鋳造割れ発生率が低減されることからMgは多いほど好ましいが、Mgが多くなるにつれて耐食性が劣化するため、Mg量は0.4〜2.8%、より好ましくは0.8〜1.3%とする。   As a result of investigating and conducting tests on various casting cracks, the inventors of the present invention have a Mn of 0.8 to 1.5%, more preferably Mn of 1.0 to 1.2, in the Al-Mn alloy in which cracking is unlikely to occur. %. When Mg is added to this alloy, the rate of casting cracks is reduced as the amount of Mg added increases, so Mg is preferably as much as possible, but corrosion resistance deteriorates as the amount of Mg increases, so the amount of Mg is 0.4 to 2.8%, More preferably, the content is 0.8 to 1.3%.

上述のAl-Mn-Mg系合金における鋳造割れ発生率はSi量、Fe量が多いほど良好であるが、Mn量とFe量との間にはMn≦2Fe+0.8を満足することが必要である。一方でFe量、Si量を多くするとAl-Fe-Si系の晶出物による耐食性の低下を招くために、Fe量は0.1〜0.3%、Si量は0.1〜0.25%とする。さらにTi量を多くすることで鋳造割れ発生率は低減されるが、Ti量を多くしすぎると合金の溶解時に形成されるTiB2金属間化合物粒子が材料に混入して異物欠陥になりやすいことから、Ti量は0.015〜0.05%以下、より好ましくは0.015〜0.02%が良い。 The casting crack occurrence rate in the Al-Mn-Mg alloy described above is better as the Si content and Fe content increase, but it is necessary to satisfy Mn ≦ 2Fe + 0.8 between the Mn content and the Fe content. is there. On the other hand, if the amount of Fe and Si are increased, the corrosion resistance due to the Al-Fe-Si-based crystallized product is reduced, so the Fe amount is 0.1 to 0.3% and the Si amount is 0.1 to 0.25%. Increasing the amount of Ti further reduces the rate of casting cracking. However, if the amount of Ti is excessively large, TiB 2 intermetallic compound particles formed during melting of the alloy are likely to enter the material and cause foreign object defects. Therefore, the Ti content is 0.015 to 0.05% or less, more preferably 0.015 to 0.02%.

図1は本願発明の組成範囲を示す図で
(a)はMnとFeの含有量の範囲を
(b)はFeとSiの含有量の範囲を それぞれ示した図である。
FIG. 1 shows the composition range of the present invention.
(a) shows the range of the contents of Mn and Fe.
(b) is the figure which each showed the range of content of Fe and Si.

Cuは添加量が多くなるにつれて鋳造割れ発生率を増加させることから、0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.2%以下が良い。前述したMn量、Fe量およびSi量の適正化効果はCuを0.1〜0.5%含む合金においてより顕著である。 Cu increases the rate of occurrence of casting cracks as the amount added increases, so 0.5% or less, more preferably 0.4% or less, and still more preferably 0.2% or less. The aforementioned effects of optimizing the Mn content, Fe content, and Si content are more remarkable in alloys containing 0.1 to 0.5% Cu.

Mn、FeおよびSiは、結晶粒界において(Al-Mg)-(Mn,Fe)-Si系晶出物として晶出し、その量が多い場合に鋳造割れを生じやすくすると考えられ、本発明ではMn、FeおよびSiについて最適な添加量とすることで割れ性を低下させている。またMgの添加は、凝固中に成長するデンドライトの成長を抑制するとともに、アルミニウムマトリックスに固溶して結晶粒界の固液共存域での強度および伸びを改善することから、鋳造割れを抑制する。本発明では、耐食性との兼ね合いからMg量を最適に設定することで鋳造割れ性を低下させている。   Mn, Fe and Si are crystallized as (Al-Mg)-(Mn, Fe) -Si-based crystallized grains at the grain boundaries, and it is considered that casting cracks are likely to occur when the amount is large. The cracking property is lowered by setting the optimum addition amount of Mn, Fe and Si. Addition of Mg suppresses the growth of dendrite that grows during solidification and also improves the strength and elongation in the solid-liquid coexistence zone of the grain boundary by solid solution in the aluminum matrix, thereby suppressing casting cracks. . In the present invention, the casting cracking property is lowered by setting the Mg amount optimally in consideration of the corrosion resistance.

一方、Cuはデンドライトの成長を助長するとともに結晶粒界にAl-Mg-Cu系晶出物として晶出する。そのため、添加Cu量が0.1%を超えると著しく割れやすくなる。 On the other hand, Cu promotes dendrite growth and crystallizes as an Al-Mg-Cu-based crystallized product at grain boundaries. For this reason, if the amount of added Cu exceeds 0.1%, it becomes extremely easy to crack.

なお、本発明の合金は、常法に従って鋳造、熱間圧延、冷間圧延、中間焼鈍を経て、板厚0.25mm程度の板材に圧延され、食缶にするためDI加工成形あるいは缶蓋成形加工を受ける。 In addition, the alloy of the present invention is subjected to casting, hot rolling, cold rolling, and intermediate annealing in accordance with a conventional method, and then rolled into a plate material having a thickness of about 0.25 mm to form a food can. Receive.

次に本発明を実施例により、更に説明する。なお、本発明はこの実施例に限定されるものではない。 Next, the present invention will be further described with reference to examples. In addition, this invention is not limited to this Example.

鋳造割れ性はIビーム型鋳造割れ試験により評価した。Iビーム型鋳造割れ試験とは、例えば 軽金属vol.33, No.12, p705-711 (1983) に記載されているような、公知の鋳造割れ評価試験方法であり、工業生産規模のDC鋳塊の鋳造割れ性の指標となるものである。本実験では表1に示す化学組成の各合金に対し溶湯温度720℃、鋳型温度250℃として鋳型長さ20mm〜190mmの範囲でIビーム型鋳造割れ試験を行った。割れ性の評価は、割れを生じない鋳型長さで評価し、鋳型長さ190mmでも割れが発生しない◎、鋳型長さ140mm以上で割れが発生する○、鋳型長さ70mm以上で割れが発生する△、鋳型長さ20mm以上で割れが発生する× の4段階で評価した。なお、割れ発生鋳型長さが長いほど割れにくい合金であり、長さ140mm以上で割れが発生する合金の場合、実機DC鋳造において割れの発生頻度は著しく減少する。   Cast crackability was evaluated by I-beam type cast crack test. The I-beam casting crack test is a known casting crack evaluation test method described in, for example, light metal vol.33, No.12, p705-711 (1983). This is an index of cast cracking property. In this experiment, an I-beam casting cracking test was performed on each alloy having the chemical composition shown in Table 1 at a melt temperature of 720 ° C. and a mold temperature of 250 ° C. in a mold length of 20 mm to 190 mm. The evaluation of crackability is based on the mold length that does not cause cracking. Cracks do not occur even when the mold length is 190 mm, cracks occur when the mold length is 140 mm or more, and cracks occur when the mold length is 70 mm or more. The evaluation was made in four stages: Δ, and cracking occurred when the mold length was 20 mm or more. It should be noted that the longer the crack generation mold length is, the more difficult it is to crack, and in the case of an alloy that cracks with a length of 140 mm or more, the frequency of crack generation in actual DC casting is significantly reduced.

また、 食缶材としての特性は実験室的に板を製造して評価した。
表1の化学組成を有する合金を、150mm×400mm×1500mmの鋳塊に鋳込み、表面を12mmづつ面削し、450℃×12時間の加熱後、すみやかに(420℃で)熱間圧延を開始し3mm厚で終了、冷間圧延で0.25mmに仕上げた。
In addition, the characteristics as a food can material were evaluated by producing plates in the laboratory.
An alloy with the chemical composition shown in Table 1 is cast into an ingot of 150 mm x 400 mm x 1500 mm, the surface is chamfered by 12 mm, heated immediately at 450 ° C for 12 hours, and then hot rolled immediately (at 420 ° C). Finished with a thickness of 3 mm and finished to 0.25 mm by cold rolling.

耐腐食性を評価するため、上記方法で作成したアルミニウム合金板をCu2+を10ppm添加した水道水中に4週間浸漬させ、孔食深さを測定し、30μm以下○、30μmを越えるもの×、の2段階で評価した。 In order to evaluate the corrosion resistance, the aluminum alloy plate prepared by the above method was immersed in tap water added with 10 ppm of Cu 2+ for 4 weeks, the pitting depth was measured, 30 μm or less ○, those exceeding 30 μm ×, It was evaluated in two stages.

成形加工性の評価としては、板材の深絞り、張り出し等成形加工性の良/不良から○/×の2段階で評価した。 As for the evaluation of the formability, the evaluation was made in two stages of ○ / × from the good / bad formability of the plate material such as deep drawing and overhanging.

Figure 2006152371
Figure 2006152371

表1に供試材の合金組成と性能の評価結果とを合わせて示す。
比較例1,3ではFeの添加量が本発明で規制する数値範囲の下限を外れており、割れの発生が顕著となる。
比較例9,10では、Mn量およびFe量が本発明で規定しているMn≦2Fe+0.8の関係を満たしておらず割れの発生が著しい。
比較例6ではMn量およびFe量が本発明で規定しているMn≦2Fe+0.8の関係を満たしておらず、更に、Si量が本発明で除外しているSi<Fe<Si+0.2(Si<0.12)の数値範囲にあるため、割れ発生が著しい。
比較例7では、Mn量およびFe量が本発明で規定しているMn≦2Fe+0.8の関係を満たしておらず、更に、Cu量が本発明で規制している数値範囲の上限を外れており、割れの発生が著しい。
比較例8では、Mn量およびFe量が本発明で規定しているMn≦2Fe+0.8の関係を満たしておらず、更に、Mg量が本発明で規制している数値範囲の下限を外れており、割れの発生が著しい。
比較例2,4ではMnの添加量が本発明で規制する数値範囲の上下限を外れており、鋳造割れ性は良好であるものの、成形加工性が著しく損なわれる。
比較例5ではFeの添加量が本発明で規制する数値範囲の上限を外れており、更にCuの添加が本発明で規制する数値範囲の下限を外れており、鋳造割れ性は良好であるものの、耐食性が損なわれる。
上記のとおり、本発明で規制する添加元素量の数値範囲の上下限および本発明で規定しているMn、Fe、Siの最適添加量を外れると、割れの発生が顕著になったり、あるいは食缶用アルミニウム板材として要求される性能低下が生じる。
Table 1 shows the alloy composition and performance evaluation results of the test materials.
In Comparative Examples 1 and 3, the amount of Fe added is outside the lower limit of the numerical range regulated by the present invention, and the occurrence of cracks becomes significant.
In Comparative Examples 9 and 10, the Mn content and the Fe content do not satisfy the relationship of Mn ≦ 2Fe + 0.8 defined in the present invention, and the occurrence of cracks is remarkable.
In Comparative Example 6, the amount of Mn and the amount of Fe do not satisfy the relationship of Mn ≦ 2Fe + 0.8 defined in the present invention, and the Si amount excluded in the present invention is Si <Fe <Si + 0.2 ( Since it is in the numerical range of Si <0.12), cracking is remarkable.
In Comparative Example 7, the amount of Mn and the amount of Fe do not satisfy the relationship of Mn ≦ 2Fe + 0.8 defined in the present invention, and the amount of Cu deviates from the upper limit of the numerical range regulated in the present invention. And cracking is remarkable.
In Comparative Example 8, the amount of Mn and the amount of Fe do not satisfy the relationship of Mn ≦ 2Fe + 0.8 defined in the present invention, and the amount of Mg deviates from the lower limit of the numerical range regulated in the present invention. And cracking is remarkable.
In Comparative Examples 2 and 4, the amount of Mn added deviates from the upper and lower limits of the numerical range regulated by the present invention, and the casting crackability is good, but the moldability is significantly impaired.
In Comparative Example 5, the addition amount of Fe is outside the upper limit of the numerical range regulated by the present invention, and addition of Cu is outside the lower limit of the numerical range regulated by the present invention, although the cast cracking property is good. Corrosion resistance is impaired.
As described above, if the upper and lower limits of the numerical range of the additive element amount regulated by the present invention and the optimum additive amount of Mn, Fe, Si defined by the present invention are deviated, the occurrence of cracks becomes significant or Performance deterioration required as an aluminum plate for cans occurs.

一方、発明例は、比較例と比べ鋳造割れの発生が著しく抑制されており、且つ、食缶用アルミ板材として要求される加工性や耐食性を十分に満足するものである。実際に製造ラインにて実施したところ、従来の場合鋳造割れは15%の頻度で起こるが、請求項1記載の合金成分では割れ発生頻度を4%以下まで抑えることができ、更に、請求項2記載の合金成分とした場合には、割れ発生率を1%未満に抑えることができる。いずれの場合においても食缶として要求される特性は維持されており、本発明によって製造歩留を著しく向上させることが可能となる。 On the other hand, in the inventive example, the occurrence of casting cracks is remarkably suppressed as compared with the comparative example, and the workability and corrosion resistance required as an aluminum plate material for food cans are sufficiently satisfied. When actually carried out on the production line, in the conventional case, casting cracks occur at a frequency of 15%, but with the alloy components according to claim 1, the frequency of occurrence of cracks can be suppressed to 4% or less. When the described alloy components are used, the crack generation rate can be suppressed to less than 1%. In any case, the characteristics required as a food can are maintained, and the production yield can be remarkably improved by the present invention.

本願発明の組成範囲を示す図で (a)はMnとFeの含有量の範囲を (b)はFeとSiの含有量の範囲を それぞれ示した図である。FIG. 5 is a diagram showing the composition range of the present invention, wherein (a) shows the range of Mn and Fe contents, and (b) shows the range of Fe and Si contents.

符号の説明Explanation of symbols

図中のアルファベットは実施例の表1の実施例に対応する記号である。
The alphabets in the figure are symbols corresponding to the examples in Table 1 of the examples.

Claims (2)

Mg量0.1〜2.8%(mass%、以下同じ)、Cu量0.1〜0.5%を含み、
かつMn量0.8〜1.5%、Fe量0.1〜0.3%、Si量0.1〜0.25%の範囲において、
Fe<0.2%かつMn>2Fe+0.8を同時に満足する領域、および
Si<0.12%かつSi<Fe<Si+0.2を同時に満たす領域を除いたMn、Fe、Si量を含有し、
残部はAlおよび不可避不純物からなることを特徴とする鋳造割れ性に優れた食缶用アルミニウム合金。
Mg content 0.1-2.8% (mass%, the same shall apply hereinafter), Cu content 0.1-0.5%,
And in the range of Mn amount 0.8-1.5%, Fe amount 0.1-0.3%, Si amount 0.1-0.25%,
Containing Mn, Fe, and Si content excluding a region that simultaneously satisfies Fe <0.2% and Mn> 2Fe + 0.8, and a region that simultaneously satisfies Si <0.12% and Si <Fe <Si + 0.2;
An aluminum alloy for food cans having excellent cast cracking characteristics, wherein the balance is made of Al and inevitable impurities.
Tiを単独で、もしくはB量0.0001〜0.2%あるいはC量0.0001〜0.2%と併用してTi濃度を0.015%〜0.20%含有することを特徴とする請求の範囲第1項記載の鋳造割れ性に優れた食缶用アルミニウム合金。
The cast cracking property according to claim 1, characterized by containing Ti alone or in combination with 0.0001 to 0.2% of B or 0.0001 to 0.2% of C and containing 0.015% to 0.20% of Ti. Excellent aluminum alloy for food cans.
JP2004344449A 2004-11-29 2004-11-29 Aluminum alloy for food can having excellent casting-crack resistance Pending JP2006152371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344449A JP2006152371A (en) 2004-11-29 2004-11-29 Aluminum alloy for food can having excellent casting-crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344449A JP2006152371A (en) 2004-11-29 2004-11-29 Aluminum alloy for food can having excellent casting-crack resistance

Publications (1)

Publication Number Publication Date
JP2006152371A true JP2006152371A (en) 2006-06-15

Family

ID=36631009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344449A Pending JP2006152371A (en) 2004-11-29 2004-11-29 Aluminum alloy for food can having excellent casting-crack resistance

Country Status (1)

Country Link
JP (1) JP2006152371A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198454A (en) * 1988-02-02 1989-08-10 Kobe Steel Ltd Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JPH03260040A (en) * 1990-03-09 1991-11-20 Kobe Steel Ltd Manufacture of high strength al-mn series alloy sheet
JPH0860284A (en) * 1994-08-23 1996-03-05 Sumitomo Light Metal Ind Ltd Can lid material excellent in bendability and its production
JPH10121179A (en) * 1996-10-22 1998-05-12 Kobe Steel Ltd Aluminum alloy sheet for carbonated beverage can lid, minimal in deterioration in pressure-resisting strength, and its production
WO1998049359A1 (en) * 1997-04-25 1998-11-05 Toyo Kohan Co., Ltd. Resin-coated aluminum alloy sheet for drawn and ironed can
WO1998049358A1 (en) * 1997-04-25 1998-11-05 Toyo Kohan Co., Ltd. Resin-coated aluminum alloy sheet for drawn and ironed cans
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JPH11256291A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JPH11256292A (en) * 1998-03-10 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2000234158A (en) * 1999-02-09 2000-08-29 Sky Alum Co Ltd Production of aluminum alloy sheet for can barrel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198454A (en) * 1988-02-02 1989-08-10 Kobe Steel Ltd Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JPH03260040A (en) * 1990-03-09 1991-11-20 Kobe Steel Ltd Manufacture of high strength al-mn series alloy sheet
JPH0860284A (en) * 1994-08-23 1996-03-05 Sumitomo Light Metal Ind Ltd Can lid material excellent in bendability and its production
JPH10121179A (en) * 1996-10-22 1998-05-12 Kobe Steel Ltd Aluminum alloy sheet for carbonated beverage can lid, minimal in deterioration in pressure-resisting strength, and its production
WO1998049359A1 (en) * 1997-04-25 1998-11-05 Toyo Kohan Co., Ltd. Resin-coated aluminum alloy sheet for drawn and ironed can
WO1998049358A1 (en) * 1997-04-25 1998-11-05 Toyo Kohan Co., Ltd. Resin-coated aluminum alloy sheet for drawn and ironed cans
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JPH11256291A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JPH11256292A (en) * 1998-03-10 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2000234158A (en) * 1999-02-09 2000-08-29 Sky Alum Co Ltd Production of aluminum alloy sheet for can barrel

Similar Documents

Publication Publication Date Title
JP4554088B2 (en) Peel-resistant aluminum-magnesium alloy
JP4535731B2 (en) AL-ZN-MG-CU alloy product with improved harmony between static mechanical properties and damage resistance
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP2011202283A (en) Aluminum alloy, aluminum alloy foil, container and method of preparing aluminum alloy foil
JP5271094B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP2008246525A (en) Brazing sheet made of aluminum alloy and its manufacturing method
EP3124631B1 (en) Brazing sheet formed of aluminum alloy
CA2856488C (en) Aluminium fin alloy and method of making the same
JP5116255B2 (en) Packaging material and electrical / electronic structure member using aluminum alloy
EP3202933B1 (en) Aluminum alloy brazing sheet
KR102303378B1 (en) Corrosion resistant aluminium alloy containing magnesium for casting
KR20150116902A (en) Aluminum alloy sheet for battery case having good moldability and weldability
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
CN110408805B (en) Aluminum alloy bar and preparation method thereof
JP7053281B2 (en) Aluminum alloy clad material and its manufacturing method
JP2006152371A (en) Aluminum alloy for food can having excellent casting-crack resistance
JP2003027165A (en) Aluminum alloy clad plate for heat exchanger having excellent erosion resistance and formability
JP7222047B1 (en) Aluminum alloy extruded material for piping connector, manufacturing method thereof, and piping connector
JP2013100604A (en) High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance
KR102353612B1 (en) Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate
JP7471499B1 (en) Aluminum alloy clad material
JP2003027166A (en) Aluminum alloy clad plate for heat exchanger having excellent erosion resistance and formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026