JP2006151975A - Manufacturing method of glycidyl methacrylate - Google Patents

Manufacturing method of glycidyl methacrylate Download PDF

Info

Publication number
JP2006151975A
JP2006151975A JP2005323898A JP2005323898A JP2006151975A JP 2006151975 A JP2006151975 A JP 2006151975A JP 2005323898 A JP2005323898 A JP 2005323898A JP 2005323898 A JP2005323898 A JP 2005323898A JP 2006151975 A JP2006151975 A JP 2006151975A
Authority
JP
Japan
Prior art keywords
water
alkali metal
glycidyl methacrylate
soluble polymerization
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005323898A
Other languages
Japanese (ja)
Other versions
JP5011707B2 (en
Inventor
Taiji Matsuzaki
泰治 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005323898A priority Critical patent/JP5011707B2/en
Publication of JP2006151975A publication Critical patent/JP2006151975A/en
Application granted granted Critical
Publication of JP5011707B2 publication Critical patent/JP5011707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clear up causes of deterioration in interfacial properties and causes of clogging of drainage piping or the like at the time of washing removing an alkali metal hydrochloric salt as a by-product in a manufacturing method of glycidyl methacrylate from an alkali metal salt of methacrylic acid and epichlorohydrin, and a countermeasure against the causes. <P>SOLUTION: At least one water-soluble polymerization inhibitor is added at an appropriate time in the manufacture of glycidyl methacrylate. The addition of the water-soluble polymerization inhibitor suppresses formation of an insoluble solid matter thereby realizing very good phase separation to form a clear interface at the time of the washing operation for removing the by-produced salt and thus a recovery loss is suppressed. Clogging troubles of piping or the like of the manufacturing apparatuses and waste water-disposal apparatuses are also prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、メタクリル酸(以下、MAAと記す)のアルカリ金属塩とエピクロロヒドリン(以下、EpCHと記す)からメタクリル酸グリシジル(以下、GMAと記す)を製造する方法に関する。GMAは耐候性塗料や各種樹脂の原料として有用である。   The present invention relates to a method for producing glycidyl methacrylate (hereinafter referred to as GMA) from an alkali metal salt of methacrylic acid (hereinafter referred to as MAA) and epichlorohydrin (hereinafter referred to as EpCH). GMA is useful as a raw material for weather-resistant paints and various resins.

GMAの製造方法の一つとして、MAAとアルカリ金属化合物から得られるMAAのアルカリ金属塩をEpCHと反応させてGMAを合成する方法が知られている(例えば、特許文献1参照)。この合成法では、GMAと同時に等モルのアルカリ金属塩酸塩が副生するため、反応生成液に水を添加して副生塩を溶解し、分液後水層を廃水として排出する方法がとられている。しかしながら、このような方法でGMAを製造すると、分液操作中に上層の油層にも下層の水層にも溶けない不溶性固形物が次第に増加し、層分離が不十分となり副生塩水溶液とともに有用な成分も排出されるという不具合が起こっていた。さらに具合の悪いことに、副生塩水溶液の排出、貯蔵および送液の際にも、不溶性固形物が発生し、送液配管を閉塞させたり、ポンプを故障させたりするため、安定的な運転生産に支障を来たすことが問題となっていた。そのうえ、不溶性固形物の除去費用もかさむため経済性を著しく損なうことも問題となっていた。このような背景から、分液操作中、および分離後の副生塩水溶液中に不溶性固形物が発生しないGMAの製造法の出現が強く望まれていた。   As one method for producing GMA, a method of synthesizing GMA by reacting an alkali metal salt of MAA obtained from MAA and an alkali metal compound with EpCH is known (for example, see Patent Document 1). In this synthesis method, equimolar amounts of alkali metal hydrochloride are produced as a by-product simultaneously with GMA. Therefore, there is a method in which water is added to the reaction product solution to dissolve the by-product salt, and the aqueous layer is discharged as waste water after separation. It has been. However, when GMA is produced by such a method, insoluble solids that do not dissolve in the upper oil layer and the lower aqueous layer gradually increase during the liquid separation operation, and the layer separation becomes insufficient, which is useful together with the by-product salt aqueous solution. There was a problem that some components were also discharged. To make matters worse, insoluble solids are generated during discharge, storage, and liquid delivery of by-product salt aqueous solution, and the liquid supply piping is blocked and the pump is broken. The problem was that it interfered with production. In addition, the cost of removing insoluble solids is also high, so that the economy is seriously impaired. From such a background, the appearance of a GMA production method that does not generate insoluble solids in a by-product salt aqueous solution during separation operation and after separation has been strongly desired.

一方、MAAのアルカリ金属塩、アルカリ土類金属塩または亜鉛塩の水溶液を、水溶性重合禁止剤の存在下で減圧加熱し、MAA金属塩中の水を留去することを特徴とする低水分含量のMAA金属塩の製造方法が提案されている(例えば、特許文献1参照)。しかし、この方法はMAA金属塩の製造方法、およびMAA金属塩から水のみを除去する方法に関するものであり、MAA金属塩とEpCHとの反応によるGMA製造、および、該反応における前記問題に関しては何も記載、検討していない。
特開昭55−17307号公報 特開2003−238478号公報
On the other hand, an aqueous solution of an alkali metal salt, alkaline earth metal salt or zinc salt of MAA is heated under reduced pressure in the presence of a water-soluble polymerization inhibitor to distill off the water in the MAA metal salt. A method for producing a high content MAA metal salt has been proposed (see, for example, Patent Document 1). However, this method relates to a method for producing a MAA metal salt and a method for removing only water from the MAA metal salt. What is concerned with the GMA production by the reaction of MAA metal salt and EpCH and the aforementioned problems in the reaction? Is not described or considered.
JP-A-55-17307 JP 2003-238478 A

本発明の目的は、従来技術における上記したような課題を解決し、分液操作中、および分離後の副生塩水溶液中に不溶性固形物が生成しないGMAの製造法を提供することにある。   An object of the present invention is to solve the above-described problems in the prior art and to provide a method for producing GMA in which insoluble solids are not generated in a by-product salt aqueous solution during separation operation and after separation.

本発明者は上記課題を解決すべく鋭意検討した結果、上記の不溶性固形物が、未反応のMAAやそのアルカリ金属塩、目的生成物であるGMA、副生したビニル基含有化合物などの易重合性化合物が重合し生成したものであることをつきとめた。さらに検討した結果、水洗により副生塩を除くため、GMA合成反応の反応生成液に水を加えると、非水溶性重合禁止剤は、水層にほとんど移動しないのに対し、前記易重合性物質の一部分は比較的容易に水層に移動することが判明した。なお、ここでいう「水溶性」とは、20℃の中性の水100gに対して1g以上溶解し得る性質を有することを言う。すなわち、通常に使用されているフェノチアジンや2,2’−メチレンビス−(6−t−ブチル−4−メチルフェノ−ル)などの非水溶性重合禁止剤のみを使用してGMAの製造を行うと、反応生成液に脱塩用の水を加えて洗浄する際、界面付近の油層部分では、重合禁止剤を含んでいるため重合が起こりにくいが、水層部分では、重合禁止剤をほとんど含まないため、重合が起こりやすく不溶性固形物が生成することが明らかとなった。
そこで本発明者は、種々の水溶性重合禁止剤について水層で起こる上記重合反応を防止できるものはないか鋭意検討した結果、当該目的に適った水溶性重合禁止剤を見出し、本発明を完成させるに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the insoluble solid is easily polymerized such as unreacted MAA or its alkali metal salt, GMA which is a target product, and by-product vinyl group-containing compound. It was found that the active compound was produced by polymerization. As a result of further investigation, in order to remove by-product salts by washing with water, when water is added to the reaction product solution of the GMA synthesis reaction, the water-insoluble polymerization inhibitor hardly moves to the aqueous layer, whereas It was found that a part of the water moved to the water layer relatively easily. The term “water-soluble” as used herein refers to having a property of being able to dissolve 1 g or more in 100 g of neutral water at 20 ° C. That is, when GMA is produced using only a water-insoluble polymerization inhibitor such as phenothiazine or 2,2′-methylenebis- (6-tert-butyl-4-methylphenol) that is usually used, When washing the reaction product solution with water for desalting, the oil layer near the interface contains a polymerization inhibitor, so polymerization does not occur easily, but the water layer contains little polymerization inhibitor. It was revealed that insoluble solids were easily formed due to polymerization.
Therefore, as a result of intensive studies on whether various water-soluble polymerization inhibitors can prevent the above polymerization reaction occurring in the aqueous layer, the present inventors have found a water-soluble polymerization inhibitor suitable for the purpose and completed the present invention. I came to let you.

すなわち、本発明は、メタクリル酸のアルカリ金属塩とエピクロロヒドリンを反応させてメタクリル酸グリシジルを合成する工程、および副生したアルカリ金属塩酸塩を水洗除去する工程を含むメタクリル酸グリシジルを製造する方法において、一種類以上の水溶性重合禁止剤を使用することを特徴とする(1)〜(5)に示すメタクリル酸グリシジルの製造方法に関する。
(1)メタクリル酸のアルカリ金属塩とエピクロロヒドリンを反応させて
メタクリル酸グリシジルとなす工程、および副生したアルカリ金属塩酸塩
を水洗によって除去する工程を含むメタクリル酸グリシジルの製造方法に
おいて、一種類以上の水溶性重合禁止剤を使用することを特徴とする、メタクリル酸グリシジルの製造方法。
(2)副生したアルカリ金属塩酸塩の水洗を、一種類以上の水溶性重合禁止剤の存在下で行う、(1)に記載のメタクリル酸グリシジルの製造方法。
(3)副生したアルカリ金属塩酸塩を水洗した後、層分離し、得られた水層に一種類以上の水溶性重合禁止剤を添加する、(1)に記載のメタクリル酸グリシジルの製造方法。
(4)メタクリル酸のアルカリ金属塩とエピクロロヒドリンを反応させてメタクリル酸グリシジルとなす工程を、一種類以上の水溶性重合禁止剤の存在下で行う、(1)に記載のメタクリル酸グリシジルの製造方法。
(5)一種類以上の水溶性重合禁止剤が、ヨウ化ナトリウム、ヨウ化カリウム、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウム、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルからなる群より選ばれた化合物である、(1)に記載のメタクリル酸グリシジルの製造方法。
That is, the present invention produces glycidyl methacrylate including a step of synthesizing glycidyl methacrylate by reacting an alkali metal salt of methacrylic acid with epichlorohydrin and a step of washing and removing the by-produced alkali metal hydrochloride. In the method, the present invention relates to a method for producing glycidyl methacrylate shown in (1) to (5), wherein one or more water-soluble polymerization inhibitors are used.
(1) In a method for producing glycidyl methacrylate, comprising a step of reacting an alkali metal salt of methacrylic acid with epichlorohydrin to form glycidyl methacrylate, and a step of removing by-product alkali metal hydrochloride by washing with water. A method for producing glycidyl methacrylate, comprising using at least one type of water-soluble polymerization inhibitor.
(2) The method for producing glycidyl methacrylate according to (1), wherein the by-product alkali metal hydrochloride is washed with water in the presence of one or more water-soluble polymerization inhibitors.
(3) The method for producing glycidyl methacrylate according to (1), wherein the by-produced alkali metal hydrochloride is washed with water, separated into layers, and one or more water-soluble polymerization inhibitors are added to the obtained aqueous layer. .
(4) The step of reacting an alkali metal salt of methacrylic acid with epichlorohydrin to form glycidyl methacrylate is performed in the presence of one or more water-soluble polymerization inhibitors, and glycidyl methacrylate according to (1) Manufacturing method.
(5) One or more types of water-soluble polymerization inhibitors are sodium iodide, potassium iodide, ascorbic acid, sodium ascorbate, potassium ascorbate, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1 -The manufacturing method of the glycidyl methacrylate as described in (1) which is a compound chosen from the group which consists of oxyl.

本発明のMAAアルカリ金属塩とEpCHからGMAを製造する方法では水溶性重合禁止剤を使用するので、不溶性固形物の生成が抑制される。その結果、副生塩除去のための水洗時にGMAを含む油層と副生塩を含む水層との分離が良好になり、装置停止に至る閉塞トラブル等も防止され、GMAを安定的かつ経済的に製造することができる。   In the method for producing GMA from the MAA alkali metal salt of the present invention and EpCH, a water-soluble polymerization inhibitor is used, so that the formation of insoluble solids is suppressed. As a result, the oil layer containing GMA and the water layer containing by-product salt are well separated during washing with water to remove by-product salt, and blockage troubles that lead to equipment shutdown are prevented, making GMA stable and economical. Can be manufactured.

以下に本発明を詳細に説明する。MAA及びEpCHを反応原料とするGMAの製造は公知であり、例えば、特開昭55−17307号公報に記載の方法に準じて、以下の方法により製造することができる。   The present invention is described in detail below. Production of GMA using MAA and EpCH as reaction raw materials is known, and can be produced by the following method, for example, according to the method described in JP-A No. 55-17307.

添加するMAAに対し中和当量以上、好ましくは中和当量の1.05〜2倍程度のアルカリ金属化合物をEpCH中に懸濁させ、次いで加熱下にMAAを徐々に添加して中和反応を行う。該加熱は、中和反応により生成した水とEpCHとの共沸がMAA添加中継続するように行う。例えば、常圧で反応を行なう揚合、反応系を90℃以上に保持するのが好ましい。中和反応は不活性有機溶媒の存在下で行ってもよいが、EpCHが溶媒として作用するので使用しなくてもよい。アルカリ金属化合物としては、ナトリウム、カリウムなどのアルカリ金属の炭酸塩、炭酸水素塩が好ましい。上記中和反応は、従来使用されている、フェノチアジンや2,2’−メチレンビス−(6−t−ブチル−4−メチルフェノ−ル)などの非水溶性重合禁止剤の存在下で行ってもよい。使用する場合、非水溶性重合禁止剤の使用量は、MAAに対して0.01〜2.0モル%が好ましい。   Suspend an alkali metal compound in EpCH that is at least neutralization equivalent to the MAA to be added, preferably about 1.05 to 2 times the neutralization equivalent, and then gradually add MAA under heating to carry out the neutralization reaction. Do. The heating is performed so that azeotropy of water and EpCH produced by the neutralization reaction continues during the MAA addition. For example, it is preferable to maintain the reaction system at 90 ° C. or higher where the reaction is performed at normal pressure. The neutralization reaction may be performed in the presence of an inert organic solvent, but it may not be used because EpCH acts as a solvent. As the alkali metal compound, carbonates and bicarbonates of alkali metals such as sodium and potassium are preferable. The neutralization reaction may be carried out in the presence of a water-insoluble polymerization inhibitor such as phenothiazine or 2,2′-methylenebis- (6-tert-butyl-4-methylphenol) that has been conventionally used. . When using, the usage-amount of a water-insoluble polymerization inhibitor has preferable 0.01-2.0 mol% with respect to MAA.

中和反応により生成した水の共沸留出が認められなくなった後、すなわち、中和反応が終了した後、触媒を加え、好ましくは90〜120℃で1〜3時間、MAAアルカリ金属塩とEpCHとの反応(脱塩化アルカリによるエステル化)を行う。触媒は、MAAに対して0.01〜1.5モル%程度加えるのが好ましい。   After the azeotropic distillation of water produced by the neutralization reaction is no longer observed, that is, after the neutralization reaction is completed, the catalyst is added, and preferably at 90 to 120 ° C. for 1 to 3 hours with the MAA alkali metal salt. Reaction with EpCH (esterification with dechlorinated alkali) is carried out. The catalyst is preferably added in an amount of about 0.01 to 1.5 mol% with respect to MAA.

前記触媒としては、公知の触媒でよく、たとえば、トリエチルアミン、トリブチルアミン、トリフェニルアミン、ジメチルアニリン、ピリジン等の第三級アミン、およびトリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、テトラメチルアンンモニウムブロマイド等の第四級アンモニウム塩を挙げることができるが、これらに限定されるものではない。   The catalyst may be a known catalyst, for example, a tertiary amine such as triethylamine, tributylamine, triphenylamine, dimethylaniline, pyridine, and trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tetramethylammonium chloride, tetra A quaternary ammonium salt such as methylammonium bromide can be mentioned, but is not limited thereto.

上記の製造方法により高収率でGMAが得られるが、生成したGMAとほぼ等モルのスラリー状のアルカリ金属塩酸塩が副生するので、反応生成液を蒸留する前にこのアルカリ金属塩酸塩を除去する必要がある。   GMA can be obtained in a high yield by the above production method, but almost equal moles of slurry-like alkali metal hydrochloride is produced as a by-product with the produced GMA. Therefore, before distilling the reaction product solution, Need to be removed.

アルカリ金属塩酸塩の除去方法としては、濾過、遠心分離、水添加等が考えられるが、濾過や遠心分離の場合は固形残渣の取り扱いが煩雑であり、また、アルカリ金属塩酸塩が水に可溶であることなどから水添加が最も好ましい。   As a method for removing alkali metal hydrochloride, filtration, centrifugation, water addition, etc. can be considered, but in the case of filtration or centrifugation, handling of solid residue is complicated, and alkali metal hydrochloride is soluble in water. Therefore, water addition is most preferable.

添加する水の量は、アルカリ金属塩酸塩が十分溶解する量であればよい。しかし、微量ではあるがGMAやEpCHは水に溶解するため、過度の量の水を添加するのは経済性の面から好ましくない。水層中のアルカリ金属塩酸塩濃度が飽和濃度に近くなるように水の添加量を決めるのがよい。   The amount of water to be added may be an amount that sufficiently dissolves the alkali metal hydrochloride. However, since GMA and EpCH are dissolved in water, though in a very small amount, it is not preferable from the viewpoint of economy to add an excessive amount of water. It is preferable to determine the amount of water added so that the alkali metal hydrochloride concentration in the aqueous layer is close to the saturation concentration.

添加する水の種類については、イオン交換水、一般水道水、スチ−ム凝縮水、MAAをアルカリ金属化合物によりアルカリ金属塩にするための中和反応により副生した水等、特に限定されないが、GMAは鉄イオンなどの金属イオン等によって重合が促進されるため、イオン交換水が最も好ましい。   The type of water to be added is not particularly limited, such as ion-exchanged water, general tap water, steam condensed water, water by-produced by neutralization reaction to make MAA an alkali metal salt with an alkali metal compound, etc. GMA is most preferably ion-exchanged water because polymerization is promoted by metal ions such as iron ions.

水を反応生成液に添加する時の圧力は、減圧、常圧、加圧の何れでも良いが、特に制限がない限り常圧で行うのが良い。   The pressure at which water is added to the reaction product liquid may be any of reduced pressure, normal pressure, and increased pressure, but it is preferably performed at normal pressure unless otherwise limited.

本発明の製造方法では、上記GMA製造の適当な段階、例えば、原料仕込み時、GMA合成反応前、GMA合成反応中、副生塩除去のための水添加直前、水添加と同時もしくは水添加直後の反応系に、または分離した後の水層に、水溶性重合禁止剤を添加する。   In the production method of the present invention, an appropriate stage of the above GMA production, for example, at the time of raw material charging, before the GMA synthesis reaction, during the GMA synthesis reaction, immediately before water addition for removing by-product salt, simultaneously with water addition or immediately after water addition. A water-soluble polymerization inhibitor is added to the reaction system or to the separated aqueous layer.

水溶性重合禁止剤の添加量は添加水量に対して好ましくは10〜100,000ppm、より好ましくは100〜10,000ppmである。少なすぎると期待した効果が十分得られず、多すぎると非経済的である。水溶性重合禁止剤は粉体やペレット等の固体状態で添加してもよいし、水溶液として添加してもよい。   The addition amount of the water-soluble polymerization inhibitor is preferably 10 to 100,000 ppm, more preferably 100 to 10,000 ppm with respect to the added water amount. If it is too small, the expected effect cannot be obtained sufficiently, and if it is too large, it is uneconomical. The water-soluble polymerization inhibitor may be added in a solid state such as powder or pellets, or may be added as an aqueous solution.

水添加後、好ましくは20〜60℃、より好ましくは30〜50℃で、循環もしくは攪拌等の操作によってアルカリ金属塩酸塩を水に溶解させる。温度が低すぎるとアルカリ金属塩酸塩の溶解度が小さくなって水の必要量が増えたり、水層と油層の分離が悪くなったりする。一方、温度が高すぎると好ましくない副反応が進行してGMAの収率が低下する恐れがある。アルカリ金属塩酸塩が水に溶解した後、静置して油層と水層に分液する。水層を排出した後、油層に蒸留等の精製操作を施すことによって精製GMAを得る。   After the addition of water, the alkali metal hydrochloride is dissolved in water by an operation such as circulation or stirring, preferably at 20 to 60 ° C., more preferably at 30 to 50 ° C. If the temperature is too low, the solubility of the alkali metal hydrochloride will be reduced and the required amount of water will increase, or the separation of the water layer and the oil layer will worsen. On the other hand, if the temperature is too high, an undesirable side reaction may proceed to reduce the yield of GMA. After alkali metal hydrochloride is dissolved in water, it is allowed to stand to separate into an oil layer and an aqueous layer. After discharging the aqueous layer, purified GMA is obtained by subjecting the oil layer to a purification operation such as distillation.

水溶性重合禁止剤としては、ヨウ化ナトリウム、ヨウ化カリウム、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウム、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル(以下、4H−TEMPOと記す)からなる群より選ばれた少なくとも1種の化合物が使用される。ヨウ化ナトリウム、ヨウ化カリウム、4H−TEMPOは熱安定性に特に優れるため、原料仕込み時、GMA合成反応前あるいはGMA合成反応中に添加する場合に好適に使用することができる。   Examples of the water-soluble polymerization inhibitor include sodium iodide, potassium iodide, ascorbic acid, sodium ascorbate, potassium ascorbate, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (hereinafter referred to as 4H). At least one compound selected from the group consisting of -TEMPO) is used. Since sodium iodide, potassium iodide, and 4H-TEMPO are particularly excellent in thermal stability, they can be suitably used when added to raw materials, before GMA synthesis reaction or during GMA synthesis reaction.

上記したように、通常、GMA合成反応ではアルカリ金属化合物をMAAに対して中和当量の1.05〜2.00倍程度使用する。従って、水溶性重合禁止剤としてアスコルビン酸を使用した場合、過剰のアルカリ金属化合物との中和反応によりアスコルビン酸のアルカリ金属塩が生成する。しかし、アスコルビン酸のアルカリ金属塩も重合禁止効果を有するので、このような場合でも不溶性固形物の発生が抑制される。アスコルビン酸は、L体、D体、ラセミ体、L体とD体の任意混合物の何れでもよい。   As described above, usually, in the GMA synthesis reaction, an alkali metal compound is used in an amount of about 1.05 to 2.00 times the neutralization equivalent to MAA. Therefore, when ascorbic acid is used as a water-soluble polymerization inhibitor, an alkali metal salt of ascorbic acid is generated by a neutralization reaction with an excess of an alkali metal compound. However, since the alkali metal salt of ascorbic acid also has a polymerization-inhibiting effect, the generation of insoluble solids is suppressed even in such a case. Ascorbic acid may be any of L-form, D-form, racemate, and any mixture of L-form and D-form.

このように、副生塩除去操作を水溶性重合禁止剤の存在下で行うことにより分液操作中に易重合性化合物が重合することを効果的に防止することができる。また、副生塩除去操作後の分離した副生塩含有水溶液に水溶性重合禁止剤を添加することにより、該水溶液中に存在する易重合性化合物の重合を効果的に防止することができる。これにより、不溶性固形物の生成量が大幅に低減し、油層水層間の界面や廃水中での不溶性固形物に起因する上記問題を解決することができる。   Thus, by performing by-product salt removal operation in presence of a water-soluble polymerization inhibitor, it can prevent effectively that an easily polymerizable compound superposes | polymerizes during liquid separation operation. Moreover, by adding a water-soluble polymerization inhibitor to the separated by-product salt-containing aqueous solution after the by-product salt removal operation, the polymerization of the easily polymerizable compound present in the aqueous solution can be effectively prevented. Thereby, the production amount of insoluble solids is greatly reduced, and the above-mentioned problems caused by the insoluble solids in the interface between the oil layer and the water layer or in the wastewater can be solved.

以下、本発明を実施例および比較例をもってさらに詳しく説明するが、本発明は以下の例によって限定されるものではない。
実施例1
攪拌機、還流冷却器及びデカンタ−を備えた内容積1Lの丸底フラスコにEpCH900g、炭酸ナトリウム58g、2,2’−メチレンビス−(6−t−ブチル−4−メチルフェノ−ル)1gを量り採り、攪拌しながら加熱した。EpCHの還流が始まった後、MAA86gを1時間かけて滴下した。その後触媒としてテトラメチルアンモニウムクロライド0.3gを加え還流条件下で50分間反応を行った。反応終了後50℃まで冷却し、攪拌しながらイオン交換水240gおよびヨウ化カリウム0.5gを添加した。添加後の液温は40℃であった。1時間静置して層分離した。排出した水層は40℃で3日保存しても不溶性固形物の生成は認められなかった。結果を第1表および第2表に示す。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail with an Example and a comparative example, this invention is not limited by the following examples.
Example 1
900 g EpCH, 58 g sodium carbonate, 1 g 2,2′-methylenebis- (6-tert-butyl-4-methylphenol) were weighed out in a 1 L round bottom flask equipped with a stirrer, reflux condenser and decanter, Heated with stirring. After EpCH reflux began, 86 g of MAA was added dropwise over 1 hour. Thereafter, 0.3 g of tetramethylammonium chloride was added as a catalyst and reacted for 50 minutes under reflux conditions. After completion of the reaction, the reaction mixture was cooled to 50 ° C., and 240 g of ion exchange water and 0.5 g of potassium iodide were added with stirring. The liquid temperature after the addition was 40 ° C. The mixture was allowed to stand for 1 hour to separate the layers. Even when the discharged aqueous layer was stored at 40 ° C. for 3 days, formation of insoluble solids was not observed. The results are shown in Tables 1 and 2.

実施例2
ヨウ化カリウムの代わりにヨウ化ナトリウムを0.6g添加した以外は実施例1と同様にした。排出した水層は40℃で3日保存しても不溶性固形物の生成は認められなかった。結果を第1表に示す。
Example 2
Example 1 was repeated except that 0.6 g of sodium iodide was added instead of potassium iodide. Even when the discharged aqueous layer was stored at 40 ° C. for 3 days, formation of insoluble solids was not observed. The results are shown in Table 1.

実施例3
ヨウ化カリウムの代わりにL−アスコルビン酸を0.3g添加した以外は実施例1と同様にした。排出した水層は40℃で3日保存しても不溶性固形物の生成は認められなかった。結果を第1表に示す。
Example 3
Example 1 was repeated except that 0.3 g of L-ascorbic acid was added instead of potassium iodide. Even when the discharged aqueous layer was stored at 40 ° C. for 3 days, formation of insoluble solids was not observed. The results are shown in Table 1.

実施例4
炭酸ナトリウムの替わりに炭酸カリウムを76g、イオン交換水を306gおよびヨウ化カリウムの代わりにL−アスコルビン酸を0.6g添加した以外は実施例1と同様にした。排出した水層は40℃で3日保存しても不溶性固形物の生成は認められなかった。結果を第1表に示す。
Example 4
Example 1 was repeated except that 76 g of potassium carbonate instead of sodium carbonate, 306 g of ion-exchanged water, and 0.6 g of L-ascorbic acid instead of potassium iodide were added. Even when the discharged aqueous layer was stored at 40 ° C. for 3 days, formation of insoluble solids was not observed. The results are shown in Table 1.

実施例5
ヨウ化カリウムの代わりにL−アスコルビン酸ナトリウムを0.3g添加した以外は実施例1と同様にした。排出した水層は40℃で3日保存しても不溶性固形物の生成は認められなかった。結果を第1表に示す。
Example 5
Example 1 was repeated except that 0.3 g of sodium L-ascorbate was added instead of potassium iodide. Even when the discharged aqueous layer was stored at 40 ° C. for 3 days, formation of insoluble solids was not observed. The results are shown in Table 1.

実施例6
ヨウ化カリウムの代わりに4H−TEMPOを0.1g添加した以外は実施例1と同様にした。排出した水層は着色したものの、40℃で3日保存しても溶性固形物の生成は認められなかった。結果を第1表と第3表に示す。
Example 6
Example 1 was repeated except that 0.1 g of 4H-TEMPO was added instead of potassium iodide. Although the discharged water layer was colored, no soluble solid was produced even when stored at 40 ° C. for 3 days. The results are shown in Tables 1 and 3.

実施例7
ヨウ化カリウムを添加しなかった以外は実施例1と同様にした。排出した水層は、沈殿しにくい粒径0.1mm程度の細かな浮遊物により白く濁っていた。この水層にヨウ化カリウム0.5gを添加し、その後40℃で3日保存しても、濁りが増すことはなく、水不溶性固形物の生成も認められなかった。結果を第2表に示す。
Example 7
Example 1 was repeated except that potassium iodide was not added. The discharged water layer was white and turbid due to fine suspended matters having a particle size of about 0.1 mm which are difficult to settle. Even when 0.5 g of potassium iodide was added to this aqueous layer and then stored at 40 ° C. for 3 days, turbidity did not increase and formation of a water-insoluble solid was not observed. The results are shown in Table 2.

実施例8
ヨウ化カリウムを水添加と同時に添加する代わりに、0.1gの4H−TEMPOを原料仕込みと同時に添加した以外は実施例1と同様にした。排出した水層は、着色したものの、白色固形物はみられず、40℃で3日保存しても、不溶性固形物の生成は認められなかった。結果を第3表に示す。
Example 8
Instead of adding potassium iodide simultaneously with the addition of water, the same procedure as in Example 1 was carried out except that 0.1 g of 4H-TEMPO was added simultaneously with the charging of raw materials. Although the discharged aqueous layer was colored, no white solid was observed, and even when stored at 40 ° C. for 3 days, formation of an insoluble solid was not observed. The results are shown in Table 3.

実施例9
ヨウ化カリウムを添加しなかった以外は実施例1と同様にした。排出した水層は、沈殿しにくい粒径0.1mm程度の細かな浮遊物により白く濁っていた。この水層に0.1gの4H−TEMPOを添加し、その後40℃で3日保存しても、濁りが増すことはなく、不溶性固形物の生成も認められなかった。結果を第3表に示す。
Example 9
Example 1 was repeated except that potassium iodide was not added. The discharged water layer was white and turbid due to fine suspended matters having a particle size of about 0.1 mm which are difficult to settle. Even when 0.1 g of 4H-TEMPO was added to this aqueous layer and then stored at 40 ° C. for 3 days, turbidity did not increase and insoluble solids were not formed. The results are shown in Table 3.

比較例1
イオン交換水を240g添加し、水溶性重合禁止剤を添加しなかった以外は実施例1と同様にした。攪拌混合後、静置し分液したところ、副生塩を含む水層は粒径0.1mm程度の細かな浮遊物で白濁していた。この浮遊物は静置時間の経過とともに水層とGMAを含む油層との界面に移行し層分離が悪化し明確な水層−油層界面が現れなかった。不完全に分離した水層を40℃で3日保存すると、水面付近に厚さ0.5mm程度で、面積が1cm以上の白色の膜状不溶性固形物が観察された。結果を第1表および第2表に示す。
Comparative Example 1
The same procedure as in Example 1 was conducted except that 240 g of ion-exchanged water was added and no water-soluble polymerization inhibitor was added. After stirring and mixing, the mixture was allowed to stand and liquid separation was performed. As a result, the aqueous layer containing by-product salt was clouded with fine suspended matters having a particle size of about 0.1 mm. This floating substance moved to the interface between the water layer and the oil layer containing GMA as the standing time passed, and the layer separation deteriorated, and a clear water layer-oil layer interface did not appear. When the incompletely separated aqueous layer was stored at 40 ° C. for 3 days, a white film-like insoluble solid having a thickness of about 0.5 mm and an area of 1 cm 2 or more was observed near the water surface. The results are shown in Tables 1 and 2.

比較例2
イオン交換水を240g添加し、ヨウ化カリウムの代わりにフェノチアジン1.0gを添加した以外は実施例1と同様にした。攪拌混合後、静置し分液したところ、油層は黄色に着色し、副生塩を含む水層は粒径0.1mm程度の細かな浮遊物で白濁していた。この浮遊物は静置時間の経過とともにGMAを含む油層との界面に移行し層分離が悪化し明確な水層−油層界面が現れなかった。不完全に分離した水層を40℃で3日保存すると、水面付近に厚さ0.5mm程度で、面積が1cm以上の白色の膜状不溶性固形物が観察された。結果を第1表に示す。
Comparative Example 2
The same procedure as in Example 1 was conducted except that 240 g of ion-exchanged water was added and 1.0 g of phenothiazine was added instead of potassium iodide. After stirring and mixing, the mixture was allowed to stand and liquid-separated. As a result, the oil layer was colored yellow, and the aqueous layer containing by-product salt was clouded with fine suspended matters having a particle size of about 0.1 mm. This floating substance moved to the interface with the oil layer containing GMA with the elapse of the standing time, the layer separation deteriorated, and a clear water layer-oil layer interface did not appear. When the incompletely separated aqueous layer was stored at 40 ° C. for 3 days, a white film-like insoluble solid having a thickness of about 0.5 mm and an area of 1 cm 2 or more was observed near the water surface. The results are shown in Table 1.

比較例3
イオン交換水を240g添加し、ヨウ化カリウムの代わりに2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)1.0gを添加した以外は実施例1と同様にした。攪拌混合後、静置し分液したところ、副生塩を含む水層は0.1mm程度の細かな浮遊物で白濁していた。この浮遊物は静置時間の経過とともにGMAを含む油層との界面に移行し層分離が悪化し明確な水層−油層界面が現れなかった。不完全に分離した水層を40℃で3日保存すると、水面付近に厚さ0.5mm程度で、面積が1cm以上の白色の膜状不溶性固形物が観察された。結果を第1表に示す。
Comparative Example 3
240 g of ion-exchanged water was added, and the same procedure as in Example 1 was performed except that 1.0 g of 2,2′-methylenebis (4-methyl-6-t-butylphenol) was added instead of potassium iodide. After stirring and mixing, the mixture was allowed to stand and liquid separation was performed. As a result, the aqueous layer containing by-product salt was clouded with fine suspended matters of about 0.1 mm. This floating substance moved to the interface with the oil layer containing GMA with the elapse of the standing time, the layer separation deteriorated, and a clear water layer-oil layer interface did not appear. When the incompletely separated aqueous layer was stored at 40 ° C. for 3 days, a white film-like insoluble solid having a thickness of about 0.5 mm and an area of 1 cm 2 or more was observed near the water surface. The results are shown in Table 1.

Figure 2006151975
Figure 2006151975

Figure 2006151975
Figure 2006151975

Figure 2006151975
Figure 2006151975

Figure 2006151975
Figure 2006151975

Claims (5)

メタクリル酸のアルカリ金属塩とエピクロロヒドリンを反応させてメタクリル酸グリシジルとなす工程、および副生したアルカリ金属塩酸塩を水洗によって除去する工程を含むメタクリル酸グリシジルの製造方法において、一種類以上の水溶性重合禁止剤を使用することを特徴とする、メタクリル酸グリシジルの製造方法。   In a method for producing glycidyl methacrylate, comprising a step of reacting an alkali metal salt of methacrylic acid with epichlorohydrin to form glycidyl methacrylate, and a step of removing by-product alkali metal hydrochloride by washing with water, A method for producing glycidyl methacrylate, comprising using a water-soluble polymerization inhibitor. 副生したアルカリ金属塩酸塩の水洗を、一種類以上の水溶性重合禁止剤の存在下で行う、請求項1に記載のメタクリル酸グリシジルの製造方法。   The method for producing glycidyl methacrylate according to claim 1, wherein the by-product alkali metal hydrochloride is washed with water in the presence of one or more water-soluble polymerization inhibitors. 副生したアルカリ金属塩酸塩を水洗した後、層分離し、得られた水層に一種類以上の水溶性重合禁止剤を添加する、請求項1に記載のメタクリル酸グリシジルの製造方法。   The method for producing glycidyl methacrylate according to claim 1, wherein the by-produced alkali metal hydrochloride is washed with water and then separated into layers, and one or more water-soluble polymerization inhibitors are added to the obtained aqueous layer. メタクリル酸のアルカリ金属塩とエピクロロヒドリンを反応させてメタクリル酸グリシジルとなす工程を、一種類以上の水溶性重合禁止剤の存在下で行う、請求項1に記載のメタクリル酸グリシジルの製造方法。   The method for producing glycidyl methacrylate according to claim 1, wherein the step of reacting an alkali metal salt of methacrylic acid with epichlorohydrin to form glycidyl methacrylate is carried out in the presence of one or more water-soluble polymerization inhibitors. . 一種類以上の水溶性重合禁止剤が、ヨウ化ナトリウム、ヨウ化カリウム、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウム、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルからなる群より選ばれた化合物である、請求項1に記載のメタクリル酸グリシジルの製造方法。   One or more types of water-soluble polymerization inhibitors are from sodium iodide, potassium iodide, ascorbic acid, sodium ascorbate, potassium ascorbate, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl. The method for producing glycidyl methacrylate according to claim 1, which is a compound selected from the group consisting of:
JP2005323898A 2004-11-08 2005-11-08 Method for producing glycidyl methacrylate Active JP5011707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323898A JP5011707B2 (en) 2004-11-08 2005-11-08 Method for producing glycidyl methacrylate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004323915 2004-11-08
JP2004323915 2004-11-08
JP2005323898A JP5011707B2 (en) 2004-11-08 2005-11-08 Method for producing glycidyl methacrylate

Publications (2)

Publication Number Publication Date
JP2006151975A true JP2006151975A (en) 2006-06-15
JP5011707B2 JP5011707B2 (en) 2012-08-29

Family

ID=36630686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323898A Active JP5011707B2 (en) 2004-11-08 2005-11-08 Method for producing glycidyl methacrylate

Country Status (1)

Country Link
JP (1) JP5011707B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051754A (en) * 2007-08-24 2009-03-12 Nippon Kasei Chem Co Ltd Method for producing epoxy group-terminated (meth)acrylate
JP2009091312A (en) * 2007-10-10 2009-04-30 Nippon Kasei Chem Co Ltd Method for producing epoxy group-terminated (meth)acrylate
JP2010126453A (en) * 2008-11-25 2010-06-10 Nippon Shokubai Co Ltd Method for producing epoxy group-containing acrylic esters
JP2010275305A (en) * 2009-04-28 2010-12-09 Nippon Kasei Chem Co Ltd Method of producing epoxy-terminated (meth)acrylate
JP2013512994A (en) * 2009-12-04 2013-04-18 ダウ コーニング コーポレーション Stabilization of silsesquioxane resin
JP2014076959A (en) * 2012-10-10 2014-05-01 Mitsubishi Gas Chemical Co Inc Method for producing glycidyl methacrylate
JP2014084316A (en) * 2012-10-26 2014-05-12 Mitsubishi Gas Chemical Co Inc Method for producing glycidyl methacrylate
CN115572273A (en) * 2022-08-30 2023-01-06 万华化学集团股份有限公司 Continuous preparation method of glycidyl methacrylate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517307A (en) * 1978-07-21 1980-02-06 Mitsubishi Gas Chem Co Inc Preparation of glycidyl ester of acrylic or methacrylic acid
JPH05140136A (en) * 1991-11-20 1993-06-08 Daicel Chem Ind Ltd Method for preventing polymerization
JPH11302269A (en) * 1998-04-24 1999-11-02 Mitsubishi Gas Chem Co Inc Purification and production for glycidyl (meth)acrylate
JP2003238478A (en) * 2002-02-19 2003-08-27 Dow Corning Toray Silicone Co Ltd Method for producing metal salt of radically polymerizable compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517307A (en) * 1978-07-21 1980-02-06 Mitsubishi Gas Chem Co Inc Preparation of glycidyl ester of acrylic or methacrylic acid
JPH05140136A (en) * 1991-11-20 1993-06-08 Daicel Chem Ind Ltd Method for preventing polymerization
JPH11302269A (en) * 1998-04-24 1999-11-02 Mitsubishi Gas Chem Co Inc Purification and production for glycidyl (meth)acrylate
JP2003238478A (en) * 2002-02-19 2003-08-27 Dow Corning Toray Silicone Co Ltd Method for producing metal salt of radically polymerizable compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051754A (en) * 2007-08-24 2009-03-12 Nippon Kasei Chem Co Ltd Method for producing epoxy group-terminated (meth)acrylate
JP2009091312A (en) * 2007-10-10 2009-04-30 Nippon Kasei Chem Co Ltd Method for producing epoxy group-terminated (meth)acrylate
JP2010126453A (en) * 2008-11-25 2010-06-10 Nippon Shokubai Co Ltd Method for producing epoxy group-containing acrylic esters
JP2010275305A (en) * 2009-04-28 2010-12-09 Nippon Kasei Chem Co Ltd Method of producing epoxy-terminated (meth)acrylate
JP2013512994A (en) * 2009-12-04 2013-04-18 ダウ コーニング コーポレーション Stabilization of silsesquioxane resin
JP2014076959A (en) * 2012-10-10 2014-05-01 Mitsubishi Gas Chemical Co Inc Method for producing glycidyl methacrylate
JP2014084316A (en) * 2012-10-26 2014-05-12 Mitsubishi Gas Chemical Co Inc Method for producing glycidyl methacrylate
CN115572273A (en) * 2022-08-30 2023-01-06 万华化学集团股份有限公司 Continuous preparation method of glycidyl methacrylate
CN115572273B (en) * 2022-08-30 2024-04-09 万华化学集团股份有限公司 Continuous preparation method of glycidyl methacrylate

Also Published As

Publication number Publication date
JP5011707B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5011707B2 (en) Method for producing glycidyl methacrylate
JP2007332138A (en) Method of ester-interchange for producing (meth)acrylate ester monomer
JP5702048B2 (en) Method for producing (meth) acrylic acid naphthyl ester
JP4456939B2 (en) Method for purifying adamantyl esters
JP2003342268A (en) Method for producing epoxy-terminated (meth)acrylate
US7176328B2 (en) Method of producing glycidyl methacrylate
JP3654306B2 (en) Method for producing glycidyl acrylate or glycidyl methacrylate
JP3885249B2 (en) Purification method of glycidyl (meth) acrylate
JP4572684B2 (en) Method for producing vinyl group-containing compound
JPH0959268A (en) Production of acrylic acid or methacrylic acid glycidyl ester
JP4247582B2 (en) Purification method and production method of glycidyl (meth) acrylate
JP5999342B2 (en) Method for producing glycidyl methacrylate
JP5037901B2 (en) Process for producing unsaturated phenyl phenyl
JP6044264B2 (en) Method for producing glycidyl methacrylate
JP5318374B2 (en) Polymerization prevention method
JP2004018389A (en) Production method for glyceryl (meth)acrylate
JP2014162763A (en) Method for producing (meth)acrylic acid ester
JP2006036732A (en) Production method for adamantyl (meth)acrylate compound
JPH08239371A (en) Production of glycidyl methacrylate or glycidyl acrylate
JPH08239372A (en) Production of glycidyl methacrylate or glycidyl acrylate
JP2003064022A (en) Method of producing polyfunctional vinyl compound
JP2009137882A (en) Method for producing glycidyl (meth)acrylate
JP5191702B2 (en) N-oxyl compound, method for producing the same, and method for preventing polymerization
JPH0212939B2 (en)
JPS6043055B2 (en) Method for stabilizing still residue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5011707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3