JP2006151709A - Ceramic formed body and method of producing the same - Google Patents

Ceramic formed body and method of producing the same Download PDF

Info

Publication number
JP2006151709A
JP2006151709A JP2004341245A JP2004341245A JP2006151709A JP 2006151709 A JP2006151709 A JP 2006151709A JP 2004341245 A JP2004341245 A JP 2004341245A JP 2004341245 A JP2004341245 A JP 2004341245A JP 2006151709 A JP2006151709 A JP 2006151709A
Authority
JP
Japan
Prior art keywords
inorganic material
group
stimulus
responsive
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004341245A
Other languages
Japanese (ja)
Other versions
JP4727973B2 (en
Inventor
Kimiyasu Sato
佐藤  公泰
Yuji Hotta
裕司 堀田
Takaaki Nagaoka
孝明 長岡
Koji Watari
渡利  広司
Michihiro Asai
道博 淺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NGK Insulators Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Insulators Ltd
Priority to JP2004341245A priority Critical patent/JP4727973B2/en
Publication of JP2006151709A publication Critical patent/JP2006151709A/en
Application granted granted Critical
Publication of JP4727973B2 publication Critical patent/JP4727973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing an inorganic material formed body by which the formed body having small defects, high mechanical strength and excellent quality is produced under a mild condition where firing at a high temperature such as ≤500°C is needless without adding a large quantity of an organic material while securing excellent formability and shape holding property after forming. <P>SOLUTION: In the method of producing the inorganic material formed body, the inorganic material formed body is obtained by using a stimulation-responsive inorganic material particle constituted so that an organic atomic group is incorporated in an inorganic material particle and a modifying atomic group having a functional group (stimulation-responsive functional group) causing bonding reaction with other functional groups by responding to external simulation is chemically modified as a raw material, forming a mixture containing the stimulation-responsive inorganic material particle into a prescribed shape to obtain a green body precursor and giving the external stimulation to the green body precursor to form a cross-linking atomic group to bond the inorganic material particles with each other by using the bonding reaction between the stimulation-responsive functional group and other functional groups. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミックスや金属等の無機材料によって構成される無機材料成形体及びその製造方法に関するものである。具体的には、500℃以上といった高温での焼成を必要としない温和な条件で、機械的強度の高い成形体を得ることができる無機材料成形体の製造方法、並びにその製造方法に好適に用いられる刺激応答性無機材料粒子及びその製造方法に関するものである。   The present invention relates to an inorganic material molded body composed of an inorganic material such as ceramics or metal, and a method for producing the same. Specifically, it is suitably used in a method for manufacturing an inorganic material molded body capable of obtaining a molded body having high mechanical strength under mild conditions that do not require firing at a high temperature of 500 ° C. or higher, and the manufacturing method thereof. The present invention relates to a stimulus-responsive inorganic material particle and a method for producing the same.

セラミックや金属等の無機材料は、プラスティック等の有機材料と比較して機械的強度や耐久性に優れることから、構造材料や電気・電子材料等、様々な用途で用いられている。そして、これらの無機材料は各々の用途に適合する形状に成形された成形体(無機材料成形体)として用いられることが一般的である。   Inorganic materials such as ceramics and metals are superior in mechanical strength and durability compared to organic materials such as plastics, and are therefore used in various applications such as structural materials and electrical / electronic materials. And these inorganic materials are generally used as a molded object (inorganic material molded object) shape | molded in the shape suitable for each use.

このような無機材料成形体の製造方法としては、例えば、骨材粒子(セラミックス粉末等)、分散媒(水等)、有機バインダー等を混合・混練して坏土を得、その坏土を押出成形等の方法により成形し、乾燥し、焼成することによりセラミックス焼結体を得る無機材料成形体の製造方法が開示されている(高温焼結法:例えば、特許文献1参照)。   As a method for producing such an inorganic material molded body, for example, an aggregate particle (ceramic powder, etc.), a dispersion medium (water, etc.), an organic binder, etc. are mixed and kneaded to obtain a clay, and the clay is extruded. A method for producing an inorganic material molded body in which a ceramic sintered body is obtained by molding, drying, and firing by a method such as molding is disclosed (high-temperature sintering method: see, for example, Patent Document 1).

また、骨材粒子(セラミックス粉末等)、分散媒(水等)、有機バインダー等を混合してスラリー(スリップ)を得、そのスラリーを多孔体からなる吸水性の成形型に注型し、スラリーを乾燥・固化させた後、脱脂することにより無機材料成形体を得る製造方法が開示されている(鋳込み成形法(スリップキャスティング法):例えば、非特許文献1参照)。   Also, aggregate particles (ceramic powder, etc.), dispersion medium (water, etc.), organic binder, etc. are mixed to obtain a slurry (slip), and the slurry is poured into a water-absorbing mold composed of a porous body. A manufacturing method for obtaining an inorganic material molded body by drying and solidifying and then degreasing is disclosed (casting molding method (slip casting method): see Non-Patent Document 1, for example).

更には、骨材粒子(セラミックス粉末等)、分散媒(水等)、ゲル化剤(モノマーやプレポリマー等)等を混合してスラリーを得、そのスラリーを成形型に注型し、加熱や重合開始剤の添加等によりゲル化剤をゲル化させてスラリーを固化させた後、脱脂することにより無機材料成形体を得る製造方法が開示されている(ゲルキャスト法:例えば、特許文献2参照)。   Furthermore, aggregate particles (ceramic powder, etc.), dispersion medium (water, etc.), gelling agent (monomer, prepolymer, etc.), etc. are mixed to obtain a slurry, and the slurry is poured into a mold and heated. A manufacturing method is disclosed in which a gelling agent is gelled by addition of a polymerization initiator or the like to solidify a slurry, and then degreased to obtain an inorganic material molded body (gel casting method: see, for example, Patent Document 2) ).

特許第3227039号公報Japanese Patent No. 3227039 特開2002−179468号公報JP 2002-179468 A 社団法人日本セラミックス協会編、セラミックス工学ハンドブック、第2版、技報堂出版、2002年、p.176〜178Edited by the Ceramic Society of Japan, Ceramics Engineering Handbook, 2nd edition, Gihodo Publishing, 2002, p. 176-178

高温焼結法は、焼成によって物質の拡散を惹起し、骨材粒子間に結合を形成させるため、高強度の無機材料成形体を得ることができるという利点がある。しかしながら、500〜2000℃の高温での焼成が必要であるため、製造に際して多大なエネルギーを必要とすることに加えて、特殊な高温設備が必要となるという設備上の制約がある。また、良好な成形性と成形後の保形性を確保するためには、骨材粒子100質量部に対して10〜15質量部といった多量の有機バインダーを添加する必要がある。この多量の有機バインダーに起因して、焼成時において、i)有機バインダーの占有空間がボイド(欠陥)となり、焼結体の機械的強度が低下する、ii)有機バインダーが燃焼する際に熱応力が作用し、焼結体にクラック(欠陥)が発生する、iii)有機バインダーが燃焼する分、焼成時間が延びる、iv)有機バインダーの燃焼によって二酸化炭素や有害ガスが発生するため、地球温暖化や大気汚染の原因となる、といった様々な課題が残されており、未だ十分に満足できるものではなかった。   The high-temperature sintering method has an advantage that a high-strength inorganic material molded body can be obtained because the diffusion of the substance is caused by firing and a bond is formed between the aggregate particles. However, since firing at a high temperature of 500 to 2000 ° C. is necessary, in addition to requiring a large amount of energy for production, there is a restriction on equipment that special high-temperature equipment is required. Further, in order to ensure good moldability and shape retention after molding, it is necessary to add a large amount of organic binder such as 10 to 15 parts by mass with respect to 100 parts by mass of the aggregate particles. Due to this large amount of organic binder, during firing, i) the space occupied by the organic binder becomes voids (defects), and the mechanical strength of the sintered body decreases, ii) thermal stress when the organic binder burns Acts, and cracks (defects) are generated in the sintered body. Iii) The firing time is extended by the amount of burning of the organic binder. Iv) Carbon dioxide and harmful gases are generated by the burning of the organic binder. Various problems such as causing air pollution and air pollution remain, and they are still not fully satisfactory.

鋳込み成形法やゲルキャスト法は、必ずしも高温での焼成を行う必要がないため、高温焼結法と比較して製造時の消費エネルギーを削減することができ、設備上の制約も少ないという利点がある。しかしながら、これらの方法も、良好な成形性と成形後の保形性を確保するためには、多量の有機バインダーないしはゲル化剤を添加する必要があった。即ち、これらの方法も、成形体中に多量の有機物が含まれる点については高温焼結法と何ら変わっておらず、その有機物に起因して高温焼結法と同様の課題が残されており、なお改善の余地を残すものであった。   The casting molding method and the gel casting method do not necessarily require firing at a high temperature. Therefore, the energy consumption during production can be reduced compared to the high-temperature sintering method, and there are few advantages on equipment. is there. However, these methods also require the addition of a large amount of an organic binder or gelling agent in order to ensure good moldability and shape retention after molding. That is, these methods are not different from the high-temperature sintering method in that a large amount of organic matter is contained in the molded body, and the same problems as the high-temperature sintering method remain due to the organic matter. It still left room for improvement.

以上説明したように、現在のところ、500℃以上といった高温での焼成を必要としない温和な条件で、有機物を多量に添加することなく、良好な成形性と成形後の保形性を確保できることに加え、欠陥が少なく機械的強度が高い良好な品質の成形体を得られる無機材料成形体の製造方法は未だ開示されておらず、そのような製造方法を創出することが産業界から切望されている。   As described above, at present, it is possible to ensure good moldability and shape retention after molding without adding a large amount of organic matter under mild conditions that do not require firing at a high temperature of 500 ° C. or higher. In addition, a manufacturing method of an inorganic material molded body capable of obtaining a molded article of good quality with few defects and high mechanical strength has not yet been disclosed, and the creation of such a manufacturing method is eagerly desired by the industry. ing.

本発明は、上述のような従来技術の課題を解決するためになされたものであり、500℃以上といった高温での焼成を必要としない温和な条件で、有機物を多量に添加することなく、良好な成形性と成形後の保形性を確保できることに加え、欠陥が少なく機械的強度が高い良好な品質の成形体を得られる無機材料成形体の製造方法を提供するものである。   The present invention has been made to solve the above-described problems of the prior art, and is good without adding a large amount of organic matter under mild conditions that do not require firing at a high temperature of 500 ° C. or higher. In addition to ensuring good moldability and shape retention after molding, a method for producing an inorganic material molded body capable of obtaining a molded article of good quality with few defects and high mechanical strength is provided.

本発明者らは、本発明の無機材料成形体の製造方法を開発するに際し、従来の方法において、500℃以上といった高温で焼成しなければ骨材粒子間に強固な結合を形成することができず、有機物を多量に添加しなければ、良好な成形性と成形後の保形性を確保することができない原因について検討した。   In developing the method for producing an inorganic material molded body of the present invention, the present inventors can form a strong bond between aggregate particles unless the conventional method is fired at a high temperature of 500 ° C. or higher. First, the reason why good moldability and shape retention after molding could not be secured unless a large amount of organic substance was added was examined.

その結果、従来の方法では、i)500℃に至らない温度域では物質の拡散を惹起して骨材粒子間に結合を形成させることが困難である、ii)有機バインダーやゲル化剤等は骨材粒子の表面に吸着され、或いは緩やかに結合しているに過ぎず、骨材粒子同士を結びつける結合力が十分でない、iii)骨材粒子となる無機材料粒子と、有機バインダーやゲル化剤等の有機物との親和性が低く、これらが相分離して部分的に凝集してしまうため、有機バインダーやゲル化剤が有効に機能していない、等の原因により、500℃以上といった高温で焼成しなければ無機材料粒子間に強固な結合を形成することができず、有機物を多量に添加しなければ、良好な成形性と成形後の保形性を確保できないことが判明した。   As a result, in the conventional method, i) it is difficult to cause diffusion of the substance and form a bond between aggregate particles in a temperature range not reaching 500 ° C., ii) organic binders, gelling agents, etc. It is adsorbed on the surface of the aggregate particles or is only loosely bonded, and the binding force for linking the aggregate particles is not sufficient. Iii) Inorganic material particles that become aggregate particles, and an organic binder or gelling agent Due to low affinity with organic materials such as these, phase separation and partial aggregation, the organic binder and gelling agent are not functioning effectively, etc. It has been found that a strong bond cannot be formed between inorganic material particles without firing, and good moldability and shape retention after molding cannot be secured unless a large amount of organic substance is added.

そこで、本発明者らが鋭意検討を行った結果、骨材粒子となる無機材料粒子同士を、有機原子団を含む架橋原子団を介して共有結合という強固な結合によって相互に結合させることにより、500℃以上といった高温での焼成を必要としない温和な条件で、有機物を多量に添加することなく、良好な成形性と成形後の保形性を確保できることに想到し、本発明を完成させた。具体的には、本発明は、以下の無機材料成形体及びその製造方法、その製造方法に好適に用いられる刺激応答性無機材料粒子及びその製造方法、並びに無機材料焼結体の製造方法を提供するものである。   Therefore, as a result of the earnest study by the present inventors, the inorganic material particles to be aggregate particles are bonded to each other by a strong bond called a covalent bond via a bridging atomic group containing an organic atomic group, The present invention was completed by conceiving that good moldability and shape retention after molding can be ensured without adding a large amount of organic matter under mild conditions that do not require firing at a high temperature of 500 ° C. or higher. . Specifically, the present invention provides the following inorganic material molded body and manufacturing method thereof, stimuli-responsive inorganic material particles suitably used in the manufacturing method, manufacturing method thereof, and manufacturing method of an inorganic material sintered body To do.

[1] (A):骨材粒子となる無機材料粒子と、(B):有機原子団を含む架橋原子団と、を構成要素として備え、前記(B):架橋原子団が、前記(A):無機材料粒子に対して共有結合によって結合され、前記(A):無機材料粒子の各々が、前記(B):架橋原子団によって相互に結合された構造を有する無機材料成形体。 [1] (A): An inorganic material particle to be an aggregate particle, and (B): a bridging atomic group containing an organic atomic group as constituent elements, and (B): the bridging atomic group is the above (A ): An inorganic material molded body having a structure in which the inorganic material particles are bonded to each other by a covalent bond, and each of the (A): inorganic material particles is bonded to each other by the (B): bridging atomic group.

[2] 前記(B):架橋原子団が、フェニルヒドラゾ基(−C64−NHNH−)、アミド基(−NHCO−)、及びイミド基(−N(CO−)2)の群から選択される少なくとも一種の官能基を含むものである前記[1]に記載の無機材料成形体。 [2] The group (B): the bridging atomic group is a phenylhydrazo group (—C 6 H 4 —NHNH—), an amide group (—NHCO—), and an imide group (—N (CO—) 2 ). The inorganic material molded body according to the above [1], which contains at least one functional group selected from the group consisting of:

[3] 酸化物系セラミックス、非酸化物系セラミックス、及び金属の群から選択される少なくとも一種の無機材料からなる無機材料粒子と有機原子団を含む架橋原子団とを構成要素として備え、前記架橋原子団が前記無機材料粒子に対して共有結合によって結合され、前記無機材料粒子の各々が前記架橋原子団によって相互に結合された構造を有する無機材料成形体の製造方法であって、第1工程:前記無機材料粒子に、有機原子団を含み、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有する修飾原子団、が化学修飾された刺激応答性無機材料粒子を原料として用い、前記刺激応答性無機材料粒子を含む混合物を所望形状に成形して成形体前駆体を得、第2工程:前記成形体前駆体に対して前記外部刺激を与え、前記刺激応答性官能基と前記他の官能基との間の結合反応を利用して、前記無機材料粒子間を相互に結合する前記架橋原子団を形成させることによって、前記無機材料成形体を得る、無機材料成形体の製造方法。 [3] Oxide ceramics, non-oxide ceramics, and inorganic material particles made of at least one inorganic material selected from the group of metals and a bridging atomic group containing an organic atomic group as constituent elements, the bridging A method for producing an inorganic material molded body having a structure in which atomic groups are bonded to the inorganic material particles by a covalent bond, and each of the inorganic material particles is bonded to each other by the bridging atomic group. A modified atomic group containing a functional group (stimulus-responsive functional group) containing an organic atomic group and causing a binding reaction with another functional group in response to an external stimulus is chemically modified in the inorganic material particle. The stimulus-responsive inorganic material particles are used as raw materials, and the mixture containing the stimulus-responsive inorganic material particles is molded into a desired shape to obtain a molded body precursor. Second step: By applying a partial stimulus and utilizing the binding reaction between the stimulus-responsive functional group and the other functional group to form the bridging atomic group that bonds the inorganic material particles to each other, The manufacturing method of an inorganic material molded object which obtains a material molded object.

[4] 前記刺激応答性無機材料粒子の他、前記無機材料粒子に、有機原子団を含み、前記刺激応答性官能基との間で結合を形成し得る反応性官能基(結合性官能基)を有する修飾原子団、が化学修飾された結合性無機材料粒子を原料として用い、前記刺激応答性官能基と前記結合性官能基との間の結合反応を利用して前記修飾原子団同士を結合させ、前記無機材料粒子間を相互に結合する前記架橋原子団を形成させる、前記[3]に記載の製造方法。 [4] In addition to the stimulus-responsive inorganic material particle, the inorganic material particle includes an organic atomic group and can form a bond with the stimulus-responsive functional group (binding functional group). The modified atomic group is bonded to the modified atomic group by using a binding reaction between the stimuli-responsive functional group and the binding functional group, using as a raw material a binding inorganic material particle that has been chemically modified. The method according to [3], wherein the bridging atomic groups for bonding the inorganic material particles to each other are formed.

[5] 前記刺激応答性無機材料粒子の他、前記刺激応答性官能基との間で結合を形成し得る反応性官能基(結合性官能基)を2以上有する多官能性有機化合物を原料として用い、前記刺激応答性官能基と前記結合性官能基との間の結合反応を利用して前記修飾原子団同士を前記多官能性有機化合物を介して結合させ、前記無機材料粒子間を相互に結合する前記架橋原子団を形成させる、前記[3]に記載の製造方法。 [5] Using, as a raw material, a polyfunctional organic compound having two or more reactive functional groups (binding functional groups) capable of forming a bond with the stimulus-responsive functional group in addition to the stimulus-responsive inorganic material particles And using the bonding reaction between the stimuli-responsive functional group and the binding functional group to bond the modified atomic groups to each other through the polyfunctional organic compound, and the inorganic material particles are mutually bonded. The production method according to [3], wherein the bridging atomic group to be bonded is formed.

[6] 光照射によって、前記刺激応答性官能基としてのフェニルアジド基(−C64−N3)と前記結合性官能基としてのアミノ基(−NH2)との間の結合反応を進行させ、フェニルヒドラゾ結合(−C64−NHNH−)を形成させる、前記[4]又は[5]に記載の製造方法。 [6] By light irradiation, a binding reaction between the phenyl azide group (—C 6 H 4 —N 3 ) as the stimulus-responsive functional group and the amino group (—NH 2 ) as the binding functional group is performed. The production method according to [4] or [5], wherein the process proceeds to form a phenylhydrazo bond (—C 6 H 4 —NHNH—).

[7] マイクロ波照射によって、前記刺激応答性官能基としてのアミノ基(−NH2)と同じく前記刺激応答性官能基としてのカルボキシル基(−COOH)との間の結合反応を進行させ、イミド結合(−N(CO−)2)を形成させる、前記[4]又は[5]に記載の製造方法。 [7] By the microwave irradiation, the binding reaction between the amino group (—NH 2 ) as the stimulus responsive functional group and the carboxyl group (—COOH) as the stimulus responsive functional group is allowed to proceed. The production method according to [4] or [5], wherein a bond (—N (CO—) 2 ) is formed.

[8] 300℃以下の加熱によって、前記刺激応答性官能基としてのアミノ基(−NH2)と同じく前記刺激応答性官能基としてのカルボキシル基(−COOH)との間の結合反応を利用してアミド結合(−NHCO−)を形成させる、前記[4]又は[5]に記載の製造方法。 [8] Utilizing a bonding reaction between the amino group (—NH 2 ) as the stimulus-responsive functional group and the carboxyl group (—COOH) as the stimulus-responsive functional group by heating at 300 ° C. or lower. The production method according to [4] or [5], wherein an amide bond (—NHCO—) is formed.

[9] 前記[3]〜[8]のいずれかに記載の製造方法により無機材料成形体を得、前記無機材料成形体を焼成して無機材料焼結体を得る、無機材料焼結体の製造方法。 [9] An inorganic material sintered body obtained by the method according to any one of [3] to [8] to obtain an inorganic material molded body, and firing the inorganic material molded body to obtain an inorganic material sintered body. Production method.

[10] (C):無機材料からなる無機材料粒子と、(D):有機原子団を含み、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有する修飾原子団と、を構成要素として備え、前記(D):修飾原子団が、前記(C):無機材料粒子に対して共有結合によって結合された構造を有する刺激応答性無機材料粒子。 [10] (C): inorganic material particles made of an inorganic material, and (D): a functional group containing an organic atomic group and causing a binding reaction with another functional group in response to an external stimulus (stimulus responsiveness) And (C): a stimulus-responsive inorganic material having a structure in which the modified atomic group is covalently bonded to the inorganic material particle. Material particles.

[11] 前記(D):修飾原子団が、前記刺激応答性官能基としてフェニルアジド基(−C64−N3)を有するものである前記[10]に記載の刺激応答性無機材料粒子。 [11] The stimulus-responsive inorganic material according to [10], wherein (D): the modified atomic group has a phenyl azide group (—C 6 H 4 —N 3 ) as the stimulus-responsive functional group. particle.

[12] 無機材料からなる無機材料粒子と、有機原子団を含み、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有する修飾原子団と、を構成要素として備え、前記修飾原子団が、前記無機材料粒子に対して共有結合によって結合された構造を有する刺激応答性無機材料粒子の製造方法であって、前記無機材料粒子として、酸化物系セラミックス、非酸化物系セラミックス、及び金属の群から選択される少なくとも一種の無機材料からなるものを用い、その無機材料粒子に対して、前記刺激応答性官能基を有する修飾原子団を化学修飾する、刺激応答性無機材料粒子の製造方法。 [12] A modified atomic group containing an inorganic material particle made of an inorganic material and an organic atomic group, and having a functional group (stimulus-responsive functional group) that causes a binding reaction with another functional group in response to an external stimulus And a method for producing stimuli-responsive inorganic material particles having a structure in which the modifying atomic group is covalently bonded to the inorganic material particles, wherein the inorganic material particles are oxidized. A material composed of at least one inorganic material selected from the group consisting of physical ceramics, non-oxide ceramics, and metals is used to chemically modify the modified atomic group having the stimuli-responsive functional group on the inorganic material particles. A method for producing stimuli-responsive inorganic material particles to be modified.

[13] 第1工程:前記無機材料粒子に対して、シラン系カップリング剤を作用させ、前記無機材料粒子とシラン系カップリング剤との間で縮合反応を起こさせることによって、シラノール残基が前記無機材料粒子に対して共有結合によって結合された構造を有するシラノール結合無機材料粒子を得、第2工程:前記シラノール結合無機材料粒子に対して、前記刺激応答性感応基を有する有機化合物を作用させ、前記シラノール結合無機材料粒子と前記有機化合物との間で結合形成反応を起こさせることによって、前記修飾原子団を形成し、前記刺激応答性無機材料粒子を得る、前記[12]に記載の製造方法。 [13] First step: A silanol residue is produced by causing a silane coupling agent to act on the inorganic material particles and causing a condensation reaction between the inorganic material particles and the silane coupling agent. A silanol-bonded inorganic material particle having a structure bonded to the inorganic material particle by a covalent bond is obtained, and the second step: the organic compound having the stimulus-responsive sensitive group acts on the silanol-bonded inorganic material particle Wherein the modified atomic group is formed by causing a bond forming reaction between the silanol-bonded inorganic material particles and the organic compound, thereby obtaining the stimulus-responsive inorganic material particles. Production method.

[14] 前記有機化合物として、前記刺激応答性官能基がフェニルアジド基(−C64−N3)であるものを用いる、前記[12]又は[13]に記載の製造方法。 [14] The production method according to [12] or [13], wherein the organic compound is a compound in which the stimulus-responsive functional group is a phenyl azide group (—C 6 H 4 —N 3 ).

本発明の無機材料成形体の製造方法は、500℃以上といった高温での焼成を必要としない温和な条件で、有機物を多量に添加することなく、良好な成形性と成形後の保形性を確保できることに加え、欠陥が少なく機械的強度が高い良好な品質の成形体を得ることができるという、従来の製造方法と比較して有利な効果を奏するものである。   The method for producing a molded body of an inorganic material according to the present invention has good moldability and shape retention after molding without adding a large amount of organic matter under mild conditions that do not require firing at a high temperature of 500 ° C. or higher. In addition to being able to be ensured, there is an advantageous effect compared with the conventional manufacturing method that a molded article of good quality with few defects and high mechanical strength can be obtained.

以下、本発明の無機材料成形体及びその製造方法を実施するための最良の形態について具体的に説明する。但し、本発明は、骨材粒子となる無機材料粒子の各々を有機原子団を含む架橋原子団によって相互に結合するという思想に基づく無機材料成形体及びその製造方法を広く包含するものであり、以下に説明する実施形態に限定して解釈されるべきではない。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the inorganic material molded body and the method for producing the same of the present invention will be specifically described below. However, the present invention broadly encompasses an inorganic material molded body based on the idea that each of the inorganic material particles to be aggregate particles is bonded to each other by a bridging atomic group containing an organic atomic group, and a method for producing the same, The present invention should not be construed as being limited to the embodiments described below.

本発明の無機材料成形体の製造方法は、骨材粒子となる無機材料粒子と、有機原子団を含む架橋原子団とを構成要素として備え、架橋原子団が無機材料粒子に対して共有結合によって結合され、無機材料粒子の各々が架橋原子団によって相互に結合された構造を有する無機材料成形体を得るための製造方法である。   The method for producing an inorganic material molded body according to the present invention includes inorganic material particles to be aggregate particles and a bridging atomic group containing an organic atomic group as constituent elements, and the bridging atomic group is covalently bonded to the inorganic material particle. This is a production method for obtaining an inorganic material molded body having a structure in which each of inorganic material particles is bonded to each other by a bridging atomic group.

[1]第1工程
本発明の製造方法の第1工程は、刺激応答性無機材料粒子を原料として用い、刺激応答性無機材料粒子を含む混合物を所望形状に成形して成形体前駆体を得る、成形体前駆体製造工程である。
[1] First Step In the first step of the production method of the present invention, a stimulus-responsive inorganic material particle is used as a raw material, and a mixture containing the stimulus-responsive inorganic material particle is molded into a desired shape to obtain a molded body precursor. This is a molded body precursor manufacturing process.

骨材粒子は、成形体の主たる構成成分となる粒子であり、無機材料成形体を製造する場合には、無機材料からなる無機材料粒子が用いられる。そして本発明の製造方法においては、刺激応答性無機材料粒子を原料として用いる必要がある。   Aggregate particles are particles that are the main constituents of a molded body. When an inorganic material molded body is manufactured, inorganic material particles made of an inorganic material are used. In the production method of the present invention, it is necessary to use stimuli-responsive inorganic material particles as a raw material.

本明細書にいう「刺激応答性無機材料粒子」とは、有機原子団を含み、刺激応答性官能基を有する修飾原子団、が化学修飾された無機材料粒子である。   The “stimulus-responsive inorganic material particle” referred to in the present specification is an inorganic material particle in which a modified atomic group containing an organic atomic group and having a stimulus-responsive functional group is chemically modified.

「修飾原子団」は、有機原子団を含むことと、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有することが必要である。「有機原子団」とは、炭素原子を構成原子として含む原子団を意味し、他の構造については特に限定はない。有機原子団を含む修飾原子団は、その構造を適宜選択することにより、500〜2000℃といった高温条件下でなくとも容易かつ高い効率で、無機材料粒子間に強固な結合を形成させることが可能となる点において好ましい。   The “modified atomic group” needs to contain an organic atomic group and have a functional group (stimulus-responsive functional group) that causes a binding reaction with another functional group in response to an external stimulus. “Organic atomic group” means an atomic group containing a carbon atom as a constituent atom, and the other structure is not particularly limited. By appropriately selecting the structure of the modified atomic group including the organic atomic group, it is possible to form a strong bond between inorganic material particles easily and with high efficiency even under high temperature conditions of 500 to 2000 ° C. Is preferable in that.

「刺激応答性官能基」とは、外部刺激に応答して他の官能基との結合反応が惹起される官能基を意味する。この刺激応答性官能基と他の官能基との間の結合反応を利用することにより、無機材料粒子の各々を相互に結合する架橋原子団を形成させることが可能となる。   “Stimulus-responsive functional group” means a functional group that causes a binding reaction with another functional group in response to an external stimulus. By utilizing the bonding reaction between the stimulus-responsive functional group and another functional group, it is possible to form a bridging atomic group that binds each of the inorganic material particles to each other.

「外部刺激」とは、外部環境から供給される物理的ないし化学的刺激等を意味し、例えば、熱刺激(加熱)、光刺激(光照射)、電気刺激(電圧印加)、磁気刺激等の物理的刺激や、pH変化(酸・アルカリの添加)や水分の変化等の化学的刺激が挙げられる。本発明の製造方法は、500℃以上といった高温での焼成を必要としない温和な条件で、機械的強度の高い成形体を得ることを念頭にしているため、そのような条件に合致する外部刺激により他の官能基との結合反応が惹起されることが望ましい。そのような外部刺激としては、例えば、光照射、マイクロ波照射、超音波照射、低温での加熱、常温プラズマ等が挙げられる。   “External stimulus” means physical or chemical stimulus supplied from the external environment, such as thermal stimulus (heating), light stimulus (light irradiation), electrical stimulus (voltage application), magnetic stimulus, etc. Examples include physical stimulation, chemical stimulation such as pH change (addition of acid / alkali) and moisture change. Since the manufacturing method of the present invention is intended to obtain a molded article having high mechanical strength under mild conditions that do not require firing at a high temperature of 500 ° C. or higher, external stimuli that meet such conditions It is desirable to cause a binding reaction with other functional groups. Examples of such external stimuli include light irradiation, microwave irradiation, ultrasonic irradiation, heating at low temperature, and room temperature plasma.

刺激応答性官能基としては、光照射によってアミノ基(−NH2)との間の結合反応が惹起され、ヒドラゾ結合(−NHNH−)を形成するフェニルアジド基(−C64−N3)等が挙げられる。また、刺激応答性官能基には、フェニルアジド基のように一つの官能基の作用によって結合反応が惹起されるものの他、2つの官能基の相互作用によって、結合反応が惹起されるものも含まれる。例えば、刺激応答性官能基として、アミノ基(−NH2)とカルボキシル基(−COOH)の組み合わせを用いると、マイクロ波照射によって両官能基の間で結合反応が惹起され、イミド結合(−N(CO−)2)を形成させることができ、300℃以下の加熱によって、アミド結合(−NHCO−)を形成させることもできる。 As the stimulus-responsive functional group, a phenylazide group (—C 6 H 4 —N 3 ) that forms a hydrazo bond (—NHNH—) by causing a binding reaction with an amino group (—NH 2 ) by light irradiation. ) And the like. The stimulus-responsive functional groups include those in which a binding reaction is induced by the action of one functional group, such as a phenyl azide group, and those in which a binding reaction is caused by the interaction of two functional groups. It is. For example, when a combination of an amino group (—NH 2 ) and a carboxyl group (—COOH) is used as a stimulus-responsive functional group, a binding reaction is induced between the two functional groups by microwave irradiation, and an imide bond (—N (CO−) 2 ) can be formed, and an amide bond (—NHCO—) can be formed by heating at 300 ° C. or lower.

ここで、刺激応答性無機材料粒子の製造方法について説明する。刺激応答性無機材料粒子の製造は、無機材料粒子に対して、刺激応答性官能基を有する修飾原子団を化学修飾することにより行われる。従って、「無機材料粒子」は、修飾原子団と共有結合を形成することが可能な結合サイト(水酸基等)を有する無機材料からなるものを用いることが好ましく、例えば、表面水酸基を有する酸化物セラミックスからなる粒子を好適に用いることができる。また、非酸化物系セラミックスや金属からなる粒子も、空気酸化によってその表面に不可避的に酸化物セラミックスが形成されるため(表面酸化膜)、「無機材料粒子」として用いることができる。即ち、本発明の製造方法においては、酸化物系セラミックス、非酸化物系セラミックス、及び金属の群から選択される少なくとも一種の無機材料からなる無機材料粒子を用いることが好ましい。   Here, a method for producing stimulus-responsive inorganic material particles will be described. The stimulus-responsive inorganic material particles are produced by chemically modifying a modified atomic group having a stimulus-responsive functional group with respect to the inorganic material particles. Accordingly, the “inorganic material particles” are preferably made of an inorganic material having a binding site (hydroxyl group or the like) capable of forming a covalent bond with a modified atomic group. For example, oxide ceramics having a surface hydroxyl group The particle | grains which consist of can be used suitably. Also, particles made of non-oxide ceramics or metals can be used as “inorganic material particles” because oxide ceramics are inevitably formed on the surface by air oxidation (surface oxide film). That is, in the production method of the present invention, it is preferable to use inorganic material particles made of at least one inorganic material selected from the group of oxide ceramics, non-oxide ceramics, and metals.

酸化物セラミックスとしては、例えば、シリカ、アルミナ、ジルコニア、チタニア等の汎用セラミックスの他、バリア、セリア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、酸化アンチモン等の金属酸化物等が挙げられる。これらの酸化物セラミックスは結合サイトとなる表面水酸基を有しており、修飾原子団の化学修飾が容易である点において好ましい。また、非酸化物セラミックスとしては、炭化ケイ素、窒化ケイ素等が、金属としては、ケイ素、アルミニウム、ジルコニウム、チタニウム、バリウム、セリウム、亜鉛、ゲルマニウム、インジウム、スズ、アンチモン等が挙げられる。   Examples of oxide ceramics include metal oxides such as barrier, ceria, zinc oxide, germanium oxide, indium oxide, tin oxide, and antimony oxide, as well as general-purpose ceramics such as silica, alumina, zirconia, and titania. These oxide ceramics have a surface hydroxyl group to be a binding site, and are preferable in that chemical modification of the modifying atomic group is easy. Examples of non-oxide ceramics include silicon carbide and silicon nitride. Examples of metals include silicon, aluminum, zirconium, titanium, barium, cerium, zinc, germanium, indium, tin, and antimony.

「無機材料粒子」の平均粒子径としては、1nm〜50μmの範囲内であることが好ましく、10〜500nmの範囲内であることがより好ましい。上記範囲未満であると無機材料粒子の比表面積が過剰となり、無機材料粒子の単位質量当たりに占める修飾原子団の割合が大きくなり過ぎるおそれがある。このような場合、本発明が目的とする有機物含有量が少ない無機材料成形体を得られなくなるおそれがあり好ましくない。一方、上記範囲を超えると、無機材料粒子表面の活性が低下して修飾原子団との結合を形成し難くなる場合があり、また、スラリーとした際に無機材料粒子が沈降し易くなり、その取り扱いが困難となる場合がある。なお、本明細書において「平均粒子径」というときは、ストークスの液相沈降法を測定原理とし、X線透過法により検出を行う、X線透過式粒度分布測定装置(例えば、商品名:セディグラフ5000−02型、島津製作所製等)により測定した50%粒子径の値を意味するものとする。   The average particle diameter of the “inorganic material particles” is preferably in the range of 1 nm to 50 μm, and more preferably in the range of 10 to 500 nm. If it is less than the above range, the specific surface area of the inorganic material particles becomes excessive, and the proportion of the modified atomic group per unit mass of the inorganic material particles may be too large. In such a case, there is a possibility that an inorganic material molded body having a small organic content, which is the object of the present invention, may not be obtained, which is not preferable. On the other hand, if the above range is exceeded, the activity of the surface of the inorganic material particles may be reduced and it may be difficult to form a bond with the modifying atomic group, and when the slurry is made, the inorganic material particles are likely to settle, Handling may be difficult. In the present specification, the term “average particle size” refers to an X-ray transmission type particle size distribution measuring apparatus (for example, trade name: Cedi, which uses the Stokes liquid phase precipitation method as a measurement principle and performs detection by the X-ray transmission method. It means the value of 50% particle diameter measured by Graph 5000-02 type, manufactured by Shimadzu Corporation.

修飾原子団を化学修飾する方法は特に限定されず、従来公知の化学修飾法を利用することができる。例えば、カップリング剤により有機分子を固定する方法、オートクレーブ法により有機分子を固定する方法、コロナ放電による表面改質を利用する方法、オゾンによる表面改質を利用する方法等が挙げられる。中でも、簡便に強固な結合を形成することが可能であるという理由から、カップリング剤により有機分子を固定する方法を用いることが好ましい。   The method for chemically modifying the modifying atomic group is not particularly limited, and a conventionally known chemical modification method can be used. Examples thereof include a method of fixing organic molecules with a coupling agent, a method of fixing organic molecules by an autoclave method, a method using surface modification by corona discharge, a method using surface modification by ozone, and the like. Among them, it is preferable to use a method of fixing organic molecules with a coupling agent because it is possible to easily form a strong bond.

カップリング剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、クロム系カップリング剤等が知られているが、安定な水/メタノール溶液を容易に得られる点においてシラン系カップリング剤を用いることが好ましい。   As coupling agents, for example, silane coupling agents, titanate coupling agents, aluminum coupling agents, chromium coupling agents and the like are known, but a stable water / methanol solution can be easily obtained. In this respect, it is preferable to use a silane coupling agent.

シラン系カップリング剤を利用した化学修飾の方法としては、例えば、以下のような方法が挙げられる。   Examples of the chemical modification method using a silane coupling agent include the following methods.

まず、無機材料粒子に対して、シラン系カップリング剤を作用させ、無機材料粒子とシラン系カップリング剤との間で縮合反応を起こさせることによって、シラノール残基が前記無機材料粒子に対して共有結合によって結合された構造を有するシラノール結合無機材料粒子を得る(第1工程)。   First, a silanol residue acts on the inorganic material particles by causing a silane coupling agent to act on the inorganic material particles and causing a condensation reaction between the inorganic material particles and the silane coupling agent. Silanol-bonded inorganic material particles having a structure bonded by covalent bonds are obtained (first step).

例えば、下記一般式(1)に示すように、無機材料粒子(I)に対して、シラン系カップリング剤(II)を作用させ、無機材料粒子(I)の表面水酸基(OH)とシラン系カップリング剤(II)の加水分解性官能基(Hy1,Hy2,Hy3)との間で縮合反応を起こさせることによって、シラノール残基が前記無機材料粒子に対して共有結合によって結合された構造を有するシラノール結合無機材料粒子(III)を得る。

Figure 2006151709
(但し、Hy1,Hy2,Hy3:加水分解性官能基、A:有機原子団、Re1:反応性官能基、Pi:無機材料粒子) For example, as shown in the following general formula (1), a silane coupling agent (II) is allowed to act on the inorganic material particles (I), and the surface hydroxyl groups (OH) of the inorganic material particles (I) and the silane system By causing a condensation reaction with the hydrolyzable functional groups (Hy 1 , Hy 2 , Hy 3 ) of the coupling agent (II), silanol residues are bonded to the inorganic material particles by covalent bonds. Silanol-bound inorganic material particles (III) having the above structure are obtained.
Figure 2006151709
(However, Hy 1 , Hy 2 , Hy 3 : Hydrolyzable functional group, A: Organic atomic group, Re 1 : Reactive functional group, Pi: Inorganic material particles)

加水分解性官能基(Hy1,Hy2,Hy3)としては、例えば、アルコキシ基(RO−:Rはアルキル基)等が挙げられる。各々の官能基は同じ官能基であってもよいし、異なる官能基であってもよい。アルコキシ基の場合、水の存在により加水分解されてシラノール基(−SiO−)を生成し、そのシラノール基が水素結合によって無機材料粒子の表面水酸基に吸着される。このものを高温で加熱することにより、シラノール基と表面水酸基とが脱水縮合し、シラノール残基が無機材料粒子に対して共有結合によって結合される。 Examples of the hydrolyzable functional group (Hy 1 , Hy 2 , Hy 3 ) include an alkoxy group (RO—: R is an alkyl group). Each functional group may be the same functional group or a different functional group. In the case of an alkoxy group, it is hydrolyzed by the presence of water to produce a silanol group (—SiO—), and the silanol group is adsorbed on the surface hydroxyl group of the inorganic material particles by a hydrogen bond. By heating this at a high temperature, silanol groups and surface hydroxyl groups undergo dehydration condensation, and silanol residues are bonded to the inorganic material particles by covalent bonds.

次いで、シラノール結合無機材料粒子に対して、刺激応答性感応基を有する有機化合物を作用させ、シラノール結合無機材料粒子とその有機化合物との間で結合形成反応を起こさせることによって、修飾原子団を形成し、刺激応答性無機材料粒子を得る(第2工程)。   Next, the modified atomic group is formed by causing an organic compound having a stimulus-responsive sensitive group to act on the silanol-bonded inorganic material particles and causing a bond-forming reaction between the silanol-bonded inorganic material particles and the organic compound. Form stimuli-responsive inorganic material particles (second step).

例えば、下記一般式(2)に示すように、シラノール結合無機材料粒子(III)に対して、刺激応答性感応基Stを有する有機化合物(IV)を作用させ、シラノール結合無機材料粒子(III)の反応性官能基Re1と前記有機化合物(IV)の反応性官能基Re2との間で結合形成反応を起こさせることによって、修飾原子団を形成し、刺激応答性無機材料粒子(V)を得る。

Figure 2006151709
(但し、A,E:有機原子団、Re1,Re2:反応性官能基、Pi:無機材料粒子、St:刺激応答性感応基、G:結合又は原子団) For example, as shown in the following general formula (2), the silanol-binding inorganic material particles (III) are allowed to act on the silanol-binding inorganic material particles (III) with an organic compound (IV) having a stimulus-responsive sensitive group St. The reactive functional group Re 1 of the organic compound (IV) and the reactive functional group Re 2 of the organic compound (IV) cause a bond forming reaction to form a modified atomic group, thereby stimulating-responsive inorganic material particles (V) Get.
Figure 2006151709
(However, A, E: organic atomic group, Re 1, Re 2: reactive functional groups, Pi: inorganic material particles, St: stimulus-responsive sensitive group, G: bonded or atomic group)

反応性官能基Re1、及び反応性官能基Re2としては、例えば、アミノ基とカルボキシル基の組み合わせ等が挙げられる。このような官能基の組み合わせを用いた場合、300℃以下の加熱によって、アミド結合を形成させることができ、修飾原子団を形成することができる。 Examples of the reactive functional group Re 1 and the reactive functional group Re 2 include a combination of an amino group and a carboxyl group. When such a combination of functional groups is used, an amide bond can be formed by heating at 300 ° C. or lower, and a modified atomic group can be formed.

上記の方法の他、無機材料粒子に対して、刺激応答性感応基Stを有するシラン系カップリング剤を作用させ、無機材料粒子の表面水酸基とシラン系カップリング剤の加水分解性官能基との間で縮合反応を起こさせることによって、修飾原子団を形成し、刺激応答性無機材料粒子を得る方法を採ってもよい。   In addition to the above method, a silane coupling agent having a stimulus-responsive sensitive group St is allowed to act on the inorganic material particles, and the surface hydroxyl groups of the inorganic material particles and the hydrolyzable functional groups of the silane coupling agent A method of obtaining a stimuli-responsive inorganic material particle by forming a modified atomic group by causing a condensation reaction between them may be adopted.

例えば、下記一般式(3)に示すように、無機材料粒子(I)に対して、刺激応答性感応基Stを有するシラン系カップリング剤(VI)を作用させ、無機材料粒子(I)の表面水酸基(OH)とシラン系カップリング剤(VI)の加水分解性官能基(Hy1,Hy2,Hy3)との間で縮合反応を起こさせることによって、修飾原子団を形成し、刺激応答性無機材料粒子(VII)を得る。

Figure 2006151709
(但し、Hy1,Hy2,Hy3:加水分解性官能基、A:有機原子団、Pi:無機材料粒子、St:刺激応答性感応基) For example, as shown in the following general formula (3), a silane coupling agent (VI) having a stimulus-responsive sensitive group St is allowed to act on the inorganic material particles (I), and the inorganic material particles (I) By forming a condensation reaction between the surface hydroxyl group (OH) and the hydrolyzable functional group (Hy 1 , Hy 2 , Hy 3 ) of the silane coupling agent (VI), a modified atomic group is formed and stimulated. Responsive inorganic material particles (VII) are obtained.
Figure 2006151709
(However, Hy 1, Hy 2, Hy 3: hydrolyzable functional group, A: an organic atomic group, Pi: inorganic material particles, St: stimulus-responsive sensitive group)

本発明の製造方法においては、上記混合物に骨材粒子以外の物質を混合せしめてもよい。例えば、本発明の製造方法の効果を阻害しない範囲で、比較的少量の有機バインダーやゲル化剤を添加することも、本発明の製造方法に包含される。この際の有機バインダーやゲル化剤の添加量は特に制限はないが、骨材粒子100質量部に対して、1〜10質量部の範囲内で添加することができる。上記範囲未満であると有機バインダーないしゲル化剤がその効果を有効に発揮することができない場合がある。一方、上記範囲を超えると、スラリーとした際に粘性が過剰となり、その取り扱いが困難となる他、多量の有機バインダー等に起因する不具合を生ずる場合がある。このようなことを考慮すると、有機バインダーやゲル化剤の添加量は、1〜3質量部の範囲内であることがより好ましい。   In the production method of the present invention, substances other than aggregate particles may be mixed into the above mixture. For example, the production method of the present invention includes adding a relatively small amount of an organic binder or gelling agent as long as the effects of the production method of the present invention are not impaired. The amount of the organic binder or gelling agent added at this time is not particularly limited, but can be added within a range of 1 to 10 parts by mass with respect to 100 parts by mass of the aggregate particles. If it is less than the above range, the organic binder or gelling agent may not be able to exhibit its effect effectively. On the other hand, if it exceeds the above range, the viscosity becomes excessive when it is made into a slurry, which makes it difficult to handle and may cause problems due to a large amount of organic binder and the like. In consideration of this, the amount of the organic binder or gelling agent added is more preferably in the range of 1 to 3 parts by mass.

有機バインダーとしては、例えば、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース、又はポリビニルアルコール等を好適に用いることができる。ゲル化剤としては、例えば、ポリイソシアネート、エポキシ樹脂、フェノール樹脂等のプレポリマーを好適に用いることができる。   As the organic binder, for example, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, or polyvinyl alcohol can be suitably used. As the gelling agent, for example, a prepolymer such as polyisocyanate, epoxy resin, phenol resin or the like can be suitably used.

本発明の製造方法では、刺激応答性無機材料粒子を含む混合物を所望形状に成形して成形体前駆体を得る。骨材粒子となる無機材料粒子には刺激応答性無機材料粒子を含むことが必要であるが、必ずしも無機材料粒子の全てが刺激応答性無機材料粒子である必要はない。また、混合物の形態は乾燥した粉末状であってもよいし、分散媒を加えた坏土やスラリー(スリップ)であってもよい。分散媒としては、水、或いは水とアルコール等の有機溶媒との混合溶媒等が挙げられ、特に、水が好適に用いられる。   In the production method of the present invention, a mixture containing stimulus-responsive inorganic material particles is molded into a desired shape to obtain a molded body precursor. The inorganic material particles to be the aggregate particles need to contain stimulus-responsive inorganic material particles, but not all of the inorganic material particles need to be stimulus-responsive inorganic material particles. Further, the form of the mixture may be a dry powder form, or a clay or slurry (slip) to which a dispersion medium is added. Examples of the dispersion medium include water or a mixed solvent of water and an organic solvent such as alcohol, and water is particularly preferably used.

成形の方法について特に制限はなく、混合物の形態に合わせて従来公知の成形法の中から適宜選択すればよい。例えば、一軸プレス、等方プレス、鋳込み成形、遠心成形、押出成形、電気泳動法、濾過法、磁場プレス等、骨材粒子が密な状態で充填される方法を好適に用いることができる。このようにして刺激応答性無機材料粒子を含む混合物の成形体が得られるが、本明細書においてはこの成形体を「成形体前駆体」と称することにする。上記の成形体は未だ架橋原子団が形成されておらず、本発明の無機材料成形体の前駆体とみなすことができることによる。   There is no restriction | limiting in particular about the method of shaping | molding, What is necessary is just to select suitably from conventionally well-known shaping | molding methods according to the form of a mixture. For example, a method in which aggregate particles are packed in a dense state, such as uniaxial press, isotropic press, cast molding, centrifugal molding, extrusion molding, electrophoresis method, filtration method, and magnetic field press, can be suitably used. In this way, a molded body of a mixture containing stimuli-responsive inorganic material particles is obtained. In the present specification, this molded body is referred to as a “molded body precursor”. This is because the molded body has not yet been formed with a bridging atomic group and can be regarded as a precursor of the molded body of the inorganic material of the present invention.

[2]第2工程
本発明の製造方法の第2工程は、成形体前駆体に対して外部刺激を与え、刺激応答性官能基と他の官能基との間の結合反応を利用して、無機材料粒子間を相互に結合する架橋原子団を形成させることによって、無機材料成形体を得る、成形体製造工程である。
[2] Second Step In the second step of the production method of the present invention, an external stimulus is applied to the molded body precursor, and a binding reaction between a stimulus-responsive functional group and another functional group is used. This is a molded body manufacturing process in which an inorganic material molded body is obtained by forming a bridging atomic group for bonding inorganic material particles to each other.

具体的には、上記のように製造された成形体前駆体に対して、刺激応答性官能基の種類に適合する外部刺激を与える。例えば、刺激応答性官能基がフェニルアジド基であり、アミノ基との間で結合反応を進行させる場合には、波長250〜400nmの紫外光を5〜120分間照射する。これにより、両官能基の間で結合反応が進行し、フェニルヒドラゾ結合が形成される。即ち、無機材料粒子の各々が、フェニルヒドラゾ基を含む架橋原子団によって相互に結合された構造を有する無機材料成形体が得られる。   Specifically, an external stimulus that matches the type of stimulus-responsive functional group is applied to the molded body precursor produced as described above. For example, when the stimulus-responsive functional group is a phenyl azide group and the binding reaction proceeds with an amino group, ultraviolet light with a wavelength of 250 to 400 nm is irradiated for 5 to 120 minutes. Thereby, a coupling reaction proceeds between both functional groups, and a phenylhydrazo bond is formed. That is, an inorganic material molded body having a structure in which each of the inorganic material particles is bonded to each other by a bridging atomic group containing a phenylhydrazo group is obtained.

また、刺激応答性官能基として、アミノ基とカルボキシル基の組み合わせを用いる場合には、周波数2450MHzのマイクロ波を1秒〜30分間照射する。これにより、両官能基の間で結合反応が進行し、イミド結合が形成される。即ち、無機材料粒子の各々が、イミド基を含む架橋原子団によって相互に結合された構造を有する無機材料成形体が得られる。なお、マイクロ波について、各国政府が産業上使用可能な周波数を定めている場合には、これに従って使用する周波数を選択する必要がある。現在、我が国では、433.92MHz、2450MHz、5800MHz、24.125GHzの周波数を使用可能であり、これらの中から適当な周波数を適宜選択すればよい。諸外国では、これらの周波数以外の周波数(例えば、915MHz(米国)、896MHz(英国)、2375MHz(東欧・ロシア)等)を使用することができる場合もある。   When a combination of an amino group and a carboxyl group is used as the stimulus-responsive functional group, microwaves with a frequency of 2450 MHz are irradiated for 1 second to 30 minutes. Thereby, a coupling reaction proceeds between both functional groups, and an imide bond is formed. That is, an inorganic material molded body having a structure in which each of the inorganic material particles is bonded to each other by a bridging atomic group containing an imide group is obtained. In the case of microwaves, when the governments of each country have determined frequencies that can be used industrially, it is necessary to select the frequencies to be used in accordance with the frequencies. At present, in Japan, frequencies of 433.92 MHz, 2450 MHz, 5800 MHz, and 24.125 GHz can be used, and an appropriate frequency may be appropriately selected from these frequencies. In other countries, frequencies other than these frequencies (for example, 915 MHz (US), 896 MHz (UK), 2375 MHz (Eastern Europe / Russia), etc.) may be used.

更に、刺激応答性官能基として、アミノ基とカルボキシル基の組み合わせを用いる場合には、150〜300℃の比較的低温で1〜8時間加熱してもよい。これにより、両官能基の間で結合反応が進行し、アミド結合が形成される。即ち、無機材料粒子の各々が、アミド基を含む架橋原子団によって相互に結合された構造を有する無機材料成形体が得られる。なお、200℃以下で加熱する場合には、減圧条件下で加熱することが好ましい。アミノ基とカルボキシル基との脱水反応で生成する水を系外に除去することにより、反応が促進されるため、200℃以下という温和な温度条件下でも結合反応が進行することによる。   Further, when a combination of an amino group and a carboxyl group is used as the stimulus-responsive functional group, it may be heated at a relatively low temperature of 150 to 300 ° C. for 1 to 8 hours. Thereby, a coupling reaction proceeds between both functional groups, and an amide bond is formed. That is, an inorganic material molded body having a structure in which each of the inorganic material particles is bonded to each other by a bridging atomic group containing an amide group is obtained. In addition, when heating at 200 degrees C or less, it is preferable to heat on pressure reduction conditions. This is because the reaction is promoted by removing water generated by the dehydration reaction between the amino group and the carboxyl group out of the system, so that the coupling reaction proceeds even under a mild temperature condition of 200 ° C. or less.

結合形成のパターンとしては、例えば、原料として、骨材粒子の少なくとも一部に、i)上記の刺激応答性無機材料粒子と、ii)有機原子団を含み、刺激応答性官能基との間で結合を形成し得る反応性官能基(結合性官能基)を有する修飾原子団、が化学修飾された結合性無機材料粒子、という二種の修飾無機材料粒子を用い、刺激応答性官能基と結合性官能基との間の結合反応を利用して無機材料粒子の修飾原子団同士を直接的に結合させ、無機材料粒子間を相互に結合する架橋原子団を形成させるパターンが挙げられる。   As a pattern of the bond formation, for example, as a raw material, at least a part of the aggregate particle includes i) the stimulus-responsive inorganic material particle and ii) an organic atomic group, and between the stimulus-responsive functional group Bonding with stimuli-responsive functional group using two types of modified inorganic material particles: a modified atomic group having a reactive functional group capable of forming a bond (bonding functional group) and a chemically modified binding inorganic material particle The pattern which forms the bridge | crosslinking atomic group which couple | bonds the modification atomic group of inorganic material particle | grains directly using the coupling reaction between a functional functional group, and couple | bonds inorganic material particle | grains mutually is mentioned.

また、原料として、刺激応答性無機材料粒子の他、結合性官能基を2以上有する多官能性有機化合物を用い、刺激応答性官能基と結合性官能基との間の結合反応を利用して無機材料粒子の修飾原子団同士を多官能性有機化合物を介して間接的に結合させ、無機材料粒子間を相互に結合する架橋原子団を形成させるパターンであってもよい。多官能性有機化合物としては、例えば、フェニルアジド基との間で結合を形成し得るアミノ基を2つ有する、尿素((NH22CO)やヘキサメチレンジアミン(NH2(CH2)NH2)等が挙げられる。但し、2以上の結合性官能基が刺激応答性官能基との結合能を有するものである限り、官能基の種類が全て同じものである必要はなく、官能基の種類が異なっていてもよい。 In addition to the stimulus-responsive inorganic material particles, a polyfunctional organic compound having two or more binding functional groups is used as a raw material, and a binding reaction between the stimulus-responsive functional group and the binding functional group is utilized. It may be a pattern in which the modified atomic groups of the inorganic material particles are indirectly bonded to each other via a polyfunctional organic compound to form a crosslinked atomic group that bonds the inorganic material particles to each other. Examples of the polyfunctional organic compound include urea ((NH 2 ) 2 CO) and hexamethylene diamine (NH 2 (CH 2 ) NH having two amino groups capable of forming a bond with the phenyl azide group. 2 ) etc. However, as long as two or more binding functional groups are capable of binding to a stimulus-responsive functional group, the types of functional groups do not have to be the same, and the types of functional groups may be different. .

上記のようにして得られた無機材料成形体はそのまま用いてもよいし、適当な条件で乾燥した後に用いてもよい。乾燥の方法は特に限定されるものではなく、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥等の従来公知の乾燥法等を用いることができる。   The inorganic material molded body obtained as described above may be used as it is, or may be used after drying under appropriate conditions. The drying method is not particularly limited, and conventionally known drying methods such as hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, freeze drying and the like can be used.

なお、本発明の無機材料成形体の製造方法により無機材料成形体を得、その無機材料成形体を焼成して無機材料焼結体を得ることも、本発明の好ましい形態の一つである(バインダーレスの無機材料焼結体の製造方法)。上記のようにして得られた無機材料成形体は、無機材料からなる骨材粒子同士を、有機原子団を含む架橋原子団を介して共有結合という強固な結合によって相互に結合させたものであり、成形後の保形性が高いことに加えて、有機物の含有量が非常に少ない(乾燥後の成形体全質量の1%以下程度)。従って、この無機材料成形体を焼成すると、機械的強度が高く、有機物に起因する欠陥(ボイドやクラック)が少ない高品質の無機材料焼結体を得られる。また、焼成時間を短縮することができ、二酸化炭素や有害ガスの発生が少なく、地球温暖化や大気汚染の原因となることもない、という利点もある。   In addition, it is also one of the preferable forms of this invention to obtain an inorganic material molded object by the manufacturing method of the inorganic material molded object of this invention, and baking the inorganic material molded object to obtain an inorganic material sintered compact ( Manufacturing method of binderless inorganic material sintered body). The inorganic material molded body obtained as described above is obtained by bonding aggregate particles made of an inorganic material to each other by a strong bond called a covalent bond via a bridging atomic group containing an organic atomic group. In addition to high shape retention after molding, the organic content is very low (about 1% or less of the total mass of the molded body after drying). Therefore, when this inorganic material molded body is fired, a high-quality inorganic material sintered body having high mechanical strength and few defects (voids and cracks) due to organic substances can be obtained. In addition, there is an advantage that the firing time can be shortened, carbon dioxide and harmful gas are hardly generated, and it does not cause global warming or air pollution.

この場合、焼成の前、或いは焼成の昇温過程において、無機材料成形体中の有機物を燃焼させて除去する操作(脱脂・仮焼)を行うと、有機物の除去をより促進させることができる点において好ましい。有機物の燃焼温度は200〜300℃程度なので、仮焼温度は200〜1000℃程度とすればよい。仮焼時間は特に限定されないが、通常は、10〜100時間程度である。   In this case, the removal of the organic matter can be further promoted by performing an operation (degreasing / calcination) for burning and removing the organic matter in the inorganic material molded body before firing or in the temperature raising process of firing. Is preferable. Since the combustion temperature of the organic substance is about 200 to 300 ° C., the calcining temperature may be about 200 to 1000 ° C. The calcining time is not particularly limited, but is usually about 10 to 100 hours.

以下、実施例及び比較例により、本発明を更に具体的に説明する。但し、以下の実施例は本発明の一部の実施形態を示すものに過ぎないため、本発明をこれらの実施例に限定して解釈するべきではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, since the following examples show only some embodiments of the present invention, the present invention should not be construed as being limited to these examples.

(実施例1)
無機材料粒子としてシリカ粒子を用い、そのシリカ粒子に対して、刺激応答性官能基としてフェニルアジド基(−C64−N3)を有する修飾原子団を化学修飾することによって、その修飾原子団がシリカ粒子に対して共有結合によって結合された構造を有する刺激応答性シリカ粒子を得ることを試みた。
Example 1
By using silica particles as inorganic material particles and chemically modifying a modified atomic group having a phenyl azide group (—C 6 H 4 —N 3 ) as a stimulus-responsive functional group on the silica particles, the modified atoms An attempt was made to obtain stimuli-responsive silica particles having a structure in which nodules were covalently bonded to the silica particles.

まず、下記式(4)に示すように、シリカ粒子(I−a)に対して、シラン系カップリング剤である3−アミノプロピルトリエトキシシラン(II−a:NH236Si(OC253)を作用させ、シラノール結合シリカ粒子(III−a)を得た。

Figure 2006151709
First, as shown in the following formula (4), 3-aminopropyltriethoxysilane (II-a: NH 2 C 3 H 6 Si (II-a), which is a silane coupling agent, is applied to the silica particles (Ia). OC 2 H 5) 3) reacted to give a silanol-bonded silica particles (III-a).
Figure 2006151709

具体的には、3−アミノプロピルトリエトキシシラン1.0gを純水100mlに溶解させてシラン系カップリング剤の水溶液を調製し、その水溶液中に、ゾルゲル法によって得られた、平均粒径270nmのシリカ粒子5.0gを分散させ1時間撹拌することにより、シリカ粒子の表面に3−アミノプロピルトリエトキシシランを吸着させ、遠心洗浄により遊離の3−アミノプロピルトリエトキシシランを除去した後、105℃で加熱乾燥し、シリカ粒子と3−アミノプロピルトリエトキシシランとの間で縮合反応を起こさせることによって、シラノール残基がシリカ粒子に対して共有結合によって結合された構造を有するシラノール結合シリカ粒子を得た。   Specifically, 1.0 g of 3-aminopropyltriethoxysilane was dissolved in 100 ml of pure water to prepare an aqueous solution of a silane coupling agent, and an average particle diameter of 270 nm obtained by a sol-gel method was obtained in the aqueous solution. After dispersing 5.0 g of the silica particles and stirring for 1 hour, 3-aminopropyltriethoxysilane was adsorbed on the surface of the silica particles, and free 3-aminopropyltriethoxysilane was removed by centrifugal washing. Silanol-bonded silica particles having a structure in which silanol residues are covalently bonded to the silica particles by causing a condensation reaction between the silica particles and 3-aminopropyltriethoxysilane by heating and drying at ° C. Got.

得られたシラノール結合シリカ粒子を赤外分光(IR)により分析したところ、図1のIRチャートに示すように、反応前のシリカ粒子には存在する表面水酸基(Si−OH)を示すピーク(3750/cm-1)が消失し、反応前のシリカ粒子には存在しなかったシラノール残基中のメチレン基(CH2)を示すピーク(2940/cm-1、2860/cm-1)が出現した。このシラノール結合シリカ粒子は、後述する刺激応答性シリカ粒子の原料とした他、刺激応答性シリカ粒子と結合させる結合性シリカ粒子としても用いた。 When the obtained silanol-bonded silica particles were analyzed by infrared spectroscopy (IR), as shown in the IR chart of FIG. 1, a peak (3750) indicating surface hydroxyl groups (Si—OH) present in the silica particles before the reaction was obtained. / Cm −1 ) disappeared, and peaks (2940 / cm −1 , 2860 / cm −1 ) showing methylene groups (CH 2 ) in silanol residues that did not exist in the silica particles before the reaction appeared. . The silanol-bonded silica particles were used not only as raw materials for the stimulus-responsive silica particles described later, but also as bondable silica particles to be bonded to the stimulus-responsive silica particles.

次いで、下記式(5)に示すように、シラノール結合無機材料粒子(III−a)に対して、刺激応答性感応基としてアジド基を有する有機化合物である4−アジド安息香酸(IV−a:N364COOH)を作用させ、刺激応答性シリカ粒子(V−a)を得た。

Figure 2006151709
Next, as shown in the following formula (5), 4-azidobenzoic acid (IV-a: an organic compound having an azide group as a stimulus-responsive sensitive group) with respect to the silanol-bound inorganic material particles (III-a). N 3 C 6 H 4 COOH) was allowed to act to obtain stimuli-responsive silica particles (Va).
Figure 2006151709

具体的には、シラノール結合シリカ粒子4.5gをエタノール300mlに分散させ、遮光した状態で4−アジド安息香酸1.5gを添加し、1時間撹拌することにより、シラノール結合シリカ粒子の表面に4−アジド安息香酸を吸着させ、遠心洗浄により遊離の4−アジド安息香酸を除去した後、真空条件下、180℃で6時間加熱し、シラノール結合シリカ粒子と4−アジド安息香酸との間で(より詳しくは、シラノール結合シリカ粒子のシラノール残基末端のアミノ基と4−アジド安息香酸のカルボキシル基との間で)アミド化反応を起こさせることによって、フェニルアジド基を有する修飾原子団を形成し、フェニルアジド基を有する修飾原子団がシリカ粒子に対して共有結合によって結合された構造を有する刺激応答性シリカ粒子を得た。得られた刺激応答性シリカ粒子を赤外分光により分析したところ、図1のIRチャートに示すように、反応前のシラノール結合シリカ粒子には存在しなかったフェニルアジド基を示すピーク(2120/cm-1)が出現した。 Specifically, 4.5 g of silanol-bonded silica particles are dispersed in 300 ml of ethanol, 1.5 g of 4-azidobenzoic acid is added in a light-shielded state, and the mixture is stirred for 1 hour. -Adsorption of azidobenzoic acid and removal of free 4-azidobenzoic acid by centrifugal washing, followed by heating at 180 ° C for 6 hours under vacuum conditions, between silanol-bound silica particles and 4-azidobenzoic acid ( More specifically, a modified atomic group having a phenyl azide group is formed by causing an amidation reaction between an amino group at the end of a silanol residue of a silanol-bonded silica particle and a carboxyl group of 4-azidobenzoic acid. Stimulus-responsive silica particles having a structure in which a modified atomic group having a phenyl azide group is covalently bonded to silica particles Obtained. When the obtained stimulus-responsive silica particles were analyzed by infrared spectroscopy, as shown in the IR chart of FIG. 1, a peak (2120 / cm 2) indicating a phenyl azide group that was not present in the silanol-bonded silica particles before the reaction. -1 ) appeared.

遮光した状態で上記のシラノール結合シリカ粒子(ここでは結合性シリカ粒子として用いる)1.0gと刺激応答性シリカ粒子1.0gとをエタノール20mlに均一に分散させて混合物とし、この混合物を鋳込み成形により、外径10.0mmφ、厚さ3.0mmの円柱状に成形して成形体前駆体とした。   In a light-shielded state, 1.0 g of the above silanol-bonded silica particles (used here as bondable silica particles) and 1.0 g of stimuli-responsive silica particles are uniformly dispersed in 20 ml of ethanol to form a mixture, and this mixture is cast-molded. Was formed into a cylindrical shape having an outer diameter of 10.0 mmφ and a thickness of 3.0 mm to obtain a molded body precursor.

下記式(6)に示すように、この成形体前駆体に対して波長366nmの紫外光を照射し、刺激応答性シリカ粒子(V−a)のフェニルアジド基とシラノール結合シリカ粒子(III−a)のアミノ基との間の結合反応を進行させ、フェニルヒドラゾ結合を形成させることによって、シリカ成形体(VIII−a)を得た。

Figure 2006151709
As shown in the following formula (6), the molded body precursor is irradiated with ultraviolet light having a wavelength of 366 nm, and the phenylazide group and silanol-bonded silica particles (III-a) of the stimulus-responsive silica particles (Va) are irradiated. ) Was allowed to proceed with the amino group to form a phenylhydrazo bond to obtain a silica molded product (VIII-a).
Figure 2006151709

得られた成形体を赤外分光(IR)により分析した結果、フェニルアジド基を示すピーク(2120/cm-1)が消失していることが確認された。即ち、このシリカ成形体は、シリカからなる無機材料粒子と、上記式(6)に示す構造を有する架橋原子団と、を構成要素として備え、その架橋原子団が、無機材料粒子に対して共有結合によって結合され、無機材料粒子の各々が、架橋原子団によって相互に結合された構造を有するものであった。 As a result of analyzing the obtained molded body by infrared spectroscopy (IR), it was confirmed that the peak (2120 / cm −1 ) indicating the phenyl azide group disappeared. That is, this silica molded body includes inorganic material particles made of silica and a bridging atomic group having the structure represented by the above formula (6) as constituent elements, and the bridging atomic group is shared with the inorganic material particles. Each of the inorganic material particles has a structure in which the inorganic material particles are bonded to each other by a bridging atomic group.

(比較例1)
化学修飾をしていない通常のシリカ粒子を骨材粒子として用いたことを除いては、実施例1と同様にしてシリカ成形体を得た。
(Comparative Example 1)
A silica molded body was obtained in the same manner as in Example 1 except that ordinary silica particles not chemically modified were used as aggregate particles.

(評価)
実施例1のシリカ成形体と比較例1のシリカ成形体を水中に浸漬した。その結果、比較例1のシリカ成形体は、水中でその構造が容易に崩壊し、水が白濁した。一方、実施例1のシリカ成形体は、水の白濁は認められず、水中でその構造を維持し得ることが確認された。
(Evaluation)
The silica molded body of Example 1 and the silica molded body of Comparative Example 1 were immersed in water. As a result, the structure of the silica molded body of Comparative Example 1 easily collapsed in water, and the water became cloudy. On the other hand, it was confirmed that the silica molded body of Example 1 was able to maintain its structure in water without water turbidity being observed.

また、実施例1のシリカ成形体と比較例1のシリカ成形体に対し、マイクロビッカース硬度計(商品名:MVK−EL型(ダイヤモンド圧子)、明石製作所製)を用い、圧縮強度測定を行った。その結果、比較例1のシリカ成形体は、約100gの荷重にまでしか耐えられなかった。一方、実施例1のシリカ成形体は、200gの荷重に耐えることが確認された。   Further, the compression strength measurement was performed on the silica molded body of Example 1 and the silica molded body of Comparative Example 1 using a micro Vickers hardness meter (trade name: MVK-EL type (diamond indenter), manufactured by Akashi Seisakusho). . As a result, the silica molded body of Comparative Example 1 could only withstand a load of about 100 g. On the other hand, the silica molded body of Example 1 was confirmed to withstand a load of 200 g.

更に、実施例1で作製した刺激応答性シリカ粒子と化学修飾をしていない通常のシリカ粒子とを熱分析し、有機物の量を測定した。その結果、図2の熱分析チャートに示すように、通常のシリカ粒子は、約200℃までの加熱で吸着水の脱離が生じるのみであった。これに対し、刺激応答性シリカ粒子は、1000℃までの加熱で、化学修飾された修飾原子団の脱離が生じたものと認められた。この分析結果から算出した有機物の量は約0.8質量%であり、極めて少ないことが確認された。   Further, the stimuli-responsive silica particles produced in Example 1 and ordinary silica particles not chemically modified were subjected to thermal analysis, and the amount of organic matter was measured. As a result, as shown in the thermal analysis chart of FIG. 2, the ordinary silica particles only had desorption of adsorbed water when heated to about 200 ° C. In contrast, the stimuli-responsive silica particles were found to have undergone desorption of the chemically modified modified atomic groups upon heating up to 1000 ° C. The amount of organic matter calculated from this analysis result was about 0.8% by mass, which was confirmed to be extremely small.

(実施例2)
遮光した状態で実施例1において作製した刺激応答性シリカ粒子1.0gをエタノール10mlに均一に分散させた分散液に対して、2つのアミノ基を有する多官能性有機化合物である尿素0.154mmolを添加し再度、均一に分散させた。この分散液に対して、更に実施例1において作製した刺激応答性シリカ粒子1.0gをエタノール10mlに均一に分散させたものを添加して混合物とし、この混合物を鋳込み成形により、外径10.0mmφ、厚さ3.0mmの円柱状に成形して成形体前駆体とした。
(Example 2)
0.154 mmol of urea, which is a polyfunctional organic compound having two amino groups, in a dispersion obtained by uniformly dispersing 1.0 g of the stimulus-responsive silica particles prepared in Example 1 in 10 ml of ethanol in a light-shielded state Was added and dispersed again uniformly. To this dispersion, 1.0 g of the stimuli-responsive silica particles produced in Example 1 were uniformly dispersed in 10 ml of ethanol to obtain a mixture, and this mixture was cast to form an outer diameter of 10. The molded body precursor was formed into a cylindrical shape having a diameter of 0 mmφ and a thickness of 3.0 mm.

この成形体前駆体に対して波長366nmの紫外光を照射し、刺激応答性シリカ粒子のフェニルアジド基と尿素の2つのアミノ基との間の結合反応を進行させ、フェニルヒドラゾ結合を形成させることによって、下記式に示す構造の架橋原子団を構成要素とするシリカ成形体(VIII−b)を得た。得られた成形体を赤外分光により分析した結果、実施例1と同様に、フェニルアジド基を示すピーク(2120/cm-1)が消失していることが確認された。

Figure 2006151709
The molded body precursor is irradiated with ultraviolet light having a wavelength of 366 nm to cause a bonding reaction between the phenyl azide group of the stimulus-responsive silica particles and the two amino groups of urea to form a phenyl hydrazo bond. As a result, a silica molded body (VIII-b) having a bridged atomic group having a structure represented by the following formula as a constituent element was obtained. As a result of analyzing the obtained molded article by infrared spectroscopy, it was confirmed that the peak (2120 / cm −1 ) indicating the phenyl azide group disappeared, as in Example 1.
Figure 2006151709

(実施例3)
尿素0.154mmolに代えてヘキサメチレンジアミン0.154mmolを用いたことを除いては、実施例2と同様にして、刺激応答性シリカ粒子のフェニルアジド基とヘキサメチレンジアミンの2つのアミノ基との間の結合反応を進行させ、フェニルヒドラゾ結合を形成させることによって、下記式に示す構造の架橋原子団を構成要素とするシリカ成形体(VIII−c)を得た。得られた成形体を赤外分光により分析した結果、実施例1と同様に、フェニルアジド基を示すピーク(2120/cm-1)が消失していることが確認された。

Figure 2006151709
(Example 3)
Except that 0.154 mmol of hexamethylenediamine was used in place of 0.154 mmol of urea, the same as in Example 2, the reaction between the phenylazide group of the stimuli-responsive silica particle and the two amino groups of hexamethylenediamine A silica molded product (VIII-c) having a bridged atomic group having a structure represented by the following formula as a constituent element was obtained by allowing a bonding reaction between them to proceed to form a phenylhydrazo bond. As a result of analyzing the obtained molded article by infrared spectroscopy, it was confirmed that the peak (2120 / cm −1 ) indicating the phenyl azide group disappeared, as in Example 1.
Figure 2006151709

(評価)
実施例2のシリカ成形体と実施例3のシリカ成形体を水中に浸漬した。その結果、実施例2及び実施例3のシリカ成形体は、水中でその構造を維持し得ることが確認された。また、実施例2のシリカ成形体と実施例3のシリカ成形体に対し、マイクロビッカース硬度計(商品名:MVK−EL型(ダイヤモンド圧子)、明石製作所製)を用い、圧縮強度測定を行った。その結果、実施例2のシリカ成形体は200g、実施例3のシリカ成形体は500gの荷重に耐えた。即ち、いずれも200g以上の荷重に耐えることが確認された。
(Evaluation)
The silica molded body of Example 2 and the silica molded body of Example 3 were immersed in water. As a result, it was confirmed that the silica molded bodies of Example 2 and Example 3 can maintain the structure in water. Further, the compressive strength measurement was performed on the silica molded body of Example 2 and the silica molded body of Example 3 using a micro Vickers hardness meter (trade name: MVK-EL type (diamond indenter), manufactured by Akashi Seisakusho). . As a result, the silica molded body of Example 2 withstood a load of 200 g, and the silica molded body of Example 3 withstood a load of 500 g. That is, it was confirmed that all can withstand a load of 200 g or more.

本発明の無機材料成形体の製造方法は、構造材料や電気・電子材料等、様々な用途で用いられている、セラミックスや金属の各種成形体の製造に好適に用いられる。   The method for producing an inorganic material molded body of the present invention is suitably used for the production of various molded articles of ceramics and metals that are used in various applications such as structural materials and electrical / electronic materials.

シリカ粒子、シラノール結合シリカ粒子、刺激応答性シリカ粒子、及びシリカ成形体を赤外分光により分析した結果を示すIRチャートである。It is IR chart which shows the result of having analyzed the silica particle, the silanol coupling | bonding silica particle, the stimulus responsive silica particle, and the silica molding by infrared spectroscopy. シリカ粒子、及び刺激応答性シリカ粒子を熱分析した結果を示す熱分析チャートである。It is a thermal analysis chart which shows the result of having thermally analyzed the silica particle and the stimulus responsive silica particle.

Claims (14)

(A):骨材粒子となる無機材料粒子と、(B):有機原子団を含む架橋原子団と、を構成要素として備え、
前記(B):架橋原子団が、前記(A):無機材料粒子に対して共有結合によって結合され、前記(A):無機材料粒子の各々が、前記(B):架橋原子団によって相互に結合された構造を有する無機材料成形体。
(A): Inorganic material particles that become aggregate particles, and (B): a bridging atomic group containing an organic atomic group as constituent elements,
The (B): bridging atomic group is covalently bonded to the (A): inorganic material particle, and the (A): inorganic material particle is mutually bonded by the (B): bridging atomic group. An inorganic material molded body having a combined structure.
前記(B):架橋原子団が、フェニルヒドラゾ基(−C64−NHNH−)、アミド基(−NHCO−)、及びイミド基(−N(CO−)2)の群から選択される少なくとも一種の官能基を含むものである請求項1に記載の無機材料成形体。 (B): the bridging group is selected from the group of phenylhydrazo group (—C 6 H 4 —NHNH—), amide group (—NHCO—), and imide group (—N (CO—) 2 ). The inorganic material molded body according to claim 1, comprising at least one functional group. 酸化物系セラミックス、非酸化物系セラミックス、及び金属の群から選択される少なくとも一種の無機材料からなる無機材料粒子と有機原子団を含む架橋原子団とを構成要素として備え、前記架橋原子団が前記無機材料粒子に対して共有結合によって結合され、前記無機材料粒子の各々が前記架橋原子団によって相互に結合された構造を有する無機材料成形体の製造方法であって、
第1工程:前記無機材料粒子に、有機原子団を含み、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有する修飾原子団、が化学修飾された刺激応答性無機材料粒子を原料として用い、前記刺激応答性無機材料粒子を含む混合物を所望形状に成形して成形体前駆体を得、
第2工程:前記成形体前駆体に対して前記外部刺激を与え、前記刺激応答性官能基と前記他の官能基との間の結合反応を利用して、前記無機材料粒子間を相互に結合する前記架橋原子団を形成させることによって、前記無機材料成形体を得る、無機材料成形体の製造方法。
Oxide ceramics, non-oxide ceramics, and inorganic material particles made of at least one inorganic material selected from the group of metals and a bridging atomic group containing an organic atomic group as constituent elements, the bridging atomic group A method for producing an inorganic material molded body having a structure in which the inorganic material particles are bonded to each other by a covalent bond and each of the inorganic material particles is bonded to each other by the bridging atomic group.
First step: A modified atomic group containing an organic atomic group in the inorganic material particle and having a functional group (stimulus-responsive functional group) that causes a binding reaction with another functional group in response to an external stimulus. Using chemically-modified stimulus-responsive inorganic material particles as a raw material, a mixture containing the stimulus-responsive inorganic material particles is molded into a desired shape to obtain a molded body precursor,
Second step: The external stimulus is applied to the molded body precursor, and the inorganic material particles are bonded to each other using a binding reaction between the stimulus-responsive functional group and the other functional group. The manufacturing method of the inorganic material molded object which obtains the said inorganic material molded object by forming the said bridge | crosslinking atomic group.
前記刺激応答性無機材料粒子の他、前記無機材料粒子に、有機原子団を含み、前記刺激応答性官能基との間で結合を形成し得る反応性官能基(結合性官能基)を有する修飾原子団、が化学修飾された結合性無機材料粒子を原料として用い、
前記刺激応答性官能基と前記結合性官能基との間の結合反応を利用して前記修飾原子団同士を結合させ、前記無機材料粒子間を相互に結合する前記架橋原子団を形成させる、請求項3に記載の製造方法。
In addition to the stimulus-responsive inorganic material particle, the inorganic material particle includes an organic atomic group and has a reactive functional group (binding functional group) that can form a bond with the stimulus-responsive functional group. Using atomically bound, chemically bound inorganic material particles as raw materials,
Using the bonding reaction between the stimulus-responsive functional group and the binding functional group to bond the modified atomic groups to form the bridging atomic group that bonds the inorganic material particles to each other. Item 4. The manufacturing method according to Item 3.
前記刺激応答性無機材料粒子の他、前記刺激応答性官能基との間で結合を形成し得る反応性官能基(結合性官能基)を2以上有する多官能性有機化合物を原料として用い、
前記刺激応答性官能基と前記結合性官能基との間の結合反応を利用して前記修飾原子団同士を前記多官能性有機化合物を介して結合させ、前記無機材料粒子間を相互に結合する前記架橋原子団を形成させる、請求項3に記載の製造方法。
In addition to the stimulus-responsive inorganic material particles, a polyfunctional organic compound having two or more reactive functional groups (binding functional groups) capable of forming a bond with the stimulus-responsive functional group is used as a raw material.
The modification atomic groups are bonded to each other through the polyfunctional organic compound using a bonding reaction between the stimulus-responsive functional group and the binding functional group, and the inorganic material particles are bonded to each other. The manufacturing method of Claim 3 which forms the said bridge | crosslinking atomic group.
光照射によって、前記刺激応答性官能基としてのフェニルアジド基(−C64−N3)と前記結合性官能基としてのアミノ基(−NH2)との間の結合反応を進行させ、フェニルヒドラゾ結合(−C64−NHNH−)を形成させる、請求項4又は5に記載の製造方法。 By light irradiation, the binding reaction between the phenyl azide group (—C 6 H 4 —N 3 ) as the stimulus-responsive functional group and the amino group (—NH 2 ) as the binding functional group proceeds, to form a phenyl hydrazo bond (-C 6 H 4 -NHNH-), the method according to claim 4 or 5. マイクロ波照射によって、前記刺激応答性官能基としてのアミノ基(−NH2)と同じく前記刺激応答性官能基としてのカルボキシル基(−COOH)との間の結合反応を進行させ、イミド結合(−N(CO−)2)を形成させる、請求項4又は5に記載の製造方法。 By microwave irradiation, a binding reaction between the amino group (—NH 2 ) as the stimulus-responsive functional group and the carboxyl group (—COOH) as the stimulus-responsive functional group proceeds, and an imide bond (— The production method according to claim 4 or 5, wherein N (CO-) 2 ) is formed. 300℃以下の加熱によって、前記刺激応答性官能基としてのアミノ基(−NH2)と同じく前記刺激応答性官能基としてのカルボキシル基(−COOH)との間の結合反応を利用してアミド結合(−NHCO−)を形成させる、請求項4又は5に記載の製造方法。 By heating at 300 ° C. or lower, an amide bond is obtained by utilizing a bonding reaction between the amino group (—NH 2 ) as the stimulus-responsive functional group and the carboxyl group (—COOH) as the stimulus-responsive functional group. The production method according to claim 4, wherein (—NHCO—) is formed. 請求項3〜8のいずれか一項に記載の製造方法により無機材料成形体を得、
前記無機材料成形体を焼成して無機材料焼結体を得る、無機材料焼結体の製造方法。
An inorganic material molded body is obtained by the production method according to any one of claims 3 to 8,
A method for producing an inorganic material sintered body, wherein the inorganic material molded body is fired to obtain an inorganic material sintered body.
(C):無機材料からなる無機材料粒子と、(D):有機原子団を含み、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有する修飾原子団と、を構成要素として備え、
前記(D):修飾原子団が、前記(C):無機材料粒子に対して共有結合によって結合された構造を有する刺激応答性無機材料粒子。
(C): inorganic material particles made of an inorganic material, and (D): a functional group containing an organic atomic group and causing a binding reaction with another functional group in response to an external stimulus (stimulus-responsive functional group) A modified atomic group having
(D): Stimulus-responsive inorganic material particles having a structure in which the modified atomic group is bonded to the (C): inorganic material particles by a covalent bond.
前記(D):修飾原子団が、前記刺激応答性官能基としてフェニルアジド基(−C64−N3)を有するものである請求項10に記載の刺激応答性無機材料粒子。 Wherein (D): modified atomic group, stimulus-responsive inorganic material particles of claim 10 is one having a phenyl azide group (-C 6 H 4 -N 3) as the stimuli-responsive functional group. 無機材料からなる無機材料粒子と、有機原子団を含み、外部刺激に応答して他の官能基との結合反応が惹起される官能基(刺激応答性官能基)を有する修飾原子団と、を構成要素として備え、前記修飾原子団が、前記無機材料粒子に対して共有結合によって結合された構造を有する刺激応答性無機材料粒子の製造方法であって、
前記無機材料粒子として、酸化物系セラミックス、非酸化物系セラミックス、及び金属の群から選択される少なくとも一種の無機材料からなるものを用い、
その無機材料粒子に対して、前記刺激応答性官能基を有する修飾原子団を化学修飾する、刺激応答性無機材料粒子の製造方法。
Inorganic material particles made of an inorganic material, and a modified atomic group containing an organic atomic group and having a functional group (stimulus-responsive functional group) that causes a binding reaction with another functional group in response to an external stimulus. A method for producing stimuli-responsive inorganic material particles having a structure in which the modifying atomic group is covalently bonded to the inorganic material particles, comprising:
As the inorganic material particles, those made of oxide ceramics, non-oxide ceramics, and at least one inorganic material selected from the group of metals,
A method for producing stimuli-responsive inorganic material particles, wherein the inorganic material particles are chemically modified with the modified atomic group having the stimulus-responsive functional group.
第1工程:前記無機材料粒子に対して、シラン系カップリング剤を作用させ、前記無機材料粒子とシラン系カップリング剤との間で縮合反応を起こさせることによって、シラノール残基が前記無機材料粒子に対して共有結合によって結合された構造を有するシラノール結合無機材料粒子を得、
第2工程:前記シラノール結合無機材料粒子に対して、前記刺激応答性感応基を有する有機化合物を作用させ、前記シラノール結合無機材料粒子と前記有機化合物との間で結合形成反応を起こさせることによって、前記修飾原子団を形成し、前記刺激応答性無機材料粒子を得る、請求項12に記載の製造方法。
First step: A silanol residue is allowed to act on the inorganic material particles by causing a silane coupling agent to act on the inorganic material particles to cause a condensation reaction between the inorganic material particles and the silane coupling agent. Obtaining silanol-bonded inorganic material particles having a structure covalently bonded to the particles,
Second step: by causing the organic compound having the stimulus-responsive sensitive group to act on the silanol-bonded inorganic material particles and causing a bond-forming reaction between the silanol-bonded inorganic material particles and the organic compound. The manufacturing method according to claim 12, wherein the modified atomic group is formed to obtain the stimulus-responsive inorganic material particles.
前記有機化合物として、前記刺激応答性官能基がフェニルアジド基(−C64−N3)であるものを用いる、請求項12又は13に記載の製造方法。 The organic compound, the stimulus-responsive functional groups used as a phenyl azide group (-C 6 H 4 -N 3) , The method according to claim 12 or 13.
JP2004341245A 2004-11-25 2004-11-25 Ceramic molded body and method for producing the same Expired - Fee Related JP4727973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341245A JP4727973B2 (en) 2004-11-25 2004-11-25 Ceramic molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341245A JP4727973B2 (en) 2004-11-25 2004-11-25 Ceramic molded body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010068517A Division JP5418843B2 (en) 2010-03-24 2010-03-24 Stimulus-responsive inorganic material particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006151709A true JP2006151709A (en) 2006-06-15
JP4727973B2 JP4727973B2 (en) 2011-07-20

Family

ID=36630449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341245A Expired - Fee Related JP4727973B2 (en) 2004-11-25 2004-11-25 Ceramic molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4727973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792150A (en) * 2010-03-26 2010-08-04 昆明理工大学 Method for preparing stimuli-responsive silicon dioxide nano particle
WO2017104528A1 (en) * 2015-12-18 2017-06-22 Dic株式会社 Method for manufacturing ceramic body and dispersion used therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812442A (en) * 1994-06-22 1996-01-16 Toshiba Ceramics Co Ltd Slurry for ceramic composite material and method for molding the same
JPH11106517A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Plastic-ceramic composite
JP2000208824A (en) * 1999-01-13 2000-07-28 Kansai Research Institute Ferroelectric substance particle with photosensitivity, ferroelectric substance thin film manufactured by using the same, and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812442A (en) * 1994-06-22 1996-01-16 Toshiba Ceramics Co Ltd Slurry for ceramic composite material and method for molding the same
JPH11106517A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Plastic-ceramic composite
JP2000208824A (en) * 1999-01-13 2000-07-28 Kansai Research Institute Ferroelectric substance particle with photosensitivity, ferroelectric substance thin film manufactured by using the same, and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792150A (en) * 2010-03-26 2010-08-04 昆明理工大学 Method for preparing stimuli-responsive silicon dioxide nano particle
WO2017104528A1 (en) * 2015-12-18 2017-06-22 Dic株式会社 Method for manufacturing ceramic body and dispersion used therefor

Also Published As

Publication number Publication date
JP4727973B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP1160223B1 (en) Silicon nitride filter and method of manufacture thereof
CN104671820B (en) Honeycomb comprising cement exocuticle and cement
Dey et al. Preparation of porous SiC ceramics by an infiltration technique
Hackley et al. Aqueous processing of sintered reaction‐bonded silicon nitride: I, dispersion properties of silicon powder
WO2005086732A2 (en) Ceramic composition with silsesquioxane polymer
Zhang et al. Aqueous processing of titanium carbide green sheets
JP5418843B2 (en) Stimulus-responsive inorganic material particles and method for producing the same
JP4727973B2 (en) Ceramic molded body and method for producing the same
JP5562676B2 (en) Method for manufacturing silicon carbide honeycomb structure, clay, and honeycomb formed body
Ganesh et al. Hydrolysis‐Induced Aqueous Gelcasting of β‐SiAlON–SiO2 Ceramic Composites: The Effect of AlN Additive
JP5093765B2 (en) Ceramic raw material particles, slurry, sintered body and method for producing the same
CN115893980B (en) Process for preparing porous support ceramic by using nodulizer micropowder
JP5344509B2 (en) Inorganic material molded body
JP5067781B2 (en) Manufacturing method of inorganic material molded body by binderless molding utilizing hydration reaction and molded body thereof
JP5531280B2 (en) Manufacturing method of inorganic material molded body and manufacturing method of inorganic material sintered body
US8425830B2 (en) Permeable material, articles made therefrom and method of manufacture
JP5142250B2 (en) Method for manufacturing ceramic / organic composite structure
JPH05170525A (en) Heat-resistant fiber composition
JP2549976B2 (en) Heat-resistant mullite sintered body
佐藤公泰 et al. Mutual linkage of particles in a ceramic green body through photoreactive organic binders
JP2002105610A (en) Preform for metal matrix composite, and metal matrix composite
KR100483512B1 (en) Porous ceramic filter and method of producing the same
Hwang et al. Effect of Additives on Mechanical Properties of Alumina Bushing Fabricated by Gel-Casting
JPH07278311A (en) Inorganic/organic fused material and its production
JP2004002130A (en) Ceramic porous body and its forming process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Ref document number: 4727973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees