JP2006150340A - Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus - Google Patents

Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus Download PDF

Info

Publication number
JP2006150340A
JP2006150340A JP2005150268A JP2005150268A JP2006150340A JP 2006150340 A JP2006150340 A JP 2006150340A JP 2005150268 A JP2005150268 A JP 2005150268A JP 2005150268 A JP2005150268 A JP 2005150268A JP 2006150340 A JP2006150340 A JP 2006150340A
Authority
JP
Japan
Prior art keywords
metal film
hole
film
shape
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005150268A
Other languages
Japanese (ja)
Inventor
Shinji Tezuka
伸治 手塚
Takashi Ogaki
傑 大垣
Shinji Aoki
慎司 青木
Masahiro Masuzawa
正弘 升澤
Yoshihiro Norikane
義浩 法兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005150268A priority Critical patent/JP2006150340A/en
Publication of JP2006150340A publication Critical patent/JP2006150340A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a diaphragm at a low cost which is used in a membrane emulsification apparatus in which even a particulate of minute grain size can be produced, grain size of obtained particulates is uniform, particulates with uniform dispersion can be produced even when the particulate includes solid content and maintenance is easy, which is easy to handle and has little fear of breakage. <P>SOLUTION: Dispersion layers are dispersed in a continuous layer by using a metallic membrane, which is made of a metallic base material and has two or more mutually independent through holes of the same shape and whole exposed surface of which has specific opening shape of high hydrophilicity or of high hydrophobicity, as the diaphragm. This metallic membrane is produced as following, for example. An insulated layer 2 is formed on an electric conductive substrate 1, a part thereof is selectively removed to expose the electric conductive substrate 1 and electroplating is performed by using the exposed substrate as a cathode. As a plated coating film 3 grows, it is pushed out on the insulated layer to form an insulated layer opening 4. Metal plating is finished before the insulated layer opening is completely covered and the plated coating film is separated from the electric conductive substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エマルション及び微粒子、特に内部に固形分を含むもの及びその製造装置と、スペーサ、トナー、電子ペーパ用のマイクロカプセルなどの微粒子及びその形成方法ならびにそれに用いる特異な開口形状をもった金属膜とその形成方法に関する。   The present invention relates to emulsions and fine particles, particularly those containing a solid content therein and a manufacturing apparatus thereof, fine particles such as spacers, toner, and microcapsules for electronic paper, a method for forming the same, and a metal having a unique opening shape used therefor The present invention relates to a film and a method for forming the film.

水と油のように、本来混ざり合わないような物質であっても、一方の物質を微小な粒子として分散させることで、見かけ上混合した状態とすることができ、この現象を乳化と呼んでいる。このような状態が保持されるためには分散している粒子の径が小さく比較的均一である必要がある。
現在乳化方法として具体的には以下の手法が用いられていることは公知である。
(1)ホモジナイザー[松本油脂製薬株式会社(例えば、特許文献1参照)など]による乳化
これは、連続相と呼ばれる液体に、微粒子化して分散させたい物質を投入し、機械的に攪拌を行うことでせん断力を繰り返し与え、乳化分散体を得るものである。
(2)多孔質ガラス膜を用いた乳化[宮崎県(例えば、特許文献2参照)など]
分散相と連続相を多孔質ガラス膜により仕切り、分散相を連続相側へ押し出すことにより分散相が膜を通過し、連続相に接触し表面張力がせん断力となり最終的に分散相が微粒子化し、乳化分散体を得る方法である。
(3)人工的に微小開口を形成した隔壁を用いた乳化[食品総合研究所(例えば、特許文献3参照)など]
分散相と連続相とを非円形の同一形状の開口を半導体プロセスにより人工的に多数形成した隔壁で仕切り、この開口を通して分散相を連続相へ押し出し表面張力により剪断し微粒子を得る。このとき開口形状がスリット状など非円形であるために、表面張力が不均一に働くことで容易に剪断させることができ、粒径分布の小さな粒子が得られる。
特許第3476223号 特許第2733729号 特許第3511238号
Even substances that are not inherently mixed, such as water and oil, can be made into an apparently mixed state by dispersing one substance as fine particles. This phenomenon is called emulsification. Yes. In order to maintain such a state, it is necessary that the dispersed particles have a small diameter and are relatively uniform.
It is publicly known that the following methods are specifically used as an emulsification method.
(1) Emulsification by a homogenizer [Matsumoto Yushi Seiyaku Co., Ltd. (for example, refer to Patent Document 1)] This is a method in which a substance to be finely dispersed is added to a liquid called a continuous phase and mechanically stirred. A shearing force is repeatedly applied to obtain an emulsified dispersion.
(2) Emulsification using a porous glass membrane [Miyazaki Prefecture (for example, see Patent Document 2) etc.]
The dispersed phase and continuous phase are separated by a porous glass membrane, and the dispersed phase passes through the membrane by extruding the dispersed phase to the continuous phase side. This is a method for obtaining an emulsified dispersion.
(3) Emulsification using partition walls with artificially formed micro openings [Food Research Institute (for example, see Patent Document 3), etc.]
The dispersed phase and the continuous phase are partitioned by a partition wall in which a large number of non-circular openings having the same shape are artificially formed by a semiconductor process, and the dispersed phase is extruded to the continuous phase through the openings to obtain fine particles. At this time, since the opening shape is non-circular such as a slit shape, it can be easily sheared due to the non-uniform surface tension, and particles having a small particle size distribution can be obtained.
Japanese Patent No. 3476223 Japanese Patent No. 2733729 Japanese Patent No. 3511238

しかし、上記従来技術(1)においては、分散相に与えられるせん断力が、乳化位置によって不均一であるために、得られる粒子は広い粒径分布を持ったものとなってしまう。
また(2)においては、多孔質ガラス膜の穴形状は比較的滑らかな連続した曲線で構成されており、押し出された界面に働く表面張力が比較的均一に働くためになかなか剪断に至らず、得られる粒子径は開口に対して大きくなってしまう。また穴形状及び大きさも一定でないことから粒径分布は手法(1)に対しては狭いが比較的広くなってしまう。
また(3)においては、開示されている隔壁の開口は隔壁の厚さ方向に対して断面形状の変わらない平行な貫通孔であり、この隔壁が厚いと開口径を小さくしたり、分散相として高粘度の材料を用いた際に連続相へ押し出すことが困難になると考えられる。逆に隔壁を薄くすると押し出しは比較的行いやすくなるが、押し出す際に加わる圧力に対して隔壁が変形したり、破壊するなどの問題が考えられる。
以上のような問題点から本発明は、微小な粒径においても製造可能でかつ得られる粒径が均一でその内部に固形分を含む場合にあってもその分散が均一な微粒子を製造可能でメンテナンスが容易な膜乳化装置及び、同装置に用いる取扱いが容易で破損の恐れの少ない隔膜を安価に製造する方法を提供することを目的とする。
また他の目的は、乳化を行うにあたり必要となる流体の移動が容易でかつ流体に不均一な剪断力を付加することができる金属膜及びその製造方法、さらにはそれを用いた粒径分布の小さな粒子とその製造方法の提供することである。
However, in the prior art (1), the shearing force applied to the dispersed phase is not uniform depending on the emulsifying position, and thus the obtained particles have a wide particle size distribution.
Moreover, in (2), the hole shape of the porous glass film is composed of a relatively smooth continuous curve, and the surface tension acting on the extruded interface works relatively uniformly, so that it does not easily shear. The resulting particle size will be larger than the opening. Further, since the hole shape and size are not constant, the particle size distribution is narrower than the method (1) but relatively wide.
In (3), the opening of the disclosed partition wall is a parallel through hole whose cross-sectional shape does not change with respect to the thickness direction of the partition wall. It is thought that it becomes difficult to extrude into a continuous phase when a high viscosity material is used. Conversely, when the partition walls are made thinner, extrusion becomes relatively easy, but problems such as deformation or destruction of the partition walls due to the pressure applied during extrusion can be considered.
In view of the above problems, the present invention can produce fine particles that can be produced even with a fine particle size, and even when the obtained particle size is uniform and contains a solid content therein, the dispersion is uniform. It is an object of the present invention to provide a membrane emulsification apparatus that is easy to maintain and a method for inexpensively producing a diaphragm that is easy to handle and less likely to break.
Another object of the present invention is to provide a metal film that can easily move the fluid required for emulsification and that can apply a non-uniform shear force to the fluid, a method for producing the metal film, and a particle size distribution using the metal film. It is to provide a small particle and a manufacturing method thereof.

上記目的を達成するために、請求項1記載の発明は、金属母材よりなり,互いに独立した同一形状の2以上の貫通孔を有し露出面全面が親水性の高い表面を有することを特徴とする。
請求項2記載の発明は、請求項1に記載の金属膜において、同一形状の前記開口が同一方向を向くよう形成されていることを特徴とする。
請求項3記載の発明は、請求項1又は2に記載の金属膜において、前記貫通孔の表裏の開口形状が異なる場合には小さい側、等しい場合にはその形状が、形状を示す指標値F1(F1=(絶対最大長)^2/面積×π/4)及び指標値F2(F2=4π×面積/(周長)^2)において、F1≧2かつF2≦0.8なる関係を満足することを特徴とする。
請求項4記載の発明は、請求項1乃至3の何れか一項に記載の金属膜において、前記貫通孔の膜厚方向のいずれの断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たしかつ、厚さ方向のいかなる場所においてもその幅がW1より大きな部分及びW2より小さな部分がないことを特徴とする。
請求項5記載の発明は、請求項1乃至4の何れか一項に記載の金属膜において、前記貫通孔の一面から他面に到達する最短距離が前記貫通孔周辺の膜厚に等しい形状であることを特徴とする。
請求項6記載の発明は、請求項1乃至5の何れか一項に記載の金属膜において、前記貫通孔の膜厚方向の断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たし、幅がW1となる面での厚さ方向の位置を0としW2となる面の厚さをTとしたときに厚さ方向の任意の位置T1、T2、T3(0<T1<T2<T3<T)とその位置における幅WT1、WT2、WT3との関係がWT1=WT2=WT3若しくは(WT1−WT2)/(T2−T1)≧(WT2−WT3)/(T3−T2)であることを特徴とする。
請求項7記載の発明は、金属母材よりなり,互いに独立した同一形状の2以上の貫通孔を有し露出面全面が疎水性の高い表面を有することを特徴とする。
請求項8記載の発明は、請求項7記載の金属膜において、同一形状の前記開口が同一方向を向くよう形成されていることを特徴とする。
請求項9記載の発明は、請求項7または8記載の金属膜において、前記貫通孔の表裏の開口形状が異なる場合には小さい側、等しい場合にはその形状が、形状を示す指標値F1(F1=(絶対最大長)^2/面積×π/4)及び指標値F2(F2=4π×面積/(周長)^2)において、F1≧2かつF2≦0.8なる関係を満足することを特徴とする。
請求項10記載の発明は、請求項7乃至9の何れか一項に記載の金属膜において、前記貫通孔の膜厚方向のいずれの断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たしかつ、厚さ方向のいかなる場所においてもその幅がW1より大きな部分及びW2より小さな部分がないことを特徴とする。
In order to achieve the above object, the invention described in claim 1 is characterized in that it is made of a metal base material, has two or more through-holes of the same shape independent from each other, and the entire exposed surface has a highly hydrophilic surface. And
According to a second aspect of the present invention, in the metal film according to the first aspect, the openings having the same shape are formed so as to face the same direction.
The invention described in claim 3 is an index value F1 indicating that the metal film according to claim 1 or 2 has a smaller side when the opening shape of the front and back of the through hole is different, and when the opening shape is equal, the shape is the same. (F1 = (absolute maximum length) ^ 2 / area × π / 4) and the index value F2 (F2 = 4π × area / (circumference length) ^ 2) satisfy the relationship of F1 ≧ 2 and F2 ≦ 0.8. It is characterized by doing.
According to a fourth aspect of the present invention, in the metal film according to any one of the first to third aspects, the width on one side surface is W1 and the width on the other side surface in any cross section in the film thickness direction of the through hole. When W2, the relationship of W1 ≧ W2 is satisfied, and there is no portion whose width is larger than W1 and smaller than W2 at any place in the thickness direction.
According to a fifth aspect of the present invention, in the metal film according to any one of the first to fourth aspects, the shortest distance from one surface of the through hole to the other surface is equal to the film thickness around the through hole. It is characterized by being.
According to a sixth aspect of the present invention, in the metal film according to any one of the first to fifth aspects, in the cross section in the film thickness direction of the through hole, the width on one side surface is W1, and the width on the other side surface is W2. When satisfying the relationship of W1 ≧ W2, the position in the thickness direction on the surface where the width is W1 is 0, and the thickness of the surface where W2 is T is T, the arbitrary positions T1, T2 in the thickness direction , T3 (0 <T1 <T2 <T3 <T) and the widths WT1, WT2 and WT3 at the position are WT1 = WT2 = WT3 or (WT1-WT2) / (T2-T1) ≧ (WT2-WT3) / (T3-T2).
The invention according to claim 7 is characterized in that it is made of a metal base material, has two or more through-holes of the same shape independent from each other, and the entire exposed surface has a highly hydrophobic surface.
According to an eighth aspect of the present invention, in the metal film according to the seventh aspect, the openings having the same shape are formed so as to face in the same direction.
The invention according to claim 9 is the metal film according to claim 7 or 8, wherein when the opening shape of the front and back of the through hole is different, the smaller side, and when the opening shape is equal, the shape is an index value F1 ( F1 = (absolute maximum length) ^ 2 / area × π / 4) and index value F2 (F2 = 4π × area / (circumference length) ^ 2) satisfy the relationship of F1 ≧ 2 and F2 ≦ 0.8. It is characterized by that.
A tenth aspect of the present invention is the metal film according to any one of the seventh to ninth aspects, wherein the width on one side surface is W1 and the width on the other side surface is any cross section in the film thickness direction of the through hole. When W2, the relationship of W1 ≧ W2 is satisfied, and there is no portion whose width is larger than W1 and smaller than W2 at any place in the thickness direction.

請求項11記載の発明は、請求項7乃至10の何れか一項に記載の金属膜にいおいて、前記貫通孔の一面から他面に到達する最短距離が前記貫通孔周辺の膜厚に等しい形状であることを特徴とする。
請求項12記載の発明は、請求項7乃至11の何れか一項に記載の金属膜において前記貫通孔の膜厚方向の断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たし、幅がW1となる面での厚さ方向の位置を0としW2となる面の厚さをTとしたときに厚さ方向の任意の位置T1、T2、T3(0<T1<T2<T3<T)とその位置における幅WT1、WT2、WT3との関係がWT1=WT2=WT3若しくは(WT1−WT2)/(T2−T1)≧(WT2−WT3)/(T3−T2)であることを特徴とする。
請求項13記載の発明は、少なくとも表面に導電性を有する基板を用意する第1の工程と、前記導電性基板の表面を絶縁性膜で覆う第2の工程と、部分的に前記絶縁性膜を除去し導電性表面を露出させる第3の工程と、部分的に前記導電性表面が露出した基板に対して絶縁性皮膜以上で絶縁層全体が覆われない所定の膜厚の電気めっき層を形成する第4の工程と、前記電気めっきにより得られた金属膜を基板と分離する第5の工程と、からなる表裏で大きさの異なる開口形状の貫通孔を有する金属膜の製造方法において、前記第2の工程で形成する絶縁性膜の厚さをti、前記第4の工程で形成する電気めっき層の厚さをTとすると、前記第3の工程により部分的に除去された結果、残存する絶縁膜の形状が前記金属膜に形成すべき開口のうち面積の小さい方の開口形状から外側に距離(T−ti)だけ離れた形状であることを特徴とする。
請求項14記載の発明は、導電性基板を用意する第1の工程、前記導電性基板表面を絶縁層で被覆する第2の工程、前記絶縁層に3以上の頂点を有する多角形となる配列の1以上の絶縁層開口群を形成し、該各絶縁層開口内に前記導電性基板を露出させる第3の工程、前記絶縁層開口の形成された前記導電性基板を陰極として電気めっきを行い、前記絶縁層開口群の隣接する絶縁層開口からの析出物が互いに接しかつ配列中央部に非析出部が残る範囲でめっき膜を形成する第4の工程、前記導電性基板と前記めっき膜とを分離する第5の工程、を少なくとも有することを特徴とする。
The invention according to claim 11 is the metal film according to any one of claims 7 to 10, wherein the shortest distance from one surface of the through hole to the other surface is the film thickness around the through hole. It has the same shape.
In the invention according to claim 12, in the metal film according to any one of claims 7 to 11, the width on one surface is W1 and the width on the other surface is W2 in the cross section in the film thickness direction of the through hole. Sometimes when the relationship of W1 ≧ W2 is satisfied, the position in the thickness direction on the surface where the width is W1 is 0, and the thickness of the surface where W2 is T is arbitrary position T1, T2, The relationship between T3 (0 <T1 <T2 <T3 <T) and the widths WT1, WT2, and WT3 at that position is WT1 = WT2 = WT3 or (WT1-WT2) / (T2-T1) ≧ (WT2-WT3) / (T3-T2).
The invention according to claim 13 is a first step of preparing a substrate having conductivity on at least a surface thereof, a second step of covering the surface of the conductive substrate with an insulating film, and partially the insulating film. And a third step of exposing the conductive surface, and an electroplating layer having a predetermined film thickness that does not cover the entire insulating layer more than the insulating film with respect to the substrate on which the conductive surface is partially exposed In a method for producing a metal film having through-holes with different sizes on the front and back, comprising a fourth step of forming and a fifth step of separating the metal film obtained by electroplating from the substrate, Assuming that the thickness of the insulating film formed in the second step is ti and the thickness of the electroplating layer formed in the fourth step is T, as a result of being partially removed by the third step, The shape of the remaining insulating film is the shape of the opening to be formed in the metal film. Characterized in that the smaller opening shape of the area is separated shape distance (T-ti) on the outside.
The invention according to claim 14 is a first step of preparing a conductive substrate, a second step of covering the surface of the conductive substrate with an insulating layer, and an array having a polygon having three or more vertices in the insulating layer Forming a group of one or more insulating layer openings and exposing the conductive substrate in each insulating layer opening, and performing electroplating with the conductive substrate having the insulating layer opening formed as a cathode. A fourth step of forming a plating film in such a range that precipitates from adjacent insulating layer openings in the insulating layer opening group are in contact with each other and a non-deposition portion remains in the central portion of the array, and the conductive substrate and the plating film And at least a fifth step of separating.

請求項15の発明は、請求項13または14に記載の金属膜の製造方法において前記第5の工程の後に第6の工程として金属膜表面を親水性皮膜で覆う工程を行うことを特徴とする。
請求項16の発明は、請求項15に記載の金属膜の製造方法において、前記親水性皮膜で覆う工程を熱酸化で行うことを特徴とする。
請求項17の発明は、請求項16に記載の金属膜の製造方法において、前記親水性皮膜で覆う工程を熱酸化を行い、さらに前記親水性皮膜を形成する工程を経ることを特徴とする。
請求項18の発明は、請求項13または14に記載の金属膜の製造方法において、前記第5の工程の後に第6の工程として前記金属膜表面を疎水性皮膜で覆う工程を行うことを特徴とする。
請求項19の発明は、請求項1乃至12の何れか一項に記載の金属膜を介して連続相中に分散相を押し出すことを特徴とする。
請求項20の発明は、請求項19に記載の乳化方法により形成されたことを特徴とする。
請求項21の発明は、少なくとも連続相収容部と、分散相収容部と、前記連続相収容部及び分散相収容部を分離する多数の微小な貫通孔を有する隔膜と、前記連続相収容部に連続相を供給するための連続相供給部と、前記分散相収容部に分散相を供給する分散相供給部と、前記連続相収容部に生成された乳化物を取り出すための排出部と、を備えた膜乳化装置において、前記隔膜として請求項1乃至12のいずれか一項に記載の金属膜を用いかつ、該金属膜に形成された貫通孔の片側表面における絶対最大長をW1とし他側表面における絶対最大長をW2としたときにW1≧W2の関係においてW1となる面を分散相収容部側に、W2となる面を連続相収容部側になるように配したことを特徴とする。
A fifteenth aspect of the invention is characterized in that in the metal film manufacturing method according to the thirteenth or fourteenth aspect, a step of covering the metal film surface with a hydrophilic film is performed as a sixth step after the fifth step. .
A sixteenth aspect of the invention is characterized in that, in the metal film manufacturing method according to the fifteenth aspect, the step of covering with the hydrophilic film is performed by thermal oxidation.
The invention according to claim 17 is the method for producing a metal film according to claim 16, characterized in that the step of covering with the hydrophilic film is subjected to thermal oxidation and further the step of forming the hydrophilic film.
The invention according to claim 18 is the method for producing a metal film according to claim 13 or 14, wherein a step of covering the surface of the metal film with a hydrophobic film is performed as a sixth step after the fifth step. And
A nineteenth aspect of the invention is characterized in that a dispersed phase is extruded into a continuous phase through the metal film according to any one of the first to twelfth aspects.
The invention of claim 20 is characterized by being formed by the emulsification method of claim 19.
The invention of claim 21 includes at least a continuous phase accommodating portion, a dispersed phase accommodating portion, a diaphragm having a plurality of minute through holes separating the continuous phase accommodating portion and the dispersed phase accommodating portion, and the continuous phase accommodating portion. A continuous phase supply unit for supplying a continuous phase, a dispersed phase supply unit for supplying a dispersed phase to the dispersed phase storage unit, and a discharge unit for taking out the emulsion produced in the continuous phase storage unit. In the membrane emulsification apparatus provided, the metal film according to any one of claims 1 to 12 is used as the diaphragm, and the absolute maximum length on one side surface of the through-hole formed in the metal film is W1, and the other side When the absolute maximum length on the surface is W2, the surface that becomes W1 in the relationship of W1 ≧ W2 is arranged on the dispersed phase accommodating portion side, and the surface that becomes W2 is arranged on the continuous phase accommodating portion side. .

請求項1記載の金属膜は露出面全面が親水性の高い表面を有しているのでこれを隔膜として連続相に水系媒体を、分散層として油系媒体を用い水中油型の乳化を行う際に分散相が隔膜に付着することにより生じる不具合を低減することができる。また、隔膜が金属よりなっているためにその厚さが薄くても割れるなどの恐れがなく取扱いが容易であり不具合が生じた際においてもその対応が容易に行える。さらに、形成された貫通孔が互いに独立しているので連続相の流れが一定方向であり固形分を含む連続相を用いた場合にも固形分が滞留、付着するなどの問題を低減でき貫通孔の閉塞を抑止できる。
請求項2記載の金属膜は開口が同一方向を向くよう形成されているので、流通してきた流体に加わる表面張力が極大となる部分を同一方向に揃えることができる。
請求項3記載の金属膜は形成された貫通孔の形状が粒子生成に適した形状であるために貫通孔寸法に対して小径の粒子を均一な粒径で生成することができる。
請求項4記載の金属膜は形成された貫通孔の断面の幅が分散相に接する面以上に広い部分がないので連続相の流れにおいて速度の低下する部分がなく、貫通孔の閉塞をさらに効果的に抑止することができる。
請求項5記載の金属膜は形成された貫通孔の膜厚方向の最短距離が膜厚に等しい、即ち連続相は直線的な経路を通るのでさらに貫通孔の閉塞を抑止できるとともに、流体抵抗も小さくできるので高粘度の液体を分散相に用いることができる。
請求項6記載の金属膜は形成された貫通孔の断面の幅の縮小率が連続相に接する面近傍においてもっとも小さくなっており粒子生成の際の分裂位置の変動が得られる粒子径に及ぼす影響を小さくすることができる。
In the metal film according to claim 1, since the entire exposed surface has a highly hydrophilic surface, when this is used as a diaphragm, an aqueous medium is used as a continuous phase and an oil-based medium is used as a dispersion layer, an oil-in-water emulsification is performed. In addition, it is possible to reduce problems caused by the dispersed phase adhering to the diaphragm. In addition, since the diaphragm is made of metal, there is no risk of cracking even if it is thin, and handling is easy, and even when a problem occurs, it can be easily handled. Furthermore, since the formed through-holes are independent from each other, the flow of the continuous phase is in a fixed direction, and even when a continuous phase containing solid content is used, problems such as solids staying and adhering can be reduced. Can be blocked.
Since the metal film according to the second aspect is formed so that the openings are directed in the same direction, portions where the surface tension applied to the flowing fluid is maximized can be aligned in the same direction.
In the metal film according to the third aspect, since the shape of the formed through hole is a shape suitable for particle generation, particles having a small diameter with respect to the size of the through hole can be generated with a uniform particle size.
The metal film according to claim 4 has no portion where the width of the cross-section of the formed through-hole is wider than the surface in contact with the dispersed phase, so there is no portion where the speed decreases in the flow of the continuous phase, and the blockage of the through-hole is further effective Can be deterred.
In the metal film according to claim 5, the shortest distance in the film thickness direction of the formed through hole is equal to the film thickness, that is, the continuous phase passes through a linear path, so that the block of the through hole can be further suppressed and the fluid resistance is also reduced. Since it can be reduced, a highly viscous liquid can be used for the dispersed phase.
In the metal film according to claim 6, the reduction ratio of the width of the cross-section of the formed through hole is the smallest in the vicinity of the surface in contact with the continuous phase, and the influence on the particle diameter at which the variation of the splitting position during particle formation is obtained. Can be reduced.

請求項7記載の金属膜は露出面全面が疎水性の高い表面を有しているのでこれを隔膜として連続相に油系媒体を、分散層として水系媒体を用い油中水型の乳化を行う際に分散相が隔膜に付着することにより生じる不具合を低減することができる。また、隔膜が金属よりなっているためにその厚さが薄くても割れるなどの恐れがなく取扱いが容易であり不具合が生じた際においてもその対応が容易に行える。さらに、形成された貫通孔が互いに独立しているので連続相の流れが一定方向であり固形分を含む連続相を用いた場合にも固形分が滞留、付着するなどの問題を低減でき貫通孔の閉塞を抑止できる。
請求項8記載の金属膜は開口が同一方向を向くよう形成されているので、流通してきた流体に加わる表面張力が極大となる部分を同一方向に揃えることができる。
請求項9記載の金属膜は形成された貫通孔の形状が粒子生成に適した形状であるために貫通孔寸法に対して小径の粒子を均一な粒径で生成することができる。
請求項10記載の金属膜は形成された貫通孔の断面の幅が分散相に接する面以上に広い部分がないので連続相の流れにおいて速度の低下する部分がなく、貫通孔の閉塞をさらに効果的に抑止することができる。
請求項11記載の金属膜は形成された貫通孔の膜厚方向の最短距離が膜厚に等しい、即ち連続相は直線的な経路を通るのでさらに貫通孔の閉塞を抑止できるとともに、流体抵抗も小さくできるので高粘度の液体を分散相に用いることができる。
請求項12記載の金属膜は形成された貫通孔の断面の幅の縮小率が連続相に接する面近傍においてもっとも小さくなっており粒子生成の際の分裂位置の変動が得られる粒子径に及ぼす影響を小さくすることができる。
請求項13および14記載の金属膜の製造方法においては電気めっきで形成しているので単独の膜として使用可能な膜厚を安価な手段で均一に作製することが可能であり絶縁膜上への成長を考慮した形状を絶縁膜の形状として規定しているので目的とする貫通孔形状を得ることができ、請求項1から12のいずれかに記載の金属膜を製造することができる。
In the metal film according to claim 7, since the entire exposed surface has a highly hydrophobic surface, this is used as a diaphragm and an oil-based medium is used as a continuous phase, and an aqueous medium is used as a dispersion layer to perform water-in-oil emulsification. In this case, it is possible to reduce problems caused by the dispersed phase adhering to the diaphragm. In addition, since the diaphragm is made of metal, there is no risk of cracking even if it is thin, and handling is easy, and even when a problem occurs, it can be easily handled. Furthermore, since the formed through-holes are independent from each other, the flow of the continuous phase is in a fixed direction, and even when a continuous phase containing solid content is used, problems such as solids staying and adhering can be reduced. Can be blocked.
Since the metal film according to the eighth aspect is formed so that the openings are directed in the same direction, the portions where the surface tension applied to the flowing fluid is maximized can be aligned in the same direction.
In the metal film according to the ninth aspect, since the shape of the formed through hole is a shape suitable for particle generation, particles having a small diameter with respect to the size of the through hole can be generated with a uniform particle size.
The metal film according to claim 10 has no portion where the width of the cross-section of the formed through-hole is wider than the surface in contact with the dispersed phase, so there is no portion where the speed decreases in the flow of the continuous phase, and the through-hole is more effectively blocked. Can be deterred.
In the metal film according to claim 11, the shortest distance in the film thickness direction of the formed through hole is equal to the film thickness, that is, the continuous phase passes through a linear path, so that the blocking of the through hole can be further suppressed and the fluid resistance is also reduced. Since it can be reduced, a highly viscous liquid can be used for the dispersed phase.
In the metal film according to claim 12, the reduction ratio of the width of the cross-section of the formed through-hole is the smallest in the vicinity of the surface in contact with the continuous phase, and the influence on the particle diameter at which the variation of the splitting position during particle formation is obtained. Can be reduced.
In the method for producing a metal film according to claims 13 and 14, since it is formed by electroplating, it is possible to uniformly produce a film thickness that can be used as a single film by an inexpensive means. Since the shape considering the growth is defined as the shape of the insulating film, the desired through-hole shape can be obtained, and the metal film according to any one of claims 1 to 12 can be manufactured.

請求項15記載の金属膜の製造方法においては親水性の皮膜で覆う工程を含んでいるので請求項1から6のいずれかに記載の親水性表面を示す金属膜を製造することができる。
請求項16記載の金属膜の製造方法においては親水性の皮膜で覆う工程が熱酸化で行っているために、簡便にかつ貫通孔の内部まで確実に密着性の良い親水性皮膜を形成することができ、請求項1から6のいずれかに記載の親水性表面を示す金属膜を製造することができる。
請求項17記載の金属膜の製造方法においては熱酸化で貫通孔内部まで確実に密着性の良い親水性皮膜を形成した後に他の手法でさらに親水性皮膜を形成しているので長期にわたり親水性を示す皮膜を得ることができ、請求項1から6のいずれかに記載の親水性表面を示す金属膜を製造することができる。
請求項18記載の金属膜の製造方法においては疎水性の皮膜で覆う工程を含んでいるので請求項7から12のいずれかに記載の疎水性表面を示す金属膜を製造することができる。
請求項19記載の乳化方法は、金属膜を介して乳化を行っているので、高粘度の流体を用いることができ、また表面張力の極大となる一定の部分を形成することができ、安定した乳化を行うことができる。
請求項20記載の微粒子は、大きさが均一に揃っている。
請求項21記載の膜乳化装置は請求項1から12のいずれかに記載の金属膜を用いているので固形分を含む場合であっても粒径の揃った微粒子を製造することが可能であり、またメンテナンスが容易である。
Since the method for producing a metal film according to claim 15 includes a step of covering with a hydrophilic film, the metal film having a hydrophilic surface according to any one of claims 1 to 6 can be produced.
In the method for producing a metal film according to claim 16, since the step of covering with a hydrophilic film is performed by thermal oxidation, a hydrophilic film with good adhesion can be easily and reliably formed to the inside of the through hole. The metal film which shows the hydrophilic surface in any one of Claim 1 to 6 can be manufactured.
In the method for producing a metal film according to claim 17, since a hydrophilic film having good adhesion is reliably formed to the inside of the through-hole by thermal oxidation, the hydrophilic film is further formed by another method. The metal film which shows the hydrophilic surface in any one of Claim 1 to 6 can be manufactured.
Since the method for producing a metal film according to claim 18 includes a step of covering with a hydrophobic film, the metal film having a hydrophobic surface according to any one of claims 7 to 12 can be produced.
In the emulsification method according to claim 19, since the emulsification is performed through the metal film, a highly viscous fluid can be used, and a constant portion where the surface tension is maximized can be formed. Emulsification can be performed.
The fine particles according to claim 20 are uniform in size.
Since the membrane emulsification apparatus according to claim 21 uses the metal film according to any one of claims 1 to 12, it is possible to produce fine particles having a uniform particle diameter even when solid content is included. Also, maintenance is easy.

以下、本発明の実施の形態を図面に従って説明する。
図1は本発明における金属膜を備えた膜乳化装置の概略図である。分散相収容部20と連続相収容部21とが貫通孔22の形成された隔膜23で分離されている。分散相収容部20には分散相供給口24があり、図示しない分散相を供給するための分散相供給系につながれている。また、連続相収容部21には連続相供給口25と生成した乳化物、粒子を回収するための排出口26があり連続相供給口24は図示しない連続相供給手段につながれており、排出口は図示しない回収手段につながれている。連続相を連続相供給口25から供給し排出口26から排出されるよう流した状態で、分散相供給口24より分散相を導入することにより隔膜23に設けられた貫通孔22を通して分散相は連続相中に移動し、連続相との界面張力の影響で球形化し貫通孔内で分離して連続相中に粒子として生成される。生成された粒子は連続相とともに排出口26より排出され回収される。この際に隔膜表面は連続相に対して濡れ性が高いために連続相収容部21に接する表面は連続相に接しているので分散相は連続相収容部21において隔膜に接することがなく、貫通孔22に対して小粒径の粒子生成が行える。しかしながら分散相が供給過多になると貫通孔内で分散相が分離しにくくなり大きく成長してしまい隔膜表面に分散相が接する状態が生じる。隔膜表面が連続相に対して濡れ性が高ければ多くの場合、分散相の供給量を減らす若しくは停止することにより初期状態に復帰することができ、再度適正な分散相の供給量に設定することで目的とする粒子の生成を再開することができる。しかしながら隔膜の連続相に対する濡れ性が不十分であったり、また十分な濡れ性であってもまれに隔膜表面の貫通孔22近傍に分散相が付着した状態が生じる。このような状態になると図2に示すように、その貫通孔22より生成する粒子は大径化してしまい、復帰させるためには装置から取り外して洗浄する必要がある。このような場合において隔膜23が金属母材よりなっているために取り外し作業や洗浄作業において破損などの恐れが少なく長期にわたって使用することができる。
内部に固体微粒子などの固形分を含有する粒子を形成する際において本発明の金属膜を用いた乳化装置においては隔膜23に形成された貫通孔22が互いに独立しているために図3に示す分散相27として微粒子を均一に分散したものを用いた場合貫通孔22を通る過程で分岐、合流などが生じないので分散相として調整した状態の粒子が生成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a film emulsification apparatus provided with a metal film in the present invention. The dispersed phase accommodating part 20 and the continuous phase accommodating part 21 are separated by a diaphragm 23 in which a through hole 22 is formed. The dispersed phase storage unit 20 has a dispersed phase supply port 24, which is connected to a dispersed phase supply system for supplying a dispersed phase (not shown). Further, the continuous phase container 21 has a continuous phase supply port 25 and a discharge port 26 for recovering the produced emulsion and particles, and the continuous phase supply port 24 is connected to a continuous phase supply means (not shown). Is connected to a collecting means (not shown). In a state where the continuous phase is supplied from the continuous phase supply port 25 and discharged from the discharge port 26, the dispersed phase is introduced through the through holes 22 provided in the diaphragm 23 by introducing the dispersed phase from the dispersed phase supply port 24. It moves into the continuous phase, spheroidizes due to the influence of the interfacial tension with the continuous phase, and separates in the through-holes to form particles in the continuous phase. The generated particles are discharged from the discharge port 26 together with the continuous phase and collected. At this time, since the surface of the diaphragm is highly wettable with respect to the continuous phase, the surface in contact with the continuous phase accommodating portion 21 is in contact with the continuous phase, so that the dispersed phase does not contact the diaphragm in the continuous phase accommodating portion 21 and penetrates. A small particle size can be generated with respect to the hole 22. However, when the dispersed phase is excessively supplied, the dispersed phase is difficult to separate in the through-holes and grows large, resulting in a state where the dispersed phase is in contact with the surface of the diaphragm. In many cases, if the surface of the diaphragm is highly wettable with respect to the continuous phase, it can be restored to the initial state by reducing or stopping the supply amount of the dispersed phase, and set again to the appropriate supply amount of the dispersed phase. The production of the target particles can be resumed. However, the wettability with respect to the continuous phase of the diaphragm is insufficient, or even if the wettability is sufficient, a state in which a dispersed phase is attached in the vicinity of the through hole 22 on the surface of the diaphragm rarely occurs. In such a state, as shown in FIG. 2, the particles generated from the through-holes 22 become larger in diameter and need to be removed from the apparatus and cleaned in order to recover. In such a case, since the diaphragm 23 is made of a metal base material, it can be used for a long period of time with little risk of breakage during removal or cleaning.
In the emulsification apparatus using the metal film of the present invention when forming particles containing solid content such as solid fine particles inside, the through holes 22 formed in the diaphragm 23 are independent of each other, and therefore, as shown in FIG. When the dispersed phase 27 is obtained by uniformly dispersing fine particles, branching, merging or the like does not occur in the process of passing through the through-holes 22, so that particles in a state adjusted as a dispersed phase are generated.

粒子生成の様子を図11に従い説明する。図11は粒子生成の過程を三段階に分け模式的に示しており、それぞれ一つの貫通孔を連続相側の真上から見た図と貫通孔と内接円との接点での断面及び貫通孔と外接円との接点での断面よりなっている。まず、図11a)のように分散相27は貫通孔22内を進んで来る。続いてb)のように貫通孔22よりその一部が連続相側へと押出される。この際に分散相27は連続相との界面張力により球形になろうと変形するためにそのすぐ後方の分散相は連続相内でほぼ球形化した分散相より小さな径の円形断面形状となる。さらにその後方の貫通孔内においては貫通孔の形状に拘束された液柱の状態になる。その後c)のように連続相内の球形化した分散相27aと貫通孔22の形状に拘束された分散相との形状のゆがみにより両者は分裂し連続相中に分散相粒子が生成される。この動作を繰り返すことにより粒子生成が連続して行われる。この際に貫通孔の形状が円形に近いと先端粒子と貫通孔内の連続相との間の連結部に生じるゆがみが小さいために分裂しにくく、生成される粒子径が大きくなり、またそのばらつきが大きいものになってしまう。開口形状と得られる粒子との関係を検討した結果、良好な結果が得られる形状は二つの指標値で規定できることを発見した。一つ目の指標値F1は
F1=(絶対最大長)^2/面積×π/4
で表され、真円のときにF1=1となり円形から離れるほど大きな数字で表される。二つ目の指標値F2は
F2=4π×面積/(周長)^2
で表され、真円のときにF2=1となり円形から離れるほど小さな数字で表される。
これら二つの指標値がF1≧2かつF2≦0.8なる関係を満たす形状であるときに安定して連続した粒子生成が行われ得られた粒子径のばらつきも均一なものが得られた。具体的な貫通孔径形状の一部及びその形状での二つの指標を満たす領域を図12から図16に例示したが上記条件を満たしていればこれらの形状に限られるわけではない。図12から図16の(a)は形状を表し、(b)は指標値F1とF2の関係を表している。
The state of particle generation will be described with reference to FIG. FIG. 11 schematically shows the particle generation process in three stages, each showing one through-hole as viewed from directly above the continuous phase side, and the cross-section and through-hole at the contact point between the through-hole and the inscribed circle. It consists of a cross section at the contact point between the hole and the circumscribed circle. First, as shown in FIG. 11 a), the dispersed phase 27 advances through the through hole 22. Subsequently, as shown in b), a part of the through hole 22 is extruded toward the continuous phase. At this time, since the dispersed phase 27 is deformed to become spherical due to the interfacial tension with the continuous phase, the dispersed phase immediately behind it has a circular cross-sectional shape having a smaller diameter than the dispersed phase substantially spheroidized in the continuous phase. Further, in the rear through hole, the liquid column is constrained by the shape of the through hole. After that, as shown in c), the spherical dispersed phase 27a in the continuous phase and the dispersed phase constrained by the shape of the through-holes 22 are distorted to generate dispersed phase particles in the continuous phase. By repeating this operation, particle generation is continuously performed. At this time, if the shape of the through-hole is close to a circle, the distortion generated at the connecting portion between the tip particle and the continuous phase in the through-hole is small, so that it is difficult to break up, the generated particle size increases, and the variation Will be big. As a result of examining the relationship between the opening shape and the obtained particles, it was found that a shape that can provide good results can be defined by two index values. The first index value F1 is F1 = (absolute maximum length) ^ 2 / area × π / 4.
In the case of a perfect circle, F1 = 1, and the greater the distance from the circle, the greater the number. The second index value F2 is F2 = 4π × area / (circumference length) ^ 2.
In the case of a perfect circle, F2 = 1 and the smaller the circle, the smaller the number.
When these two index values have a shape satisfying the relationship of F1 ≧ 2 and F2 ≦ 0.8, a uniform particle size variation obtained by stably and continuously generating particles was obtained. A part of a specific through hole diameter shape and a region satisfying two indices in the shape are illustrated in FIGS. 12 to 16, but the shape is not limited to these shapes as long as the above conditions are satisfied. 12A to 16A show the shape, and FIG. 12B shows the relationship between the index values F1 and F2.

また本発明の乳化装置に用いる金属膜に形成された貫通孔の断面形状としては分散相に接する面の開口の断面幅をW1、連続相に接する面の開口の断面幅をW2としたときにW1≧W2でありさらにこの断面幅は膜厚方向においてはW1が最大となりW2が最小とすることが望ましい。このような断面の貫通孔とすることにより貫通孔内を移動する分散相はその速度が低下することなく連続相側へと移動するので分散相内に分散している物質が貫通孔内に滞留するのを効果的に防ぎ、生成粒子内の濃度を均一化できるとともに貫通孔内への固形物質の付着及びそれに起因する貫通孔の閉塞を防ぐことができる。具体的な形状の例としては図4から図7に示すような形状が上げられる。なお、これは一断面の形状でありその断面の切り出し方によりそれぞれの形状は異なっていても上記の関係を満足していれば良い。
また、この貫通孔はその最短距離が周辺の膜厚に等しい即ち膜面に対して垂直方向に形成されていることがさらに望ましい。このような形状とすることで分散相が狭い空間を移動する距離を最短にすることができるために貫通孔の閉塞をさらに効果的に防ぐことができる。また、連続相として粘度の高い液体を用いることができる。
また、この貫通孔断面形状においてさらに詳細には貫通孔の形成された隔膜の厚さ方向を、分散相と接する面を0とし、隔膜の厚さをTとしたときに厚さ方向の任意の位置T1、T2、T3(0≦T1≦T2≦T3≦T)における断面の幅WT1、WT2、WT3の関係をWT1=WT2=WT3若しくは(WT1−WT2)/(T2−T1)≧(WT2−WT3)/(T3−T2)の関係を満足させることが望ましい。このような形状は前者の関係を満たす形状は図8に示すように貫通孔のいずれの断面においても厚み方向に関してその幅が変わらない形状である。また後者の関係を満たす形状は断面幅が分散相側が連続相側に対して広い場合にその幅の狭まり方が一定(図9)若しくは連続相側に行くほど緩やかになる(図10)。このような形状では連続相近傍における貫通孔の断面積の変動量がもっとも小さいので粒子生成の際に分裂する位置が変動することによる得られる粒子の体積及び大きさへの影響を低減することができ均一な大きさの粒子が得られる。
また本発明の乳化装置はそこに用いる貫通孔を有する隔膜は材質として金属母材であることを特徴としている。この隔膜の製造法として、金属薄膜に対してエッチングやレーザ照射をすることによる除去加工によっても可能であるが、フォトリソグラフィーと電析を組み合わせる加工法が高い寸法精度を安価に得られる方法として好適である。
The cross-sectional shape of the through-hole formed in the metal film used in the emulsifying device of the present invention is as follows. When the cross-sectional width of the opening in contact with the dispersed phase is W1, and the cross-sectional width of the opening in contact with the continuous phase is W2. It is desirable that W1 ≧ W2 and that the cross-sectional width is W1 maximum and W2 minimum in the film thickness direction. By making the through-hole of such a cross section, the dispersed phase moving in the through-hole moves to the continuous phase side without reducing its speed, so that the substance dispersed in the dispersed phase stays in the through-hole. This can be effectively prevented, the concentration in the generated particles can be made uniform, and solid substances can be prevented from adhering to the through holes and blocking of the through holes due to the solid substances. Specific examples of the shape include shapes shown in FIGS. In addition, this is the shape of one cross section, and it is only necessary to satisfy the above relationship even if each shape is different depending on how the cross section is cut out.
Further, it is more desirable that the through hole has the shortest distance equal to the peripheral film thickness, that is, formed in a direction perpendicular to the film surface. By adopting such a shape, it is possible to minimize the distance that the dispersed phase moves in a narrow space, and thus it is possible to more effectively prevent the through hole from being blocked. Moreover, a liquid with a high viscosity can be used as a continuous phase.
Further, in the cross-sectional shape of the through-hole, in more detail, the thickness direction of the diaphragm in which the through-hole is formed is arbitrary in the thickness direction when the surface in contact with the dispersed phase is 0 and the thickness of the diaphragm is T. The relationship between the cross-sectional widths WT1, WT2, and WT3 at the positions T1, T2, and T3 (0 ≦ T1 ≦ T2 ≦ T3 ≦ T) is WT1 = WT2 = WT3 or (WT1-WT2) / (T2-T1) ≧ (WT2- It is desirable to satisfy the relationship of WT3) / (T3-T2). Such a shape satisfying the former relationship is a shape whose width does not change in the thickness direction in any cross section of the through hole as shown in FIG. When the cross-sectional width of the shape satisfying the latter relationship is wider on the dispersed phase side than on the continuous phase side, the narrowing of the width becomes constant (FIG. 9) or becomes gentler toward the continuous phase side (FIG. 10). In such a shape, since the amount of variation in the cross-sectional area of the through hole in the vicinity of the continuous phase is the smallest, it is possible to reduce the influence on the volume and size of the particles obtained by changing the position of splitting during particle generation. And uniform size particles can be obtained.
The emulsifying device of the present invention is characterized in that the diaphragm having a through hole used therein is a metal base material. As a method of manufacturing this diaphragm, it is possible to remove metal thin films by etching or laser irradiation. However, a method combining photolithography and electrodeposition is suitable as a method for obtaining high dimensional accuracy at low cost. It is.

図17は加工工程の概略図である。少なくとも表面が導電性の基板表面に作製すべき隔膜の膜厚以上の厚さに感光性樹脂膜を形成する。感光性樹脂としては厚膜を通常のスピンコートで塗布形成可能でかつ、高アスペクトのパターン形成が可能なネガ型感光性樹脂SU−8(化薬マイクロケム社製)を用いることが好適である。形成した感光性樹脂膜に対して形成すべき貫通孔の開口形状に対応した光透過部を形成したフォトマスクを介して露光を行い、その後熱処理及び現像を行うことで図17(A)のように表面に隔膜の貫通孔に相当する形状の感光性樹脂パターンが形成された導電性基板30を得ることができる。この基板30に対して所定の膜厚まで電析32を行うことで図17(B)に示すような状態となる。この後基板と電析した金属膜とを分離することにより貫通孔の形成された金属母材の隔膜を得ることができる。ここで用いた感光性樹脂SU−8は垂直な壁面を持ったパターン形状が得られるために、隔膜に形成される貫通孔の断面形状はどの膜厚位置においても等しい矩形断面となる。   FIG. 17 is a schematic view of the machining process. A photosensitive resin film is formed at least to a thickness equal to or greater than the thickness of the diaphragm to be formed on the surface of the conductive substrate. As the photosensitive resin, it is preferable to use a negative photosensitive resin SU-8 (manufactured by Kayaku Microchem Co., Ltd.) capable of forming a thick film by ordinary spin coating and forming a high aspect pattern. . As shown in FIG. 17A, the exposed photosensitive resin film is exposed through a photomask having a light transmitting portion corresponding to the opening shape of the through hole to be formed, and then subjected to heat treatment and development. In addition, a conductive substrate 30 having a surface formed with a photosensitive resin pattern corresponding to the through hole of the diaphragm can be obtained. By performing electrodeposition 32 on the substrate 30 to a predetermined film thickness, a state as shown in FIG. Thereafter, by separating the substrate from the electrodeposited metal film, a metal base material film having through holes can be obtained. Since the photosensitive resin SU-8 used here has a pattern shape having a vertical wall surface, the cross-sectional shape of the through-hole formed in the diaphragm is an equal rectangular cross-section at any film thickness position.

図18は加工工程の他の例の概略図である。少なくとも表面が導電性の基板表面34に薄膜感光性樹脂層35を厚さti形成する。感光性樹脂としては特に規定はなく、電析を行う際のめっき液に対して耐性があればネガ型、ポジ型のいずれでも用いることができる。また、感光性樹脂層35の厚さの規定は特にないが、0.1μm〜10μmの範囲であることが望ましい。薄すぎると後の工程で行う電析時に絶縁膜として機能しなくなり、厚すぎるとパターン精度が悪くなる。この後感光性樹脂層35に対して目的とするパターンが形成されるようなフォトマスクを介して露光、熱処理、現像の一連の工程を行い不要な感光性樹脂層を除去することにより図18(A)のような形態の基板34が得られる。この基板表面に対して所望の隔膜の厚さT(T≧ti)になるまで電析を行うと図18(B)に示すような状態となる。この後基板と電析した金属膜とを分離することにより貫通孔37の形成された金属母材の隔膜36を得ることができる。本工法は感光性樹脂の厚さ以上の電析を行っている。こうすることにより析出物は絶縁体である感光性樹脂表面に周囲からせり出すように成長してくる。めっき液および条件を適当に選ぶことで電析の成長をいずれの方向に対しても等しくすることが可能である。この条件で電析を行うことで感光性樹脂上へのせり出し量は電析厚さから感光性樹脂の厚さを差し引いた厚さと等しくなり、断面の形状としては感光性樹脂端部を中心とする1/4円弧で表現される。このことから基板上に作製する感光性樹脂の形状は形成したい貫通孔の開口形状、感光性樹脂の膜厚、作製したい隔膜の膜厚から決定することができる。より具体的な説明を行うと、隔膜に形成する一つの貫通孔の連続層に接する面での開口形状を幅ds、高さdlの矩形であるときに、基板上へ形成する感光性樹脂層の厚さをti、隔膜として形成したい厚さをTとすると感光性樹脂上への電析時のせり出し量は(T−ti)となる。この量を開口形状の幅、高さのそれぞれについて両側に広げた量すなわち幅DSはDS=ds+2×(T−ti)、高さDLはDL=dl+2×(T−ti)の矩形にすることで目的とする隔膜が得られる。貫通孔の断面形状はすべてを満足する形状となる。   FIG. 18 is a schematic view of another example of the machining process. A thin photosensitive resin layer 35 is formed at a thickness ti on a substrate surface 34 having at least a conductive surface. The photosensitive resin is not particularly specified, and any of a negative type and a positive type can be used as long as it has resistance to a plating solution at the time of electrodeposition. The thickness of the photosensitive resin layer 35 is not particularly specified, but is preferably in the range of 0.1 μm to 10 μm. If it is too thin, it will not function as an insulating film during electrodeposition performed in a later step, and if it is too thick, the pattern accuracy will deteriorate. Thereafter, a series of steps of exposure, heat treatment, and development are performed through a photomask that forms a target pattern on the photosensitive resin layer 35, and an unnecessary photosensitive resin layer is removed, thereby removing the photosensitive resin layer shown in FIG. A substrate 34 having the form as shown in A) is obtained. When electrodeposition is performed on the substrate surface until a desired diaphragm thickness T (T ≧ ti) is obtained, a state as shown in FIG. 18B is obtained. Thereafter, a metal base material diaphragm 36 having through holes 37 formed therein can be obtained by separating the substrate and the deposited metal film. In this method, electrodeposition is performed in excess of the thickness of the photosensitive resin. By doing so, the precipitate grows so as to protrude from the periphery to the photosensitive resin surface which is an insulator. By appropriately selecting the plating solution and conditions, it is possible to make the growth of electrodeposition equal in any direction. By performing electrodeposition under these conditions, the amount of protrusion onto the photosensitive resin is equal to the thickness obtained by subtracting the thickness of the photosensitive resin from the electrodeposition thickness, and the cross-sectional shape is centered on the photosensitive resin end. Is represented by a 1/4 arc. From this, the shape of the photosensitive resin produced on the substrate can be determined from the opening shape of the through hole to be formed, the film thickness of the photosensitive resin, and the film thickness of the diaphragm to be produced. More specifically, the photosensitive resin layer formed on the substrate when the opening shape on the surface in contact with the continuous layer of one through hole formed in the diaphragm is a rectangle of width ds and height dl. When the thickness of the film is ti and the thickness to be formed as a diaphragm is T, the amount of protrusion at the time of electrodeposition on the photosensitive resin is (T-ti). The amount obtained by expanding this amount to both sides of the width and height of the opening shape, that is, the width DS is a rectangle of DS = ds + 2 × (T−ti), and the height DL is a rectangle of DL = dl + 2 × (T−ti). The desired diaphragm can be obtained. The cross-sectional shape of the through hole is a shape that satisfies all of them.

図20(1)乃至(5)は本発明の金属膜形成方法における概略プロセスの一例を示す図である。また図21は図20に示す各部の平面図であり、図21(1)は図20の(3)に示す第3の工程における平面図、図21(2)は図20の(5)に示す第5の工程における平面図である。
図20(1)に示す第1の工程として、導電性基板1を用意する。これは金属板のような全面に導電性のある材料を用いても良いし、ガラスやシリコンのような絶縁体や半導体の表面に導電性皮膜を、蒸着、スパッタリング、無電解めっきなど公知の成膜手段及びそれらを組み合わせた手段で作製したものでも良い。
図20(2)に示す第2の工程として、導電性基板1の導電性の片側全面に絶縁層2を形成する。これは液状の材料をスピンコートやスプレーコートにより形成したり、フィルム状のものを貼るなどして形成することができる。材料としては液状レジストやドライフィルムレジストなどが好ましいが、後の工程において選択的に除去可能な物質であり、めっき液に対して溶解性が低ければ特に制約を受けない。
図20(3)に示す第3の工程として、導電性基板1上の絶縁層2の一部を選択的に除去して導電性基板1を露出させる。絶縁層2がフォトレジストやドライフィルムレジストであればフォトマスクを介して露光を行った後、現像することで露出部を形成することができる。また、レーザー照射により直接除去加工を行ってもかまわない。
絶縁層開口4の配置形状は、隣接する複数の絶縁層開口4により3以上の頂点を有する多角形を構成している配列の絶縁層開口群5を形成していればいかなる形状でも良い。具体的には図22から図26の(1)に示すように絶縁層開口4の形状は円形であっても良いし長方形であっても良い。もちろんそれ以外の形状であっても良い。さらにそれらは同じ形状、大きさである必要性はなく異なるものの組み合わせでもかまわない。
20 (1) to 20 (5) are diagrams showing an example of a schematic process in the metal film forming method of the present invention. 21 is a plan view of each part shown in FIG. 20, FIG. 21 (1) is a plan view in the third step shown in FIG. 20 (3), and FIG. 21 (2) is shown in FIG. 20 (5). It is a top view in the 5th process shown.
As the first step shown in FIG. 20A, the conductive substrate 1 is prepared. For this, a conductive material such as a metal plate may be used, or a conductive film is deposited on the surface of an insulator or semiconductor such as glass or silicon, and a known composition such as vapor deposition, sputtering, or electroless plating. What was produced by the film | membrane means and the means which combined them may be used.
As a second step shown in FIG. 20B, the insulating layer 2 is formed on the entire surface of one side of the conductive substrate 1. This can be formed by forming a liquid material by spin coating or spray coating, or attaching a film-like material. The material is preferably a liquid resist, a dry film resist, or the like, but is not particularly limited as long as it is a substance that can be selectively removed in a later step and has low solubility in the plating solution.
As a third step shown in FIG. 20 (3), a part of the insulating layer 2 on the conductive substrate 1 is selectively removed to expose the conductive substrate 1. If the insulating layer 2 is a photoresist or a dry film resist, the exposed portion can be formed by developing after exposure through a photomask. Further, the removal process may be performed directly by laser irradiation.
The arrangement shape of the insulating layer openings 4 may be any shape as long as the insulating layer opening group 5 in an array that forms a polygon having three or more vertices is formed by a plurality of adjacent insulating layer openings 4. Specifically, as shown in FIG. 22 to FIG. 26 (1), the shape of the insulating layer opening 4 may be circular or rectangular. Of course, other shapes may be used. Furthermore, they do not have to be the same shape and size, and may be a combination of different ones.

図20(4)に示す第4の工程として、第3の工程で得られた基板1を陰極として電気めっきを行う。めっき初期においては導電基板露出部にのみ析出するがさらにめっきを続け、その膜厚が絶縁層2の厚さ以上になると絶縁層2上にせり出すように島状に析出をはじめ、膜厚に比例してその析出領域を広げていく。この状態でのめっきの成長はめっき液と接しているすべての方向に対して等方的になる。さらにめっきを続けていくと隣接する析出物同士が接し一体化するようになる。
このようにして絶縁層開口群5の隣接する析出物同士がすべて接すると、その中心部にめっき膜3に取り囲まれた絶縁層開口4が形成される。この状態よりさらにめっきを続けると、次第にめっき膜3に取り囲まれた絶縁層開口4が小さくなり最後には全面がめっき膜3で覆われてしまう。
このめっき膜3に取り囲まれた絶縁層開口4が形成された時点から全面がめっき膜3で覆われるまでの任意の時点でめっきを終了することにより所望の大きさの絶縁層開口4を得ることができる。
図20(5)に示す第5の工程として、めっき膜3と導電性基板1とを分離することにより、目的とする絶縁層開口4を有する金属膜3が得られる。具体的には図22から図26の(1)に示すような絶縁層開口群5を形成すると、図22から図26の(2)に示すような開口形状が得られる。
As a fourth step shown in FIG. 20 (4), electroplating is performed using the substrate 1 obtained in the third step as a cathode. In the initial stage of plating, it is deposited only on the exposed part of the conductive substrate, but further plating is continued, and when the film thickness exceeds the thickness of the insulating layer 2, it starts to deposit on the insulating layer 2 and is proportional to the film thickness. Then, the precipitation area is expanded. The growth of plating in this state is isotropic with respect to all directions in contact with the plating solution. As plating continues further, adjacent precipitates come into contact with each other and become integrated.
When all the adjacent precipitates in the insulating layer opening group 5 are in contact with each other in this way, the insulating layer opening 4 surrounded by the plating film 3 is formed at the center thereof. If the plating is further continued from this state, the insulating layer opening 4 surrounded by the plating film 3 gradually becomes smaller and finally the entire surface is covered with the plating film 3.
By completing the plating at an arbitrary time from when the insulating layer opening 4 surrounded by the plating film 3 is formed until the entire surface is covered with the plating film 3, the insulating layer opening 4 having a desired size is obtained. Can do.
As the fifth step shown in FIG. 20 (5), the metal film 3 having the target insulating layer opening 4 is obtained by separating the plating film 3 and the conductive substrate 1. Specifically, when the insulating layer opening group 5 as shown in FIG. 22 to FIG. 26 (1) is formed, an opening shape as shown in FIG. 22 to FIG. 26 (2) is obtained.

図22(1)は同寸法の円状の絶縁層開口4を備えた絶縁層開口群5を示し、同図(2)は同図(1)の絶縁層2を用いて形成された略楔型(メサ形状)を有しためっき膜3側の絶縁層開口4を示す。図23(1)は径の異なる円形の絶縁層開口4を示し、同図(2)は同図(1)の絶縁層2を用いて形成されためっき膜3側に形成された矩形の絶縁層開口4を示している。図24、図25、図26についても各分図(1)(2)は同様の関係を有している。
上述したような方法や他の方法で形成された貫通孔を有する隔膜は金属表面である。この表面を使用目的に応じて親水処理または親油処理を施すことにより乳化装置に使用するに際しさらに良好な結果が得られる。手段としては蒸着やスパッタリングなどの真空成膜を用いた方法が通常行われており、これらを用いても良い。しかしながら本発明の金属膜は微小で深い貫通孔を有しており、さらに良好な特性を得るためには貫通孔内面まで確実に処理が施されていることが望ましい。
本発明の乳化装置に用いる隔膜は金属母材であり、その酸化物は一般的に良好な親水性を示す。金属を酸素含有雰囲気中で加熱することで酸化する熱酸化処理は酸素含有雰囲気と接している部分全面を一度にかつ簡便に処理することができる。また、これにより形成される酸化膜は真空成膜などの酸化物を外部より付着させる方法に比べて緻密で密着力に優れているためにより好ましい結果が得られる。さらに他の方法で酸化膜を形成することにより酸化膜の厚さを増すことができる。酸化膜厚を増すことにより洗浄工程を経てもより長期にわたり親水性が維持でき隔膜の長期にわたる使用が可能となる。
また親水処理と同様に貫通孔内面まで処理を行うことが望ましい。親油性物質を溶媒に溶かした液体中に浸漬塗布後溶媒を乾燥除去する方法が確実に内面まで処理が行えて望ましい方法である。
22 (1) shows an insulating layer opening group 5 having circular insulating layer openings 4 of the same size, and FIG. 22 (2) is a substantially wedge formed by using the insulating layer 2 of FIG. An insulating layer opening 4 on the side of the plating film 3 having a mold (mesa shape) is shown. FIG. 23A shows a circular insulating layer opening 4 having a different diameter, and FIG. 23B shows a rectangular insulating film formed on the side of the plating film 3 formed by using the insulating layer 2 of FIG. A layer opening 4 is shown. 24, FIG. 25, and FIG. 26 also have the same relationship in each of the divided drawings (1) and (2).
A diaphragm having a through hole formed by the above-described method or other methods is a metal surface. When this surface is subjected to a hydrophilic treatment or a lipophilic treatment depending on the purpose of use, a better result can be obtained when it is used in an emulsifying apparatus. As a means, a method using vacuum film formation such as vapor deposition or sputtering is usually performed, and these may be used. However, the metal film of the present invention has fine and deep through-holes, and it is desirable that the inner surface of the through-holes be reliably treated in order to obtain better characteristics.
The diaphragm used in the emulsifying device of the present invention is a metal matrix, and its oxide generally exhibits good hydrophilicity. The thermal oxidation treatment that oxidizes a metal by heating it in an oxygen-containing atmosphere can easily treat the entire surface in contact with the oxygen-containing atmosphere at once. Further, since the oxide film formed thereby is dense and excellent in adhesion as compared with a method of depositing an oxide from the outside such as vacuum film formation, a more preferable result can be obtained. Furthermore, the thickness of the oxide film can be increased by forming the oxide film by another method. By increasing the thickness of the oxide film, hydrophilicity can be maintained for a long time even after a cleaning process, and the diaphragm can be used for a long time.
Moreover, it is desirable to process to the inner surface of a through-hole similarly to a hydrophilic process. A method in which the solvent is dried and removed after dip coating in a liquid in which a lipophilic substance is dissolved in a solvent is a desirable method because the treatment can be reliably performed up to the inner surface.

本発明における膜乳化装置の概略図。1 is a schematic view of a membrane emulsification apparatus in the present invention. 隔膜表面の貫通孔22近傍に分散相が付着した状態を示す図。The figure which shows the state which the dispersed phase adhered to the through-hole 22 vicinity of the diaphragm surface. 分散相として微粒子を均一に分散したものを用いた場合貫通孔を通る過程で分岐、合流などが生じないのでように分散相として調整した状態の粒子が生成される様子を示す図。The figure which shows a mode that the particle | grains of the state adjusted as a disperse phase are produced so that branching, confluence, etc. do not arise in the process which passes a through-hole when what disperse | distributes microparticles | fine-particles uniformly as a disperse phase. 貫通孔の具体的な形状の例を示す図。The figure which shows the example of the specific shape of a through-hole. 貫通孔の具体的な形状の例を示す図。The figure which shows the example of the specific shape of a through-hole. 貫通孔の具体的な形状の例を示す図。The figure which shows the example of the specific shape of a through-hole. 貫通孔の具体的な形状の例を示す図。The figure which shows the example of the specific shape of a through-hole. 貫通孔のいずれの断面においても厚み方向に関してその幅が変わらない形状を示す図。The figure which shows the shape which the width | variety does not change regarding the thickness direction in any cross section of a through-hole. 断面幅が分散相側が連続相側に対して広い場合にその幅の狭まり方が一定となる図。FIG. 3 is a diagram in which the width of the dispersed phase is constant when the cross-sectional width is wider on the dispersed phase side than on the continuous phase side. 断面幅が分散相側が連続相側に対して広い場合にその幅の狭まり方が連続相側に行くほど緩やかになる図。FIG. 6 is a diagram in which when the cross-sectional width is wider on the dispersed phase side than on the continuous phase side, the width becomes narrower toward the continuous phase side. 粒子生成の過程を三段階に分け模式的に示す図。The figure which shows the process of particle | grain production | generation in three steps, and shows typically. 貫通孔径形状の一部及びその形状での二つの指標を満たす領域を示す図。The figure which shows the area | region which satisfy | fills two parameters | indexes with a part of through-hole diameter shape, and the shape. 貫通孔径形状の一部及びその形状での二つの指標を満たす領域を示す図。The figure which shows the area | region which satisfy | fills two parameters | indexes with a part of through-hole diameter shape, and the shape. 貫通孔径形状の一部及びその形状での二つの指標を満たす領域を示す図。The figure which shows the area | region which satisfy | fills two parameters | indexes with a part of through-hole diameter shape, and the shape. 貫通孔径形状の一部及びその形状での二つの指標を満たす領域を示す図。The figure which shows the area | region which satisfy | fills two parameters | indexes with a part of through-hole diameter shape, and the shape. 貫通孔径形状の一部及びその形状での二つの指標を満たす領域を示す図。The figure which shows the area | region which satisfy | fills two parameters | indexes with a part of through-hole diameter shape, and the shape. 加工工程の概略図。Schematic of a processing process. 加工工程の他の例の概略図。Schematic of the other example of a process process. 加工工程の他の例の概略図。Schematic of the other example of a process process. 本発明の金属膜形成方法における概略プロセスの一例を示す図。The figure which shows an example of the schematic process in the metal film formation method of this invention. 図20に示す各部の平面図。The top view of each part shown in FIG. 絶縁層開口の一例を示す図。The figure which shows an example of insulating-layer opening. 絶縁層開口の一例を示す図。The figure which shows an example of insulating-layer opening. 絶縁層開口の一例を示す図。The figure which shows an example of insulating-layer opening. 絶縁層開口の一例を示す図。The figure which shows an example of insulating-layer opening. 絶縁層開口の一例を示す図。The figure which shows an example of insulating-layer opening. 金属膜を用いて行う乳化方法の工程図。The process drawing of the emulsification method performed using a metal film. 本発明による金属膜開口の一例を実線で、それと等しい面積をもつ円の輪郭を点線で示す図。The figure which shows an example of the metal film opening by this invention with a continuous line, and shows the outline of the circle | round | yen which has an area equal to it with a dotted line.

符号の説明Explanation of symbols

1 導電性基板
2 絶縁層
3 めっき膜
4 絶縁層開口
5 絶縁層開口群
DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Insulating layer 3 Plating film 4 Insulating layer opening 5 Insulating layer opening group

Claims (21)

金属母材よりなり、互いに独立した同一形状の2以上の貫通孔を有し露出面全面が親水性の高い表面を有することを特徴とする金属膜。   A metal film comprising two or more through-holes having the same shape and independent from each other, wherein the entire exposed surface has a highly hydrophilic surface. 同一形状の前記貫通孔が同一方向を向くよう形成されていることを特徴とする請求項1に記載の金属膜。   2. The metal film according to claim 1, wherein the through holes having the same shape are formed so as to face the same direction. 前記貫通孔の表裏の開口形状が異なる場合には小さい側、等しい場合にはその形状が、形状を示す指標値F1(F1=(絶対最大長)^2/面積×π/4)及び指標値F2(F2=4π×面積/(周長)^2)において、F1≧2かつF2≦0.8なる関係を満足することを特徴とする請求項1または2記載の金属膜。   When the opening shapes on the front and back sides of the through hole are different, the smaller side, and when the opening shapes are equal, the shape is an index value F1 (F1 = (absolute maximum length) ^ 2 / area × π / 4) and index value indicating the shape. 3. The metal film according to claim 1, wherein a relationship of F1 ≧ 2 and F2 ≦ 0.8 is satisfied in F2 (F2 = 4π × area / (peripheral length) ^ 2). 前記貫通孔の膜厚方向のいずれの断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たしかつ、厚さ方向のいかなる場所においてもその幅がW1より大きな部分及びW2より小さな部分がないことを特徴とする請求項1乃至3の何れか一項に記載の金属膜。   In any cross section in the film thickness direction of the through-hole, the width on one side surface is W1 and the width on the other side surface is W2, and the relationship of W1 ≧ W2 is satisfied, and the width is anywhere in the thickness direction. 4. The metal film according to claim 1, wherein there is no portion larger than W <b> 1 and a portion smaller than W <b> 2. 前記貫通孔の一面から他面に到達する最短距離が前記貫通孔周辺の膜厚に等しい形状であることを特徴とする請求項1乃至4の何れか一項に記載の金属膜。   5. The metal film according to claim 1, wherein the shortest distance from one surface of the through hole to the other surface is equal to the film thickness around the through hole. 前記貫通孔の膜厚方向の断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たし、幅がW1となる面での厚さ方向の位置を0としW2となる面の厚さをTとしたときに厚さ方向の任意の位置T1、T2、T3(0<T1<T2<T3<T)とその位置における幅WT1、WT2、WT3との関係がWT1=WT2=WT3若しくは(WT1−WT2)/(T2−T1)≧(WT2−WT3)/(T3−T2)であることを特徴とする請求項1乃至5の何れか一項に記載の金属膜。   In the cross-section in the film thickness direction of the through hole, when the width on one side surface is W1 and the width on the other side surface is W2, the relationship of W1 ≧ W2 is satisfied, and the position in the thickness direction on the surface where the width is W1 is When the thickness of the surface that becomes 0 and W2 is T, the arbitrary positions T1, T2, and T3 (0 <T1 <T2 <T3 <T) in the thickness direction and the widths WT1, WT2, and WT3 at the positions 6. The relationship according to claim 1, wherein the relationship is WT1 = WT2 = WT3 or (WT1-WT2) / (T2-T1) ≧ (WT2-WT3) / (T3-T2). Metal film. 金属母材よりなり、互いに独立した同一形状の2以上の貫通孔を有し露出面全面が疎水性の高い表面を有することを特徴とする金属膜。   A metal film comprising a metal base material and having two or more through-holes having the same shape independent from each other, and the entire exposed surface has a highly hydrophobic surface. 同一形状の前記貫通孔が同一方向を向くよう形成されていることを特徴とする請求項7に記載の金属膜。   The metal film according to claim 7, wherein the through holes having the same shape are formed to face in the same direction. 前記貫通孔の表裏の開口形状が異なる場合には小さい側、等しい場合にはその形状が、形状を示す指標値F1(F1=(絶対最大長)^2/面積×π/4)及び指標値F2(F2=4π×面積/(周長)^2)において、F1≧2かつF2≦0.8なる関係を満足することを特徴とする請求項7または8記載の金属膜。   When the opening shapes on the front and back sides of the through hole are different, the smaller side, and when the opening shapes are equal, the shape is an index value F1 (F1 = (absolute maximum length) ^ 2 / area × π / 4) and index value indicating the shape. 9. The metal film according to claim 7, wherein a relationship of F1 ≧ 2 and F2 ≦ 0.8 is satisfied in F2 (F2 = 4π × area / (peripheral length) ^ 2). 前記貫通孔の膜厚方向のいずれの断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たしかつ、厚さ方向のいかなる場所においてもその幅がW1より大きな部分及びW2より小さな部分がないことを特徴とする請求項7乃至9の何れか一項に記載の金属膜。   In any cross section in the film thickness direction of the through-hole, the width on one side surface is W1 and the width on the other side surface is W2, and the relationship of W1 ≧ W2 is satisfied, and the width is anywhere in the thickness direction. The metal film according to any one of claims 7 to 9, wherein there is no portion larger than W1 and a portion smaller than W2. 前記貫通孔の一面から他面に到達する最短距離が前記貫通孔周辺の膜厚に等しい形状であることを特徴とする請求項7乃至10の何れか一項に記載の金属膜。   The metal film according to claim 7, wherein the shortest distance from one surface of the through hole to the other surface is equal to the film thickness around the through hole. 前記貫通孔の膜厚方向の断面において片側表面における幅をW1とし他側表面における幅をW2としたときにW1≧W2の関係を満たし、幅がW1となる面での厚さ方向の位置を0としW2となる面の厚さをTとしたときに厚さ方向の任意の位置T1、T2、T3(0<T1<T2<T3<T)とその位置における幅WT1、WT2、WT3との関係がWT1=WT2=WT3若しくは(WT1−WT2)/(T2−T1)≧(WT2−WT3)/(T3−T2)であることを特徴とする請求項7乃至11の何れか一項に記載の金属膜。   In the cross-section in the film thickness direction of the through hole, when the width on one side surface is W1 and the width on the other side surface is W2, the relationship of W1 ≧ W2 is satisfied, and the position in the thickness direction on the surface where the width is W1 is When the thickness of the surface that becomes 0 and W2 is T, the arbitrary positions T1, T2, and T3 (0 <T1 <T2 <T3 <T) in the thickness direction and the widths WT1, WT2, and WT3 at the positions 12. The relationship according to claim 7, wherein the relationship is WT1 = WT2 = WT3 or (WT1-WT2) / (T2-T1) ≧ (WT2-WT3) / (T3-T2). Metal film. 少なくとも表面に導電性を有する基板を用意する第1の工程と、前記導電性基板の表面を絶縁性膜で覆う第2の工程と、部分的に前記絶縁性膜を除去し導電性表面を露出させる第3の工程と、部分的に前記導電性表面が露出した基板に対して絶縁性皮膜以上で絶縁層全体が覆われない所定の膜厚の電気めっき層を形成する第4の工程と、前記電気めっきにより得られた金属膜を基板と分離する第5の工程と、からなる表裏で大きさの異なる開口形状の貫通孔を有する金属膜の製造方法において、
前記第2の工程で形成する絶縁性膜の厚さをti、前記第4の工程で形成する電気めっき層の厚さをTとすると、前記第3の工程により部分的に除去された結果、残存する絶縁膜の形状が前記金属膜に形成すべき開口のうち面積の小さい方の開口形状から外側に距離(T−ti)だけ離れた形状であることを特徴とする金属膜の製造方法。
A first step of preparing a conductive substrate at least on the surface; a second step of covering the surface of the conductive substrate with an insulating film; and partially removing the insulating film to expose the conductive surface A third step of forming, and a fourth step of forming an electroplating layer having a predetermined film thickness that does not cover the entire insulating layer with an insulating film or more with respect to the substrate on which the conductive surface is partially exposed, In the method for producing a metal film having a through-hole having an opening shape with different sizes on the front and back, the fifth step of separating the metal film obtained by the electroplating from the substrate,
Assuming that the thickness of the insulating film formed in the second step is ti and the thickness of the electroplating layer formed in the fourth step is T, as a result of being partially removed by the third step, A method of manufacturing a metal film, wherein the shape of the remaining insulating film is a shape spaced apart from the opening shape having a smaller area out of the openings to be formed in the metal film by a distance (T-ti).
導電性基板を用意する第1の工程、
前記導電性基板表面を絶縁層で被覆する第2の工程、
前記絶縁層に3以上の頂点を有する多角形となる配列の1以上の絶縁層開口群を形成し、該各絶縁層開口内に前記導電性基板を露出させる第3の工程、
前記絶縁層開口の形成された前記導電性基板を陰極として電気めっきを行い、前記絶縁層開口群の隣接する絶縁層開口からの析出物が互いに接しかつ配列中央部に非析出部が残る範囲でめっき膜を形成する第4の工程、
前記導電性基板と前記めっき膜とを分離する第5の工程、
を少なくとも有することを特徴とする金属膜の製造方法。
A first step of preparing a conductive substrate;
A second step of coating the surface of the conductive substrate with an insulating layer;
A third step of forming one or more insulating layer opening groups in a polygonal array having three or more vertices in the insulating layer, and exposing the conductive substrate in each insulating layer opening;
Electroplating is performed using the conductive substrate having the insulating layer opening formed as a cathode, so that precipitates from adjacent insulating layer openings in the insulating layer opening group are in contact with each other and a non-deposited portion remains in the center of the array. A fourth step of forming a plating film;
A fifth step of separating the conductive substrate and the plating film;
A method for producing a metal film, comprising:
前記第5の工程の後に第6の工程として金属膜表面を親水性皮膜で覆う工程を行うことを特徴とする請求項13または14に記載の金属膜の製造方法。   15. The method for producing a metal film according to claim 13, wherein a step of covering the surface of the metal film with a hydrophilic film is performed as a sixth step after the fifth step. 前記親水性皮膜で覆う工程を熱酸化で行うことを特徴とする請求項15に記載の金属膜の製造方法。   The method for producing a metal film according to claim 15, wherein the step of covering with the hydrophilic film is performed by thermal oxidation. 前記親水性皮膜で覆う工程を熱酸化を行い、さらに前記親水性皮膜を形成する工程を経ることを特徴とする請求項16に記載の金属膜の製造方法。   The method for producing a metal film according to claim 16, wherein the step of covering with the hydrophilic film is thermally oxidized, and further the process of forming the hydrophilic film is performed. 前記第5の工程の後に第6の工程として前記金属膜表面を疎水性皮膜で覆う工程を行うことを特徴とする請求項13または14に記載の金属膜の製造方法。   15. The method for producing a metal film according to claim 13, wherein a step of covering the surface of the metal film with a hydrophobic film is performed as a sixth step after the fifth step. 請求項1乃至12の何れか一項に記載の金属膜を介して連続相中に分散相を押し出すことを特徴とする乳化方法。   The emulsification method characterized by extruding a dispersed phase in a continuous phase through the metal film as described in any one of Claims 1 thru | or 12. 請求項19に記載の乳化方法により形成されたことを特徴とする微粒子。   Fine particles formed by the emulsification method according to claim 19. 少なくとも連続相収容部と、分散相収容部と、前記連続相収容部及び分散相収容部を分離する多数の微小な貫通孔を有する隔膜と、前記連続相収容部に連続相を供給するための連続相供給部と、前記分散相収容部に分散相を供給する分散相供給部と、前記連続相収容部に生成された乳化物を取り出すための排出部と、を備えた膜乳化装置において、
前記隔膜として請求項1乃至12のいずれか一項に記載の金属膜を用いかつ、該金属膜に形成された貫通孔の片側表面における絶対最大長をW1とし他側表面における絶対最大長をW2としたときにW1≧W2の関係においてW1となる面を分散相収容部側に、W2となる面を連続相収容部側になるように配したことを特徴とする膜乳化装置。
At least a continuous phase container, a dispersed phase container, a diaphragm having a large number of minute through holes separating the continuous phase container and the dispersed phase container, and a continuous phase for supplying the continuous phase container to the continuous phase container In a membrane emulsification apparatus comprising a continuous phase supply unit, a dispersed phase supply unit that supplies a dispersed phase to the dispersed phase storage unit, and a discharge unit for taking out the emulsion produced in the continuous phase storage unit,
The metal film according to any one of claims 1 to 12 is used as the diaphragm, and an absolute maximum length on one side surface of a through hole formed in the metal film is W1, and an absolute maximum length on the other surface is W2. The membrane emulsification apparatus is characterized in that the surface that becomes W1 in the relationship of W1 ≧ W2 is arranged on the side of the dispersed phase accommodating portion and the surface that becomes W2 is on the side of the continuous phase accommodating portion.
JP2005150268A 2004-10-25 2005-05-23 Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus Pending JP2006150340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150268A JP2006150340A (en) 2004-10-25 2005-05-23 Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004310095 2004-10-25
JP2005150268A JP2006150340A (en) 2004-10-25 2005-05-23 Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus

Publications (1)

Publication Number Publication Date
JP2006150340A true JP2006150340A (en) 2006-06-15

Family

ID=36629247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150268A Pending JP2006150340A (en) 2004-10-25 2005-05-23 Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus

Country Status (1)

Country Link
JP (1) JP2006150340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240217B2 (en) 2007-10-15 2012-08-14 Kavlico Corporation Diaphragm isolation forming through subtractive etching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240217B2 (en) 2007-10-15 2012-08-14 Kavlico Corporation Diaphragm isolation forming through subtractive etching

Similar Documents

Publication Publication Date Title
KR100879487B1 (en) Process for producing microsphere with use of metal substrate having through-hole
US7829352B2 (en) Fabrication of nano-object array
JP6385922B2 (en) Method of manufacturing an aperture plate for a nebulizer
JP2008086996A (en) Microporous filter membrane, method of making microporous filter membrane and separator employing microporous filter membrane
US20040007470A1 (en) Methods of and apparatus for electrochemically fabricating structures via interlaced layers or via selective etching and filling of voids
JP2007098391A (en) Metal-made sieve material and method for manufacturing the same
JP2008188754A (en) Three dimensional microstructures and their formation method
TW200843190A (en) Three-dimensional microstructures and methods of formation thereof
JP2006239593A (en) Emulsification apparatus, emulsifying method and method for producing fine particle
DE102015100491B4 (en) Singulation of semiconductor dies with contact metallization by electrical discharge machining
EP1735820B1 (en) Fabrication and use of superlattice
JP2006150340A (en) Metallic film, production method of metallic film, emulsification method, particulate and membrane emulsification apparatus
US20150307997A1 (en) Methods for Fabricating Metal Structures Incorporating Dielectric Sheets
EP3508618A1 (en) Mesh filter production method and mesh filter
JP2007070703A (en) Method for forming metal membrane for emulsification
US7425276B2 (en) Method for etching microchannel networks within liquid crystal polymer substrates
DE112008002726T5 (en) BAW structure with reduced topographic steps and related procedure
JP2006346654A (en) Emulsifying filter and emulsion preparation apparatus
JP3694876B2 (en) Micro emulsifier
JP2006021111A (en) Particle forming method and particle, and multiplex particle forming method and multiplex particle
KR100592424B1 (en) Filter member and manufacturing method thereof
DE102014102550A1 (en) Electrodes suitable for the production of micro and / or nanostructures on materials
JP2006187718A (en) Emulsion forming apparatus
KR20110013173A (en) Electro-deposition of nano-patterns
NL1007318C2 (en) Through=flow mandrel for electroforming metal films