JP2006150175A - Thin film forming apparatus - Google Patents

Thin film forming apparatus Download PDF

Info

Publication number
JP2006150175A
JP2006150175A JP2004341392A JP2004341392A JP2006150175A JP 2006150175 A JP2006150175 A JP 2006150175A JP 2004341392 A JP2004341392 A JP 2004341392A JP 2004341392 A JP2004341392 A JP 2004341392A JP 2006150175 A JP2006150175 A JP 2006150175A
Authority
JP
Japan
Prior art keywords
mist
liquid
pressure
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004341392A
Other languages
Japanese (ja)
Inventor
Akihiro Yoshino
彰洋 吉野
Naoki Watase
直樹 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2004341392A priority Critical patent/JP2006150175A/en
Publication of JP2006150175A publication Critical patent/JP2006150175A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that since the larger the surface area of a substrate is, the larger the area of an opening part of a mist supply part is, when the flow rate of a carrier gas is not increased, the flow rate of a discharge to a mist supply part is not increased and discharge quantity is unstable, when a coating liquid is made particulate and applied to the substrate. <P>SOLUTION: The thin film forming apparatus is provided with a mist producing chamber provided with a two-fluid nozzle, a mist supply part for applying mist produced in the mist producing chamber on the substrate, a driving stage provided with a moving mechanism which is opposed to the slit opening of the mist supply part, holds the substrate with a prescribed interval and moves in a horizontal direction, a liquid sending/recovering mechanism for recovering the coating liquid collected on the bottom of the mist producing chamber and sending and recovering the coating liquid to be recycled, a pressure reducing valve between the mist supply part and the mist producing chamber and an assistant pressure gas supply part for keeping the pressure in the mist producing chamber to a prescribed value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は溶液を微粒子化し、基板上に吐出して均一な薄膜を形成する薄膜形成装置に関する。   The present invention relates to a thin film forming apparatus for forming a uniform thin film by atomizing a solution and discharging it onto a substrate.

半導体、液晶、PDP等の製造工程において大面積の基板に均一に薄膜を形成する方法として、インクジェット法、スプレー法、超音波法等により微粒化し、これを基板上に吹き付けて薄膜を形成する方法がある。特許文献1には、ノズルもしくは超音波発振子を用いて、ミスト発生室からミストを発生させ、キャリアガスの流れによってミスト供給部よりミストを基板上に吐出する構成の塗布装置が開示されている。   As a method of uniformly forming a thin film on a large-area substrate in the manufacturing process of semiconductors, liquid crystals, PDPs, etc., a method of forming a thin film by atomizing by an inkjet method, a spray method, an ultrasonic method, etc., and spraying this on the substrate There is. Patent Document 1 discloses a coating apparatus configured to generate a mist from a mist generating chamber using a nozzle or an ultrasonic oscillator, and to discharge the mist from a mist supply unit onto a substrate by a carrier gas flow. .

また、特許文献2には、ノズルから吐出した微粒子を整流部材内に吐出し、整流部材により分別容器下部まで導き、その後、分別容器内を微粒子選別プレートを通過させながら浮上した微粒子を分別容器上部に設けた吐出部から吐出する構成の超微粒子発生装置が開示されている。   In Patent Document 2, fine particles discharged from a nozzle are discharged into a flow regulating member, guided to the lower part of the separation container by the flow straightening member, and thereafter, the fine particles floating while passing through the fine particle sorting plate in the separation container are upper part of the separation container. An ultrafine particle generator configured to be discharged from a discharge portion provided in the above is disclosed.

特許番号 第2895671号公報Patent No. 28895671

特開2003−10741号公報Japanese Patent Laid-Open No. 2003-10741

特許文献1の方法では、大面積基板になればなるほど、ミスト供給部の開口部面積が大きくなる為、キャリアガスの流量を多くしなければミスト供給部へ供給される吐出の流速が速くならず、吐出量が不安定であった。しかし、キャリアガスの流量を多くすると粒径の大きなものまでミスト供給部へ搬送されるため、均一な薄膜を形成することは困難であった。   In the method of Patent Document 1, the larger the substrate, the larger the opening area of the mist supply unit. Therefore, unless the carrier gas flow rate is increased, the flow rate of discharge supplied to the mist supply unit does not increase. The discharge amount was unstable. However, if the flow rate of the carrier gas is increased, even a large particle size is transported to the mist supply unit, so that it has been difficult to form a uniform thin film.

また、引用文献2の方法では、分別室内から浮上する超微粒子をノズルから吐出する構成としているが、分別室内の内圧によっては、やはり吐出量にむらが生じ、精度の良い均一な薄膜を形成するには問題がある。また、粒径の大きな粒子は分別室底部から液体貯留器に送られ再利用されることが記載されている。しかし再利用に関してどのような処理を施すかに関しては何等開示がない。すなわち、通常分別室で発生した液体は、そのまま再利用すると、膜の形成に悪影響を及ぼす可能性が大きい。   Further, in the method of the cited document 2, the ultrafine particles floating from the separation chamber are discharged from the nozzle. However, depending on the internal pressure in the separation chamber, the discharge amount is also uneven, and a uniform thin film with high accuracy is formed. Has a problem. Further, it is described that particles having a large particle diameter are sent from the bottom of the separation chamber to the liquid reservoir and reused. However, there is no disclosure regarding what kind of processing is performed for reuse. That is, if the liquid generated in the normal separation chamber is reused as it is, there is a high possibility that the formation of the film will be adversely affected.

そこで本発明の目的は、大面積の基板に一括で均一な薄膜を形成できる薄膜形成ヘッドを提供することにある。   Accordingly, an object of the present invention is to provide a thin film forming head capable of forming a uniform thin film at once on a large-area substrate.

上記目的を達成するために、本発明は2流体ノズルを備えたミスト発生室と、ミスト発生室で生成したミストを基板上に塗布するミスト供給部と、ミスト供給部のスリット開口に対向して所定間隔を開けて基板を保持して水平方向に移動する移動機構を備えた駆動ステージと、ミスト発生室の底部に溜まった塗布液を回収し、再利用する塗布液を送液及び回収する送液・回収機構を備え、ミスト供給部とミスト発生室の間の減圧弁を設け、ミスト発生室内の圧力を所定値に保持するための補助圧力気体供給部とを設けた構成とした。   In order to achieve the above object, the present invention is directed to a mist generating chamber provided with a two-fluid nozzle, a mist supply unit for applying the mist generated in the mist generating chamber on a substrate, and a slit opening of the mist supply unit. A drive stage equipped with a moving mechanism that moves the substrate in a horizontal direction while holding the substrate at a predetermined interval, and a coating liquid collected at the bottom of the mist generating chamber is collected, and a coating liquid to be reused is fed and collected. A liquid / recovery mechanism is provided, a pressure reducing valve is provided between the mist supply section and the mist generation chamber, and an auxiliary pressure gas supply section for maintaining the pressure in the mist generation chamber at a predetermined value is provided.

下記に述べるように、ノズルを用いて塗布液を微粒化して、ミスト供給部とミスト発生室の間に減圧弁を設けることによって、キャリアガスの流量を多くせずに減圧弁の開度によって吐出の流速を高めることが可能で、ミスト供給部より安定した吐出を可能とする。更にミスト発生室内に均一なミスト状態を生成することを可能とする。上記効果により基板上に均一な薄膜を形成することができる。   As described below, the coating liquid is atomized using a nozzle, and a pressure reducing valve is provided between the mist supply section and the mist generating chamber, so that the flow rate of the carrier gas is not increased and the discharge is performed according to the opening of the pressure reducing valve. The flow rate of the mist can be increased and stable discharge can be performed from the mist supply unit. Further, it is possible to generate a uniform mist state in the mist generating chamber. Due to the above effects, a uniform thin film can be formed on the substrate.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、図1を用いて本発明の全体構造を説明する。図1に本発明の薄膜形成装置の概略図を示す。   First, the overall structure of the present invention will be described with reference to FIG. FIG. 1 shows a schematic view of a thin film forming apparatus of the present invention.

図1に示すように、ミスト供給部31にミストを供給するミスト供給管16が、ミスト発生室14の上端部に接続されている。このミスト供給管16の途中には内圧調整用減圧弁1が設けてある。ミスト供給部31の下方の位置に駆動ステージ53があり、駆動ステージ53の上面に基板51が載置されている。駆動ステージ53の側面には捨て打ちエリア54が固定されている。ミスト発生室14の上部中央またはミスト供給管16の取付け位置の反対側の適当な位置には、ノズル11が固定されている。ノズル11は気体を供給する気体供給口と、塗布する液体を供給する液体供給口を備えた2流体ノズルである。ノズル11への気体の供給口に接続される管路には、弁43、圧力センサ44、減圧弁45、加圧気体(空気又は窒素)供給源52が順に配置されている。   As shown in FIG. 1, a mist supply pipe 16 that supplies mist to the mist supply unit 31 is connected to the upper end of the mist generating chamber 14. An internal pressure adjusting pressure reducing valve 1 is provided in the middle of the mist supply pipe 16. The drive stage 53 is located below the mist supply unit 31, and the substrate 51 is placed on the upper surface of the drive stage 53. A throw-away area 54 is fixed to the side surface of the drive stage 53. The nozzle 11 is fixed at an appropriate position on the opposite side of the upper center of the mist generating chamber 14 or the mounting position of the mist supply pipe 16. The nozzle 11 is a two-fluid nozzle provided with a gas supply port for supplying gas and a liquid supply port for supplying liquid to be applied. A valve 43, a pressure sensor 44, a pressure reducing valve 45, and a pressurized gas (air or nitrogen) supply source 52 are arranged in this order in a pipeline connected to the gas supply port to the nozzle 11.

また、ノズル11の液体供給口に接続される管路には、弁41、圧力センサ42、送液及び回収機構22が順に接続されている。送液及び回収機構22は、加圧気体供給源52から減圧弁48を介して送られてくる気体で送液するシステムである。また、送液及び回収機構22は、ミスト発生室14の底と管路により弁15及びポンプ21を介して接続されている。ミスト発生室14内に溜まった溶液は弁15を開き、ポンプ21を動作させることによって、送液及び回収機構22へ送液される。ミスト発生室14には、室内圧を計測するための内圧計測センサ12が設けてある。さらに、ミスト発生室14には、直接気体圧を供給してミスト発生室14内の圧力を調整するため(補助加圧気体供給用)の管路が設けてあり、この管路には、弁13、圧力センサ46、減圧弁47、加圧気体供給源52が順に設けてある。   Further, a valve 41, a pressure sensor 42, a liquid feeding / recovery mechanism 22 are sequentially connected to a pipeline connected to the liquid supply port of the nozzle 11. The liquid feeding / recovery mechanism 22 is a system that feeds with a gas sent from the pressurized gas supply source 52 via the pressure reducing valve 48. Further, the liquid feeding and recovery mechanism 22 is connected to the bottom of the mist generating chamber 14 via a valve 15 and a pump 21 by a pipe line. The solution accumulated in the mist generating chamber 14 is sent to the liquid feeding and recovery mechanism 22 by opening the valve 15 and operating the pump 21. The mist generating chamber 14 is provided with an internal pressure measuring sensor 12 for measuring the indoor pressure. Further, the mist generating chamber 14 is provided with a pipe line for supplying gas pressure directly and adjusting the pressure in the mist generating chamber 14 (for supplying auxiliary pressurized gas). 13, a pressure sensor 46, a pressure reducing valve 47, and a pressurized gas supply source 52 are provided in this order.

次に図1、2、3を用いて動作を説明する。   Next, the operation will be described with reference to FIGS.

図2は上段に流量バラツキとミスト発生室14の内圧の関係を下段に充填から吐出終了までの気体圧、液圧、補助加圧気体の圧(キャリア気体による圧力)を示す。図3はミスト発生室14へのミストの充填、捨て吐出、吐出開始までの動作フローを示した。   FIG. 2 shows the relationship between the flow rate variation and the internal pressure of the mist generating chamber 14 in the upper stage, and the gas pressure, liquid pressure, and auxiliary pressurized gas pressure (pressure by the carrier gas) from filling to discharge end in the lower stage. FIG. 3 shows an operation flow from filling the mist generation chamber 14 to the mist generation chamber 14, discarding discharge, and starting discharge.

一例として□730×920の大きさの基板51へ吐出する場合を想定して動作説明をする。図3のフローに示す通り、予め、薄膜とする溶液の粘度、表面張力、基材表面の状態、所望の膜厚等を考慮して、基板51に吐出する最適な粒子径を決定する。その上でノズル11に供給しなければならない気体圧、液圧を決定する。本実施例では、ノズル11に供給する気体圧、液圧を0.1(MPa)、0.3(MPa)とした。   As an example, the operation will be described on the assumption that the ink is discharged onto a substrate 51 having a size of □ 730 × 920. As shown in the flow of FIG. 3, the optimum particle diameter to be discharged onto the substrate 51 is determined in advance in consideration of the viscosity of the solution to be a thin film, the surface tension, the state of the substrate surface, the desired film thickness, and the like. After that, the gas pressure and hydraulic pressure that must be supplied to the nozzle 11 are determined. In this embodiment, the gas pressure and hydraulic pressure supplied to the nozzle 11 were set to 0.1 (MPa) and 0.3 (MPa).

なお、ミスト供給部31は図2(b)に示すように、左右方向に長いスリット状の開口を備えた構成となっている。このため、左右方向に吐出量バラツキがないようにする必要がある。しかし、図2の上段に示す通り、ミスト発生室14の内圧(弁13を開いた状態での)が低いと、ミスト供給部31における吐出する流量が吐出口の左右方向で大きくバラツキがある。この理由は、ミスト発生室14の内圧が低いと、ミスト供給部31における吐出の流速が高くならず、ミスト供給部31内にある流体抵抗部分が抵抗として機能しない為と考えられる。そこで、ミスト供給部31から吐出される流量の左右方向の吐出量バラツキを押さえるために、ミスト発生室14の内圧を0.01(MPa)になるように設定した(300)。   In addition, the mist supply part 31 becomes a structure provided with the slit-shaped opening long in the left-right direction, as shown in FIG.2 (b). For this reason, it is necessary to prevent the discharge amount from being varied in the left-right direction. However, as shown in the upper part of FIG. 2, when the internal pressure of the mist generating chamber 14 (with the valve 13 opened) is low, the flow rate discharged from the mist supply unit 31 varies greatly in the left-right direction of the discharge port. The reason is considered that when the internal pressure of the mist generating chamber 14 is low, the discharge flow rate in the mist supply unit 31 does not increase, and the fluid resistance portion in the mist supply unit 31 does not function as a resistance. Therefore, in order to suppress variation in the discharge amount in the left-right direction of the flow rate discharged from the mist supply unit 31, the internal pressure of the mist generation chamber 14 is set to be 0.01 (MPa) (300).

次にミスト発生室14を密閉状態とするため内圧調整用減圧弁1、弁13、弁41、弁43を閉じる(301)。次に吐出条件を減圧弁45、減圧弁48の設定値を気体圧0.3(MPa)、液圧0.1(MPa)を代入する(302)。次に、弁41、弁43を開放することにより気体及び液体をノズル11に供給する(303)。これにより、ノズル11から微粒子がミスト発生室14内に吐出される。なおこの時、ミスト発生室14は、弁1、13、15が閉じられており密閉状態のため図2下段の図に示す通り、内部は加圧される。吐出条件の設定で決定した気体圧、液圧の条件は大気圧下での条件なので、図2のようにミスト発生室内の内圧の読み値の増加(内圧計測センサ12の読み値)に従って、減圧弁45及減圧弁48の設定値を変更する必要がある(304)。   Next, the internal pressure adjusting pressure reducing valve 1, the valve 13, the valve 41, and the valve 43 are closed to make the mist generating chamber 14 in a sealed state (301). Next, the discharge condition is set to the pressure reducing valve 45, and the set value of the pressure reducing valve 48 is substituted with a gas pressure of 0.3 (MPa) and a hydraulic pressure of 0.1 (MPa) (302). Next, gas and liquid are supplied to the nozzle 11 by opening the valve 41 and the valve 43 (303). Thereby, fine particles are discharged from the nozzle 11 into the mist generating chamber 14. At this time, the inside of the mist generating chamber 14 is pressurized as shown in the lower diagram of FIG. 2 because the valves 1, 13, and 15 are closed and sealed. Since the gas pressure and hydraulic pressure conditions determined by setting the discharge conditions are conditions under atmospheric pressure, the pressure is reduced according to the increase in the reading of the internal pressure in the mist generating chamber (the reading of the internal pressure measurement sensor 12) as shown in FIG. It is necessary to change the set values of the valve 45 and the pressure reducing valve 48 (304).

予め同じ吐出条件で吐出してミスト発生室14内に、均一に微粒子が充填される充填時間ΔT1を求めておく。この充填時間ΔT1経過した時点で、内圧調整用減圧弁1を開く(305)。なお、内圧調整用減圧弁1を開放するときには、ミスト供給部31は駆動ステージ53に設けてある捨て打ちエリア54の上に位置するように、駆動ステージ53を移動してある。   A filling time ΔT1 in which fine particles are uniformly filled in the mist generation chamber 14 by discharging under the same discharge conditions is obtained in advance. When the filling time ΔT1 has elapsed, the internal pressure adjusting pressure reducing valve 1 is opened (305). When the internal pressure adjusting pressure reducing valve 1 is opened, the mist supply unit 31 has moved the drive stage 53 so as to be positioned on the discarding area 54 provided in the drive stage 53.

内圧調整用減圧弁1を開くことで、ミスト供給部31は捨て吐出を開始すると共に、この捨て吐出の開始に伴って、ミスト発生室内14の内圧が落ち込む(306)。この内圧の落ち込み分を補正するために、減圧弁47で圧力を調整され圧力センサ46で所定圧(内圧の設定値(0.01〜0.5MPaに同じ圧力)になっていることを確認された気体を弁13を開き補助加圧気体として供給し、内圧を序々に上昇させて行く(307)。そのため、内圧計測センサ12の読み値が内圧の設定値0.01(MPa)に等しくなる。この時点でも補助加圧気体の圧力の供給を続行する。ただし、あまり補助加圧気体を急激に供給し過ぎると粒径の大きなものまでミスト供給部31へ搬送される可能性がある。このため、補助加圧気体を供給してもミスト発生室14内の内圧が図2の下図のように0.01(MPa)まで上昇しきれない場合がある。このときは、内圧調整用減圧弁1の開度を調整してミスト発生室14内の圧力を上げることも可能である(308)。この間、捨て打ちエリア54にて捨て吐出が継続される。ミスト発生室14内の内圧が設定値である0.01(MPa)と内圧計測センサ12の読み値が等しくなったら、捨て吐出を終了する(309)。   By opening the pressure reducing valve 1 for adjusting the internal pressure, the mist supply unit 31 starts discarding discharge, and the internal pressure of the mist generating chamber 14 drops with the start of discarding discharge (306). In order to correct this drop in internal pressure, the pressure is adjusted by the pressure reducing valve 47 and the pressure sensor 46 confirms that the pressure is the predetermined pressure (the set value of the internal pressure (the same pressure from 0.01 to 0.5 MPa)). The valve 13 is opened and supplied as auxiliary pressurized gas, and the internal pressure is gradually increased (307), so that the reading value of the internal pressure measurement sensor 12 becomes equal to the set value 0.01 (MPa) of the internal pressure. Even at this time, the supply of the pressure of the auxiliary pressurized gas is continued, but if the auxiliary pressurized gas is supplied too rapidly, there is a possibility that even a large particle size is conveyed to the mist supply unit 31. Therefore, even if the auxiliary pressurized gas is supplied, the internal pressure in the mist generating chamber 14 may not be fully increased to 0.01 (MPa) as shown in the lower diagram of Fig. 2. At this time, the internal pressure adjusting pressure reducing valve Mist generation by adjusting the opening of 1 It is also possible to increase the pressure in the chamber 14 (308), and during this time, the discarding discharge is continued in the discarding area 54. The internal pressure in the mist generating chamber 14 is set to 0.01 (MPa). When the readings of the internal pressure measurement sensor 12 become equal, the disposal discharge is finished (309).

その後、駆動ステージ53を矢印方向へ移動させて(図1左下矢印の方向)、基板51への吐出を開始する。基板51の最終端まで駆動ステージ53を移動したら吐出を終了する。その場合、内圧調整用減圧弁1、弁13を閉じた後、ノズル11から吐出される微粒子の生成を停止する為、弁41、弁43を閉じて終了とする。   Thereafter, the drive stage 53 is moved in the direction of the arrow (in the direction of the lower left arrow in FIG. 1), and discharge onto the substrate 51 is started. When the drive stage 53 is moved to the final end of the substrate 51, the discharge is finished. In that case, after the internal pressure adjusting pressure reducing valve 1 and the valve 13 are closed, the valve 41 and the valve 43 are closed to stop the production of fine particles discharged from the nozzle 11.

次に、図1に示す回収送液機構の詳細について図4を用いて説明する。図4に図1に示した回収及び送液機構の概略図を示す。   Next, the detail of the collection | recovery liquid feeding mechanism shown in FIG. 1 is demonstrated using FIG. FIG. 4 shows a schematic diagram of the recovery and liquid feeding mechanism shown in FIG.

図4に示すように、図1のノズル11の液体供給口へ塗布する液体を供給するため、液体を蓄積する攪拌冷却ジャケット付第1送液タンク222(以下、第1送液タンクと称する)が設けてある。この第1送液タンク222からの管路には昇温ユニット227が設けてあり、所定の温度でノズル11に液体を供給できるようにしてある。また、ミスト発生室14の底部に溜まった液体から廃液とすべきものか、再利用する液体とするかを判断して、廃液とすべきものは廃液回収タンク212へ、再利用するものは攪拌冷却ジャケット付第2送液タンク221(以下第2送液タンクと称する)にそれぞれ回収する。そのために、ポンプ21からの液体は、粘度測定ユニット211で水分含有量を測定し、その結果から廃棄するか再利用するかを判断し、廃棄するものは三方弁229を介して廃棄回収タンク212へ送り、再利用するものは、三方弁229から、昇温ユニット217で温め、フィルタ213でごみを除去して、気液分離膜を備えた気液分離部214で脱泡して第2送液タンク221へ送る構成としてある。この気液分離部214には、脱泡により分離された気体を排出するための真空ポンプ220が接続されている。   As shown in FIG. 4, in order to supply the liquid to be applied to the liquid supply port of the nozzle 11 of FIG. 1, a first liquid feed tank 222 with a stirring and cooling jacket for accumulating liquid (hereinafter referred to as the first liquid feed tank). Is provided. A temperature raising unit 227 is provided in the pipe line from the first liquid feeding tank 222 so that the liquid can be supplied to the nozzle 11 at a predetermined temperature. Further, it is determined whether the liquid collected at the bottom of the mist generating chamber 14 should be a waste liquid or a liquid to be reused. Recovered in the attached second liquid feeding tank 221 (hereinafter referred to as the second liquid feeding tank). For this purpose, the liquid content from the pump 21 is measured for the water content by the viscosity measuring unit 211, and it is determined whether to discard or reuse the liquid from the result, and what is discarded is discarded via the three-way valve 229. The one to be reused is heated from the three-way valve 229 by the temperature raising unit 217, the dust is removed by the filter 213, defoamed by the gas-liquid separation unit 214 provided with the gas-liquid separation membrane, and secondly sent. It is configured to send to the liquid tank 221. The gas-liquid separation unit 214 is connected to a vacuum pump 220 for discharging the gas separated by defoaming.

また、第2送液タンク221には、溶液1用送液タンク215と、溶液2用送液タンク216と、原液送液タンク231が管路により接続されている。このように2種類の溶液用送液タンクを設けた理由は、本実施例では、2種類の溶液を混合して塗布液として使用している。その場合、1方の溶液は揮発性が高く予め混合しておくと、1方の溶液が揮発して混合比が変化するために使用する直前に混合できるように2種類の溶液用送液タンクを設けたものである。また、原液送液タンク231は、加熱手段217を設けない場合や、溶液1、2により濃度が薄くなりすぎた場合に原液送液タンク231から第2送液タンク221に原液を送ることで濃度を調整するものである。なお、混合比に大きな変化の生じない溶液を使用する場合は、この溶液用送液タンクを1つにして良いことは言うまでもない。さらに、第2送液タンク221から第1送液タンク222へ液体を供給するために2方弁230を備えた管路が設けてある。第2送液タンク221から第1送液タンク222に液体を供給するためのエア圧を供給するため、加圧気体供給源52から減圧弁48及び三方弁228を介して管路が設けてある。この三方弁228からは第1送液タンク222からノズル11へ液体を供給するための気体圧を供給する管路も設けてある。   In addition, a solution 1 liquid supply tank 215, a solution 2 liquid supply tank 216, and a stock solution liquid supply tank 231 are connected to the second liquid supply tank 221 by a pipe line. The reason for providing two types of solution feeding tanks in this way is that, in this embodiment, two types of solutions are mixed and used as a coating solution. In that case, if one of the solutions is highly volatile and mixed in advance, the solution of one of them will volatilize and the mixing ratio will change, so that the two types of solution feed tanks can be mixed immediately before use. Is provided. Further, the concentration of the stock solution feeding tank 231 can be increased by sending the stock solution from the stock solution feeding tank 231 to the second feeding tank 221 when the heating means 217 is not provided or when the concentration becomes too low due to the solutions 1 and 2. Is to adjust. Needless to say, when a solution that does not cause a large change in the mixing ratio is used, this solution feeding tank may be used as one. Further, in order to supply liquid from the second liquid supply tank 221 to the first liquid supply tank 222, a pipe line provided with a two-way valve 230 is provided. In order to supply air pressure for supplying the liquid from the second liquid supply tank 221 to the first liquid supply tank 222, a pipe line is provided from the pressurized gas supply source 52 via the pressure reducing valve 48 and the three-way valve 228. . A pipe for supplying a gas pressure for supplying a liquid from the first liquid supply tank 222 to the nozzle 11 is also provided from the three-way valve 228.

また第1送液タンク222の所定の高さ位置に、第2送液タンク221へ溶液を戻す戻り管路が設けてある。すなわち、第1送液タンクの設置位置に比べて第2送液タンク221の設置位置は低い位置に設けてある。また、第1送液タンク222と第2送液タンク221とに、それぞれ設けてある冷却ジャケット間は水冷用ポンプを介して冷却水が循環するように管路が設けてある。   Further, a return pipe for returning the solution to the second liquid feeding tank 221 is provided at a predetermined height position of the first liquid feeding tank 222. That is, the installation position of the second liquid supply tank 221 is provided at a lower position than the installation position of the first liquid supply tank. A pipe line is provided between the cooling jackets provided in the first liquid feeding tank 222 and the second liquid feeding tank 221 so that the cooling water circulates through a water cooling pump.

さらに、第1送液タンク222内と第2送液タンク内には、それぞれタンク内の液体の水分含有量を測定するために粘度測定ユニット224、225が設けてある。   Furthermore, viscosity measuring units 224 and 225 are provided in the first liquid feeding tank 222 and the second liquid feeding tank, respectively, in order to measure the water content of the liquid in the tank.

次に図1、4を用いて動作を説明する。使用材料等により液体の回収方法は若干変更があるため、一例として配向膜材料を想定して動作説明をする。   Next, the operation will be described with reference to FIGS. Since the liquid recovery method varies slightly depending on the material used, the operation will be described assuming an alignment film material as an example.

図1のミスト発生室14内壁面等に付着した微粒子は最終的に底部に液体として溜まる。ただし、この液体は、ゴミ等の混入、気体の混入、吸湿等あり、このままでは再利用が難しい。このため、弁15を開き、ミスト発生室14内の回収液をポンプ21によって送液及び回収機構22へ送液する。ただし、本実施例では気体源として窒素ガス(N2)のみを使用することとする。このため、基本的にはミスト発生室14内に溜まる回収液に関して吸湿はないものと考える。   The fine particles adhering to the inner wall surface or the like of the mist generating chamber 14 in FIG. However, this liquid is contaminated with dust, gas, moisture absorption, etc., and it is difficult to reuse it as it is. Therefore, the valve 15 is opened, and the recovered liquid in the mist generating chamber 14 is supplied to the liquid supply and recovery mechanism 22 by the pump 21. However, in this embodiment, only nitrogen gas (N2) is used as the gas source. For this reason, basically, it is considered that there is no moisture absorption with respect to the collected liquid accumulated in the mist generating chamber 14.

次に、ミスト発生室内14の回収液を粘度測定ユニット211を通して、そこで水分含有量を計測し、その計測結果により再利用可能なものかどうかを判断する。水分の含有量の測定に関しては、配向膜材料の場合、短時間なら溶媒の揮発量よりも十分、吸湿量が多いという事実より、粘度変化から水分含有量を特定できる。水分の含有量が5%以内(通常、原液は0.2%程度)ならば再利用可能と判定する。しかし、5%以上のものは3方弁229を廃液タンク212側に開き、廃液として捨てる。ただし、この水分含有量が5%以内という値は配向膜材料の種類によって異なるため、あくまでも本実施例における1例である。   Next, the recovered liquid in the mist generating chamber 14 is passed through the viscosity measurement unit 211, where the water content is measured, and it is determined whether or not it can be reused based on the measurement result. Regarding the measurement of the moisture content, in the case of the alignment film material, the moisture content can be specified from the change in viscosity due to the fact that the moisture absorption is sufficiently larger than the volatilization amount of the solvent for a short time. If the water content is within 5% (normally, the stock solution is about 0.2%), it is determined that it can be reused. However, in the case of 5% or more, the three-way valve 229 is opened to the waste liquid tank 212 side and discarded as waste liquid. However, the value that the water content is within 5% varies depending on the type of the alignment film material, and is merely an example in this embodiment.

再利用可能な溶液に関しては、水分含有量0.2%以内になるように加熱温度および加熱時間を決定して、昇温ユニット217を動作させる。そして3方弁229を第2送液タンク221側に開き、昇温ユニット217を通過させ除湿する。昇温ユニット217を通過した液体は、フィルタ213に送られ、そこで、ゴミが除去される。次に、気液分離部214を通すことで気泡の除去が行われる。水分含量、ごみ、気泡が原因で成膜する上で、膜の均一性、乾燥状態、ピンホール率等に影響を与えるため、上記処理を実施する必要がある。フィルタ213(穴径1μm以下使用)を通すことにより1μm以上のゴミ等を除去することができる。水分除去、ゴミ除去、気泡除去を実施した回収液は、第2送液タンク221へ送液される。   For the reusable solution, the heating temperature and the heating time are determined so that the water content is within 0.2%, and the temperature raising unit 217 is operated. Then, the three-way valve 229 is opened to the second liquid feeding tank 221 side, and passes through the temperature raising unit 217 for dehumidification. The liquid that has passed through the temperature raising unit 217 is sent to the filter 213, where dust is removed. Next, air bubbles are removed by passing through the gas-liquid separator 214. In forming a film due to moisture content, dust, and bubbles, the film uniformity, dry state, pinhole ratio, and the like are affected. Therefore, it is necessary to perform the above treatment. By passing the filter 213 (having a hole diameter of 1 μm or less), dust or the like of 1 μm or more can be removed. The recovered liquid that has been subjected to moisture removal, dust removal, and bubble removal is fed to the second liquid feeding tank 221.

最後に第1送液タンク222中の原液の粘度値(粘度測定ユニット224の値)と第2送液タンク221中の回収液の粘度値(粘度測定ユニット225の値)を比較して、溶液1用送液タンク215、溶液2用送液タンク216から、それぞれ適量の溶液を第2送液タンク221へ送液し粘度の調整をする。   Finally, the viscosity value of the stock solution in the first liquid feeding tank 222 (value of the viscosity measuring unit 224) and the viscosity value of the recovered liquid in the second liquid feeding tank 221 (value of the viscosity measuring unit 225) are compared to determine the solution. An appropriate amount of the solution is fed from the 1 liquid feeding tank 215 and the solution 2 liquid feeding tank 216 to the second liquid feeding tank 221 to adjust the viscosity.

粘度等の調整が終了したら弁230を開き、加圧気体(所定圧の窒素ガス)を送る3方弁228を第2送液タンク221側を開いて、第2送液タンク221の回収液を第1送液タンク222へ送液する。送液終了後、3方弁228を閉じる。また、配向膜材料は低温で保管することにより、吸湿による材料の変質等を防ぐ効果があるため、水冷用ポンプ226により第2送液タンク221と、第1送液タンク222のジャケット部分に水を供給し、20℃以下の低温で維持できるようにした。ただ、吐出時には成膜に適した材料の温度等があるため、昇温ユニット227で昇温してノズル11へ液体を供給している。   When the adjustment of viscosity or the like is completed, the valve 230 is opened, the three-way valve 228 for sending pressurized gas (nitrogen gas at a predetermined pressure) is opened on the second liquid feeding tank 221 side, and the recovered liquid in the second liquid feeding tank 221 is discharged. Liquid is fed to the first liquid feeding tank 222. After the liquid feeding is finished, the three-way valve 228 is closed. In addition, since the alignment film material has an effect of preventing deterioration of the material due to moisture absorption when stored at a low temperature, the water cooling pump 226 supplies water to the second liquid supply tank 221 and the jacket portion of the first liquid supply tank 222. So that it can be maintained at a low temperature of 20 ° C. or lower. However, since there is a material temperature suitable for film formation at the time of discharge, the temperature is raised by the temperature raising unit 227 and the liquid is supplied to the nozzle 11.

以上のように、本発明の送液及び回収機構22では、使用する溶液の温度及び粘度を調整してミスト発生室14に送液する構成としたために、均一な径の塗布用の微粒子を生成することが可能となり、均一な膜の生成が可能となる。   As described above, in the liquid feeding and recovery mechanism 22 of the present invention, since the temperature and viscosity of the solution to be used are adjusted and the liquid is fed to the mist generating chamber 14, fine particles for coating having a uniform diameter are generated. And a uniform film can be generated.

本発明の一実施例の薄膜形成装置の概略図である。It is the schematic of the thin film forming apparatus of one Example of this invention. 上段に流量バラツキと内圧の関係を下段に充填から吐出終了までの各圧力の関係を示す図である。It is a figure which shows the relationship between flow volume dispersion | variation and internal pressure in the upper stage, and the relationship of each pressure from filling to completion | finish of discharge in a lower stage. 吐出の動作フローを示した図である。It is the figure which showed the operation | movement flow of discharge. 材料の回収及び送液機構の概略図ある。It is the schematic of a material collection | recovery and liquid feeding mechanism.

符号の説明Explanation of symbols

1…内圧調整用減圧弁、11…ノズル、12…内圧計測センサ、13…弁、14…ミスト発生室、15…弁、16…ミスト供給管、21…ポンプ、22…送液及び回収機構、31…ミスト供給部、41…弁、42…圧力センサ、43…弁、44…圧力センサ、45…減圧弁、46…圧力センサ、47…減圧弁、48…減圧弁、51…基板、52…窒素供給源、53…駆動ステージ、54…捨て打ちエリア、211…粘度測定ユニット、212…廃液タンク、213…フィルタ、214…気液分離膜、215…溶液1用送液タンク、216…溶液2用送液タンク、217…加熱ユニット、221…攪拌冷却ジャケット付送液タンク、222…攪拌冷却ジャケット付送液タンク、224…粘度測定ユニット、225…粘度測定ユニット、226…水冷用ポンプ、227…加熱ユニット、228…3方弁、229…3方弁。   DESCRIPTION OF SYMBOLS 1 ... Pressure reducing valve for internal pressure adjustment, 11 ... Nozzle, 12 ... Internal pressure measurement sensor, 13 ... Valve, 14 ... Mist generating chamber, 15 ... Valve, 16 ... Mist supply pipe, 21 ... Pump, 22 ... Liquid feeding and recovery mechanism, DESCRIPTION OF SYMBOLS 31 ... Mist supply part, 41 ... Valve, 42 ... Pressure sensor, 43 ... Valve, 44 ... Pressure sensor, 45 ... Pressure reducing valve, 46 ... Pressure sensor, 47 ... Pressure reducing valve, 48 ... Pressure reducing valve, 51 ... Substrate, 52 ... Nitrogen supply source 53... Drive stage 54 54 Discarding area 211. Viscosity measuring unit 212. Waste liquid tank 213 Filter 214 214 Gas-liquid separation membrane 215 Solution 1 feed tank 216 Solution 2 Liquid feeding tank, 217 ... heating unit, 221 ... liquid feeding tank with stirring cooling jacket, 222 ... liquid feeding tank with stirring cooling jacket, 224 ... viscosity measuring unit, 225 ... viscosity measuring unit, 226 ... water Cooling pump, 227 ... heating unit, 228 ... 3-way valve, 229 ... 3-way valve.

Claims (2)

2流体ノズルを備えたミスト発生室と、前記ミスト発生室で生成したミストを基板上に塗布するミスト供給部と、前記ミスト供給部のスリット開口に対向して所定間隔を開けて前記基板を保持して水平方向に移動する移動機構を備えた駆動ステージと、前記ミスト発生室の底部に溜まった塗布液を回収し、再利用する塗布液を送液及び回収する送液・回収機構を備えた薄膜形成装置において、
前記ミスト供給部とミスト発生室の間の減圧弁を設け、前記ミスト発生室内の圧力を所定値に保持するための補助圧力気体供給部とを設けた構成としたことを特徴とする薄膜形成装置。
A mist generating chamber having a two-fluid nozzle, a mist supply unit for applying the mist generated in the mist generating chamber onto the substrate, and holding the substrate at a predetermined interval facing the slit opening of the mist supply unit And a drive stage equipped with a moving mechanism that moves in the horizontal direction, and a liquid feed / recovery mechanism that collects the coating liquid accumulated at the bottom of the mist generating chamber and feeds and collects the coating liquid to be reused. In thin film forming equipment,
A thin film forming apparatus comprising a pressure reducing valve between the mist supply section and a mist generation chamber, and an auxiliary pressure gas supply section for maintaining the pressure in the mist generation chamber at a predetermined value. .
請求項1に記載の薄膜形成装置において、
前記送液・回収機構が、回収液の水分含有率を測定し、加熱ユニットにて水分を除去し、ゴミの除去、気液の分離をした後、加熱により揮発した液体分を増量させる構成としたことを特徴とする薄膜形成装置。
The thin film forming apparatus according to claim 1,
The liquid feeding / recovery mechanism measures the water content of the recovered liquid, removes water with a heating unit, removes dust, separates gas and liquid, and then increases the amount of liquid volatilized by heating. A thin film forming apparatus characterized by that.
JP2004341392A 2004-11-26 2004-11-26 Thin film forming apparatus Pending JP2006150175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341392A JP2006150175A (en) 2004-11-26 2004-11-26 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341392A JP2006150175A (en) 2004-11-26 2004-11-26 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JP2006150175A true JP2006150175A (en) 2006-06-15

Family

ID=36629089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341392A Pending JP2006150175A (en) 2004-11-26 2004-11-26 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP2006150175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231620A (en) * 2014-05-27 2015-12-24 パロ アルト リサーチ センター インコーポレイテッド Method and system for creating aerosol
CN106111389A (en) * 2016-08-30 2016-11-16 天津长飞鑫茂光缆有限公司 Optical cable water-blocking cable cream atomization intermittent spray device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231620A (en) * 2014-05-27 2015-12-24 パロ アルト リサーチ センター インコーポレイテッド Method and system for creating aerosol
CN106111389A (en) * 2016-08-30 2016-11-16 天津长飞鑫茂光缆有限公司 Optical cable water-blocking cable cream atomization intermittent spray device

Similar Documents

Publication Publication Date Title
CN106042642B (en) Liquid discharge apparatus, Embosser and assembly manufacture method
JPH0326652B2 (en)
CN107537705B (en) Flux coating method and flux coating device
KR20180028383A (en) Apparatus for supplying treatment liquid
TWM308851U (en) Apparatus for reducing ink conglomerates during inkjet printing for flat panel display manufacturing
JP2007021760A (en) Forming apparatus of thin film
JP2007027764A (en) Device for controlling faulty injection in photo spinner equipment
US20020136087A1 (en) Purified developer producing equipment and method
JP2006150175A (en) Thin film forming apparatus
JP5195577B2 (en) Method and apparatus for controlling spray amount of coating apparatus
US6736154B2 (en) Pressure vessel systems and methods for dispensing liquid chemical compositions
JP5412135B2 (en) Ozone water supply device
JP2001096206A (en) Liquid drop discharge device
JP2006231140A (en) Thin film formation apparatus
JP2009006729A (en) Inkjet recording device
JP2006000769A (en) Spray coating apparatus for fuel cell electrode production
JP2006247450A (en) Liquid delivery apparatus and patterning apparatus
JP2006240158A (en) Liquid ejection method and apparatus
KR101779818B1 (en) Coating liquid collection apparatus for flow coating apparatus
JPH0813537B2 (en) Floating / laminating device for liquid crystal substrate layer formed by generating air film
CN106042646B (en) Integrated atomizing formula printing head
JP2009028676A (en) Ink filling apparatus
JP2003197575A (en) Apparatus and method for supplying abrasive
WO2021251266A1 (en) Liquid dispersion method, or liquid discharging or applying method, or device therefor
JP2000015147A (en) Electrostatic coating application and electrostatic coating applicator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823