JP2006149974A - Vascular restenosis preventive therapeutic apparatus by controlled sound pressure wave induced by irradiation with high strength pulse light - Google Patents

Vascular restenosis preventive therapeutic apparatus by controlled sound pressure wave induced by irradiation with high strength pulse light Download PDF

Info

Publication number
JP2006149974A
JP2006149974A JP2004348961A JP2004348961A JP2006149974A JP 2006149974 A JP2006149974 A JP 2006149974A JP 2004348961 A JP2004348961 A JP 2004348961A JP 2004348961 A JP2004348961 A JP 2004348961A JP 2006149974 A JP2006149974 A JP 2006149974A
Authority
JP
Japan
Prior art keywords
sound pressure
pulsed light
intensity pulsed
blood vessel
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348961A
Other languages
Japanese (ja)
Inventor
Tsunenori Arai
恒憲 荒井
Eriko Suga
絵里子 須賀
Takashi Kawabata
隆司 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Japan Lifeline Co Ltd
Original Assignee
Keio University
Japan Lifeline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Japan Lifeline Co Ltd filed Critical Keio University
Priority to JP2004348961A priority Critical patent/JP2006149974A/en
Priority to PCT/JP2005/022505 priority patent/WO2006059793A1/en
Publication of JP2006149974A publication Critical patent/JP2006149974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • A61B18/245Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter for removing obstructions in blood vessels or calculi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • A61B2017/22002Angioplasty, e.g. PCTA preventing restenosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • A61B2018/263Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy the conversion of laser energy into mechanical shockwaves taking place in a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0602Apparatus for use inside the body for treatment of blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Laser Surgery Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus having low invasive property to a patient, which is capable of reducing smooth muscle cells reproducing in a damaged portion of a blood vessel to cause restenosis or suppressing the adhesion of hematopoietic stem cells by a sound pressure wave generated when bubbles shrink and disappear, the bubbles being generated by irradiating the inside of a blood vessel with high-strength pulse light and generating steam bubbles, and also which is capable of adjusting the sound pressure of the sound pressure wave to be induced by adjusting the shape and largeness of the steam bubbles to be generated. <P>SOLUTION: This vascular restenosis preventive therapeutic apparatus reduces the smooth muscle cells reproducing in an operated region after angioplasty by the expansion of a blood vessel by the sound pressure wave induced by irradiation with high-strength pulse light, the generation of the steam bubbles, and the collapse of the steam bubbles. The apparatus generates the steam bubbles where the length of a lateral direction relative to a high-strength pulse light irradiating direction is 50-500% in size with respect to the length of a lengthwise direction, and by which the smooth muscle cells are damaged by sound pressure when the sound pressure wave induced by the collapse of the steam bubbles hits the wall of the blood vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、狭窄化した血管の経皮的冠状動脈形成術後の再狭窄を高強度パルス光照射により誘起される音圧波により予防するための装置に関し、さらに、音圧波が再狭窄予防に適するように制御された装置に関する。   The present invention relates to a device for preventing restenosis after percutaneous coronary angioplasty of a narrowed blood vessel by a sound pressure wave induced by high-intensity pulsed light irradiation, and the sound pressure wave is suitable for preventing restenosis. It is related with the controlled apparatus.

従来より、狭心症や心筋梗塞の患者に対してバルーンカテーテルによるバルーン拡張を用いて経皮的冠状動脈形成術(PTCA)が広く行われていた。しかし、バルーンカテーテルを用いた血管拡張術においては、3ヶ月後の再狭窄率が30〜40%と高かった。また、ステント留置による経皮的冠状動脈形成術も行われており、この方法によれば再狭窄率は、15〜35%と低下したものの、ステント内再狭窄の問題があり、またステントが留置してあるとその後の再治療が困難であった。再狭窄は、バルーンによる血管内腔の強制拡張により血管壁が損傷を受け、その後の治癒過程において、血管中膜から内膜の損傷部位へ平滑筋細胞が遊走・増殖し、あるいは造血幹細胞が接着因子を介して傷害血管に接着し、平滑筋細胞へ分化・増殖し内膜が過形成を起こすことにより発生することが報告されている。   Conventionally, percutaneous coronary angioplasty (PTCA) has been widely performed for patients with angina pectoris and myocardial infarction using balloon dilatation with a balloon catheter. However, in vasodilation using a balloon catheter, the restenosis rate after 3 months was as high as 30-40%. In addition, percutaneous coronary angioplasty by stent placement is also performed. According to this method, although the restenosis rate has decreased to 15 to 35%, there is a problem of in-stent restenosis, and the stent is placed in place. As a result, subsequent retreatment was difficult. In restenosis, the blood vessel wall is damaged by the forced expansion of the blood vessel lumen by the balloon, and in the subsequent healing process, smooth muscle cells migrate and proliferate from the vascular media to the damaged site of the intima, or hematopoietic stem cells adhere. It has been reported that it is caused by adhesion to damaged blood vessels via factors, differentiation and proliferation into smooth muscle cells, and intimal hyperplasia.

これに対して、バルーン拡張後に病変部位に適切な線量の放射線を照射し、治癒過程における細胞増殖を抑止するという、血管内放射線照射治療法(ブラキテラピー、特表平9-508038号公報、特開2001-46532号公報)が開発されている。   On the other hand, intravascular irradiation therapy (Brachytherapy, JP 9-508038 A), which irradiates the lesion site with an appropriate dose of radiation after balloon expansion to suppress cell growth during the healing process. No. 2001-46532) has been developed.

しかし、放射線照射治療方法は、平滑筋細胞の増殖を抑止するという点で再狭窄の予防に適していると考えられるが、血管壁および周囲組織の損傷による副作用ならびに放射線を扱うための設備の必要性という問題があった。   However, although radiation therapy is considered to be suitable for the prevention of restenosis in terms of inhibiting the proliferation of smooth muscle cells, side effects caused by damage to the blood vessel wall and surrounding tissues and the need for facilities to handle radiation There was a problem of sex.

また、超音波を利用する方法(ソノテラピー)も試みられていた。例えば、サイトカラシンBまたはコルチシンなどの1以上の抗細胞骨格剤を用いて平滑筋細胞を処置し、超音波エネルギーを有効な量で照射することにより、平滑筋細胞の移行、生存または接着を弱め再狭窄を抑制するための方法も開発されているが(特表平2002-502804号公報)、抗細胞骨格剤の投与が必須であるという難点があった。さらに、新生内膜肥厚を抑制する光力学的治療(Photodynamic Therapy)も試みられていた(WO00/59505号公報)が、PDT薬剤をあらかじめ患者に投与する必要があり、治療にかかる時間も患者の負担も大きかった。さらに、薬剤投与手段を有するディスパッチカテーテルを用いて再狭窄を防止する方法も報告されている。   In addition, a method using ultrasonic waves (sonotherapy) has been tried. For example, smooth muscle cells are treated with one or more anti-cytoskeletal agents such as cytochalasin B or cortisin and irradiated with an effective amount of ultrasonic energy to reduce smooth muscle cell migration, survival or adhesion. Although a method for suppressing restenosis has been developed (Japanese Patent Publication No. 2002-502804), there is a problem that administration of an anti-cytoskeleton agent is essential. Furthermore, photodynamic therapy that suppresses neointimal thickening has also been attempted (WO00 / 59505), but it is necessary to administer a PDT drug to the patient in advance, and the time required for the treatment also depends on the patient's time. The burden was also great. Furthermore, a method for preventing restenosis using a dispatch catheter having a drug administration means has been reported.

また、これらの再狭窄予防法においては、カテーテルが用いられるが、カテーテル先端に放射線源を設け、カテーテル内に熱発生手段を配設し、あるいはカテーテルに超音波を発生させるための振動源や薬剤を局所投与するための手段を配設する必要があるため、カテーテルが太くなり、取り扱いが困難であった。
特開平7-289557号公報 特表平9-508038号公報 特開2001-46532号公報 特表平2002-502804号公報 WO00/59505号公報
In these restenosis prevention methods, a catheter is used, but a radiation source is provided at the distal end of the catheter, a heat generating means is provided in the catheter, or a vibration source or drug for generating ultrasonic waves in the catheter. Since it is necessary to arrange a means for locally administering the catheter, the catheter becomes thick and difficult to handle.
JP 7-289557 A Japanese National Patent Publication No. 9-508038 JP 2001-46532 A Japanese National Patent Publication No. 2002-502804 WO00 / 59505 Publication

本発明者らは、先に上記従来技術の欠点を克服した、再狭窄予防治療用装置を開発した。すなわち、高強度パルス光照射手段により血管内に高強度パルス光を照射し、血管内で水蒸気泡を発生させ、気泡が収縮・消滅するときに発生する音圧波により、再狭窄の原因となる血管損傷部位で増殖する平滑筋細胞を減少させ、造血幹細胞の接着を抑止し得る装置であり、血流を閉止することなく血流中で用いることができ、血管内に挿入する部分の径が細いこと、等を特徴とする侵襲性が低い装置を開発した(特願2003-157074号)。   The inventors of the present invention have previously developed a device for preventing and treating restenosis that overcomes the drawbacks of the prior art. That is, a blood vessel that causes restenosis due to sound pressure waves generated when high-intensity pulsed light irradiation means irradiates a blood vessel with high-intensity pulsed light to generate water vapor bubbles in the blood vessel and the bubbles contract or disappear. It is a device that can reduce the number of smooth muscle cells that proliferate at the site of injury and suppress the adhesion of hematopoietic stem cells. It can be used in the bloodstream without closing the bloodstream, and the diameter of the portion inserted into the blood vessel is thin. Developed a low-invasive device characterized by the above (Japanese Patent Application No. 2003-157074).

しかしながら、水蒸気泡の大きさや形状と再狭窄を予防し得る音圧波との関係は不明確であり、再狭窄を的確に予防するには、水蒸気泡をどのように発生させ、どの程度の音圧波を発生させればよいかについては未知であった。本発明は、再狭窄を的確に予防し得る音圧波を制御し得る装置の提供を目的とする。   However, the relationship between the size and shape of water vapor bubbles and the sound pressure waves that can prevent restenosis is unclear, and in order to accurately prevent restenosis, how to generate water bubbles and how much sound pressure waves It was unknown about what to generate. An object of this invention is to provide the apparatus which can control the sound pressure wave which can prevent restenosis exactly.

上述のように、再狭窄はバルーンによる血管内腔の強制拡張により血管壁が損傷を受け、その後の治癒過程において、血管中膜から内膜の損傷部位へ細胞、例えば平滑筋細胞が遊走・増殖し、あるいは造血幹細胞が接着因子を介して傷害血管に接着し、平滑筋細胞へ分化・増殖し内膜が過形成を起こすことにより発生する。本発明者等は、平滑筋細胞の増殖を抑止し、さらに造血幹細胞の接着を抑止して、再狭窄を防止できないかについて検討を行い、液体中でレーザを照射した場合に、水蒸気泡が発生し、該気泡の収縮および消滅の際に音圧波が発生する現象に着目し、血管カテーテルの先端に高強度パルス光照射部位を設け、血管内でレーザ等の高強度パルス光を照射し、音圧波を発生させ該音圧波により平滑筋細胞の増殖および造血幹細胞の接着を抑止し、再狭窄を予防できることを見出した。血管内で水蒸気泡を発生させ得る装置は、一定の強度および波長を有する高強度パルス光を血管内で照射する手段を必要とする装置であり、基本的には高強度パルス光を発生する装置、高強度パルス光を伝送するためのファイバーおよびファイバーを血管内の治療部位まで運ぶ手段のみがあれば足り、血管内に挿入する最大径部分は極めて小径で足りる。このため、例えば冠状動脈に対して施術する場合、従来のように冠状動脈から離れた大腿動脈血管等の太い血管から挿入する必要はなく、冠状動脈に近い腕の細い血管から挿入することもできる。本発明者らは、さらに、より確実に再狭窄を予防し得る音圧波を発生することができる水蒸気泡を発生させる条件について検討を行った。   As described above, restenosis causes damage to the blood vessel wall due to the forced expansion of the blood vessel lumen by the balloon, and cells, such as smooth muscle cells, migrate and proliferate from the vascular media to the damaged site of the intima during the subsequent healing process. Alternatively, it occurs when hematopoietic stem cells adhere to damaged blood vessels via an adhesion factor, differentiate and proliferate into smooth muscle cells, and hyperplasia of the intima occurs. The present inventors have examined whether or not restenosis can be prevented by inhibiting the proliferation of smooth muscle cells and further preventing the adhesion of hematopoietic stem cells, and water vapor bubbles are generated when laser is irradiated in a liquid. Focusing on the phenomenon in which sound pressure waves are generated when the bubbles contract and disappear, a high-intensity pulsed light irradiation site is provided at the distal end of the blood vessel catheter, and a high-intensity pulsed light such as a laser is irradiated inside the blood vessel. It has been found that pressure waves are generated and the sound pressure waves can inhibit the proliferation of smooth muscle cells and the adhesion of hematopoietic stem cells, thereby preventing restenosis. A device capable of generating water vapor bubbles in a blood vessel is a device that requires means for irradiating high-intensity pulsed light having a certain intensity and wavelength inside the blood vessel, and basically a device that generates high-intensity pulsed light. Only the fiber for transmitting the high-intensity pulsed light and the means for transporting the fiber to the treatment site in the blood vessel are sufficient, and the maximum diameter portion to be inserted into the blood vessel is very small. For this reason, for example, when performing a treatment on a coronary artery, it is not necessary to insert from a thick blood vessel such as a femoral artery blood vessel away from the coronary artery as in the prior art, and it can also be inserted from a thin blood vessel of an arm close to the coronary artery. . The present inventors further examined conditions for generating water vapor bubbles that can generate sound pressure waves that can prevent restenosis more reliably.

すなわち、本発明は以下の通りである。
[1] 血管内で音圧波を誘起しうる高強度パルス光照射手段を含み、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡がコラプスする際に誘起される音圧波により血管拡張による血管形成術施術後に施術部において増殖する細胞を減少させる血管再狭窄予防治療用装置であって、高強度パルス光照射方向に対する横方向の長さが、縦方向の長さに対して1/2以上の大きさの水蒸気泡であって、該水蒸気泡のコラプスにより誘起される音圧波が血管壁に当たる際の音圧が平滑筋細胞に傷害を与え得る水蒸気泡を発生させる、血管再狭窄予防治療用装置、
[2] 水蒸気泡の高強度パルス光照射方向に対する横方向の長さが、縦方向の長さに対して50〜500%である、[1]の血管再狭窄予防治療用装置、
[3] さらに、水蒸気泡の高強度パルス光照射方向に対する横方向の長さが、血管の内径の2倍以下の大きさである、[1]または[2]の血管再狭窄予防治療用装置、
[4] 水蒸気泡の高強度パルス光照射方向に対する横方向の長さが、血管の内径の10〜200%である、[3]の血管再狭窄予防治療用装置、
[5] 水蒸気泡のコラプスにより誘起される音圧波の音圧が血管壁において0.1〜10MPaである、[1]の血管再狭窄予防治療用装置、
That is, the present invention is as follows.
[1] It includes high-intensity pulsed light irradiation means capable of inducing a sound pressure wave in a blood vessel, generates water vapor bubbles in the blood vessel by high-intensity pulsed light irradiation, and generates sound pressure waves induced when the water vapor bubbles collapse An apparatus for preventing and treating vascular restenosis that reduces the number of cells proliferating after angioplasty by vasodilation, the length in the horizontal direction relative to the direction of irradiation with high-intensity pulsed light is longer than the length in the vertical direction A water vapor bubble having a size of 1/2 or more is generated, and the sound pressure wave generated by the collapse of the water vapor bubble hits the blood vessel wall to generate a water vapor bubble that can damage smooth muscle cells. Device for preventing and treating stenosis,
[2] The apparatus for preventing and treating vascular restenosis according to [1], wherein the length of the water vapor bubbles in the transverse direction with respect to the irradiation direction of the high-intensity pulsed light is 50 to 500% of the length in the longitudinal direction.
[3] Furthermore, the apparatus for preventing and treating vascular restenosis according to [1] or [2], wherein the length of the water vapor bubbles in the lateral direction relative to the direction of irradiation with the high-intensity pulsed light is not more than twice the inner diameter of the blood vessel. ,
[4] The apparatus for preventing and treating vascular restenosis according to [3], wherein the transverse length of the water vapor bubbles with respect to the irradiation direction of the high-intensity pulsed light is 10 to 200% of the inner diameter of the blood vessel.
[5] The apparatus for preventing and treating vascular restenosis according to [1], wherein the sound pressure of the sound pressure wave induced by the collapse of water vapor bubbles is 0.1 to 10 MPa in the blood vessel wall;

[6] さらに、カテーテルを含み高強度パルス光伝送用ファイバーがカテーテルの中に配置されている、[1]から[5]のいずれかの血管再狭窄予防治療用装置、
[7] 高強度パルス光照射手段をバルーン拡張により経皮的血管形成を行い得るバルーンカテーテルの貫通ルーメンに挿入し得る、[6]の血管再狭窄予防治療用装置、
[8] カテーテルがバルーン拡張により経皮的血管形成を行い得るバルーンカテーテルである、[7]の血管再狭窄予防治療用装置、
[9] カテーテル先端部と高強度パルス光照射手段の高強度パルス光照射部の高強度パルス光照射方向の距離を変化させることにより、水蒸気泡の形状を変化させ、水蒸気泡のコラプスにより誘起される音圧波が血管壁に当たる際の音圧を調節することができる、[6]から[8]のいずれかの血管再狭窄予防治療用装置、
[6] The vascular restenosis prevention / treatment device according to any one of [1] to [5], further comprising a catheter and a high-intensity pulsed light transmission fiber disposed in the catheter,
[7] The apparatus for preventing and treating vascular restenosis according to [6], wherein the high-intensity pulsed light irradiation means can be inserted into a penetration lumen of a balloon catheter capable of performing percutaneous blood vessel formation by balloon expansion.
[8] The apparatus for preventing and treating vascular restenosis according to [7], wherein the catheter is a balloon catheter capable of performing percutaneous angiogenesis by balloon expansion.
[9] By changing the distance between the catheter tip and the high-intensity pulsed light irradiation part of the high-intensity pulsed light irradiation unit in the direction of high-intensity pulsed light irradiation, the shape of the water-vapor bubble is changed and induced by the collapse of the water-vapor bubble The device for preventing and treating vascular restenosis according to any one of [6] to [8], wherein the sound pressure wave when the sound pressure wave hits the blood vessel wall can be adjusted,

[10] カテーテル先端部と高強度パルス光照射手段の高強度パルス光照射部の距離が1〜3mmである、[9]の血管再狭窄予防治療用装置、
[11] カテーテルの遠位端部の内部構造が高強度パルス光照射により発生する水蒸気泡が高強度パルス光照射方向に対する横方向へ拡張する速度を抑制する内部構造であり、高強度パルス光照射方向に対する横方向の長さが、縦方向の長さよりも大きい水蒸気泡であって、コラプスにより誘起される音圧波が血管壁に当たる際の音圧が高い水蒸気泡を発生させる[6]から[8]のいずれかの血管再狭窄予防治療用装置、
[12] カテーテル遠位端部の内部構造が、遠位端部の内部に凹凸部を有する構造である、[11]の血管再狭窄予防治療用装置、
[13] 高強度パルス光の波長が、水の吸収係数が10〜1000cm-1である範囲にある、[1]から[12]のいずれかの血管再狭窄予防治療用装置、
[14] 高強度パルス光の波長が0.3〜3μmの範囲にある、[1]から[13]のいずれかの血管再狭窄予防治療用装置、
[15] 高強度パルス光の波長が1.5〜2.5μmの範囲にある、[14]の血管再狭窄予防治療用装置、
[10] The apparatus for preventing and treating vascular restenosis according to [9], wherein the distance between the distal end portion of the catheter and the high-intensity pulsed light irradiation unit of the high-intensity pulsed light irradiation unit is 1 to 3 mm.
[11] The internal structure of the distal end of the catheter is an internal structure that suppresses the rate at which water vapor bubbles generated by irradiation with high-intensity pulsed light expand in the lateral direction with respect to the direction of irradiation with high-intensity pulsed light. [6] to [8] are generated, which are steam bubbles whose length in the transverse direction relative to the direction is larger than the length in the longitudinal direction, and which have high sound pressure when the sound pressure wave induced by collapse strikes the blood vessel wall. ] For preventing and treating vascular restenosis,
[12] The device for preventing and treating vascular restenosis according to [11], wherein the internal structure of the distal end portion of the catheter has a concavo-convex portion inside the distal end portion,
[13] The apparatus for preventing and treating vascular restenosis according to any one of [1] to [12], wherein the wavelength of the high-intensity pulsed light is in a range where the water absorption coefficient is 10 to 1000 cm −1 .
[14] The apparatus for preventing and treating vascular restenosis according to any one of [1] to [13], wherein the wavelength of the high-intensity pulsed light is in the range of 0.3 to 3 μm,
[15] The device for preventing and treating vascular restenosis according to [14], wherein the wavelength of the high-intensity pulsed light is in the range of 1.5 to 2.5 μm,

[16] 高強度パルス光が、パルスレーザである[1]から[15]のいずれかの血管再狭窄予防治療用装置、
[17] 高強度パルス光が、オプティカルパラメトリックオッシレーター(OPO)により発生するパルス光である[1]から[15]のいずれかの血管再狭窄予防治療用装置、
[18] レーザが希土類イオンを用いた固体レーザである[16]の血管再狭窄予防治療用装置、
[19] レーザ媒質がHoまたはTmであり、レーザ母材がYAG、YSGGおよびYVOからなる群から選択される、[18]の血管再狭窄予防治療用装置、
[20] レーザがHo:YAGレーザまたはTm:YAGレーザである[19]の血管再狭窄予防治療用装置、ならびに
[21] 血管内に挿入するカテーテルシース部分の直径が2mm以下である、[1]から[20]のいずれかの血管再狭窄予防治療用装置。
[16] The apparatus for preventing and treating vascular restenosis according to any one of [1] to [15], wherein the high-intensity pulsed light is a pulsed laser,
[17] The apparatus for preventing and treating vascular restenosis according to any one of [1] to [15], wherein the high-intensity pulsed light is pulsed light generated by an optical parametric oscillator (OPO),
[18] The apparatus for preventing and treating vascular restenosis according to [16], wherein the laser is a solid-state laser using rare earth ions,
[19] The apparatus for preventing and treating vascular restenosis according to [18], wherein the laser medium is Ho or Tm, and the laser base material is selected from the group consisting of YAG, YSGG, and YVO.
[20] The apparatus for preventing and treating vascular restenosis according to [19], wherein the laser is a Ho: YAG laser or a Tm: YAG laser, and
[21] The device for preventing and treating vascular restenosis according to any one of [1] to [20], wherein the diameter of the catheter sheath portion to be inserted into the blood vessel is 2 mm or less.

実施例に示すように、高強度パルス光を液体内で照射することにより水蒸気泡を発生させ、気泡が収縮・消滅(コラプス)するときに発生する音圧波で平滑筋細胞の増殖を阻害することができ、このときに水蒸気泡の形状および大きさを変えることにより音圧派の血管壁における音圧の大きさを調節することができる。特に、本発明の装置は、水蒸気泡の高強度パルス光照射方向に対する横方向の長さが、縦方向(高強度パルス光照射方向)の長さの1/2以上の大きさであることを特徴とし、このような水蒸気泡がコラプスするときに横方向へ伝播する音圧波の音圧が大きくなるので、血管壁に平滑筋細胞を傷害するのに充分な大きさの音圧を施すことができる。また、本発明の装置においては、水蒸気泡の形状や大きさを調節し、誘起される音圧の大きさも調節することができる。従って、動脈硬化治療部において予測される再狭窄の重篤度により、過激な音圧から温和な音圧を適時誘起することができる。本発明の装置により、血管形成術を行った血管部位で高強度パルス光を照射し、音圧波を発生させることにより該音圧波で、血管形成部に遊走し定着する平滑筋細胞の増殖を阻害し、血管再狭窄を予防することができる。   As shown in the examples, water vapor bubbles are generated by irradiating high-intensity pulsed light in the liquid, and the growth of smooth muscle cells is inhibited by sound pressure waves generated when the bubbles contract or disappear (collapse). At this time, by changing the shape and size of the water vapor bubbles, the size of the sound pressure in the sound pressure blood vessel wall can be adjusted. In particular, the apparatus of the present invention is such that the length of the water vapor bubble in the transverse direction relative to the direction of irradiation with high-intensity pulsed light is at least half the length in the longitudinal direction (direction of irradiation with high-intensity pulsed light). Since the sound pressure of the sound pressure wave propagating in the lateral direction when such a water vapor bubble collapses is increased, it is possible to apply a sound pressure large enough to damage smooth muscle cells to the blood vessel wall. it can. Moreover, in the apparatus of this invention, the magnitude | size and the magnitude | size of a water vapor bubble can be adjusted, and the magnitude | size of the induced sound pressure can also be adjusted. Therefore, a moderate sound pressure can be induced from an extreme sound pressure in a timely manner according to the severity of restenosis predicted in the arteriosclerosis treatment part. The apparatus of the present invention irradiates high-intensity pulsed light at the blood vessel site where the angioplasty was performed, and generates a sound pressure wave, thereby inhibiting the proliferation of smooth muscle cells that migrate and settle in the blood vessel forming part. Thus, vascular restenosis can be prevented.

以下、本発明を詳細に説明する。
本発明は高強度パルス光を利用した再狭窄予防治療用装置である。
Hereinafter, the present invention will be described in detail.
The present invention is an apparatus for preventing and treating restenosis using high-intensity pulsed light.

本発明の装置は、少なくとも、血管内に高強度パルス光を照射する高強度パルス光照射手段を含み、さらに高強度パルス光照射部を経皮的冠状動脈形成術施術部位まで誘導するためのカテーテルを含んでいてもよい。図1に本発明の装置の概略図を示す。   The apparatus of the present invention includes at least a high-intensity pulsed light irradiation means for irradiating a high-intensity pulsed light into a blood vessel, and a catheter for guiding the high-intensity pulsed light irradiation unit to a percutaneous coronary angioplasty site. May be included. FIG. 1 shows a schematic diagram of the apparatus of the present invention.

前記高強度パルス光照射手段は、高強度パルス光発生手段(高強度パルス光源)、高強度パルス光を血管中に伝送する手段、高強度パルス光を血管内に照射する手段等を含み、高強度パルス光を伝送する部分は光伝送用ファイバーである。本発明の光伝送用ファイバーはバルーン拡張による経皮的血管形成術(PTCA)に用いるカテーテル中の貫通ルーメンに挿入し高強度パルス光を治療部位に到達させるようにしてもよい。この場合は、バルーン拡張による経皮的血管形成術施行後直ぐに本発明の治療用装置による治療を行うことになる。また、上記経皮的血管形成術に用いるバルーンカテーテル中に高強度パルス光伝送用光ファイバーをあらかじめ配設しておき、経皮的血管形成術施行後にバルーンを収縮させ高強度パルス光を照射して本発明の治療を行ってもよい。従って、本発明は、高強度パルス光照射により誘起される音圧波により血管拡張による血管形成術施行後に施術部において増殖する細胞、例えば平滑筋細胞を減少させることにより血管再狭窄を予防し得る血管内で音圧波を誘起しうる高強度パルス光照射手段を含む、血管拡張用バルーンカテーテルをも包含する。さらに、本発明はカテーテル内に高強度パルス光伝送用ファイバーとして配置されている、血管再狭窄予防治療のための専用装置であってもよい。この場合は、血管拡張用バルーンカテーテルにより血管形成術施行後、該血管拡張用バルーンカテーテルを体内から除いた後に血管再狭窄予防治療を行う。また、専用装置の場合は、ステント留置(例えば、セルフエキスパンダブルステント)による血管形成術施行後の再狭窄の予防にも用いることができる。高強度パルス光を血管内に照射する手段は、光伝送用ファイバーの遠位端に高強度パルス光照射部として設けられる。高強度パルス光照射部には、プリズム等のパルス光照射角度を変化させるための部材を配設してもよいが、通常は特別な部材は必要なく光ファイバーの遠位端が高強度パルス光照射部として作用し得る。   The high-intensity pulsed light irradiation means includes high-intensity pulsed light generation means (high-intensity pulsed light source), means for transmitting high-intensity pulsed light into the blood vessel, means for irradiating the high-intensity pulsed light into the blood vessel, etc. The portion that transmits the intensity pulse light is an optical transmission fiber. The optical transmission fiber of the present invention may be inserted into a penetration lumen in a catheter used for percutaneous angioplasty (PTCA) by balloon expansion so that high-intensity pulsed light reaches the treatment site. In this case, treatment with the treatment apparatus of the present invention is performed immediately after the percutaneous angioplasty by balloon expansion. In addition, an optical fiber for transmitting high-intensity pulsed light is disposed in advance in the balloon catheter used for the above-mentioned percutaneous angioplasty, and after performing percutaneous angioplasty, the balloon is deflated and irradiated with high-intensity pulsed light. The treatment of the present invention may be performed. Therefore, the present invention provides a blood vessel that can prevent vascular restenosis by reducing the number of cells that proliferate in an operation site after performing angioplasty by vasodilation, such as smooth muscle cells, by sound pressure waves induced by irradiation with high-intensity pulsed light. The present invention also includes a balloon catheter for vasodilation including high-intensity pulsed light irradiation means capable of inducing a sound pressure wave therein. Furthermore, the present invention may be a dedicated device for preventing and treating vascular restenosis arranged as a fiber for transmitting high-intensity pulsed light in a catheter. In this case, after angioplasty is performed using a balloon catheter for vasodilation, the balloon catheter for vasodilation is removed from the body, and then vascular restenosis prevention treatment is performed. In the case of a dedicated device, it can also be used to prevent restenosis after angioplasty by stent placement (for example, self-expandable stent). The means for irradiating the high-intensity pulsed light into the blood vessel is provided as a high-intensity pulsed light irradiation unit at the distal end of the optical transmission fiber. The high-intensity pulsed light irradiation unit may be provided with a member such as a prism for changing the pulsed light irradiation angle, but usually no special member is required, and the distal end of the optical fiber is irradiated with high-intensity pulsed light. Can act as a part.

本発明において、音圧波とは媒質において圧力変動を伴う波をいう。音圧波は音響波ともいうが、本発明においては発生する音響波が媒質の非線形性により衝撃波となる場合もあるのでこれを総称して音圧波と称している。本発明において音圧波は、周波数が可聴周波のものも可聴周波以上の超音波や可聴周波以下の超低周波も含む。   In the present invention, the sound pressure wave refers to a wave accompanied by pressure fluctuation in a medium. The sound pressure wave is also referred to as an acoustic wave, but in the present invention, the generated acoustic wave may be a shock wave due to the nonlinearity of the medium, and is therefore collectively referred to as a sound pressure wave. In the present invention, the sound pressure wave includes an ultrasonic wave having an audio frequency, an ultrasonic wave having an audio frequency higher than that, and an ultra-low frequency having an audio frequency lower than the audio frequency.

本発明の装置が任意に含む血管カテーテルは本発明の装置の一部を血管内に挿入するための筒であり、装置の一部を目的の部位に移動させるときのガイドとして用いられる。カテーテルは、通常用いられているものを使用することができ、その径等は限定されず、治療しようとする血管の太さに応じて適宜設計することができる。本発明の装置は、カテーテル内に高強度パルス光伝送用の光ファイバーが1本あれば、足りるのでカテーテルの径も細くでき、例えば、カテーテルシース部分の直径は、2mm以下である。   The vascular catheter optionally included in the apparatus of the present invention is a tube for inserting a part of the apparatus of the present invention into a blood vessel, and is used as a guide when moving a part of the apparatus to a target site. As the catheter, a commonly used catheter can be used, and its diameter and the like are not limited, and can be appropriately designed according to the thickness of the blood vessel to be treated. The apparatus of the present invention requires only one optical fiber for transmitting high-intensity pulsed light in the catheter, so that the diameter of the catheter can be reduced. For example, the diameter of the catheter sheath portion is 2 mm or less.

高強度パルス光には、レーザおよびオプティカルパラメトリックオッシレーター(OPO; Optical Parametric Oscillator)により発生するパルス光が含まれる。   The high-intensity pulsed light includes pulsed light generated by a laser and an optical parametric oscillator (OPO).

レーザ発生手段は、通常のレーザ発生装置を用いることができ、レーザ種は水の吸収係数が10〜1000cm-1、好ましくは10〜100cm-1である波長帯のレーザならば限定されず、希土類イオンを用いた固体レーザまたはXeClエキシマーレーザ等を用いることができる。また、レーザの発振波長は、0.3〜3μm、好ましくは1.5〜3μm、さらに好ましくは1.5〜2.5μm、さらに好ましくは水の吸収波長極大(1.9μm)近傍の波長である。レーザは、レーザを発生させる元素のイオンと該イオンを保持する母材の種類で表されるが、元素として希土類に属するHo(ホロニウム)、Tm(ツリウム)、Er(エルビウム)、Nd(ネオジム)等が挙げられ、このうちHoおよびTmが好ましい。母材としてはYAG、YSGG、YVO等が挙げられる。例えば、Ho:YAGレーザ、Tm:YAGレーザ、Ho:YSGGレーザ、Tm:YSGGレーザ、Ho:YVOレーザ、Tm:YVOレーザおよびXeClエキシマーレーザ(発振波長308nm)等を用いることができる。この中でもレーザの発振波長が水の吸収波長極大(1.9μm)近傍に存在するHo:YAGレーザ(発振波長2.1μm)、Tm:YAGレーザ(発振波長2.01μm)等が好ましい。 As the laser generating means, a normal laser generating device can be used, and the laser species is not limited as long as it is a laser having a wavelength band in which the water absorption coefficient is 10 to 1000 cm −1 , preferably 10 to 100 cm −1 , and rare earth A solid-state laser using ions, a XeCl excimer laser, or the like can be used. The oscillation wavelength of the laser is 0.3 to 3 μm, preferably 1.5 to 3 μm, more preferably 1.5 to 2.5 μm, and still more preferably a wavelength in the vicinity of the maximum absorption wavelength of water (1.9 μm). The laser is represented by the element ions that generate the laser and the type of the base material that holds the ions. Ho (holonium), Tm (thulium), Er (erbium), Nd (neodymium) belonging to rare earths as elements. Of these, Ho and Tm are preferred. Examples of the base material include YAG, YSGG, and YVO. For example, Ho: YAG laser, Tm: YAG laser, Ho: YSGG laser, Tm: YSGG laser, Ho: YVO laser, Tm: YVO laser, and XeCl excimer laser (oscillation wavelength 308 nm) can be used. Among these, Ho: YAG laser (oscillation wavelength 2.1 μm), Tm: YAG laser (oscillation wavelength 2.01 μm), etc., in which the laser oscillation wavelength is present in the vicinity of the absorption maximum wavelength (1.9 μm) of water are preferable.

レーザ発生装置として、例えば、LASER1-2-3 SCHWARTZ(ELECTRO-OPTICS社製)等が挙げられる。   Examples of the laser generator include LASER1-2-3 SCHWARTZ (manufactured by ELECTRO-OPTICS).

オプティカルパラメトリックオッシレーター(OPO; Optical Parametric Oscillator)は、連続的にパルス光の波長を変化させることができ、水の吸収係数が10〜1000cm-1である波長帯のパルス光を選択すればよい。例えば0.3〜3μm、好ましくは1.5〜3μm、さらに好ましくは1.5〜2.5μm、さらに好ましくは水の吸収波長極大(1.9μm)近傍の波長を選択すればよい。 An optical parametric oscillator (OPO) can continuously change the wavelength of pulsed light, and may select pulsed light having a wavelength band in which the water absorption coefficient is 10 to 1000 cm −1 . For example, the wavelength may be selected in the vicinity of 0.3 to 3 μm, preferably 1.5 to 3 μm, more preferably 1.5 to 2.5 μm, and more preferably water absorption wavelength maximum (1.9 μm).

高強度パルス光を血管内へ伝送する手段には、カテーテルの遠位端部付近に位置する、高強度パルス光を照射する手段(高強度パルス光照射部)および高強度パルス光を高強度パルス光発生装置から該高強度パルス光照射手段に伝送する石英ファイバー(光ファイバー)(高強度パルス光伝送用ファイバー)が含まれる。本明細書において「遠位端部付近」とは、高強度パルス光発生装置と連結された端部(近位端部)の反対側の端部に近い部分を意味し、遠位端部および遠位端部から数十cm程度の部分を指す。   The means for transmitting high-intensity pulsed light into the blood vessel includes means for irradiating high-intensity pulsed light (high-intensity pulsed light irradiation part) located near the distal end of the catheter and high-intensity pulsed light as high-intensity pulsed light. A quartz fiber (optical fiber) (fiber for transmitting high-intensity pulsed light) that is transmitted from the light generator to the high-intensity pulsed light irradiation means is included. As used herein, “near the distal end” means a portion close to the end opposite to the end (proximal end) connected to the high-intensity pulsed light generator, It refers to a portion of about several tens of centimeters from the distal end.

石英ファイバーは、その一端で高強度パルス光発生装置と連結し、もう一端で高強度パルス光照射手段(高強度パルス光照射部)と連結している。本発明で用いられる石英ファイバーは、直径0.05〜0.3mm程度のきわめて細いものから、可視的な太さのものまで、そのままで血管中に挿入されるか、あるいはカテーテルの中に収めて血管中に挿入され、高強度パルス光エネルギーを伝送できる限り、広く種々の径のものを用いることができる。   One end of the quartz fiber is connected to a high-intensity pulsed light generator, and the other end is connected to high-intensity pulsed light irradiation means (high-intensity pulsed light irradiation unit). The quartz fiber used in the present invention is inserted into a blood vessel as it is, from a very thin fiber having a diameter of about 0.05 to 0.3 mm to a visible thickness, or placed in a catheter and placed in a blood vessel. A wide variety of diameters can be used as long as they are inserted and can transmit high-intensity pulsed light energy.

高強度パルス光照射手段は、血管内に高強度パルス光を照射するための手段であり、体外の高強度パルス光発生装置(高強度パルス光源)で発生し、石英ファイバー(高強度パルス光伝送用ファイバー)内を血管に沿って伝送されてきた高強度パルス光が血管内に照射され血液中に水蒸気泡が形成されるように照射する。この際、高強度パルス光照射の方向は限定されない。また、上述のように高強度パルス光伝送用ファイバーは複数本分散して存在してもよい。ファイバーの直径は、好ましくは100μm〜1000μmの間である。   High-intensity pulsed light irradiation means is used to irradiate blood vessels with high-intensity pulsed light, and is generated by a high-intensity pulsed light generator (high-intensity pulsed light source) outside the body. The high-intensity pulsed light transmitted along the blood vessel is irradiated into the blood vessel so that water vapor bubbles are formed in the blood. At this time, the direction of irradiation with high-intensity pulsed light is not limited. Further, as described above, a plurality of high-intensity pulsed light transmission fibers may be dispersed. The diameter of the fiber is preferably between 100 μm and 1000 μm.

なお、高強度パルス光伝送用光ファイバーの遠位端部、すなわち光ファイバー先端の高強度パルス光照射部は、先端部による血管壁への傷害を避けるためにカテーテルの先端よりもカテーテル内に引っ込んでいるのが望ましい。   In addition, the distal end portion of the optical fiber for transmitting high-intensity pulsed light, that is, the high-intensity pulsed light irradiation part at the tip of the optical fiber is retracted into the catheter rather than the tip of the catheter in order to avoid injury to the blood vessel wall by the tip. Is desirable.

高強度パルス光のパルス幅も限定されないが、10ns〜1ms、好ましくは100μs〜400μsである。なお、パルス幅は半値全幅で示される。
高強度パルス光の繰り返し周波数は限定されない。
The pulse width of the high intensity pulse light is not limited, but is 10 ns to 1 ms, preferably 100 μs to 400 μs. The pulse width is indicated by the full width at half maximum.
The repetition frequency of the high intensity pulse light is not limited.

高強度パルス光を血管内に照射することにより、高強度パルス光の照射部の前面においてエネルギー密度が高くなり、その領域で水蒸気泡が発生し拡大し(エクスパンド)、該気泡が収縮・消滅(コラプス)するときに音圧波が発生し、発生点から伝播していく。図2にレーザ光照射により発生する水蒸気の発生から消滅までの過程を表す図を示す。図3に本発明の装置による再狭窄予防治療の概念図を示す。水蒸気泡は、水蒸気泡がコラプスする直前の形状および大きさが一定の場合に特に再狭窄予防に効果がある。すなわち、水蒸気泡の形状は、血管の進む方向の大きさを縦、血管の進む方向に垂直な方向を横とした場合に、横方向により広がった形状の水蒸気泡の方がより、横方向に大きな音圧波を発生することができる。従って、音圧波は水蒸気発生点から横方向に伝導し水蒸気泡に対して横方向に存在する中膜の平滑筋細胞をより確実に減少させる。一方、音圧波が大き過ぎると正常組織の正常細胞も傷害を受けてしまう。従って、狭窄予防に適切な音圧波には一定の幅がある。また、余り横方向に広がり過ぎても血管壁を過度に拡張させてしまい、血管壁を形成するコラーゲン繊維等のタンパク質繊維を復元不可能なほど伸長させてしまい、血管壁の損傷の原因となることがある。従って、本発明の装置は、横方向に広がったマッシュルーム形状または西洋なし形状の水蒸気泡を発生させ、中膜の平滑筋細胞を減少させるに効果的であるが血管機能に重大な損傷を与えない音圧波を発生させるとともに、血管壁の損傷をもたらすほど血管壁を拡張させることがない水蒸気泡を発生し得る装置である。さらに、発生した気泡の中心からの距離が大きいほど、ピーク音圧は低下するので、太い血管ほど、強い音圧が誘起されるように水蒸気泡を発生させる必要がある。   By irradiating the blood vessel with high-intensity pulsed light, the energy density is increased in front of the irradiation part of the high-intensity pulsed light, and water vapor bubbles are generated and expanded (expanded) in the region. A sound pressure wave is generated when collapsing, and propagates from the point of occurrence. FIG. 2 is a diagram showing a process from generation to disappearance of water vapor generated by laser light irradiation. FIG. 3 shows a conceptual diagram of restenosis prevention treatment using the apparatus of the present invention. The water vapor bubbles are particularly effective for preventing restenosis when the shape and size of the water vapor bubbles just before collapsing are constant. In other words, the shape of the water vapor bubbles is such that when the size of the direction in which the blood vessel advances is vertical and the direction perpendicular to the direction in which the blood vessel advances is horizontal, the shape of the water vapor bubble spreading in the horizontal direction is more lateral. A large sound pressure wave can be generated. Therefore, the sound pressure wave conducts laterally from the water vapor generation point and more reliably reduces the medial smooth muscle cells present laterally with respect to the water vapor bubbles. On the other hand, if the sound pressure wave is too large, normal cells of normal tissue are also damaged. Therefore, there is a certain range of sound pressure waves suitable for preventing stenosis. Moreover, even if it extends too much in the lateral direction, the blood vessel wall is excessively expanded, and protein fibers such as collagen fibers forming the blood vessel wall are stretched so that they cannot be restored, causing damage to the blood vessel wall. Sometimes. Therefore, the device of the present invention generates a mushroom-shaped or western-less water vapor bubble that spreads in the lateral direction, and is effective in reducing medial smooth muscle cells, but does not significantly damage vascular function. It is a device that can generate water vapor bubbles that generate pressure waves and do not expand the blood vessel wall enough to cause damage to the blood vessel wall. Furthermore, since the peak sound pressure decreases as the distance from the center of the generated bubble increases, it is necessary to generate water vapor bubbles so that a thicker blood vessel induces a stronger sound pressure.

さらに、動脈硬化治療部が大きいほど、治療後に増殖する平滑筋細胞が多く、予測される再狭窄の重篤度も大きくなる。再狭窄の重篤度によって、音圧波の音圧を調節することにより、平滑筋細胞を的確に傷害しつつ、正常細胞の傷害を避けることができる。本発明の装置は、予測される再狭窄の重篤度によって、音圧を強くまたは穏和に適宜調節することができる。   Furthermore, the larger the arteriosclerotic treatment part, the more smooth muscle cells proliferate after the treatment, and the expected severity of restenosis increases. By adjusting the sound pressure of the sound pressure wave according to the severity of restenosis, normal cell damage can be avoided while accurately damaging smooth muscle cells. The device of the present invention can appropriately adjust the sound pressure strongly or gently depending on the expected severity of restenosis.

発生させる水蒸気泡は、高強度パルス光照射方向に対する横方向の長さが、縦方向の長さに対して1/2以上の大きさの水蒸気泡が好ましく、さらに縦方向の長さと同じかまたは大きい水蒸気泡が好ましい。さらに、血管壁を過大に拡張させて血管壁に損傷を与えることのない程度の大きさの水蒸気泡が好ましく、このためには高強度パルス光照射方向に対する横方向の長さが、血管の内径の2倍以下の大きさである水蒸気泡が好ましく、さらに血管の内径よりも小さい水蒸気泡が好ましい。   The generated steam bubbles are preferably steam bubbles having a length in the transverse direction with respect to the direction of irradiation with the high-intensity pulsed light that is 1/2 or more of the length in the longitudinal direction. Large steam bubbles are preferred. Furthermore, a water vapor bubble having a size that does not cause excessive damage to the blood vessel wall due to excessive expansion of the blood vessel wall is preferable. Water vapor bubbles having a size of 2 times or less of these are preferable, and water vapor bubbles smaller than the inner diameter of the blood vessel are more preferable.

具体的には、発生させる水蒸気泡は、上記定義による横方向の長さが縦方向の長さの50%から500%、好ましくは75%から500%、さらに好ましくは100%から500%であることが望ましい。さらに、横方向の長さは治療しようとする血管の太さにより異なるが、好ましくは血管の内径の10%から200%、好ましくは10%から150%、さらに好ましくは10%から100%である。例えば、冠状大動脈の場合、血管の内径は、約3mmであるので、水蒸気泡の横方向の長さを、約0.3から6mm、好ましくは0.3から4.5mm、さらに好ましくは0.1から3mmにすればよい。   Specifically, the generated steam bubbles have a length in the transverse direction defined by the above definition of 50% to 500%, preferably 75% to 500%, more preferably 100% to 500% of the length in the longitudinal direction. It is desirable. Further, the lateral length varies depending on the thickness of the blood vessel to be treated, but is preferably 10% to 200%, preferably 10% to 150%, more preferably 10% to 100% of the inner diameter of the blood vessel. . For example, in the case of the coronary aorta, the inner diameter of the blood vessel is about 3 mm. Therefore, the lateral length of the water vapor bubble may be about 0.3 to 6 mm, preferably 0.3 to 4.5 mm, more preferably 0.1 to 3 mm. .

上記のように適切な音圧波を発生させ得る水蒸気泡を発生させるには、高強度パルス光伝送手段の遠位端にある高強度パルス光照射手段の位置とカテーテル遠位端の位置関係を調節すればよい。また、高強度パルス光照射手段がカテーテル中に引っ込んでいた場合、高強度パルス光照射手段の直ぐ前方カテーテル内部で水蒸気泡が発生し、エクスパンドしながらカテーテル内部を外部に向かって進みかつカテーテルから外に出る。この際、カテーテル遠位端の内部の形状等を変えることによっても、カテーテル外部であって血管内で発生する水蒸気泡の形状を調節することができる。水蒸気泡の形状を調節することにより、横方向に発生する音圧波、すなわち平滑筋細胞に当てる音圧波の音圧を調節することができる。   In order to generate water vapor bubbles that can generate an appropriate sound pressure wave as described above, the positional relationship between the position of the high-intensity pulsed light irradiation means at the distal end of the high-intensity pulsed light transmission means and the distal end of the catheter is adjusted. do it. In addition, when the high-intensity pulsed light irradiation means is retracted into the catheter, water vapor bubbles are generated inside the catheter immediately in front of the high-intensity pulsed light irradiation means. Get out. At this time, the shape of water vapor bubbles generated outside the catheter and in the blood vessel can also be adjusted by changing the shape or the like inside the distal end of the catheter. By adjusting the shape of the water vapor bubbles, it is possible to adjust the sound pressure wave generated in the lateral direction, that is, the sound pressure of the sound pressure wave applied to the smooth muscle cells.

例えば、光ファイバー先端の高強度パルス光照射部をカテーテル遠位端部より数mm内部に位置するようにすることにより、より適切な形状の水蒸気泡を発生させることができ、その結果、より高い音圧波を血管壁に作用させることができる。光ファイバー先端の高強度パルス光照射部は、カテーテル先端部に対して、0.5から5mm、好ましくは1から3mm、さらに好ましくは、1から2mmカテーテル内部に位置していることが望ましい。また、カテーテル遠位端内部の形状によっても、水蒸気泡の形状を調節することができ、結果的に音圧波を調節することができる。高強度パルス光照射部がカテーテル内部に存在する場合、水蒸気泡はカテーテル内部で発生し、エクスパンドしながらカテーテル内部から外部に出て行くが、この際、カテーテル内部に水蒸気泡が外部に向かうときに水蒸気泡のカテーテル進行方向へエクスパンドする速度を抑えることにより、水蒸気泡がカテーテル進行方向へエクスパンドするのを抑制し、その結果横方向へよりエクスパンドした水蒸気泡を発生させることができる。このためには、例えばカテーテル遠位端内部に水蒸気泡の縦方向へのエクスパンドを抑制し得る凸部を設けたり、溝を設けたり、また連続する凹凸部を設ければよい。また、カテーテル遠位端部において、先端部ほど内径が広がるように構造を変化させてもよい。   For example, by placing the high-intensity pulsed light irradiation part at the tip of the optical fiber within a few millimeters from the distal end of the catheter, a more appropriately shaped water vapor bubble can be generated. A pressure wave can act on the vessel wall. It is desirable that the high-intensity pulsed light irradiation portion at the tip of the optical fiber is located within the catheter 0.5 to 5 mm, preferably 1 to 3 mm, more preferably 1 to 2 mm with respect to the catheter tip. Also, the shape of the water vapor bubble can be adjusted by the shape inside the distal end of the catheter, and as a result, the sound pressure wave can be adjusted. When the high-intensity pulsed light irradiation part is present inside the catheter, water vapor bubbles are generated inside the catheter and go out from the inside of the catheter while expanding. At this time, when the water vapor bubbles go outside the catheter, By suppressing the speed at which the water vapor bubbles expand in the catheter traveling direction, it is possible to suppress the water vapor bubbles from expanding in the catheter traveling direction, and as a result, it is possible to generate water vapor bubbles expanded in the lateral direction. For this purpose, for example, a convex portion that can suppress the expansion of water vapor bubbles in the vertical direction, a groove, or a continuous uneven portion may be provided inside the distal end of the catheter. Further, the structure may be changed at the distal end portion of the catheter so that the inner diameter of the distal end portion increases.

また、同じ強度の高強度パルス光を照射しても、光伝送ファイバーの高強度パルス光照射部とカテーテル先端部の位置を変えることにより、誘起される音圧波の音圧の大きさも異なってくる。例えば、図10に示すように、光伝送用ファイバーの高強度パルス光照射部とカテーテル先端部の位置が離れるほど、すなわち高強度パルス光照射部がカテーテル内部に引っ込んでいるほど、同じエネルギーの高強度パルス光を照射しても、誘起される音圧波の音圧は高くなる。   In addition, even when high-intensity pulsed light of the same intensity is irradiated, the magnitude of the sound pressure wave induced varies depending on the position of the high-intensity pulsed light irradiation part of the optical transmission fiber and the tip of the catheter. . For example, as shown in FIG. 10, as the position of the high-intensity pulsed light irradiation part of the optical transmission fiber and the distal end of the catheter are separated, that is, as the high-intensity pulsed light irradiation part is retracted into the catheter, the higher the same energy. Even when the intensity pulse light is irradiated, the sound pressure of the induced sound pressure wave increases.

図10の、光照射部の位置を変えた場合のレーザエネルギーと音圧との関係は一例であり、カテーテルや光伝送ファイバーの太さ等により、適宜光照射部の位置を調整し、適切な音圧波を発生させることができる。   The relationship between the laser energy and the sound pressure in the case where the position of the light irradiation unit in FIG. 10 is changed is an example, and the position of the light irradiation unit is appropriately adjusted depending on the thickness of the catheter or the optical transmission fiber. Sound pressure waves can be generated.

また、カテーテル先端部と高強度パルス光照射部の位置関係だけではなく、該位置関係と照射する高強度パルス光の強度の組み合わせによっても、音圧波は変化する。   Moreover, the sound pressure wave changes not only by the positional relationship between the distal end portion of the catheter and the high-intensity pulsed light irradiation unit but also by a combination of the positional relationship and the intensity of the high-intensity pulsed light to be irradiated.

従って、本発明は照射する高強度パルス光の強度を変えるとともに、高強度パルス光の照射部とカテーテル先端部の位置を変え、またはカテーテル遠位端部の内部の構造を変えることにより、発生する水蒸気泡の大きさおよび/または形状を調節し、再狭窄予防に適切な音圧波の発生を調節し得る装置である。また、音圧波の音圧は、高強度パルス光の波長、パルス幅を変えることによっても、適宜調節することができる。   Therefore, the present invention is generated by changing the intensity of the high-intensity pulsed light to be irradiated, changing the position of the irradiation part of the high-intensity pulsed light and the catheter tip, or changing the internal structure of the catheter distal end. It is an apparatus capable of adjusting the size and / or shape of water vapor bubbles and adjusting the generation of sound pressure waves suitable for restenosis prevention. In addition, the sound pressure of the sound pressure wave can be adjusted as appropriate by changing the wavelength and pulse width of the high-intensity pulsed light.

また、高強度パルス光の照射回数を多くすれば、音圧波も多数回誘起され、より平滑筋細胞の傷害に効果がある。照射回数は、予測される再狭窄の重篤度、血管の太さ等により適宜選択することができるが、例えば、1〜200回、1〜100回、1〜50回または1〜10回である。   Further, if the number of times of irradiation with high-intensity pulsed light is increased, sound pressure waves are also induced many times, which is more effective in damaging smooth muscle cells. The number of irradiations can be appropriately selected depending on the expected severity of restenosis, the thickness of the blood vessel, etc., for example, 1 to 200 times, 1 to 100 times, 1 to 50 times, or 1 to 10 times. is there.

音圧波の音圧は、動脈硬化治療部において平滑筋細胞の増殖を阻害するが、治療部および周辺の正常組織の正常細胞に傷害を与えない程度であり、用いる血管により異なるが、好ましくは0.1〜100MPa、好ましくは0.1〜50MPa、さらに好ましくは0.1〜20MPa、特に好ましくは、0.1〜10MPa、最も好ましくは0.1〜4MPaである。予測される再狭窄の重篤度が低く、また正常細胞の傷害を避ける場合には、音圧を低くすればよく、例えば、0.1〜5MPa、0.1〜4MPa、0.1〜2.5MPa、あるいは0.1〜1Mpaの音圧を動脈硬化治療部に施せばよい。   The sound pressure of the sound pressure wave inhibits the proliferation of smooth muscle cells in the arteriosclerotic treatment part, but does not damage normal cells of the treatment part and the surrounding normal tissue, and varies depending on the blood vessel used, but preferably 0.1 -100 MPa, preferably 0.1-50 MPa, more preferably 0.1-20 MPa, particularly preferably 0.1-10 MPa, most preferably 0.1-4 MPa. If the expected severity of restenosis is low and normal cell damage is avoided, the sound pressure may be lowered, for example, 0.1 to 5 MPa, 0.1 to 4 MPa, 0.1 to 2.5 MPa, or 0.1 to 1 MPa. The sound pressure may be applied to the arteriosclerosis treatment part.

血液に直接高強度パルス光が照射されると、その部分の赤血球破壊などが生じることからその部分の血液を生理食塩水等で置換しておくのが望ましい。このような液体として、生理食塩水の他、透析液などの輸液等が用いられる。この場合、本発明の治療用装置のカテーテル内に送液手段を組込み、該送液手段を用いて生理食塩水等を血管内の高強度パルス光が照射される部分、すなわち高強度パルス光照射部分の照射部近傍に注入すればよい。送液手段は、カテーテル内に設けられた送液流路、送液流路の遠位端に設けられた注入口、流路とつながった液リザーバー、送液用ポンプ等から構成される。送液流路は、例えばカテーテル内にルーメンを設け該ルーメンを送液流路としてもよいし、またカテーテル内に別途流路用チューブを設けてもよい。この場合、血管内に高強度パルス光が照射され水蒸気泡が発生し始める局所的な血液部分を生理食塩水等で置換するため、高強度パルス光照射手段の高強度パルス光を血管内に照射する部分と送液手段の注入口は互いに近接した位置に存在する必要がある。例えば、カテーテル内にルーメンを設けその中に高強度パルス光伝送用ファイバーを通すと共に、ルーメン内を通って生理食塩水等が送液されるようにすればよい。送液する生理食塩水等の量は限定されないが、フラッシュ液を注入して血管内腔を観察する内視鏡を使用するときの送液量の1/10〜1/1000程度の量で足りる。例えば、内視鏡で血管内腔を観察するときにフラッシュ液を注入する方法では、1〜2mL/秒のフラッシュ液を注入する必要があるが、本発明で注入する量は1mL/分程度で足りる。この程度の送液ならば、血液の流れを阻害することもなく末梢への酸素供給は確保できる。   When high-intensity pulsed light is directly applied to blood, the portion of red blood cells is destroyed, and therefore it is desirable to replace that portion of blood with physiological saline or the like. As such a liquid, an infusion solution such as a dialysis solution is used in addition to physiological saline. In this case, a liquid feeding means is incorporated in the catheter of the treatment apparatus of the present invention, and a physiological saline or the like is irradiated with high intensity pulsed light in the blood vessel using the liquid feeding means, that is, high intensity pulsed light irradiation. What is necessary is just to inject | pour into the irradiation part vicinity of a part. The liquid feeding means includes a liquid feeding channel provided in the catheter, an injection port provided at a distal end of the liquid feeding channel, a liquid reservoir connected to the channel, a pump for feeding, and the like. For example, a lumen may be provided in the catheter and the lumen may be used as the liquid supply channel, or a separate channel tube may be provided in the catheter. In this case, the high-intensity pulsed light from the high-intensity pulsed light irradiating means is irradiated into the blood vessel in order to replace the local blood part where the high-intensity pulsed light is radiated into the blood vessel and water vapor bubbles start to be generated. And the inlet of the liquid feeding means need to be located at positions close to each other. For example, a lumen may be provided in the catheter, and a high-intensity pulse light transmission fiber may be passed through the lumen, and physiological saline or the like may be sent through the lumen. The amount of physiological saline to be delivered is not limited, but about 1/10 to 1/1000 of the amount delivered when using an endoscope that injects flash solution and observes the lumen of the blood vessel is sufficient. . For example, in the method of injecting the flash solution when observing the lumen of the blood vessel with an endoscope, it is necessary to inject a flash solution of 1 to 2 mL / sec. It ’s enough. With this level of liquid delivery, oxygen supply to the periphery can be secured without hindering blood flow.

なお、高強度パルス光照射は、血流の拍動、すなわち拍動血流に遅延同期するのが望ましい。血流は拍動流であり、血流が流れている、すなわち血流の運動エネルギー(動圧)が大きいときは、水蒸気泡の発生は血圧(静圧)に加えて動圧にも影響をうける。一方、血流が完全に止まってしまうと、血液は非ニュートン性流体であるので、粘性が大きくなりやはり水蒸気泡が発生しにくくなる。従って、拍動血流速が低下してきた時点で(血流が止まる前)に、最適なタイミングがある。これは、心電図からの心拍情報に観察血管に固有の遅延時間を設定することでタイミングを検出できる。この場合、心電図計とレーザ発生装置を電子的に接続し、拍動血流が低下した時点に高強度パルス光が照射されるように、心電図信号を遅延ジェネレータを通して、高強度パルス光発生装置に伝達すればよい。どれくらいの時間遅延をかけるかは、心電図計、遅延ジェネレータおよび高強度パルス光発生装置の組合わせにより適宜決定できる。心電図計から拍動血流が低下した時点に高強度パルス光が照射されるような信号を伝達するタイミングも当業者ならば公知の心周期、大動脈血流速および心電図の関係から容易に決定できる。例えば、冠状動脈の場合大動脈血流速が大きい収縮期には血液はほとんど流れず、大動脈血流速が小さい拡張期に血液が流れる。従って、冠状動脈の血流速が最大になるのは、心電図におけるT波出現後P波出現の間にあり、高強度パルス光の照射タイミングはP波出現からQRS波消失までの間が望ましい。さらに、本発明の治療用装置のカテーテルに圧覚センサ等を配設し、該センサにより血流の拍動をモニタし、拍動血流が低下した時点に高強度パルス光が照射されるようにしてもよい。この場合も、圧覚センサと高強度パルス光発生装置が電子的に接続され圧覚センサからの信号が遅延を設けて高強度パルス光発生装置に伝えられる。   Note that it is desirable that the high-intensity pulsed light irradiation is delayed and synchronized with the pulsation of the blood flow, that is, the pulsating blood flow. Blood flow is a pulsatile flow. When blood flow is flowing, that is, when the kinetic energy (dynamic pressure) of the blood flow is large, the generation of water vapor bubbles affects not only blood pressure (static pressure) but also dynamic pressure. box office. On the other hand, if the blood flow is completely stopped, the blood is a non-Newtonian fluid, so that the viscosity becomes large and water vapor bubbles are hardly generated. Therefore, there is an optimal timing when the pulsatile blood flow rate has decreased (before the blood flow stops). The timing can be detected by setting a delay time specific to the observation blood vessel in the heartbeat information from the electrocardiogram. In this case, the electrocardiogram and the laser generator are electronically connected, and the electrocardiogram signal is passed through the delay generator to the high-intensity pulsed light generator so that the high-intensity pulsed light is emitted when the pulsatile blood flow decreases. Just communicate. How much time delay is applied can be appropriately determined by a combination of an electrocardiograph, a delay generator, and a high-intensity pulsed light generator. A person skilled in the art can easily determine the timing for transmitting a signal such that a high-intensity pulsed light is emitted when the pulsatile blood flow is reduced from the electrocardiograph based on the known relationship between the cardiac cycle, the aortic blood flow rate, and the electrocardiogram. For example, in the case of coronary arteries, blood hardly flows during the systole when the aortic blood flow rate is large, and blood flows during the diastole when the aortic blood flow rate is small. Accordingly, the blood flow velocity of the coronary artery is maximized during the appearance of the P wave after the appearance of the T wave in the electrocardiogram, and the irradiation timing of the high-intensity pulsed light is preferably from the appearance of the P wave to the disappearance of the QRS wave. Furthermore, a pressure sensor or the like is disposed on the catheter of the treatment apparatus of the present invention, and the pulsation of the blood flow is monitored by the sensor so that the high-intensity pulsed light is emitted when the pulsating blood flow decreases. May be. Also in this case, the pressure sensor and the high intensity pulsed light generator are electronically connected, and a signal from the pressure sensor is transmitted to the high intensity pulsed light generator with a delay.

本発明の装置の使用方法
本発明の装置は、経皮的血管形成術後の血管の再狭窄を予防するための装置であり、本発明の高強度パルス光照射部を該経皮的血管形成術施行部位に導く。本発明の装置が対象とする血管は限定されず、冠状動脈その他これよりも細い血管いずれに対しても適用することができるが、通常血管形成術が行われるのは、総頸動脈、冠状動脈、腸骨動脈、浅大腿動脈、膝下動脈であり、本発明の装置も血管形成術施行後のこれらの動脈の治療に好適に用いることができる。この際、貫通ルーメンを有するバルーンカテーテルを用いたバルーン拡張により血管形成術が施行されたときは、本発明の装置の高強度パルス光照射部を貫通ルーメンに挿入し、治療部位まで運ぶことにより治療を行うことができる。また、本発明の装置が、専用のカテーテル内に配設された、再狭窄予防用の専用装置である場合は、血管形成術が施行されるバルーンカテーテルが抜かれた後に、本発明の装置のカテーテルを血管内に挿入し、高強度パルス光照射部を治療部位に到達させ治療を行えばよい。また、ステント留置により血管形成術を施行した場合も、再狭窄予防用の専用装置を用いて再狭窄予防治療を行うことができる。本発明の装置中、血管に挿入する部分は、高強度パルス光伝送用光ファイバー1本を中に含む細径カテーテルであれば足りるので、大腿動脈血管等の太い血管からではなく、橈骨動脈等細い血管から挿入することもできる。
Method of using the device of the present invention The device of the present invention is a device for preventing restenosis of blood vessels after percutaneous angioplasty, and the high-intensity pulsed light irradiation unit of the present invention is used as the percutaneous blood vessel formation. Guide to the site of operation. The target blood vessel of the device of the present invention is not limited, and can be applied to any coronary artery or other smaller blood vessels. However, the angioplasty is usually performed in the common carotid artery and coronary artery. The iliac artery, the superficial femoral artery, and the inferior arteries, and the device of the present invention can also be suitably used for treating these arteries after angioplasty. At this time, when angioplasty is performed by balloon expansion using a balloon catheter having a penetrating lumen, treatment is performed by inserting the high-intensity pulsed light irradiation part of the device of the present invention into the penetrating lumen and carrying it to the treatment site. It can be performed. When the apparatus of the present invention is a dedicated apparatus for preventing restenosis disposed in a dedicated catheter, the catheter of the apparatus of the present invention is removed after the balloon catheter for angioplasty is removed. Is inserted into the blood vessel, and the high-intensity pulsed light irradiation unit reaches the treatment site to perform treatment. In addition, even when angioplasty is performed by stent placement, restenosis prevention treatment can be performed using a dedicated device for restenosis prevention. In the device of the present invention, the portion to be inserted into the blood vessel may be a small diameter catheter including one optical fiber for transmitting high-intensity pulsed light, so that it is not from a large blood vessel such as a femoral artery blood vessel but a thin artery such as a radial artery. It can also be inserted from a blood vessel.

本発明の装置の高強度パルス光照射部を経皮的血管形成術施術部位に導き、全血中で血流を閉止することなく、高強度パルス光を照射すればよい。高強度パルス光照射により、全血中の照射部端で水蒸気泡が発生し、該泡が収縮・消滅するときに音圧波が発生する。該音圧波は全血中を伝播し、血管壁に伝わり、中膜の平滑筋細胞を減少させる。この際、上述のように必要に応じ生理食塩水等を血管中の高強度パルス光を照射する部分に少量注入してもよい。   The high-intensity pulsed light irradiation unit of the apparatus of the present invention may be guided to the percutaneous angioplasty site and irradiated with high-intensity pulsed light without closing the blood flow in whole blood. By high-intensity pulsed light irradiation, water vapor bubbles are generated at the end of the irradiated portion in whole blood, and sound pressure waves are generated when the bubbles contract and disappear. The sound pressure wave propagates through the whole blood, propagates to the blood vessel wall, and reduces the medial smooth muscle cells. At this time, as described above, a small amount of physiological saline or the like may be injected into the portion of the blood vessel irradiated with the high-intensity pulsed light as described above.

このとき、カテーテル内で光伝送用ファイバーを移動させ、カテーテル先端部に対するファイバー先端の高強度パルス光の位置を調節するかカテーテル遠位端部内部の構造を変えることにより、発生する水蒸気泡の形状や大きさを調節することができ、水蒸気泡のコラプスにより誘起され、血管壁の動脈硬化治療部に施される音圧波の大きさを調節することができる。   At this time, the shape of water vapor bubbles generated by moving the optical transmission fiber in the catheter and adjusting the position of the high-intensity pulsed light at the fiber tip with respect to the catheter tip or changing the structure inside the catheter distal end The size of the sound pressure wave induced by the collapse of water vapor bubbles and applied to the arteriosclerosis treatment part of the blood vessel wall can be adjusted.

なお、平滑筋細胞を減少させ血管形成術後の再狭窄を予防するためには、実際に血管形成術を行った後に高強度パルス光を照射し、音圧波を発生させるのが一般的であるが、血管形成術の前に血管形成術を施そうとする部位で、あらかじめ高強度パルス光を照射し、音圧波を発生させてもよい。血管形成術が施される前に音圧波を発生させても、その部分の平滑筋細胞を減少させ、血管形成術後の平滑筋細胞の血管損傷部位における遊走・定着を予防することができる。   In order to reduce the number of smooth muscle cells and prevent restenosis after angioplasty, it is common to generate a sound pressure wave by irradiating high-intensity pulsed light after actually performing angioplasty. However, high-intensity pulsed light may be irradiated in advance to generate a sound pressure wave at a site where angioplasty is to be performed before angioplasty. Even if the sound pressure wave is generated before the angioplasty is performed, the smooth muscle cells in that portion can be reduced, and migration and colonization of the smooth muscle cells after the angioplasty at the vascular injury site can be prevented.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

〔実施例1〕 レーザ照射により誘起される音圧波の音圧測定
Ho:YAGレーザ発生装置21(LASER1-2-3SCHWARTZ (ELECTRO-OPTICS社(米国))を用いてHo:YAGレーザ(波長2.1Oμm、パルス幅250μs、周波数2Hz)を水中・血液中で照射し、レーザ出力・光ファイバー端からの距離をパラメータとしてニードル型ハイドロフォン(型番NH7020、東レテクノ株式会社製)により、音圧の測定を行った。用いた光ファイバーは、外径600μmでコア径が400μmであった。
[Example 1] Measurement of sound pressure of sound pressure wave induced by laser irradiation
Using Ho: YAG laser generator 21 (LASER1-2-3SCHWARTZ (ELECTRO-OPTICS (USA)), Ho: YAG laser (wavelength 2.1Oμm, pulse width 250μs, frequency 2Hz) is irradiated in water and blood, Sound pressure was measured with a needle-type hydrophone (model number NH7020, manufactured by Toray Techno Co., Ltd.) using the laser output and the distance from the end of the optical fiber as parameters.The optical fiber used had an outer diameter of 600 μm and a core diameter of 400 μm. It was.

この際、0.13J/パルス、0.27J/パルスまたは0.45J/パルスの強度で照射し、発生した水蒸気泡の中心から5mm、10mmおよび15mmの位置での音圧を測定した。   At this time, irradiation was performed at an intensity of 0.13 J / pulse, 0.27 J / pulse, or 0.45 J / pulse, and sound pressures at positions of 5 mm, 10 mm, and 15 mm from the center of the generated water vapor bubbles were measured.

図4に照射レーザの強度(J/パルス)、気泡の中心からの距離(mm)とピーク音圧(MPa)との関係を示した。図に示すように、発生する音圧波のピーク音圧は、主に気泡の中心からの距離により決まり、ある点における音圧は気泡の中心からの距離の2乗に反比例すると考えられた。   FIG. 4 shows the relationship between the intensity of the irradiation laser (J / pulse), the distance from the center of the bubble (mm), and the peak sound pressure (MPa). As shown in the figure, the peak sound pressure of the generated sound pressure wave is mainly determined by the distance from the center of the bubble, and the sound pressure at a certain point is considered to be inversely proportional to the square of the distance from the center of the bubble.

光ファイバー端で0.45J/パルス、気泡の中心からの距離5mmのとき、1.5MPa(約11000mmHg)以上のピーク音圧が得られた、図5に0.45J/パルス、気泡の中心からの距離5mmのときの音圧波形を示す。血液中での音圧は粘性の影響で水中の3割程度になることが分かった。実施例1から、Ho:YAGレーザ誘起音圧波は平滑筋細胞に制御性のよい傷害を与えることが判明した。   When the optical fiber end is 0.45 J / pulse and the distance from the bubble center is 5 mm, a peak sound pressure of 1.5 MPa (about 11000 mmHg) or more is obtained. In Fig. 5, 0.45 J / pulse and the distance from the bubble center is 5 mm. The sound pressure waveform is shown. It was found that the sound pressure in blood was about 30% in water due to the influence of viscosity. From Example 1, it was found that the Ho: YAG laser-induced sound pressure wave gives a smooth controllable injury to smooth muscle cells.

〔実施例2〕 レーザ誘起音圧波による平滑筋細胞の傷害
図6に示すようにように、増殖型平滑筋細胞(マウス由来大動脈平滑筋細胞P53LMACO1)を96ウェルプレート培養し、音圧波をピーク音圧(約1.20、1.25、1.46MPa)および回数(1O、20、160回)を変えて印加した。音圧波発生に用いたレーザ光発生装置、レーザ照射条件は実施例1と同じであった。音圧波印加48時間後にMTTアッセイにより、死細胞率を測定した。約1.20Mpa、1O回のとき約4%、1.46Mpa、20回のとき約42%の死細胞率となり、レーザ照射条件によって平滑筋細胞に制御性のよい傷害を与えることができた(図7)。
[Example 2] Injury of smooth muscle cells by laser-induced sound pressure waves As shown in Fig. 6, proliferating smooth muscle cells (mouse-derived aortic smooth muscle cells P53LMACO1) were cultured in a 96-well plate and the sound pressure waves were peaked. The pressure (about 1.20, 1.25, 1.46 MPa) and the number of times (1O, 20, 160 times) were changed and applied. The laser beam generator used for generating the sound pressure wave and the laser irradiation conditions were the same as those in Example 1. The dead cell rate was measured by MTT assay 48 hours after application of the sound pressure wave. About 1.20 Mpa, 1O times, about 4%, 1.46 Mpa, about 20% dead cell rate at 20 times, it was possible to damage the smooth muscle cells with good controllability depending on the laser irradiation conditions (FIG. 7). ).

〔実施例3〕 ウサギを用いた再狭窄予防治療
全麻酔下においた日本白色種家兎の大腿動脈より2Fr.バルーンカテーテルを挿入し大動脈を擦過傷害した再狭窄モデルを作成した。光ファイバーを大腿動脈に留置した4Fr.シースより、逆行性に挿入し大動脈でレーザ照射した。図8に、本実施例で用いたシステムを示す。6週間後に犠牲死させ、血管組織標本をHematoxilin-Eosin(HE)染色により作成し、治療効果を評価した。
[Example 3] Preventive treatment for restenosis using rabbits A restenosis model was created in which a 2Fr. Balloon catheter was inserted from the femoral artery of a Japanese white rabbit under total anesthesia to scratch the aorta. A 4Fr. Sheath in which an optical fiber was placed in the femoral artery was inserted retrogradely, and laser irradiation was performed on the aorta. FIG. 8 shows a system used in this embodiment. Six weeks later, the mice were sacrificed, and vascular tissue specimens were prepared by Hematoxilin-Eosin (HE) staining to evaluate the therapeutic effect.

図9に結果を示す。図9は、図上に示すように、血管の一部を切断し展開した血管壁の断面を示し、図上部が内膜側であり下部が外膜側である。また、図中の矢印は内弾性板を示し、平滑筋細胞は該内弾性板より内膜側で増殖する。それぞれの写真は左上から時計回りに、正常(normal)血管、狭窄モデル血管ならびに0.06J/パルスのレーザ光を20回照射したものを示す。   FIG. 9 shows the result. FIG. 9 shows a cross section of a blood vessel wall obtained by cutting and expanding a part of a blood vessel as shown in the figure, with the upper part on the inner membrane side and the lower part on the outer membrane side. Moreover, the arrow in a figure shows an inner elastic board, and a smooth muscle cell proliferates in the intima side from this inner elastic board. Each photograph shows a normal blood vessel, a stenotic model blood vessel, and a laser beam of 0.06 J / pulse irradiated 20 times clockwise from the upper left.

図に示すように、何ら処理を施していないNormalに対して、狭窄モデルでは内膜が厚くなっており平滑筋細胞の増殖が認められる。0.06J/パルスのレーザ光を20回照射したものでは、増殖が抑制されていた。この結果は、小さい照射エネルギーで平滑筋細胞の増殖を抑制することができることを示す。   As shown in the figure, in contrast to Normal which has not been processed at all, in the stenosis model, the intima is thick and smooth muscle cell proliferation is observed. Proliferation was suppressed in the sample irradiated 20 times with 0.06 J / pulse laser light. This result shows that smooth muscle cell proliferation can be suppressed with small irradiation energy.

〔実施例4〕
Ho:YAGレーザ発生装置21(LASER1-2-3SCHWARTZ (ELECTRO-OPTICS社(米国))を用いてHo:YAGレーザ(波長2.1Oμm、パルス幅250μs、周波数2Hz)を水中で照射し、光ファイバー端から前方2mm、横方向に3mm点で、ニードル型ハイドロフォン(型番NH7020、東レテクノ株式会社製)を用いて、音圧の測定を行った。用いた光ファイバーは、外径600μmでコア径が400μmであった。レーザ出力は85から570mJ/パルスであった。この際、光ファイバーのみを用いて照射した場合(図10ではフリーとしてある)、光ファイバーをカテーテル(シース)中に入れ、光ファイバ先端からカテーテル先端の距離を1mm、2mm、3mmとした場合について行った。図10に光ファイバーの位置とレーザ出力と音圧の関係を示す。図に示すように、光ファイバー先端を数mmカテーテル内に引っ込めたほうが高い音圧波が得られた。また、光ファイバー先端とカテーテル先端の距離が2mm以下の場合は、レーザ出力を増加すると音圧波の低下が認められたが3mmの場合は、600mJ/パルスまで認められなかった。測定された最大音圧は、約4MPaであった。内径3mm程度の血管内でレーザを照射した場合、レーザ照射点から血管壁までの距離は約1.5mmなので、発生する音圧波の最大音圧は10MPa程度であると予測される。
Example 4
Ho: YAG laser generator 21 (LASER1-2-3SCHWARTZ (ELECTRO-OPTICS (USA)) was used to irradiate Ho: YAG laser (wavelength 2.1Oμm, pulse width 250μs, frequency 2Hz) in water, from the end of the optical fiber Sound pressure was measured using a needle-type hydrophone (model number NH7020, manufactured by Toray Techno Co., Ltd.) at a point 2 mm forward and 3 mm laterally.The optical fiber used had an outer diameter of 600 μm and a core diameter of 400 μm. The laser output was 85 to 570 mJ / pulse, in which case the optical fiber was put into the catheter (sheath) when irradiated using only the optical fiber (free in FIG. 10), and the catheter was inserted from the tip of the optical fiber. The test was carried out when the tip distance was 1 mm, 2 mm, and 3 mm, and the relationship between the position of the optical fiber, laser output, and sound pressure is shown in Fig. 10. As shown in the figure, the tip of the optical fiber was retracted into the catheter several mm. When the distance between the optical fiber tip and the catheter tip is 2 mm or less, a decrease in the sound pressure wave was observed when the laser output was increased, but when the distance was 3 mm, it was not observed up to 600 mJ / pulse. The maximum measured sound pressure was about 4 MPa.When laser was irradiated in a blood vessel with an inner diameter of about 3 mm, the distance from the laser irradiation point to the blood vessel wall was about 1.5 mm, so the maximum sound pressure wave generated Sound pressure is expected to be around 10MPa.

図11および12に、450mJ/パルスのレーザを照射した場合に発生する水蒸気泡の形状を示す。図11は、レーザ照射ファイバーをシース(カテーテル)内に入れずに照射した場合で、図12はレーザ照射ファイバーをシース内に入れた場合で、ファイバー先端部がシース先端部に対して3mmシース内に入っている場合である。図に示すように、ファイバー先端がシース内に入った場合、発生する気泡はレーザ照射方向に対する横方向の長さが、縦方向の長さよりも大きく、マッシュルームに似た形状をしている。図11に示す水蒸気泡の縦の長さと横の長さの比は1:0.8であり、図12に示す水蒸気泡の縦の長さと横の長さの比は1:2である。   FIGS. 11 and 12 show the shape of water vapor bubbles generated when a laser of 450 mJ / pulse is irradiated. FIG. 11 shows the case where the laser irradiation fiber is irradiated without being put in the sheath (catheter), and FIG. 12 shows the case where the laser irradiation fiber is put in the sheath, where the fiber tip is within the 3 mm sheath with respect to the sheath tip. This is the case. As shown in the figure, when the tip of the fiber enters the sheath, the generated bubbles have a length in the transverse direction with respect to the laser irradiation direction that is larger than the length in the longitudinal direction, and have a shape similar to a mushroom. The ratio between the vertical length and the horizontal length of the steam bubbles shown in FIG. 11 is 1: 0.8, and the ratio between the vertical length and the horizontal length of the steam bubbles shown in FIG. 12 is 1: 2.

本発明の装置を示した図である。It is the figure which showed the apparatus of this invention. レーザ光照射により発生する水蒸気の発生から消滅までの過程を表す図を示す。The figure showing the process from generation | occurrence | production to extinction of the water vapor | steam generate | occur | produced by laser beam irradiation is shown. 本発明の装置による再狭窄予防治療の概念図を示す。The conceptual diagram of the restenosis prevention treatment by the apparatus of this invention is shown. 照射レーザの強度(J/パルス)、気泡の中心からの距離(mm)とピーク音圧(MPa)との関係を示す図である。It is a figure which shows the relationship between the intensity | strength (J / pulse) of irradiation laser, the distance (mm) from the center of a bubble, and peak sound pressure (MPa). レーザ強度0.45J/パルスを用いた場合の気泡の中心からの距離5mmの点での音圧波形を示す。The sound pressure waveform at a point 5 mm away from the center of the bubble when a laser intensity of 0.45 J / pulse is used is shown. レーザ誘起音圧波による平滑筋細胞の傷害実験の方法を示す図である。It is a figure which shows the method of the injury experiment of the smooth muscle cell by a laser induced sound pressure wave. レーザ誘起音圧波による平滑筋細胞の傷害実験の結果を示す図である。It is a figure which shows the result of the injury experiment of the smooth muscle cell by a laser induced sound pressure wave. ウサギを用いた再狭窄予防治療の方法を示す図である。It is a figure which shows the method of restenosis prevention treatment using a rabbit. ウサギを用いた再狭窄予防治療の結果を示す図である。It is a figure which shows the result of the restenosis prevention treatment using a rabbit. レーザエネルギーと音圧の関係を示す図である。It is a figure which shows the relationship between a laser energy and a sound pressure. レーザ照射ファイバーがカテーテル内に入っていない場合に発生する水蒸気泡の形状を示す図である。It is a figure which shows the shape of the water vapor | steam bubble generate | occur | produced when the laser irradiation fiber is not in the catheter. レーザ照射ファイバーがカテーテル内に入っている場合に発生する水蒸気泡の形状を示す図である。It is a figure which shows the shape of the water vapor | steam bubble generate | occur | produced when the laser irradiation fiber is in the catheter.

Claims (10)

血管内で音圧波を誘起しうる高強度パルス光照射手段を含み、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡がコラプスする際に誘起される音圧波により血管拡張による血管形成術施術後に施術部において増殖する細胞を減少させる血管再狭窄予防治療用装置であって、高強度パルス光照射方向に対する横方向の長さが、縦方向の長さに対して50〜500%の大きさである血管再狭窄予防治療用装置。   High-intensity pulsed light irradiation means capable of inducing a sound pressure wave in the blood vessel, generating water vapor bubbles in the blood vessel by high-intensity pulsed light irradiation, and due to blood vessel dilation by the sound pressure wave induced when the water vapor bubbles collapse An apparatus for preventing and treating vascular restenosis that reduces cells proliferating in an operation site after angioplasty is performed, wherein the lateral length with respect to the direction of irradiation with high-intensity pulsed light is 50 to 500 with respect to the longitudinal length. A device for preventing and treating vascular restenosis, which is a size of 50%. さらに、水蒸気泡の高強度パルス光照射方向に対する横方向の長さが、血管の内径の10〜200%の大きさである、請求項1記載の血管再狭窄予防治療用装置。   The apparatus for preventing and treating vascular restenosis according to claim 1, wherein the length of the water vapor bubbles in the lateral direction with respect to the irradiation direction of the high-intensity pulsed light is 10 to 200% of the inner diameter of the blood vessel. 水蒸気泡のコラプスにより誘起される音圧波の音圧が血管壁において0.1〜10MPaである、請求項1記載の血管再狭窄予防治療用装置。   The apparatus for preventing and treating vascular restenosis according to claim 1, wherein the sound pressure of the sound pressure wave induced by the collapse of water vapor bubbles is 0.1 to 10 MPa in the blood vessel wall. さらに、カテーテルを含み高強度パルス光伝送用ファイバーがカテーテルの中に配置されている、請求項1から3のいずれか1項に記載の血管再狭窄予防治療用装置。   The device for preventing and treating vascular restenosis according to any one of claims 1 to 3, further comprising a catheter and a high-intensity pulse light transmission fiber disposed in the catheter. カテーテル先端部と高強度パルス光照射手段の高強度パルス光照射部の高強度パルス光照射方向の距離を変化させることにより、水蒸気泡の形状を変化させ、水蒸気泡のコラプスにより誘起される音圧波が血管壁に当たる際の音圧を調節することができる、請求項4記載の血管再狭窄予防治療用装置。   By changing the distance of the high-intensity pulsed light irradiation part of the high-intensity pulsed light irradiation part of the catheter tip and the high-intensity pulsed light irradiation means, the shape of the water vapor bubble is changed, and the sound pressure wave induced by the collapse of the water vapor bubble The device for preventing and treating vascular restenosis according to claim 4, wherein the sound pressure at the time of hitting the blood vessel wall can be adjusted. カテーテル先端部と高強度パルス光照射手段の高強度パルス光照射部の距離が1〜3mmである、請求項5記載の血管再狭窄予防治療用装置。   The vascular restenosis prevention and treatment apparatus according to claim 5, wherein the distance between the catheter tip and the high-intensity pulsed light irradiation unit of the high-intensity pulsed light irradiation unit is 1 to 3 mm. カテーテルの遠位端部の内部構造が高強度パルス光照射により発生する水蒸気泡が高強度パルス光照射方向に対する横方向へ拡張する速度を抑制する内部構造であり、高強度パルス光照射方向に対する横方向の長さが、縦方向の長さよりも大きい水蒸気泡であって、コラプスにより誘起される音圧波が血管壁に当たる際の音圧が高い水蒸気泡を発生させる請求項4記載の血管再狭窄予防治療用装置。   The internal structure of the distal end of the catheter is an internal structure that suppresses the rate at which water vapor bubbles generated by high-intensity pulsed light irradiation expand in the lateral direction with respect to the high-intensity pulsed light irradiation direction. 5. The prevention of vascular restenosis according to claim 4, wherein a water vapor bubble having a direction length longer than a length in the vertical direction and having a high sound pressure when a sound pressure wave induced by a collapse hits a blood vessel wall is generated. Therapeutic device. カテーテル遠位端部の内部構造が、遠位端部の内部に凹凸部を有する構造である、請求項7記載の血管再狭窄予防治療用装置。   The device for preventing and treating vascular restenosis according to claim 7, wherein the internal structure of the distal end portion of the catheter is a structure having an uneven portion inside the distal end portion. 高強度パルス光の波長が、水の吸収係数が10〜1000cm-1である範囲にある、請求項1から8のいずれか1項に記載の血管再狭窄予防治療用装置。 The device for preventing and treating vascular restenosis according to any one of claims 1 to 8, wherein the wavelength of the high-intensity pulsed light is in a range where the water absorption coefficient is 10 to 1000 cm- 1 . 高強度パルス光の波長が0.3〜3μmの範囲にある、請求項1から9のいずれか1項に記載の血管再狭窄予防治療用装置。   The apparatus for preventing and treating vascular restenosis according to any one of claims 1 to 9, wherein the wavelength of the high-intensity pulsed light is in the range of 0.3 to 3 µm.
JP2004348961A 2004-12-01 2004-12-01 Vascular restenosis preventive therapeutic apparatus by controlled sound pressure wave induced by irradiation with high strength pulse light Pending JP2006149974A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004348961A JP2006149974A (en) 2004-12-01 2004-12-01 Vascular restenosis preventive therapeutic apparatus by controlled sound pressure wave induced by irradiation with high strength pulse light
PCT/JP2005/022505 WO2006059793A1 (en) 2004-12-01 2005-12-01 Device for blood vessel re-narrowing prevention and treatment by controlled sound pressure wave induced by irradiation with highly intense pulsed light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348961A JP2006149974A (en) 2004-12-01 2004-12-01 Vascular restenosis preventive therapeutic apparatus by controlled sound pressure wave induced by irradiation with high strength pulse light

Publications (1)

Publication Number Publication Date
JP2006149974A true JP2006149974A (en) 2006-06-15

Family

ID=36565213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348961A Pending JP2006149974A (en) 2004-12-01 2004-12-01 Vascular restenosis preventive therapeutic apparatus by controlled sound pressure wave induced by irradiation with high strength pulse light

Country Status (2)

Country Link
JP (1) JP2006149974A (en)
WO (1) WO2006059793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172507A (en) * 2008-01-23 2009-08-06 Tohoku Univ Method of and apparatus for generating microbubbles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796568A1 (en) 2004-09-09 2007-06-20 Vnus Medical Technologies, Inc. Methods and apparatus for treatment of hollow anatomical structures
ES2561777T3 (en) * 2008-12-02 2016-02-29 Biolitec Unternehmensbeteilligung Ll Ag Laser-induced steam / plasma mediated medical device
WO2011035238A2 (en) * 2009-09-18 2011-03-24 Varix Medical Corporation Hot tip laser generated vapor vein therapy device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010071975, 須賀絵里子, 外4名, "Ho:YAGレーザー誘起音響波を用いた再狭窄予防の基礎検討(2)", 日本レーザー医学会誌, 20041015, 第25巻, 第3号, p.208, 208, JP, 日本レーザー医学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172507A (en) * 2008-01-23 2009-08-06 Tohoku Univ Method of and apparatus for generating microbubbles

Also Published As

Publication number Publication date
WO2006059793A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP2004357792A (en) Vascular restenosis preventive therapeutic apparatus by sound pressure wave induced by irradiation of high strength pulse light
US6484052B1 (en) Optically generated ultrasound for enhanced drug delivery
US5836940A (en) Photoacoustic drug delivery
US5354324A (en) Laser induced platelet inhibition
JP2023516981A (en) Laser Pulse Shaping to Increase Conversion Efficiency to Destroy Vessel Calcification Sites and Protect Fiber Optic Delivery Systems
CA2092537A1 (en) Inhibition of restenosis of ultraviolet radiation
KR20080006623A (en) Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity
WO2000002590A1 (en) Radiation and nanoparticles for enhancement of drug delivery in solid tumors
US20220183756A1 (en) Systems and methods for laser-induced calcium fractures
WO1996027341A1 (en) Ultrasound therapy device
Jo et al. Ultrasound‐assisted laser thrombolysis with endovascular laser and high‐intensity focused ultrasound
Topaz et al. " Optimally spaced" excimer laser coronary catheters: performance analysis
JP5265206B2 (en) Vasodilator
WO2006059793A1 (en) Device for blood vessel re-narrowing prevention and treatment by controlled sound pressure wave induced by irradiation with highly intense pulsed light
Singh et al. The feasibility of ultrasound‐assisted endovascular laser thrombolysis in an acute rabbit thrombosis model
US20030139786A1 (en) Inducing vasodilation
Zharov et al. Laser combined medical technologies from Russia
Hirano et al. A novel method of drug delivery for fibrinolysis with Ho: YAG laser-induced liquid jet
US20220054194A1 (en) Faster rise time pulse shaping of plasma generated pressure waves for disruption of vascular calcium
Nakagawa et al. Application of shock waves as a treatment modality in the vicinity of the brain and skull
Tachibana et al. Ultrasound energy for enhancement of fibrinolysis and drug delivery: special emphasis on the use of a transducer-tipped ultrasound system
WO1988007841A1 (en) Method and apparatus for laser angiosurgery
Suga et al. Study for prevention of proliferation of smooth muscle cells after balloon angioplasty using Ho: YAG laser-induced acoustic wave
Pai Therapeutic Applications: Lasers in Vascular Surgery
Kvasnicka et al. Restenosis after pulsed laser irradiation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426