JP2006149182A - Single-phase induction motor and noise reduction method therefor - Google Patents

Single-phase induction motor and noise reduction method therefor Download PDF

Info

Publication number
JP2006149182A
JP2006149182A JP2005294004A JP2005294004A JP2006149182A JP 2006149182 A JP2006149182 A JP 2006149182A JP 2005294004 A JP2005294004 A JP 2005294004A JP 2005294004 A JP2005294004 A JP 2005294004A JP 2006149182 A JP2006149182 A JP 2006149182A
Authority
JP
Japan
Prior art keywords
magnetomotive force
induction motor
winding
main winding
phase induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005294004A
Other languages
Japanese (ja)
Inventor
Jae-Man Joo
載晩 朱
Jun Hwa Lee
俊和 李
Seung Gee Hong
承基 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006149182A publication Critical patent/JP2006149182A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/04Asynchronous induction motors for single phase current
    • H02K17/08Motors with auxiliary phase obtained by externally fed auxiliary windings, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Induction Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single-phase induction motor which can realize a motor, having low noise and low vibration by solving the magneto-motive force imbalance of a stator winding, can maintain the magneto-motive force balance of the stator winding in the entire operation region of the motor, in view of the temperature rise portion caused by the driving of the motor, and to provide its noise reduction method. <P>SOLUTION: In the noise reduction method for the single-phase induction motor, when the magnitude of the main winding current flowing in the main winding 1 of a stator and the magnitude of the auxiliary winding current flowing in the auxiliary winding 2 of the stator are the same, and the phase difference between the main winding current and the auxiliary winding current is, for example, 70° or 110°, the ampere turn ratio should be maintained at a value of 0.75 to 1.15; while when the phase difference is 80° or 100°, the ampere turn ratio should be maintained at a value of 0.65 to 1.35. If the single-phase induction motor is designed to satisfy this condition, noise and vibration can be minimized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単相誘導電動機に関するもので、詳しくは、固定子巻線の起磁力の不均衡を解消することで、単相誘導電動機の騷音及び振動を最小化できる単相誘導電動機及びその騷音低減方法に関するものである。  The present invention relates to a single-phase induction motor, and more specifically, a single-phase induction motor that can minimize noise and vibration of a single-phase induction motor by eliminating imbalance in magnetomotive force of a stator winding and its The present invention relates to a method for reducing stuttering.

一般に、単相誘導電動機は、交流(AC)電動機の一種である。この単相誘導電動機は、商用電源をそのまま用いており、固定子に設けられた単相の主巻線と、回転子に設けられたかご形導体と、を含む最も簡単な構造となっている。しかし、電動機は、商用電源のみでは回転されないので、電動機の起動のために、分相コイルやコンデンサを補助コイルに設置するか、くま取りコイルを設置している。単相誘導電動機は、その構成によって、コンデンサ分相型、抵抗分相型、コンデンサ運転型、くま取りコイル型及び反発型などに分けられる。   In general, a single-phase induction motor is a type of alternating current (AC) motor. This single-phase induction motor uses a commercial power source as it is, and has the simplest structure including a single-phase main winding provided in the stator and a cage conductor provided in the rotor. . However, since an electric motor is not rotated only by a commercial power source, a phase separation coil and a capacitor are installed in an auxiliary coil or a bear coil is installed for starting the electric motor. Single-phase induction motors are classified into a capacitor phase separation type, a resistance phase separation type, a capacitor operation type, a bearer coil type, a repulsion type, and the like depending on the configuration.

上記した単相誘導電動機の種類のうち、コンデンサ運転型電動機(capacitor run motor)は、主巻線、この主巻線と並列に連結された補助巻線及びこの補助巻線と直列に連結されたコンデンサを備えている。また、このコンデンサ運転型電動機は、補助巻線及びコンデンサを用いて起動し、電動機の駆動時に補助巻線を通して電流が流れることで、主巻線を通して流れる電流は90度だけ遅れることになる。   Among the types of single-phase induction motors described above, a capacitor run motor is a main winding, an auxiliary winding connected in parallel with the main winding, and connected in series with the auxiliary winding. It has a capacitor. The capacitor-operated electric motor is started using the auxiliary winding and the capacitor, and the current flows through the auxiliary winding when the motor is driven, so that the current flowing through the main winding is delayed by 90 degrees.

コンデンサ運転型電動機において、補助巻線は、固定子内で主巻線に対して空間的に90度に位置し、主巻線に並列に連結される。補助巻線に直列に連結されたコンデンサを用いて主巻線と補助巻線との間のインピーダンス差を発生することで、主巻線及び補助巻線を通して流れる電流が2相に分相される場合、この分相された固定子巻線によって発生する回転起磁力に対し、正確な分相(相平衡)が行われるべきである。   In the capacitor operation type electric motor, the auxiliary winding is spatially positioned at 90 degrees with respect to the main winding in the stator and is connected in parallel to the main winding. By generating a difference in impedance between the main winding and the auxiliary winding using a capacitor connected in series with the auxiliary winding, the current flowing through the main winding and the auxiliary winding is divided into two phases. In this case, accurate phase separation (phase balance) should be performed on the rotational magnetomotive force generated by the phase-separated stator windings.

もし不正確な分相が行われると、その回転起磁力にリップルが発生するが、この場合、回転子のトルクリップルが発生することによって電動機に騷音及び振動をもたらすことになる。   If incorrect phase separation is performed, a ripple is generated in the rotational magnetomotive force. In this case, the torque ripple of the rotor is generated, which causes noise and vibration in the motor.

しかしながら、従来の単相誘導電動機は、固定子巻線のタップ調整を通して回転速度を制御するが、この場合、一定の運転領域で相平衡が成り立つとしても、他の運転領域を選択するために固定子巻線のタップを変える場合、相平衡が維持されずに振動及び騷音が再び発生するという問題点があった。   However, the conventional single-phase induction motor controls the rotation speed through the tap adjustment of the stator winding. In this case, even if the phase balance is established in a certain operation region, it is fixed to select another operation region. When changing the tap of the child winding, there is a problem that vibration and noise are generated again without maintaining the phase balance.

また、無負荷条件で相平衡が成り立つとしても、単相誘導電動機の特性上、負荷条件では相平衡が維持されないため、実際の運転時に振動及び騷音が発生するという問題点があった。   In addition, even if phase balance is established under no-load conditions, there is a problem in that vibration and noise occur during actual operation because the phase balance is not maintained under load conditions due to the characteristics of the single-phase induction motor.

本発明は、上記の問題点を解決するためになされたもので、固定子巻線の起磁力の不均衡を解消することで、低騷音・低振動の電動機を実現できる単相誘導電動機及びその騷音低減方法を提供することを目的とする。  The present invention has been made to solve the above problems, and a single-phase induction motor capable of realizing a low noise and low vibration motor by eliminating an imbalance of magnetomotive force of a stator winding and An object of the present invention is to provide a method for reducing the noise.

また、電動機の全運転領域で固定子巻線の起磁力の均衡を維持できる単相誘導電動機及びその騷音低減方法を提供することを目的とする。  It is another object of the present invention to provide a single-phase induction motor capable of maintaining the balance of magnetomotive force of the stator winding in the entire operation region of the motor and a method for reducing the noise thereof.

また、電動機の駆動による温度上昇に基づいて固定子巻線の起磁力の均衡を維持できる単相誘導電動機及びその騷音低減方法を提供することを目的とする。  It is another object of the present invention to provide a single-phase induction motor that can maintain the balance of magnetomotive force of the stator windings based on a temperature rise caused by driving the motor and a method for reducing the noise.

上記の目的を達成するために、本発明による単相誘導電動機の騷音低減方法は、固定子の主巻線を通して流れる主巻線電流の大きさと、前記固定子の補助巻線を通して流れる補助巻線電流の大きさと、が同一であり、前記主巻線電流と補助巻線電流との位相差が予め設定された値を維持するように制御することを特徴とする。  In order to achieve the above object, a method of reducing noise in a single-phase induction motor according to the present invention includes a magnitude of a main winding current flowing through a main winding of a stator and an auxiliary winding flowing through the auxiliary winding of the stator. The magnitude of the line current is the same, and the phase difference between the main winding current and the auxiliary winding current is controlled to maintain a preset value.

また、前記位相差は、90度に維持されることを特徴とする。  The phase difference is maintained at 90 degrees.

また、固定子の主巻線によって発生する主巻線起磁力及び固定子の補助巻線によって発生する補助巻線起磁力を決定し、前記決定された主巻線起磁力及び補助巻線起磁力によって、前記主巻線を通して流れる主巻線電流と前記補助巻線を通して流れる補助巻線電流との位相差を制御することを特徴とする。  Further, a main winding magnetomotive force generated by the main winding of the stator and an auxiliary winding magnetomotive force generated by the auxiliary winding of the stator are determined, and the determined main winding magnetomotive force and auxiliary winding magnetomotive force are determined. The phase difference between the main winding current flowing through the main winding and the auxiliary winding current flowing through the auxiliary winding is controlled.

また、前記主巻線起磁力に対する前記補助巻線起磁力の比に基づいて、前記位相差が制御されることを特徴とする。  Further, the phase difference is controlled based on a ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force.

また、前記主巻線起磁力に対する前記補助巻線起磁力の比が0.75ないし1.15である場合、前記位相差は、70度または110度に制御されることを特徴とする。  In addition, when the ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.75 to 1.15, the phase difference is controlled to 70 degrees or 110 degrees.

また、前記主巻線起磁力に対する前記補助巻線起磁力の比が0.65ないし1.35である場合、前記位相差は、80度または100度に制御されることを特徴とする。  In addition, when the ratio of the auxiliary coil magnetomotive force to the main coil magnetomotive force is 0.65 to 1.35, the phase difference is controlled to 80 degrees or 100 degrees.

固定子の主巻線によって発生する主巻線起磁力に対する前記固定子の逆方向回転力を発生する逆方向起磁力の比は、予め設定された値以下に制御されることを特徴とする。  The ratio of the reverse magnetomotive force that generates the reverse rotational force of the stator to the main coil magnetomotive force generated by the main winding of the stator is controlled to be equal to or less than a preset value.

また、前記予め設定された値は、0.4であることを特徴とする。  Further, the preset value is 0.4.

また、本発明による単相誘導電動機は、固定子の主巻線と、該主巻線に並列に連結されている固定子の補助巻線と、前記主巻線によって発生する主巻線起磁力及び前記補助巻線によって発生する補助巻線起磁力にしたがって、前記主巻線を通して流れる主巻線電流と前記補助巻線を通して流れる補助巻線電流との位相差を制御する制御部と、を含むことを特徴とする。  The single-phase induction motor according to the present invention includes a main winding of a stator, an auxiliary winding of the stator connected in parallel to the main winding, and a main winding magnetomotive force generated by the main winding. And a controller for controlling a phase difference between the main winding current flowing through the main winding and the auxiliary winding current flowing through the auxiliary winding in accordance with the auxiliary winding magnetomotive force generated by the auxiliary winding. It is characterized by that.

また、前記制御部は、前記主巻線起磁力に対する前記補助巻線起磁力の比に基づいて前記位相差を制御することを特徴とする。  Further, the control unit controls the phase difference based on a ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force.

また、前記主巻線起磁力に対する前記補助巻線起磁力の比が0.75ないし1.15である場合、前記制御部は、前記位相差を70度または110度に制御することを特徴とする。  When the ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.75 to 1.15, the control unit controls the phase difference to 70 degrees or 110 degrees. To do.

また、前記主巻線起磁力に対する前記補助巻線起磁力の比が0.65ないし1.35である場合、前記制御部は、前記位相差を80度または100度に制御することを特徴とする。  When the ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.65 to 1.35, the control unit controls the phase difference to 80 degrees or 100 degrees. To do.

本発明による単相誘導電動機は、主巻線によって発生する起磁力の大きさ及び位相角に対する補助巻線によって発生する起磁力の大きさ及び位相角を制御することで、固定子の主巻線及び補助巻線の起磁力の不均衡を解消することで、低騷音・低振動を実現できるという効果がある。  The single-phase induction motor according to the present invention controls the magnitude and phase angle of the magnetomotive force generated by the auxiliary winding with respect to the magnitude and phase angle of the magnetomotive force generated by the main winding, thereby controlling the main winding of the stator. In addition, by eliminating the imbalance of the magnetomotive force of the auxiliary winding, there is an effect that low noise and low vibration can be realized.

また、電動機の全運転領域で固定子巻線の起磁力の均衡を維持し、かつ、電動機の駆動による温度上昇に基づいて起磁力の均衡を維持できるという効果がある。  Further, there is an effect that the balance of the magnetomotive force of the stator winding can be maintained in the entire operation range of the electric motor, and the balance of the magnetomotive force can be maintained based on the temperature rise caused by the driving of the electric motor.

以下、本発明の好ましい実施の形態を、図面に基づいて詳しく説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明による単相誘導電動機100は、コンデンサ運転型であり、電源Vが主巻線1に連結され、補助巻線2が主巻線1に並列に連結され、コンデンサ3が補助巻線2に直列に連結されている。単相誘導電動機100の起動時に主巻線1及び補助巻線2を通して流れる電流は、単相誘導電動機の内部で磁界を発生する。このとき、主巻線1によって発生した磁界が回転子(図示せず)に電流を誘導するが、この誘導電流によって、回転子にもう一つの磁界が形成される。よって、固定子巻線によって発生した回転磁界と回転子を通して流れる誘導電流との間に力が生じ、この力によって回転子が回転することになる。 As shown in FIG. 1, a single-phase induction motor 100 according to the present invention is of a capacitor operation type, a power source V L is connected to a main winding 1, an auxiliary winding 2 is connected to a main winding 1 in parallel, A capacitor 3 is connected to the auxiliary winding 2 in series. The current flowing through the main winding 1 and the auxiliary winding 2 when the single-phase induction motor 100 is started generates a magnetic field inside the single-phase induction motor. At this time, the magnetic field generated by the main winding 1 induces a current in the rotor (not shown), and another magnetic field is formed in the rotor by this induced current. Therefore, a force is generated between the rotating magnetic field generated by the stator winding and the induced current flowing through the rotor, and the rotor rotates by this force.

コンデンサ3は、電動機の起動時、固定子によって発生した磁界と回転子によって発生した磁界との間に位相差を発生するために必要であり、補助巻線2を通して流れる電流Iaが主巻線1を通して流れる電流Imより先に進むようにする役割をする。  The capacitor 3 is necessary for generating a phase difference between the magnetic field generated by the stator and the magnetic field generated by the rotor when the motor is started. The current Ia flowing through the auxiliary winding 2 is the main winding 1. It plays the role of proceeding ahead of the current Im flowing through.

このように、コンデンサ運転型単相誘導電動機100は、固定子内で主巻線1と補助巻線2との間にインピーダンス差を発生することで巻線1,2で流れる電流を2相に分相し、この分相された固定子巻線で回転起磁力を発生することで起動及び駆動される。  As described above, the capacitor-operated single-phase induction motor 100 generates a difference in impedance between the main winding 1 and the auxiliary winding 2 in the stator, thereby making the current flowing in the windings 1 and 2 into two phases. The phase-separated stator winding is started and driven by generating a rotational magnetomotive force in the phase-separated stator winding.

このような単相誘導電動機100の固定子巻線によって発生した起磁力は、次の式のように表現される。  The magnetomotive force generated by the stator winding of the single phase induction motor 100 is expressed by the following equation.

Figure 2006149182
Figure 2006149182

上式中、添字m及びaは、主巻線1及び補助巻線2に対応する値をそれぞれ示し、θは、主巻線1と補助巻線2との位相差を示す。また、NIは、アンペアターンでの起磁力を示すものとして、コイルの巻き数とコイルを通して流れる電流との積を意味し、N及びNは、主巻線1及び補助巻線2によって発生する起磁力をそれぞれ示す。また、Ff(θ,t)は、順方向の回転力を発生する順方向起磁力を示し、Fb(θ,t)は、逆方向の回転力を発生する逆方向起磁力を示す。 In the above equation, the suffixes m and a indicate values corresponding to the main winding 1 and the auxiliary winding 2, respectively, and θ a indicates the phase difference between the main winding 1 and the auxiliary winding 2. NI represents the magnetomotive force in an ampere turn, and means the product of the number of turns of the coil and the current flowing through the coil. N m I m and N a I a are the main winding 1 and the auxiliary winding. The magnetomotive force generated by the line 2 is shown respectively. F f (θ, t) represents a forward magnetomotive force that generates a forward rotational force, and F b (θ, t) represents a reverse magnetomotive force that generates a rotational force in the reverse direction.

一方、トルクリップルは、分相された固定子巻線によって発生する回転起磁力に対し、正確な分相(相平衡)が行われたときのみに発生しなくなる。図2a及び図2bは、単相誘導電動機で相平衡が成り立たない場合の例を示している。すなわち、図2aは、主巻線1のアンペアターンが補助巻線2のアンペアターンの2倍である場合、主巻線1及び補助巻線2によって発生する電流の波形と、主巻線1及び補助巻線2によって発生する起磁力の分布を示している。図2aの例で、主巻線1で流れる電流の大きさは、補助巻線2で流れる電流の大きさの2倍であり、二つの電流の位相差は90度である。ここで、位相が0度であるときは、補助巻線2の電流のみが‘-0.5’の値を有するので、合成起磁力が補助巻線2の起磁力と同一になって‘-0.5’の大きさを有し、位相が90度であるときは、主巻線1の電流のみが‘+1’の値を有するので、合成起磁力が主巻線1の起磁力と同一になって‘+1’の大きさを有するようになる。このように、一周期の間の主巻線1及び補助巻線2の電流による合成起磁力を計算すると、図2bに示すように、一定でなく増減を繰り返すようになる。すなわち、一周期の間、合成起磁力の2回にかける増減過程によって、電源周波数の2倍に該当する周波数及びその調和波周波数で振動及び騷音が大きく発生する。  On the other hand, torque ripple does not occur only when accurate phase separation (phase equilibrium) is performed with respect to the rotational magnetomotive force generated by the phase-separated stator windings. 2a and 2b show an example in which phase equilibrium is not established in a single-phase induction motor. That is, FIG. 2a shows that when the ampere turn of the main winding 1 is twice that of the auxiliary winding 2, the waveform of the current generated by the main winding 1 and the auxiliary winding 2, The distribution of magnetomotive force generated by the auxiliary winding 2 is shown. In the example of FIG. 2a, the magnitude of the current flowing in the main winding 1 is twice the magnitude of the current flowing in the auxiliary winding 2, and the phase difference between the two currents is 90 degrees. Here, when the phase is 0 degree, only the current of the auxiliary winding 2 has a value of “−0.5”, so that the resultant magnetomotive force becomes the same as the magnetomotive force of the auxiliary winding 2. When the phase is 90 degrees and the phase is 90 degrees, only the current of the main winding 1 has a value of “+1”, so that the resultant magnetomotive force is equal to the magnetomotive force of the main winding 1. It becomes the same and has a size of “+1”. Thus, when the resultant magnetomotive force due to the currents of the main winding 1 and the auxiliary winding 2 during one cycle is calculated, as shown in FIG. That is, vibration and noise are greatly generated at a frequency corresponding to twice the power supply frequency and its harmonic wave frequency by a process of increasing / decreasing the combined magnetomotive force twice during one cycle.

その反面、図3a及び図3bに示すように、主巻線1で流れる電流の大きさが補助巻線2で流れる電流の大きさが同じであり、二つの電流の位相差が90度を維持する場合、相平衡が成り立つようになる。図3aは、相平衡が成り立った場合、主巻線1及び補助巻線2を通して流れる電流の波形及びそれによる起磁力の分布を示したものである。ここで、位相が0度であるときは、補助巻線2の電流のみが‘-1’の値を有するので、合成起磁力が‘-1’の大きさを有し、位相が90度であるときは、主巻線1の電流のみが‘+1’の値を有するので、合成起磁力が‘+1’の大きさを有するようになる。このように、一周期の間の主巻線1及び補助巻線2の電流による合成起磁力を計算すると、図3bに示すように、一周期内で常に一定になる。したがって、合成起磁力のリップルに比例するトルクリップルが取り除かれ、低振動・低騷音の単相誘導電動機100を実現できる。  On the other hand, as shown in FIGS. 3a and 3b, the current flowing in the main winding 1 is the same as the current flowing in the auxiliary winding 2, and the phase difference between the two currents is maintained at 90 degrees. In this case, phase equilibrium is established. FIG. 3a shows the waveform of the current flowing through the main winding 1 and the auxiliary winding 2 and the distribution of the magnetomotive force due to the phase balance. Here, when the phase is 0 degree, only the current of the auxiliary winding 2 has a value of “−1”, so that the resultant magnetomotive force has a magnitude of “−1” and the phase is 90 degrees. In some cases, since only the current of the main winding 1 has a value of “+1”, the resultant magnetomotive force has a magnitude of “+1”. Thus, when the resultant magnetomotive force due to the currents of the main winding 1 and the auxiliary winding 2 during one cycle is calculated, it is always constant within one cycle as shown in FIG. 3b. Therefore, torque ripple proportional to the ripple of the resultant magnetomotive force is removed, and the single-phase induction motor 100 with low vibration and low noise can be realized.

単相誘導電動機100の騷音及び振動を減少するためには、固定子の主巻線1及び補助巻線2で流れる電流Im,Iaの大きさが同一であり、位相差が90度に維持されるべきであるが、これを式(1)に示した逆方向起磁力を参照して説明する。  In order to reduce the noise and vibration of the single phase induction motor 100, the magnitudes of the currents Im and Ia flowing in the main winding 1 and the auxiliary winding 2 of the stator are the same, and the phase difference is maintained at 90 degrees. This should be explained with reference to the reverse magnetomotive force shown in Equation (1).

単相誘導電動機100の騷音及び振動の大きさは、逆方向起磁力によって決定されるもので、式(1)で表現した固定子巻線の起磁力で逆方向起磁力の大きさが小さくなるほど、電動機の騷音及び振動が減少する。式(1)で示したように、逆方向起磁力は次のように表現される。  The magnitude of the noise and vibration of the single-phase induction motor 100 is determined by the reverse magnetomotive force, and the magnitude of the reverse magnetomotive force is small due to the magnetomotive force of the stator winding expressed by Equation (1). Indeed, the noise and vibration of the motor is reduced. As shown in Equation (1), the reverse magnetomotive force is expressed as follows.

Figure 2006149182
Figure 2006149182

これを再び表現すると、次のようである。  This can be expressed again as follows.

Figure 2006149182
Figure 2006149182

このとき、単相誘導電動機100から発生するトルクリップルの大きさは、逆方向起磁力の大きさに比例し、式(2)で表現された式(2)のルート(root)内の項の大きさに比例する。  At this time, the magnitude of the torque ripple generated from the single-phase induction motor 100 is proportional to the magnitude of the reverse magnetomotive force, and is the term in the root of the expression (2) expressed by the expression (2). Proportional to size.

図4は、逆方向起磁力の大きさと単相誘導電動機から発生する騷音との関係を示したグラフである。すなわち、このグラフは、起磁力の不平衡程度(‘不平衡な起磁力の比’ともいう)に対する騷音の大きさ変化を示したもので、グラフの横軸は、不平衡な起磁力の比(主巻線1起磁力の大きさに対する逆方向起磁力の大きさの比)を意味し、縦軸は、電源周波数の2倍に該当する周波数で発生する騷音を意味する。一般に、騷音が35dBA以下であるとき、人が不快感を感じないと仮定して満足騷音水準を35dBA以下に設定すると、不平衡な起磁力の比は、0.4以下に維持されるべきである。  FIG. 4 is a graph showing the relationship between the magnitude of the reverse magnetomotive force and the noise generated from the single-phase induction motor. In other words, this graph shows the change in the magnitude of the stuttering with respect to the degree of unbalance of the magnetomotive force (also referred to as the 'ratio of unbalanced magnetomotive force'). The ratio (ratio of the magnitude of the reverse magnetomotive force to the magnitude of the magnetomotive force of the main winding 1) means a noise generated at a frequency corresponding to twice the power supply frequency. In general, when the noise level is 35 dBA or less and the satisfactory noise level is set to 35 dBA or less assuming that the person does not feel uncomfortable, the unbalanced magnetomotive force ratio is maintained at 0.4 or less. Should.

よって、不平衡な起磁力の比を0.4以下に維持するために要求される単相誘導電動機100の設計条件が決定されるべきであるが、これを図5に基づいて説明する。図5は、主巻線1に対する補助巻線2のアンペアターン比(N/N)(すなわち、起磁力の比)を横軸に示し、不平衡な起磁力の比を縦軸に示したとき、主巻線1及び補助巻線2の位相角差による不平衡な起磁力の比を示したグラフで、図5に示すように、不平衡な起磁力が0.4以下を維持するためには、位相角差が70度ないし110度の間を維持し、かつ、各位相角によってアンペアターン比が一定の範囲内を維持すべきである。 Therefore, the design condition of the single-phase induction motor 100 required to maintain the unbalanced magnetomotive force ratio at 0.4 or less should be determined, which will be described with reference to FIG. FIG. 5 shows the ampere-turn ratio (N a I a / N m I m ) (that is, the magnetomotive force ratio) of the auxiliary winding 2 to the main winding 1 on the horizontal axis, and the ratio of the unbalanced magnetomotive force is 5 is a graph showing the ratio of the unbalanced magnetomotive force due to the phase angle difference between the main winding 1 and the auxiliary winding 2, and the unbalanced magnetomotive force is 0.4 as shown in FIG. In order to maintain the following, the phase angle difference should be maintained between 70 degrees and 110 degrees, and the ampere turn ratio should be maintained within a certain range by each phase angle.

図6は、図5のグラフによる単相誘導電動機の設計条件を示した表である。図6に示すように、主巻線1と補助巻線2との位相角差が70度または110度である場合、アンペアターン比は0.75ないし1.15の値を維持すべきで、主巻線1と補助巻線2との位相差が80度または100度である場合、アンペアターン比は0.65ないし1.35の値を維持すべきである。上記の条件を満足するように設計されると、単相誘導電動機の騷音及び振動を最小化できるようになる。  FIG. 6 is a table showing design conditions of the single-phase induction motor according to the graph of FIG. As shown in FIG. 6, when the phase angle difference between the main winding 1 and the auxiliary winding 2 is 70 degrees or 110 degrees, the ampere-turn ratio should maintain a value of 0.75 to 1.15, When the phase difference between the main winding 1 and the auxiliary winding 2 is 80 degrees or 100 degrees, the ampere turn ratio should be maintained at a value of 0.65 to 1.35. When designed to satisfy the above conditions, the noise and vibration of the single-phase induction motor can be minimized.

図6の設計条件は、単相誘導電動機の全運転領域(例えば、全rpm領域)、かつ、電動機の駆動による温度上昇に基づいて設定されたものであり、全ての運転領域で騷音及び振動を減少できるようになる。  The design conditions in FIG. 6 are set based on the entire operating region (for example, all rpm region) of the single-phase induction motor and the temperature rise due to the driving of the motor. Can be reduced.

本発明の一実施形態によるコンデンサ運転型単相誘導電動機を示した回路図である。1 is a circuit diagram illustrating a capacitor-operated single-phase induction motor according to an embodiment of the present invention. 図1に示した単相誘導電動機の相平衡が成り立たない場合の、主巻線及び補助巻線を通して流れる電流の波形を示した図である。It is the figure which showed the waveform of the electric current which flows through the main winding and the auxiliary | assistant winding in case the phase balance of the single phase induction motor shown in FIG. 1 is not realized. 図1に示した単相誘導電動機の相平衡が成り立たない場合の、主巻線及び補助巻線によって発生する起磁力の分布を示した図である。It is the figure which showed distribution of the magnetomotive force generate | occur | produced by the main winding and the auxiliary | assistant winding in case the phase balance of the single phase induction motor shown in FIG. 1 is not realized. 図1に示した単相誘導電動機の相平衡が成り立った場合の、主巻線及び補助巻線を通して流れる電流の波形を示した図である。It is the figure which showed the waveform of the electric current which flows through a main winding and an auxiliary | assistant winding when the phase balance of the single phase induction motor shown in FIG. 1 was materialized. 図1に示した単相誘導電動機の相平衡が成り立った場合の、主巻線及び補助巻線によって発生する起磁力の分布を示した図である。It is the figure which showed distribution of the magnetomotive force generate | occur | produced by the main winding and the auxiliary | assistant winding in case the phase balance of the single phase induction motor shown in FIG. 1 was materialized. 図1に示した単相誘導電動機の起磁力の不平衡程度による騷音の変化を示したグラフである。It is the graph which showed the change of the noise by the imbalance degree of the magnetomotive force of the single phase induction motor shown in FIG. 図1に示した単相誘導電動機のアンペアターン比及び位相角差による不平衡な起磁力の比を示したグラフである。It is the graph which showed the ratio of the unbalanced magnetomotive force by the ampere-turn ratio and phase angle difference of the single phase induction motor shown in FIG. 位相角差による図1に示した単相誘導電動機の設計条件を示した表である。It is the table | surface which showed the design conditions of the single phase induction motor shown in FIG. 1 by a phase angle difference.

符号の説明Explanation of symbols

1 主巻線
2 補助巻線
3 コンデンサ
1 Main winding 2 Auxiliary winding 3 Capacitor

Claims (19)

固定子の主巻線を通して流れる主巻線電流の大きさと、前記固定子の補助巻線を通して流れる補助巻線電流の大きさと、が同一であり、前記主巻線電流と補助巻線電流との位相差が予め設定された値を維持するように制御することを特徴とする単相誘導電動機の騷音低減方法。  The magnitude of the main winding current flowing through the main winding of the stator and the magnitude of the auxiliary winding current flowing through the auxiliary winding of the stator are the same, and the main winding current and the auxiliary winding current A method of reducing noise in a single-phase induction motor, wherein the phase difference is controlled to maintain a preset value. 前記位相差は、90度に維持されることを特徴とする請求項1に記載の単相誘導電動機の騷音低減方法。  The method for reducing noise of a single-phase induction motor according to claim 1, wherein the phase difference is maintained at 90 degrees. 騒音は、35dBA以下に低減されることを特徴とする請求項1に記載の単相誘導電動機の騒音低減方法。  2. The noise reduction method for a single-phase induction motor according to claim 1, wherein the noise is reduced to 35 dBA or less. 固定子の主巻線によって発生する主巻線起磁力及び固定子の補助巻線によって発生する補助巻線起磁力を決定し、
前記決定された主巻線起磁力及び補助巻線起磁力によって、前記主巻線を通して流れる主巻線電流と前記補助巻線を通して流れる補助巻線電流との位相差を制御することを特徴とする単相誘導電動機の騷音低減方法。
Determining the main winding magnetomotive force generated by the stator main winding and the auxiliary winding magnetomotive force generated by the stator auxiliary winding;
The phase difference between the main winding current flowing through the main winding and the auxiliary winding current flowing through the auxiliary winding is controlled by the determined main winding magnetomotive force and auxiliary winding magnetomotive force. A method for reducing the noise of a single-phase induction motor.
前記位相差は、90度に維持されることを特徴とする請求項4に記載の単相誘導電動機の騷音低減方法。  The method for reducing noise of a single-phase induction motor according to claim 4, wherein the phase difference is maintained at 90 degrees. 前記主巻線起磁力に対する前記補助巻線起磁力の比に基づいて、前記位相差が制御されることを特徴とする請求項4に記載の単相誘導電動機の騷音低減方法。  5. The method of reducing noise in a single-phase induction motor according to claim 4, wherein the phase difference is controlled based on a ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force. 前記主巻線起磁力に対する前記補助巻線起磁力の比が0.75ないし1.15である場合、前記位相差は、70度または110度に制御されることを特徴とする請求項6に記載の単相誘導電動機の騷音低減方法。  The phase difference is controlled to 70 degrees or 110 degrees when a ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.75 to 1.15. The method for reducing noise of a single-phase induction motor as described. 前記主巻線起磁力に対する前記補助巻線起磁力の比が0.65ないし1.35である場合、前記位相差は、80度または100度に制御されることを特徴とする請求項6に記載の単相誘導電動機の騷音低減方法。  The phase difference is controlled to 80 degrees or 100 degrees when the ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.65 to 1.35. The method for reducing noise of a single-phase induction motor as described. 騒音は、35dBA以下に低減されることを特徴とする請求項4に記載の単相誘導電動機の騒音低減方法。  The noise reduction method for a single-phase induction motor according to claim 4, wherein the noise is reduced to 35 dBA or less. 前記固定子の主巻線を通して流れる主巻線電流の大きさと、前記固定子の補助巻線を通して流れる補助巻線電流の大きさと、が同一であることを特徴とする請求項4に記載の単相誘導電動機の騒音低減方法。  The single winding according to claim 4, wherein the magnitude of the main winding current flowing through the stator main winding and the magnitude of the auxiliary winding current flowing through the stator auxiliary winding are the same. Noise reduction method for phase induction motors. 固定子の主巻線によって発生する主巻線起磁力に対する前記固定子の逆方向回転力を発生する逆方向起磁力の比は、予め設定された値以下に制御されることを特徴とする単相誘導電動機の騷音低減方法。  The ratio of the reverse magnetomotive force that generates the reverse rotational force of the stator to the main coil magnetomotive force generated by the main winding of the stator is controlled to be a predetermined value or less. A method for reducing the noise of a phase induction motor. 前記予め設定された値は、0.4であることを特徴とする請求項8に記載の単相誘導電動機の騷音低減方法。  9. The method of reducing noise in a single-phase induction motor according to claim 8, wherein the preset value is 0.4. 騒音は、35dBA以下に低減されることを特徴とする請求項11に記載の単相誘導電動機の騒音低減方法。  The noise reduction method for a single-phase induction motor according to claim 11, wherein the noise is reduced to 35 dBA or less. 固定子の主巻線と、
該主巻線に並列に連結されている固定子の補助巻線と、
前記主巻線によって発生する主巻線起磁力及び前記補助巻線によって発生する補助巻線起磁力にしたがって、前記主巻線を通して流れる主巻線電流と前記補助巻線を通して流れる補助巻線電流との位相差を制御する制御部と、を含むことを特徴とする単相誘導電動機。
The main winding of the stator,
An auxiliary winding of the stator connected in parallel to the main winding;
A main winding current flowing through the main winding and an auxiliary winding current flowing through the auxiliary winding according to a main winding magnetomotive force generated by the main winding and an auxiliary winding magnetomotive force generated by the auxiliary winding; And a control unit for controlling the phase difference of the single-phase induction motor.
前記位相差は、90度に維持されることを特徴とする請求項14に記載の単相誘導電動機の騷音低減方法。  15. The method of reducing noise in a single-phase induction motor according to claim 14, wherein the phase difference is maintained at 90 degrees. 前記制御部は、前記主巻線起磁力に対する前記補助巻線起磁力の比に基づいて前記位相差を制御することを特徴とする請求項14に記載の単相誘導電動機。  The single-phase induction motor according to claim 14, wherein the control unit controls the phase difference based on a ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force. 前記主巻線起磁力に対する前記補助巻線起磁力の比が0.75ないし1.15である場合、前記制御部は、前記位相差を70度または110度に制御することを特徴とする請求項16に記載の単相誘導電動機。  The control unit controls the phase difference to 70 degrees or 110 degrees when a ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.75 to 1.15. Item 17. The single-phase induction motor according to Item 16. 前記主巻線起磁力に対する前記補助巻線起磁力の比が0.65ないし1.35である場合、前記制御部は、前記位相差を80度または100度に制御することを特徴とする請求項16に記載の単相誘導電動機。  When the ratio of the auxiliary winding magnetomotive force to the main winding magnetomotive force is 0.65 to 1.35, the control unit controls the phase difference to 80 degrees or 100 degrees. Item 17. The single-phase induction motor according to Item 16. 前記制御部は、コンデンサを含むことを特徴とする請求項14に記載の単相誘導電動機。
The single-phase induction motor according to claim 14, wherein the control unit includes a capacitor.
JP2005294004A 2004-11-17 2005-10-06 Single-phase induction motor and noise reduction method therefor Pending JP2006149182A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040094349A KR20060055046A (en) 2004-11-17 2004-11-17 Single-phase induction motor and noise reduction method thereof

Publications (1)

Publication Number Publication Date
JP2006149182A true JP2006149182A (en) 2006-06-08

Family

ID=35519773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294004A Pending JP2006149182A (en) 2004-11-17 2005-10-06 Single-phase induction motor and noise reduction method therefor

Country Status (6)

Country Link
US (1) US7245105B2 (en)
EP (1) EP1659681B1 (en)
JP (1) JP2006149182A (en)
KR (1) KR20060055046A (en)
CN (1) CN1776999B (en)
DE (1) DE602005011557D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130839A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Rotating electrical machine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US8043070B2 (en) 2004-08-26 2011-10-25 Pentair Water Pool And Spa, Inc. Speed control
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
KR20060055046A (en) * 2004-11-17 2006-05-23 삼성전자주식회사 Single-phase induction motor and noise reduction method thereof
MX2011003708A (en) 2008-10-06 2011-06-16 Pentair Water Pool & Spa Inc Method of operating a safety vacuum release system.
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
SG191067A1 (en) 2010-12-08 2013-08-30 Pentair Water Pool & Spa Inc Discharge vacuum relief valve for safety vacuum release system
BR112014010665A2 (en) 2011-11-01 2017-12-05 Pentair Water Pool & Spa Inc flow blocking system and process
CN102510194B (en) * 2011-11-03 2013-11-27 宁波沪江电机有限公司 Single-phase motor
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
TWI628901B (en) * 2016-10-05 2018-07-01 聖約翰科技大學 Method of configuring self-excited capacitors for single-phase induction generator

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1894804A (en) * 1930-03-01 1933-01-17 Wagner Electric Corp Alternating current motor
US1944090A (en) * 1932-11-30 1934-01-16 Gen Electric Alternating current motor control
US2034950A (en) * 1933-08-30 1936-03-24 Frank J Lyden Electric motor
FR2120355A5 (en) * 1970-12-30 1972-08-18 Calor Sa
US3970908A (en) * 1974-12-09 1976-07-20 Cutler-Hammer, Inc. A.C. motor starting system
US4100444A (en) * 1975-09-29 1978-07-11 General Electric Company Dynamoelectric machine winding arrangement
JPS5826262B2 (en) * 1976-04-12 1983-06-01 三洋電機株式会社 capacitor motor
US4060754A (en) * 1976-05-14 1977-11-29 Massachusetts Institute Of Technology Electronic motor that includes an electronic waveform synthesizer and the synthesizer per se
EP0038879B1 (en) * 1980-04-25 1984-06-27 Stefan Kupisiewicz Rotating electric machine
DE3069643D1 (en) * 1980-11-28 1984-12-20 Ibm Motor control system for a single phase induction motor
GB8304714D0 (en) * 1983-02-21 1983-03-23 Ass Elect Ind Induction motors
US4465962A (en) * 1983-03-28 1984-08-14 Westinghouse Electric Corp. Permanent split capacitor single phase electric motor system
US4658195A (en) * 1985-05-21 1987-04-14 Pt Components, Inc. Motor control circuit with automatic restart of cut-in
GB8426496D0 (en) * 1984-10-19 1984-11-28 Ass Elect Ind Single phase induction motors
US4651079A (en) * 1985-11-29 1987-03-17 Wills Frank E Pulse width modulated inverter system for driving single phase a-c induction motor at a constant voltage/frequency ratio
US5252905A (en) * 1985-12-23 1993-10-12 York International Corporation Driving system for single phase A-C induction motor
US4820964A (en) * 1986-08-22 1989-04-11 Andrew S. Kadah Solid state motor start circuit
US4843295A (en) * 1987-06-04 1989-06-27 Texas Instruments Incorporated Method and apparatus for starting single phase motors
US4862053A (en) * 1987-08-07 1989-08-29 Reliance Electric Company Motor starting circuit
US4792740A (en) * 1987-08-14 1988-12-20 Smith Otto J M Three-phase induction motor with single phase power supply
US5159255A (en) * 1990-11-07 1992-10-27 Savvy Frontiers Patent Trust Energy conserving electric induction motor field control method and apparatus
US5218283A (en) * 1991-02-15 1993-06-08 York International Corporation AC motor drive system with a two phase power supply
US5136216A (en) * 1991-02-15 1992-08-04 York International Corporation Ac motor drive system
US5146147A (en) * 1991-02-28 1992-09-08 York International Corporation Ac motor drive system
CA2085202C (en) * 1992-03-24 1996-10-22 Ricky L. Bunch Positive temperature coefficient start winding protection
JPH05328767A (en) * 1992-05-25 1993-12-10 Murata Mfg Co Ltd Starting circuit of single-phase ac induction motor
KR100272126B1 (en) 1993-06-30 2001-03-02 이형도 Single phase capacitor induction motor
US5483139A (en) * 1994-03-14 1996-01-09 General Electric Company Motor start, reverse and protection system without a starting capacitor
US5589753A (en) * 1994-04-11 1996-12-31 Andrew S. Kadah Rate effect motor start circuit
JPH0819243A (en) * 1994-07-01 1996-01-19 Tomomi Arimoto Method of electromagnetic induction driving, electromagnetic induction driving apparatus using the method and application method of the apparatus
DE19535676C2 (en) * 1994-10-14 1997-10-23 Telefunken Microelectron Method for controlling the power of an induction motor
JP3458523B2 (en) * 1994-12-07 2003-10-20 三菱電機株式会社 MOTOR DEVICE / MOTOR DRIVE DEVICE AND ITS CONTROL METHOD
JPH08251984A (en) * 1995-03-03 1996-09-27 Sanyo Electric Co Ltd Controller for single phase induction motor
JP3132992B2 (en) 1995-10-31 2001-02-05 三菱電機株式会社 Rotor assembly equipment
US5796234A (en) * 1996-01-19 1998-08-18 Gas Research Institute Variable speed motor apparatus and method for forming same from a split capacitor motor
US6020725A (en) * 1996-04-25 2000-02-01 Lifeline Enterprises L.L.C. Self-excited asynchronous alternating current generator with paramutual inductive coupling
US5811955A (en) * 1996-08-29 1998-09-22 Flint & Walling Industries, Inc. Electro-start motor switch
US5973473A (en) * 1996-10-31 1999-10-26 Therm-O-Disc, Incorporated Motor control circuit
US6051952A (en) * 1997-11-06 2000-04-18 Whirlpool Corporation Electric motor speed and direction controller and method
US5867005A (en) * 1997-12-18 1999-02-02 Comair Rotron, Inc. AC motor winding circuit
US6121749A (en) * 1998-05-11 2000-09-19 Work Smart Energy Enterprises, Inc. Variable-speed drive for single-phase motors
US6255755B1 (en) * 1998-06-04 2001-07-03 Renyan W. Fei Single phase three speed motor with shared windings
DE19843106B4 (en) * 1998-09-21 2005-08-18 Ebm-Papst Mulfingen Gmbh & Co. Kg System for controlling the speed of AC motors
US6160697A (en) * 1999-02-25 2000-12-12 Edel; Thomas G. Method and apparatus for magnetizing and demagnetizing current transformers and magnetic bodies
US6320348B1 (en) * 1999-06-14 2001-11-20 Andrew S. Kadah Time rate of change motor start circuit
IT1307378B1 (en) * 1999-08-06 2001-11-06 Askoll Holding Srl ELECTRONIC POWER SUPPLY OF A SYNCHRONOUS MOTOR WITH PERMANENT MAGNETS AND TWO PAIRS OF POLES.
US6700333B1 (en) * 1999-10-19 2004-03-02 X-L Synergy, Llc Two-wire appliance power controller
MY125213A (en) * 1999-11-12 2006-07-31 Lg Electronics Inc "device and method for controlling supply of current and static capacitance to compressor"
US6329783B1 (en) * 1999-12-30 2001-12-11 Gas Research Institute Apparatus for continuously variable speed electric motor applications
US6271639B1 (en) * 2000-02-08 2001-08-07 Emerson Electric Co. Capacitor start single phase induction motor with partial winding starting
CN2506015Y (en) * 2001-08-23 2002-08-14 唐跃细 Active phase shift circular field single phase AC motor
US6570778B2 (en) * 2001-08-30 2003-05-27 Wisconsin Alumni Research Foundation Adjustable speed drive for single-phase induction motors
US6969969B2 (en) * 2002-02-21 2005-11-29 Diehl Ako Stiftung & Co. Kg Circuit arrangement for the actuation of an electric-motor drive, in particular a pump drive, in a large domestic appliance
US6952088B2 (en) * 2002-10-08 2005-10-04 Emerson Electric Co. PSC motor system for use in HVAC applications with improved start-up
US6713986B1 (en) * 2002-11-26 2004-03-30 Energy Savers International Controller for air conditioners and heat pumps
DK175744B1 (en) * 2002-12-12 2005-02-07 Exhausto As Safety circuit for smoke pipe fan
US6984979B1 (en) * 2003-02-01 2006-01-10 Edel Thomas G Measurement and control of magnetomotive force in current transformers and other magnetic bodies
US6989649B2 (en) * 2003-07-09 2006-01-24 A. O. Smith Corporation Switch assembly, electric machine having the switch assembly, and method of controlling the same
KR100823920B1 (en) * 2003-07-23 2008-04-22 엘지전자 주식회사 Driving circuit and method for hybrid induction motor
KR20050108640A (en) * 2004-05-12 2005-11-17 엘지전자 주식회사 Condenser running single-phase induction motor
KR20060055046A (en) * 2004-11-17 2006-05-23 삼성전자주식회사 Single-phase induction motor and noise reduction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130839A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Rotating electrical machine

Also Published As

Publication number Publication date
US20060103340A1 (en) 2006-05-18
DE602005011557D1 (en) 2009-01-22
CN1776999B (en) 2012-01-11
EP1659681A1 (en) 2006-05-24
EP1659681B1 (en) 2008-12-10
US7245105B2 (en) 2007-07-17
KR20060055046A (en) 2006-05-23
CN1776999A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP2006149182A (en) Single-phase induction motor and noise reduction method therefor
JP4113195B2 (en) Air conditioner fan motor speed control system
JP5289223B2 (en) Radial magnetic bearing and magnetic bearing device with multi-phase AC regulator
JP5216686B2 (en) Permanent magnet generator
JP2006149179A (en) Speed controller for fan motor of air conditioner
JP2010025341A6 (en) Radial magnetic bearing and magnetic bearing device with multi-phase AC regulator
JP4790618B2 (en) Permanent magnet brushless motor magnetic transmission device
US9000648B2 (en) Asymmetrical reluctance machine
JP3201875U (en) Drive circuit for permanent magnet motor
KR100698218B1 (en) Driving circuit of the hybrid induction motor
EP1753123B1 (en) Methods and apparatus for controlling a motor/generator
US7271565B2 (en) Apparatus for controlling speed of fan motor of air-conditioner
KR100593542B1 (en) Drive of Capacitor Driven Hybrid Induction Motor
RU2338315C1 (en) Method for asynchronous motors control by compensating magnetic field technique
JP3843355B2 (en) Power generator
JPH03245755A (en) Brushless self-excitation synchronous electric motor
JP2002345297A (en) Synchronous generator system for wind-turbine power generation and its operating method
JP2018088800A (en) Synchronous motor assembly, pump, and ventilation fan using the same
TWI770116B (en) Auxiliary coil for an electric machine
Shymanska et al. ROTATION ADJUSTING METHODS OF AN ASYNCHRONOUS MOTOR WITH A WOUND ROTOR
Takahashi et al. Study of Switched Reluctance Motor Directly Driven by Commercial Three-phase Power Supply
JP2024502380A (en) energy efficiency induction motor
JPS61124295A (en) Inverter
JPH07506955A (en) Control device for electric motor
CN114696679A (en) Electric tool and control method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125