JP2006147879A - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP2006147879A
JP2006147879A JP2004336476A JP2004336476A JP2006147879A JP 2006147879 A JP2006147879 A JP 2006147879A JP 2004336476 A JP2004336476 A JP 2004336476A JP 2004336476 A JP2004336476 A JP 2004336476A JP 2006147879 A JP2006147879 A JP 2006147879A
Authority
JP
Japan
Prior art keywords
light
face
semiconductor laser
filter
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004336476A
Other languages
Japanese (ja)
Inventor
Kyoji Yamaguchi
恭司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004336476A priority Critical patent/JP2006147879A/en
Publication of JP2006147879A publication Critical patent/JP2006147879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor laser device which is hardly affected by return light. <P>SOLUTION: Laser light L1 emitted from a semiconductor laser 2 is shaped into a horizontally long beam of light by narrowing a vertical radiant angle via a cylindrical lens 3a, and then transformed into parallel light via a nonspherical lens 3b. The laser light L1 transformed into the parallel light via the nonspherical lens 3b falls slantly to the incident end face 4a of an optical fiber 4 after passing through a nonspherical lens 3c. Part of light falling to the incident end face 4a of the optical fiber 4 is reflected on the end face 4a to become return light L2. The slant incidence of the laser light L1 on the incident end face 4a causes the return light L2 to proceed along a light path separated from that of the laser light L1 and falls to the nonspherical lens 3c, which transforms the return light L2 into the parallel light. A filter 5A is arranged in the light path for the return light L2, and cuts off the return light L2 without cutting off the laser light L1 by means of the filter 5A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体レーザから照射されたレーザ光を光ファイバで導波して、各種加工に利用する半導体レーザ装置に関する。詳しくは、半導体レーザから照射されたレーザ光の戻り光が半導体レーザに入射しないようにすることで、半導体レーザの障害の発生を防ぐものである。   The present invention relates to a semiconductor laser device that guides laser light emitted from a semiconductor laser through an optical fiber and uses it for various processing. More specifically, the failure of the semiconductor laser is prevented by preventing the return light of the laser light emitted from the semiconductor laser from entering the semiconductor laser.

半導体レーザから照射されたレーザ光を光ファイバに結合し、半導体レーザのレーザ光を光ファイバで導波して切断等の各種加工に利用する半導体レーザ装置が従来より提案されている。   2. Description of the Related Art Conventionally, a semiconductor laser device has been proposed in which laser light emitted from a semiconductor laser is coupled to an optical fiber, and the laser light from the semiconductor laser is guided through the optical fiber and used for various processes such as cutting.

半導体レーザ装置に使用される半導体レーザは、へき開面から光が照射される形態である。このような半導体レーザは、水平方向の放射角と垂直方向の放射角が異なり、出射パターンが縦長の楕円形状である。   A semiconductor laser used in a semiconductor laser device has a form in which light is irradiated from a cleavage plane. Such a semiconductor laser has a horizontal radiation angle different from a vertical radiation angle, and has a vertically elongated elliptical emission pattern.

これに対して、光ファイバは放射角が対称である。このため、半導体レーザから照射される光の対称性を高め、光ファイバとの結合効率を高めることを目的として、ビーム形状を真円に近い形状とした装置が提案されている(例えば、特許文献1参照)。   On the other hand, the radiation angle of the optical fiber is symmetric. For this reason, an apparatus having a beam shape close to a perfect circle has been proposed for the purpose of increasing the symmetry of light emitted from a semiconductor laser and increasing the coupling efficiency with an optical fiber (for example, Patent Documents). 1).

また、加工用に使用される半導体レーザ装置では、高出力の半導体レーザが使用される。高出力の半導体レーザは、出力端面でのパワー密度が高く、自身が発した光、あるいは自身が発光した光に起因して他のデバイスが発する光が、自身の出力端面に戻った場合に、発振スペクトルの変動や表面吸収による端面劣化、端面破壊が発生することが問題となっている。   Moreover, in a semiconductor laser device used for processing, a high-power semiconductor laser is used. A high-power semiconductor laser has a high power density at the output end face, and when light emitted by itself or light emitted by another device due to light emitted by itself returns to its output end face, The problem is that end face deterioration and end face destruction occur due to fluctuations in the oscillation spectrum and surface absorption.

このため、半導体レーザのレーザ光と、光ファイバの入射端面での反射による戻り光を光路分離し、遮蔽板により半導体レーザへの戻り光を遮断する装置が提案されている(例えば、特許文献2参照)。   For this reason, an apparatus has been proposed in which the laser light from the semiconductor laser and the return light reflected by the incident end face of the optical fiber are optically separated, and the return light to the semiconductor laser is blocked by a shielding plate (for example, Patent Document 2). reference).

特開平8−307006号公報JP-A-8-307006 特開平5−323404号公報JP-A-5-323404

しかし、半導体レーザと光ファイバとの間の結合効率が高くなると、光ファイバの入射端面で反射した半導体レーザのレーザ光の戻り光が半導体レーザの出力端面を照射したり、また、光ファイバに入射した光が光ファイバの出射端面側で反射する等により戻り光となって入射端面から出射して、半導体レーザの出力端面を照射する。これにより、半導体レーザの発振スペクトルの変動や表面吸収による端面劣化、端面破壊が発生するという問題がある。   However, when the coupling efficiency between the semiconductor laser and the optical fiber increases, the return light of the semiconductor laser reflected by the incident end face of the optical fiber irradiates the output end face of the semiconductor laser or enters the optical fiber. The reflected light is reflected from the exit end face side of the optical fiber, etc., and is returned from the entrance end face to irradiate the output end face of the semiconductor laser. As a result, there are problems in that the oscillation spectrum of the semiconductor laser, end face deterioration due to surface absorption, and end face destruction occur.

また、半導体レーザと光ファイバとの間の結合効率を高めるため、ビーム形状を真円に近い形状とし、かつ、戻り光を光路分離して遮蔽板で遮断する構成では、半導体レーザのレーザ光と戻り光の光路のずれ量を大きくしないと戻り光のみを遮断することができないので、装置が大型化するという問題がある。   In addition, in order to increase the coupling efficiency between the semiconductor laser and the optical fiber, the beam shape is a shape close to a perfect circle and the return light is separated by an optical path and blocked by a shielding plate. If the amount of deviation of the optical path of the return light is not increased, only the return light cannot be blocked, resulting in a problem that the apparatus becomes large.

本発明は、このような課題を解決するためになされたもので、半導体レーザの発振スペクトルの変動や表面劣化、端面破壊の発生を低減し、かつ小型の半導体レーザ装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has an object to provide a small-sized semiconductor laser device that can reduce fluctuations in the oscillation spectrum, surface degradation, and end face destruction of a semiconductor laser, and can be reduced in size. To do.

上述した課題を解決するため、本発明に係る半導体レーザ装置は、レーザ光を出射する光源と、レーザ光を導波する光ガイドと、光源から出射されたレーザ光を整形し、光ガイドに集光させる光学素子と、光源から出射され、光学素子で整形されたレーザ光は通し、光ガイドで発生した戻り光は遮断するフィルタとを備えたものである。   In order to solve the above-described problems, a semiconductor laser device according to the present invention shapes a light source that emits laser light, a light guide that guides laser light, and laser light emitted from the light source, and collects the light guide. An optical element that emits light, and a filter that transmits laser light emitted from the light source and shaped by the optical element and blocks return light generated by the light guide.

本発明の半導体レーザ装置は、光源から出射されたレーザ光は光学素子で整形され、フィルタを透過して光ガイドに集光する。光ガイドに集光したレーザ光の大部分は光ガイドを導波される。これに対して、光ガイドに集光したレーザ光の一部は光ガイドの端面で反射して戻り光となる。光ガイドから光源へ戻る戻り光は、フィルタで遮断され、光源には入射しない。   In the semiconductor laser device of the present invention, the laser light emitted from the light source is shaped by the optical element, passes through the filter, and is condensed on the light guide. Most of the laser light focused on the light guide is guided through the light guide. On the other hand, a part of the laser beam condensed on the light guide is reflected by the end face of the light guide to become return light. Return light returning from the light guide to the light source is blocked by the filter and does not enter the light source.

例えば、光源から出射されたレーザ光の垂直方向の放射角を狭めて横長のビーム形状に整形し、光ガイドの入射端面に斜めに入射させて戻り光との光路分離を行うことで、半導体レーザのレーザ光と戻り光の光路のずれ量を大きくすることなく、フィルタによって戻り光のみを遮断できる。   For example, by narrowing the vertical radiation angle of the laser light emitted from the light source and shaping it into a horizontally long beam shape, obliquely entering the incident end face of the light guide and separating the optical path from the return light, a semiconductor laser Only the return light can be blocked by the filter without increasing the amount of deviation between the optical paths of the laser beam and the return light.

また、光源から出射されたレーザ光の垂直方向の放射角を狭めて横長のビーム形状に整形し、光ガイドを導波されて入射端面から出射した戻り光のビーム形状より小さくなるように構成することで、光ガイドを導波された戻り光を遮断することができる。   Further, the laser beam emitted from the light source is narrowed in the vertical direction and shaped into a horizontally long beam shape, and the light guide is guided to be smaller than the beam shape of the return light emitted from the incident end face. Thus, the return light guided through the light guide can be blocked.

更に、光源から出射された波長のレーザ光は通す波長選択フィルタを備えることで、光ガイドを導波された波長の異なる戻り光を遮断することができる。   Furthermore, by providing a wavelength selection filter through which the laser light having a wavelength emitted from the light source passes, it is possible to block the return light having different wavelengths guided through the light guide.

本発明の半導体レーザ装置によれば、光源から照射されたレーザ光を、光ガイドの端面での戻り光と分離できるように整形すると共に、光源から照射されたレーザ光は透過し、戻り光は遮断するフィルタを配置したので、装置を大型にすることなく戻り光が光源に入射することを防ぎ、光源の発振スペクトルの変動や表面劣化、端面破壊の発生を低減することができる。   According to the semiconductor laser device of the present invention, the laser light emitted from the light source is shaped so that it can be separated from the return light at the end face of the light guide, the laser light emitted from the light source is transmitted, and the return light is Since the blocking filter is arranged, it is possible to prevent the return light from entering the light source without increasing the size of the apparatus, and to reduce the fluctuation of the oscillation spectrum of the light source, the surface deterioration, and the occurrence of end face destruction.

以下、図面を参照して本発明の半導体レーザ装置の実施の形態について説明する。   Hereinafter, embodiments of a semiconductor laser device of the present invention will be described with reference to the drawings.

<第1の実施の形態の半導体レーザ装置の構成例>
図1は第1の実施の形態の半導体レーザ装置1Aの一例を示す構成図である。図1は半導体レーザ装置1Aの構成を模式的に示し、図1(a)はY−Z平面図、図1(b)はX−Z平面図、図1(c)は要部拡大図である。
<Configuration Example of Semiconductor Laser Device in First Embodiment>
FIG. 1 is a configuration diagram showing an example of a semiconductor laser device 1A according to the first embodiment. FIG. 1 schematically shows a configuration of a semiconductor laser device 1A. FIG. 1A is a YZ plan view, FIG. 1B is an XZ plan view, and FIG. is there.

第1の実施の形態の半導体レーザ装置1Aは各種加工用に使用される装置で、半導体レーザ2とシリンドリカルレンズ3aと、非球面レンズ3b,3cと、光ファイバ4と、フィルタ5Aを備える。半導体レーザ装置1Aは、図示しないパッケージ内に半導体レーザ2とシリンドリカルレンズ3aと非球面レンズ3b,3cとフィルタ5A等が実装され、半導体レーザ2から照射されたレーザ光L1を、シリンドリカルレンズ3a及び非球面レンズ3b,3cによって光ファイバ4へ導光し、光ファイバ4で光を導波して切断加工等に利用する。   The semiconductor laser device 1A according to the first embodiment is an apparatus used for various types of processing, and includes a semiconductor laser 2, a cylindrical lens 3a, aspherical lenses 3b and 3c, an optical fiber 4, and a filter 5A. In the semiconductor laser device 1A, a semiconductor laser 2, a cylindrical lens 3a, aspherical lenses 3b and 3c, a filter 5A, and the like are mounted in a package (not shown). Light is guided to the optical fiber 4 by the spherical lenses 3b and 3c, and the light is guided by the optical fiber 4 to be used for cutting or the like.

そして、半導体レーザ2から照射され、シリンドリカルレンズ3a及び非球面レンズ3b,3cによって光ファイバ4へ導かれるレーザ光L1と、光ファイバ4の入射端面4aで反射した戻り光L2を光路分離すると共に、半導体レーザ2のレーザ光L1は透過し、戻り光L2は遮断する形状のフィルタ5Aを配置して、戻り光L2が半導体レーザ2に入射することを防ぐものである。   The laser beam L1 irradiated from the semiconductor laser 2 and guided to the optical fiber 4 by the cylindrical lens 3a and the aspherical lenses 3b and 3c and the return light L2 reflected by the incident end face 4a of the optical fiber 4 are optically separated, and A filter 5A that transmits the laser light L1 of the semiconductor laser 2 and blocks the return light L2 is disposed to prevent the return light L2 from entering the semiconductor laser 2.

半導体レーザ2は光源の一例で、基板等に実装される。半導体レーザ2から照射されるレーザ光L1は、図示しない活性層に水平なX−Z平面に沿った方向と、垂直なY−Z平面に沿った方向とでビームの広がり角が異なる。半導体レーザ2の放射角は光出力の半値全幅で表し、水平方向の半値全幅θhは8度前後、垂直方向の半値全幅θvは25度程度である。これにより、半導体レーザ2から照射されるレーザ光L1の出射パターンは、縦長の略楕円形状である。   The semiconductor laser 2 is an example of a light source and is mounted on a substrate or the like. The laser light L1 emitted from the semiconductor laser 2 has different beam divergence angles in the direction along the XZ plane horizontal to the active layer (not shown) and in the direction along the vertical YZ plane. The radiation angle of the semiconductor laser 2 is represented by the full width at half maximum of the optical output, the full width at half maximum θh in the horizontal direction is about 8 degrees, and the full width at half maximum θv in the vertical direction is about 25 degrees. Thereby, the emission pattern of the laser beam L1 emitted from the semiconductor laser 2 has a vertically long and substantially elliptical shape.

光ファイバ4は光ガイドの一例で、本例では、例えばマルチモード光ファイバが使用される。光ファイバ4における許容入射角度は、光ファイバ4のNA(開口数)で制限されており、半導体レーザ2のレーザ光L1を光ファイバ4に入射するには、半導体レーザ2の放射角度を光ファイバ4の許容入射角度以下に、ビーム整形する必要がある。   The optical fiber 4 is an example of a light guide. In this example, a multimode optical fiber is used, for example. The allowable incident angle in the optical fiber 4 is limited by the NA (numerical aperture) of the optical fiber 4. In order to make the laser light L 1 of the semiconductor laser 2 incident on the optical fiber 4, the radiation angle of the semiconductor laser 2 is changed to the optical fiber. It is necessary to perform beam shaping to an allowable incident angle of 4 or less.

このため、図1に示す半導体レーザ装置1Aでは、半導体レーザ2のビームを整形し、光ファイバ4に導いて入射する光学素子として、シリンドリカルレンズ3a、非球面レンズ3b及び非球面レンズ3cを備える。   For this reason, the semiconductor laser device 1A shown in FIG. 1 includes a cylindrical lens 3a, an aspherical lens 3b, and an aspherical lens 3c as optical elements that shape the beam of the semiconductor laser 2 and guide it to the optical fiber 4.

シリンドリカルレンズ3aは第1のレンズを構成し、半導体レーザ2から照射されるレーザ光L1の垂直方向の放射角を約10分の1に変換する。なお、シリンドリカルレンズ3aでは、水平方向の放射角は変化しない。これにより、半導体レーザ2から照射されたレーザ光L1のビーム形状は、シリンドリカルレンズ3aを透過すると、横長の略楕円形状となる。   The cylindrical lens 3a forms a first lens, and converts the radiation angle in the vertical direction of the laser light L1 emitted from the semiconductor laser 2 to about 1/10. Note that the radiation angle in the horizontal direction does not change in the cylindrical lens 3a. As a result, the beam shape of the laser light L1 emitted from the semiconductor laser 2 becomes a horizontally long, substantially elliptical shape when transmitted through the cylindrical lens 3a.

非球面レンズ3bと非球面レンズ3cは第2のレンズを構成し、非球面レンズ3bは、シリンドリカルレンズ3aを透過したレーザ光L1を平行光に変換し、非球面レンズ3cによって光ファイバ4の入射端面4a上に集光する。   The aspherical lens 3b and the aspherical lens 3c constitute a second lens. The aspherical lens 3b converts the laser light L1 transmitted through the cylindrical lens 3a into parallel light, and is incident on the optical fiber 4 by the aspherical lens 3c. Condensed on the end face 4a.

ここで、光ファイバ4の入射端面4aには、無反射コーティングが施されているが、半導体レーザ2から照射され、光ファイバ4の入射端面4a上に集光したレーザ光L1の一部は、入射端面4aで反射する。光ファイバ4の入射端面4aで反射した戻り光L2は、非球面レンズ3cで平行光に変換される。なお、戻り光L2のビーム形状は、レーザ光L1のビーム形状が横長の略楕円形状であるので、同様に横長の略楕円形状となる。   Here, the incident end face 4a of the optical fiber 4 is provided with a non-reflective coating, but a part of the laser light L1 irradiated from the semiconductor laser 2 and condensed on the incident end face 4a of the optical fiber 4 is: Reflected by the incident end face 4a. The return light L2 reflected by the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c. Note that the beam shape of the return light L2 is also a horizontally long substantially elliptical shape because the beam shape of the laser light L1 is a horizontally long substantially elliptical shape.

図1に示す半導体レーザ装置1Aでは、Z軸に沿った半導体レーザ2の光軸P1上にシリンドリカルレンズ3a及び非球面レンズ3bが配置される。非球面レンズ3c及び光ファイバ4は、光軸P2が半導体レーザ2の光軸P1に対してY軸に沿って所定の長さ(−y)だけ平行にずらして配置され、光路分離手段を構成する。   In the semiconductor laser device 1A shown in FIG. 1, a cylindrical lens 3a and an aspherical lens 3b are disposed on the optical axis P1 of the semiconductor laser 2 along the Z axis. The aspherical lens 3c and the optical fiber 4 are arranged such that the optical axis P2 is shifted in parallel to the optical axis P1 of the semiconductor laser 2 by a predetermined length (−y) along the Y axis to constitute an optical path separating unit. To do.

これにより、半導体レーザ2から照射され、非球面レンズ3cを透過したレーザ光L1は、図1(c)に示すように、角度θ2で光ファイバ4の入射端面4aに入射する。 Thereby, the laser beam L1 irradiated from the semiconductor laser 2 and transmitted through the aspherical lens 3c is incident on the incident end face 4a of the optical fiber 4 at an angle θ 2 as shown in FIG.

ここで、角度θ2は、半導体レーザ2のレーザ光L1による入射ビームと光ファイバ4の入射端面4aの法線とのなす角度である。入射ビームの広がり角度(半角)をθ1とすると、θ1<θ2となるように光学系を構成してあり、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は、空間的に分離している。 Here, the angle θ 2 is an angle formed between the incident beam of the laser beam L 1 of the semiconductor laser 2 and the normal line of the incident end face 4 a of the optical fiber 4. The optical system is configured such that θ 12 where θ 1 is the spread angle (half angle) of the incident beam. Between the aspherical lens 3b and the aspherical lens 3c, the laser beam of the semiconductor laser 2 is formed. The optical path of the return light L2 reflected by the incident end face 4a of L1 and the optical fiber 4 is spatially separated.

フィルタ5Aは、非球面レンズ3bと非球面レンズ3cの間に配置され、半導体レーザ2から照射されたレーザ光L1は透過し、光ファイバ4の入射端面4aで反射した戻り光L2は遮断する形状を備える。フィルタ5Aとしては、非球面レンズ3bと非球面レンズ3cの間で、例えば戻り光L2の光路中に板状部材を配置しても良い。また、半導体レーザ2からのレーザ光L1は透過するスリット状の開口部を備えた板状部材を配置しても良い。   The filter 5A is disposed between the aspherical lens 3b and the aspherical lens 3c, transmits the laser light L1 emitted from the semiconductor laser 2, and blocks the return light L2 reflected by the incident end face 4a of the optical fiber 4. Is provided. As the filter 5A, for example, a plate-like member may be arranged in the optical path of the return light L2 between the aspheric lens 3b and the aspheric lens 3c. Further, a plate-like member having a slit-like opening through which the laser light L1 from the semiconductor laser 2 passes may be disposed.

ここで、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2から照射されたレーザ光L1と、光ファイバ4の入射端面4aで反射した戻り光L2のビーム形状は、共に横長の略楕円形状である。このため、非球面レンズ3c及び光ファイバ4の光軸からのずれ量を大きくすることなく、半導体レーザ2からのレーザ光L1と、入射端面4aで反射した戻り光L2が光路分離される。   Here, between the aspherical lens 3b and the aspherical lens 3c, the beam shapes of the laser light L1 irradiated from the semiconductor laser 2 and the return light L2 reflected by the incident end face 4a of the optical fiber 4 are both substantially horizontally long. It is elliptical. For this reason, the laser beam L1 from the semiconductor laser 2 and the return light L2 reflected by the incident end face 4a are optically separated without increasing the amount of deviation from the optical axis of the aspheric lens 3c and the optical fiber 4.

<第1の実施の形態の半導体レーザ装置の動作例>
次に、第1の実施の形態の半導体レーザ装置1Aの動作例について、図1を参照して説明する。
<Operation Example of Semiconductor Laser Device in First Embodiment>
Next, an operation example of the semiconductor laser device 1A according to the first embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となる。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by converting the radiation angle in the vertical direction to about 1/10 by the cylindrical lens 3a.

半導体レーザ2から照射され、シリンドリカルレンズ3aを透過したレーザ光L1は、非球面レンズ3bによって平行光に変換される。非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Aは、半導体レーザ2から照射され、シリンドリカルレンズ3a及び非球面レンズ3bを透過して整形されたレーザ光L1は透過する形状であるので、半導体レーザ2から照射されたレーザ光L1は、フィルタ5Aを透過して非球面レンズ3cに入射する。   Laser light L1 irradiated from the semiconductor laser 2 and transmitted through the cylindrical lens 3a is converted into parallel light by the aspherical lens 3b. The filter 5A disposed between the aspherical lens 3b and the aspherical lens 3c is shaped to transmit the laser beam L1 irradiated from the semiconductor laser 2 and transmitted through the cylindrical lens 3a and the aspherical lens 3b. Therefore, the laser beam L1 emitted from the semiconductor laser 2 passes through the filter 5A and enters the aspheric lens 3c.

上述したように、非球面レンズ3c及び光ファイバ4は、光軸P2が半導体レーザ2の光軸P1に対してY軸に沿って平行にずらして配置されるので、半導体レーザ2から照射されたレーザ光L1は、非球面レンズ3cによって図1(c)に示すように入射角θ2で光ファイバ4の入射端面4aに集光する。 As described above, the aspheric lens 3c and the optical fiber 4 are irradiated from the semiconductor laser 2 because the optical axis P2 is arranged parallel to the optical axis P1 of the semiconductor laser 2 along the Y axis. The laser beam L1 is condensed on the incident end face 4a of the optical fiber 4 by the aspheric lens 3c at an incident angle θ 2 as shown in FIG.

光ファイバ4の入射端面4aに集光したレーザ光L1の大部分は、光ファイバ4の図示しないコアに入射して導波される。これに対して、光ファイバ4の入射端面4aに集光したレーザ光L1の一部は、入射端面4aで反射する。   Most of the laser light L1 collected on the incident end face 4a of the optical fiber 4 is incident on a core (not shown) of the optical fiber 4 and guided there. On the other hand, a part of the laser beam L1 condensed on the incident end face 4a of the optical fiber 4 is reflected by the incident end face 4a.

光ファイバ4の入射端面4aに集光したレーザ光L1は、入射角θ2で入射するので、入射端面4aで反射する戻り光L2は、入射角θ2と同じ反射角で反射する。そして、光ファイバ4への入射ビームの広がり角度θ1(半角)に対して、θ1<θ2としてあるので、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は空間的に分離する。そして、光ファイバ4の入射端面4aで反射した戻り光L2は、フィルタ5Aで遮断され、半導体レーザ2に再入射することが阻止される。 Laser light L1 converged on the entrance end face 4a of the optical fiber 4, is incident at an incident angle theta 2, the return light L2 reflected by the incident end surface 4a is reflected at the same reflection angle as the incident angle theta 2. Since θ 12 with respect to the spread angle θ 1 (half angle) of the incident beam to the optical fiber 4, the laser light L 1 of the semiconductor laser 2 is between the aspheric lens 3 b and the aspheric lens 3 c. The optical path of the return light L2 reflected by the incident end face 4a of the optical fiber 4 is spatially separated. Then, the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked by the filter 5A, and is prevented from entering the semiconductor laser 2 again.

ここで、半導体レーザ2から照射されたレーザ光L1のビーム形状を、シリンドリカルレンズ3a及び非球面レンズ3bで横長の略楕円形状に整形することで、非球面レンズ3c及び光ファイバ4の光軸P1からのずれ量を大きくすることなく、半導体レーザ2のレーザ光L1と、光ファイバ4の入射端面4aで反射した戻り光L2を空間的に分離し、半導体レーザ2のレーザ光L1を遮断することなく、戻り光L2をフィルタ5Aで遮断することができる。   Here, the optical axis P1 of the aspherical lens 3c and the optical fiber 4 is formed by shaping the beam shape of the laser light L1 emitted from the semiconductor laser 2 into a horizontally elongated substantially elliptical shape by the cylindrical lens 3a and the aspherical lens 3b. The laser beam L1 of the semiconductor laser 2 and the return beam L2 reflected by the incident end face 4a of the optical fiber 4 are spatially separated without increasing the deviation amount from the laser beam, and the laser beam L1 of the semiconductor laser 2 is blocked. The return light L2 can be blocked by the filter 5A.

なお、第1の実施の形態の半導体レーザ装置1Aでは、非球面レンズ3c及び光ファイバ4を光軸P1に対して平行にずらして配置しているが、例えば入射端面4aを傾斜させた斜め研磨ファイバを用いれば、非球面レンズ3c及び光ファイバ4の光軸P2をずらさずとも、光路分離が実現可能である。   In the semiconductor laser device 1A of the first embodiment, the aspherical lens 3c and the optical fiber 4 are arranged so as to be shifted parallel to the optical axis P1, but for example, oblique polishing with the incident end face 4a inclined. If a fiber is used, optical path separation can be realized without shifting the aspherical lens 3c and the optical axis P2 of the optical fiber 4.

このような構成によれば、光ファイバ4の入射端面4aで反射した戻り光L2が、再び半導体レーザ2に入射することを阻止することができ、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Aを提供することができる。   According to such a configuration, the return light L2 reflected by the incident end face 4a of the optical fiber 4 can be prevented from entering the semiconductor laser 2 again, and the fluctuation of the oscillation spectrum and surface deterioration of the semiconductor laser 2 can be prevented. It is possible to provide the semiconductor laser device 1A in which occurrence of end face destruction is reduced.

<第2の実施の形態の半導体レーザ装置の構成例>
図2は第2の実施の形態の半導体レーザ装置1Bの一例を示す構成図で、次に、半導体レーザ装置の第2の実施の形態について説明する。ここで、図2は半導体レーザ装置1Bの構成を模式的に示し、図1で説明した半導体レーザ装置1Aと同等の構成を有する部位については、同じ番号を付して説明する。
<Configuration Example of Semiconductor Laser Device of Second Embodiment>
FIG. 2 is a block diagram showing an example of the semiconductor laser device 1B according to the second embodiment. Next, a second embodiment of the semiconductor laser device will be described. Here, FIG. 2 schematically shows the configuration of the semiconductor laser device 1B, and portions having the same configuration as the semiconductor laser device 1A described in FIG.

第2の実施の形態の半導体レーザ装置1Bは、半導体レーザ2から照射されたレーザ光L1は透過し、光ファイバ4を出射端面4b側から入射端面4a側へと導波され、入射端面4aから出射した戻り光L3の一部は遮断するフィルタ5Bを備えて、光ファイバ4の入射端面4aから出射する戻り光L3が半導体レーザ2に入射することを防ぐものである。   In the semiconductor laser device 1B of the second embodiment, the laser light L1 emitted from the semiconductor laser 2 is transmitted, guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side, and from the entrance end face 4a. A part of the emitted return light L3 is provided with a filter 5B for blocking, so that the return light L3 emitted from the incident end face 4a of the optical fiber 4 is prevented from entering the semiconductor laser 2.

半導体レーザ装置1Bでは、シリンドリカルレンズ3a及び非球面レンズ3bと共に、非球面レンズ3c及び光ファイバ4は、半導体レーザ2の光軸P1上に配置される。   In the semiconductor laser device 1B, the aspherical lens 3c and the optical fiber 4 are disposed on the optical axis P1 of the semiconductor laser 2 together with the cylindrical lens 3a and the aspherical lens 3b.

半導体レーザ2から照射されたレーザ光L1は、本例ではシリンドリカルレンズ3a及び非球面レンズ3b,3cで構成される光学素子によって光ファイバ4へ導光及び入射端面4aに集光され、光ファイバ4を入射端面4a側から出射端面4b側へ導波される。この半導体レーザ2から照射され、光ファイバ4を導波される光の一部が、光ファイバ4の出射端面4b側から入射端面4a側へ導波される戻り光L3となる。   In this example, the laser light L1 emitted from the semiconductor laser 2 is guided to the optical fiber 4 and condensed on the incident end face 4a by the optical element constituted by the cylindrical lens 3a and the aspherical lenses 3b and 3c. Is guided from the incident end face 4a side to the outgoing end face 4b side. A part of the light irradiated from the semiconductor laser 2 and guided through the optical fiber 4 becomes return light L3 guided from the exit end face 4b side of the optical fiber 4 to the entrance end face 4a side.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される光としては、半導体レーザ2から照射され、光ファイバ4の入射端面4aから入射して光ファイバ4を導波され、この光ファイバ4の出射端面4b側で反射した戻り光がある。   The light guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side is irradiated from the semiconductor laser 2 and incident from the entrance end face 4a of the optical fiber 4 and guided through the optical fiber 4. There is return light reflected on the emission end face 4 b side of the fiber 4.

また、光ファイバ4と接続された図示しない光ファイバ増幅器等の他装置で反射等することにより、光ファイバ4の出射端面4bに結合した光がある。   Further, there is light coupled to the output end face 4 b of the optical fiber 4 by being reflected by another device such as an optical fiber amplifier (not shown) connected to the optical fiber 4.

光ファイバ4の入射端面4aから出射する戻り光L3は、光ファイバ4のNAで決まる放射角θ3(NA=sin(θ3))で、光ファイバ4の入射端面4aから放射される。この戻り光L3は非球面レンズ3cで平行光に変換され、W2のビーム径をもつ略円形状のパターンとなる。 The return light L3 emitted from the incident end face 4a of the optical fiber 4 is radiated from the incident end face 4a of the optical fiber 4 at a radiation angle θ 3 (NA = sin (θ 3 )) determined by the NA of the optical fiber 4. The return light L3 is converted into parallel light by the aspherical lens 3c and becomes a substantially circular pattern having a beam diameter of W2.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3a及び非球面レンズ3bを透過することで、上述したように横長の略楕円形状のビーム形状となる。この半導体レーザ2のレーザ光L1は、Y軸方向にW1の大きさを持つ。ここで、W1<W2となるように、光学系が構成される。   The laser beam L1 emitted from the semiconductor laser 2 passes through the cylindrical lens 3a and the aspherical lens 3b, so that it becomes a horizontally long, substantially elliptical beam shape as described above. The laser beam L1 of the semiconductor laser 2 has a magnitude of W1 in the Y-axis direction. Here, the optical system is configured such that W1 <W2.

フィルタ5Bは、非球面レンズ3bと非球面レンズ3cの間に配置され、Y軸方向にW3の大きさを有する開口部6が形成される。ここで、フィルタ5Bの開口部6のY軸方向の大きさW3は、図2(b)に示すように、W1<W3<W2となるように構成される。なお、開口部6のX軸方向の大きさは、半導体レーザ2から照射されたレーザ光L1が透過できる大きさとする。   The filter 5B is disposed between the aspherical lens 3b and the aspherical lens 3c, and an opening 6 having a size of W3 is formed in the Y-axis direction. Here, the size W3 of the opening 6 of the filter 5B in the Y-axis direction is configured to satisfy W1 <W3 <W2, as shown in FIG. The size of the opening 6 in the X-axis direction is set so that the laser beam L1 emitted from the semiconductor laser 2 can be transmitted.

これにより、半導体レーザ2から照射されたレーザ光L1は、フィルタ5Bの開口部6を透過する。これに対して、光ファイバ4の入射端面4aから出射した戻り光L3は、フィルタ5Bの開口部6より外側の部分はフィルタ5Bで遮断される。   Thereby, the laser beam L1 emitted from the semiconductor laser 2 passes through the opening 6 of the filter 5B. On the other hand, the return light L3 emitted from the incident end face 4a of the optical fiber 4 is blocked by the filter 5B at the portion outside the opening 6 of the filter 5B.

<第2の実施の形態の半導体レーザ装置の動作例>
次に、第2の実施の形態の半導体レーザ装置1Bの動作例について、図2を参照して説明する。
<Operation Example of Semiconductor Laser Device of Second Embodiment>
Next, an operation example of the semiconductor laser device 1B of the second embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となる。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by converting the radiation angle in the vertical direction to about 1/10 by the cylindrical lens 3a.

半導体レーザ2から照射され、シリンドリカルレンズ3aを透過したレーザ光L1は、非球面レンズ3bによって平行光に変換される。半導体レーザ2から照射され、シリンドリカルレンズ3a及び非球面レンズ3bを透過して整形されたレーザ光L1は、Y軸方向にW1の大きさを持つ。   Laser light L1 irradiated from the semiconductor laser 2 and transmitted through the cylindrical lens 3a is converted into parallel light by the aspherical lens 3b. The laser beam L1 irradiated from the semiconductor laser 2 and shaped through the cylindrical lens 3a and the aspheric lens 3b has a size of W1 in the Y-axis direction.

非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Bは、Y軸方向にW3の大きさを持つ開口部6を備えるので、半導体レーザ2から照射され、非球面レンズ3bを透過したレーザ光L1は、フィルタ5Bの開口部6を透過して非球面レンズ3cに入射する。   The filter 5B disposed between the aspherical lens 3b and the aspherical lens 3c has an opening 6 having a size of W3 in the Y-axis direction. Therefore, the filter 5B is irradiated from the semiconductor laser 2 and transmitted through the aspherical lens 3b. The laser beam L1 passes through the opening 6 of the filter 5B and enters the aspheric lens 3c.

そして、非球面レンズ3cに入射したレーザ光L1は、光ファイバ4の入射端面4a上に集光され、光ファイバ4に入射する。光ファイバ4に入射した光は、入射端面4a側から出射端面4b側へ導波される。光ファイバ4の入射端面4a側から出射端面4b側へ導波される光の一部は、出射端面4bで反射して戻り光となり、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   Then, the laser light L 1 incident on the aspheric lens 3 c is condensed on the incident end face 4 a of the optical fiber 4 and enters the optical fiber 4. The light incident on the optical fiber 4 is guided from the incident end face 4a side to the outgoing end face 4b side. Part of the light guided from the incident end face 4a side to the outgoing end face 4b side of the optical fiber 4 is reflected by the outgoing end face 4b to become return light, and the optical fiber 4 is guided from the outgoing end face 4b side to the incident end face 4a side. Waved.

また、光ファイバ4の出射端面4bから出射された光の一部は、光ファイバ4と接続された図示しない光ファイバ増幅器等の他装置で反射等することにより、光ファイバ4の出射端面4bに結合し、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   Further, a part of the light emitted from the emission end face 4 b of the optical fiber 4 is reflected by another device such as an optical fiber amplifier (not shown) connected to the optical fiber 4 to be reflected on the emission end face 4 b of the optical fiber 4. Then, the optical fiber 4 is guided from the exit end face 4b side to the entrance end face 4a side.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される戻り光L3は、入射端面4aから出射する。光ファイバ4の入射端面4aから出射した戻り光L3は、非球面レンズ3cで平行光に変換される。この戻り光L3のビーム形状は、W2のビーム径をもつ略円形状である。   The return light L3 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side exits from the entrance end face 4a. The return light L3 emitted from the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c. The beam shape of the return light L3 is a substantially circular shape having a beam diameter of W2.

そして、フィルタ5Bの開口部6のY軸方向の大きさW3は、W1<W3<W2となるように構成されるので、光ファイバ4の入射端面4aから出射した戻り光L3は、図2(b)に斜線で示すように、フィルタ5Bの開口部6より外側の部分がフィルタ5Bで遮断される。   Since the size W3 of the opening 6 of the filter 5B in the Y-axis direction is configured to satisfy W1 <W3 <W2, the return light L3 emitted from the incident end face 4a of the optical fiber 4 is shown in FIG. As indicated by hatching in b), the portion outside the opening 6 of the filter 5B is blocked by the filter 5B.

なお、フィルタ5Bの開口部6の内側を透過した戻り光L3は、半導体レーザ2を照射するが、フィルタ5Bが存在しない場合と比較し、その光量は減少している。   The return light L3 transmitted through the inside of the opening 6 of the filter 5B irradiates the semiconductor laser 2, but the amount of light is reduced as compared with the case where the filter 5B is not present.

このような構成によれば、光ファイバ4の出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3の一部を遮断することができ、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Bを提供することができる。   According to such a configuration, a part of the return light L3 that is guided from the exit end face 4b side of the optical fiber 4 to the entrance end face 4a side and exits from the entrance end face 4a can be blocked, and the semiconductor laser 2 oscillates. It is possible to provide the semiconductor laser device 1B in which the occurrence of spectrum fluctuation, surface degradation, and end face destruction is reduced.

<第3の実施の形態の半導体レーザ装置の構成例>
図3は第3の実施の形態の半導体レーザ装置1Cの一例を示す構成図で、次に、半導体レーザ装置の第3の実施の形態について説明する。ここで、図3は半導体レーザ装置1Cの構成を模式的に示し、図1で説明した半導体レーザ装置1Aと同等の構成を有する部位については、同じ番号を付して説明する。
<Configuration Example of Semiconductor Laser Device According to Third Embodiment>
FIG. 3 is a block diagram showing an example of a semiconductor laser device 1C according to the third embodiment. Next, a third embodiment of the semiconductor laser device will be described. Here, FIG. 3 schematically shows the configuration of the semiconductor laser device 1C, and portions having the same configuration as the semiconductor laser device 1A described in FIG.

第3の実施の形態の半導体レーザ装置1Cは、半導体レーザ2から照射された波長のレーザ光L1は透過し、光ファイバ4を出射端面4b側から入射端面4a側へと導波され、入射端面4aから出射した半導体レーザ2のレーザ光L1と異なる波長の戻り光L4は遮断するフィルタ5Cを備えて、光ファイバ4の入射端面4aから出射する戻り光L4が半導体レーザ2に入射することを防ぐものである。   In the semiconductor laser device 1C of the third embodiment, the laser light L1 having the wavelength irradiated from the semiconductor laser 2 is transmitted, guided through the optical fiber 4 from the emission end face 4b side to the incident end face 4a side, and the incident end face A return light L4 having a wavelength different from that of the laser light L1 emitted from the semiconductor laser 2 emitted from 4a is provided with a filter 5C that blocks the return light L4 emitted from the incident end face 4a of the optical fiber 4 from entering the semiconductor laser 2. Is.

半導体レーザ装置1Cでは、シリンドリカルレンズ3a及び非球面レンズ3bと共に、非球面レンズ3c及び光ファイバ4は、半導体レーザ2の光軸P1上に配置される。   In the semiconductor laser device 1 </ b> C, the aspherical lens 3 c and the optical fiber 4 are disposed on the optical axis P <b> 1 of the semiconductor laser 2 together with the cylindrical lens 3 a and the aspherical lens 3 b.

上述したように、半導体レーザ2から照射されたレーザ光L1の一部が、光ファイバ4の出射端面4b側から入射端面4a側へ導波される戻り光となる。   As described above, a part of the laser light L1 emitted from the semiconductor laser 2 becomes return light that is guided from the exit end face 4b side of the optical fiber 4 to the entrance end face 4a side.

ここで、光ファイバ4を出射端面4b側から入射端面4a側へ導波される光は、半導体レーザ装置1Cの半導体レーザ2で照射されるレーザ光L1の波長と異なる場合がある。   Here, the light guided through the optical fiber 4 from the emission end face 4b side to the incident end face 4a side may be different from the wavelength of the laser light L1 irradiated by the semiconductor laser 2 of the semiconductor laser device 1C.

例えば、半導体レーザ装置1Cの光ファイバ4にグレーティングミラーを備えた図示しない光ファイバ増幅器を接続し、半導体レーザ2の発振波長λ1のレーザ光L1を結晶の励起に使用して、結晶の発振波長λ2(≠λ1)の光を出力する構成とした装置がある。   For example, an optical fiber amplifier (not shown) having a grating mirror is connected to the optical fiber 4 of the semiconductor laser device 1C, and the laser light L1 having the oscillation wavelength λ1 of the semiconductor laser 2 is used for crystal excitation, so that the crystal oscillation wavelength λ2 There is an apparatus configured to output light of (≠ λ1).

このような装置では、パルス出力で数kw級の大出力で光を出力できるものがあり、各種加工に使用される。しかし、結晶の発振波長λ2の光が戻り光L4となって光ファイバ4の出射端面4bに結合し、光ファイバ4を出射端面4b側から入射端面4a側へ導波されて半導体レーザ装置1Cに入射すると、戻り光L4は大出力であるため、半導体レーザ2に大きな悪影響を与える。   Some of these apparatuses can output light with a pulse output and a large output of several kW, and are used for various types of processing. However, the light having the oscillation wavelength λ2 of the crystal becomes return light L4 and is coupled to the emission end face 4b of the optical fiber 4, and the optical fiber 4 is guided from the emission end face 4b side to the incident end face 4a side to the semiconductor laser device 1C. When incident, the return light L4 has a large output and thus has a large adverse effect on the semiconductor laser 2.

このため、本例の半導体レーザ装置1Cでは、非球面レンズ3bと非球面レンズ3cの間に、フィルタ5Cを光軸P1に対し斜めに配置する。フィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過し、光ファイバ4から出射された波長λ2の戻り光L4は反射する波長選択フィルタである。   For this reason, in the semiconductor laser device 1C of this example, the filter 5C is disposed obliquely with respect to the optical axis P1 between the aspheric lens 3b and the aspheric lens 3c. The filter 5C is a wavelength selection filter that transmits the laser light L1 with the wavelength λ1 emitted from the semiconductor laser 2 and reflects the return light L4 with the wavelength λ2 emitted from the optical fiber 4.

<第3の実施の形態の半導体レーザ装置の動作例>
次に、第3の実施の形態の半導体レーザ装置1Cの動作例について、図3を参照して説明する。
<Operation Example of Semiconductor Laser Device in Third Embodiment>
Next, an operation example of the semiconductor laser device 1C according to the third embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となる。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by converting the radiation angle in the vertical direction to about 1/10 by the cylindrical lens 3a.

半導体レーザ2から照射され、シリンドリカルレンズ3aを透過したレーザ光L1は、非球面レンズ3bによって平行光に変換される。   Laser light L1 irradiated from the semiconductor laser 2 and transmitted through the cylindrical lens 3a is converted into parallel light by the aspherical lens 3b.

非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過するので、半導体レーザ2から照射され、シリンドリカルレンズ3a及び非球面レンズ3bを透過して整形されたレーザ光L1は、フィルタ5Cを透過して非球面レンズ3cに入射する。   The filter 5C disposed between the aspherical lens 3b and the aspherical lens 3c transmits the laser light L1 having the wavelength λ1 emitted from the semiconductor laser 2, so that it is emitted from the semiconductor laser 2, and the cylindrical lens 3a and the aspherical surface are emitted. The laser beam L1 shaped by passing through the lens 3b passes through the filter 5C and enters the aspheric lens 3c.

そして、非球面レンズ3cに入射したレーザ光L1は、光ファイバ4の入射端面4a上に集光され、光ファイバ4に入射する。光ファイバ4に入射した光は、入射端面4a側から出射端面4b側へ導波される。光ファイバ4の入射端面4a側から出射端面4b側へ導波された光の一部は、光ファイバ4と接続された図示しない光ファイバ増幅器等の他装置で反射等することにより、光ファイバ4の出射端面4bに結合し、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   Then, the laser light L 1 incident on the aspheric lens 3 c is condensed on the incident end face 4 a of the optical fiber 4 and enters the optical fiber 4. The light incident on the optical fiber 4 is guided from the incident end face 4a side to the outgoing end face 4b side. A part of the light guided from the incident end face 4 a side to the outgoing end face 4 b side of the optical fiber 4 is reflected by another device such as an optical fiber amplifier (not shown) connected to the optical fiber 4, thereby the optical fiber 4. The optical fiber 4 is guided from the exit end face 4b side to the entrance end face 4a side.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される戻り光L4は、入射端面4aから出射する。光ファイバ4の入射端面4aから出射した戻り光L4は、非球面レンズ3cで平行光に変換される。この戻り光L4のビーム形状は、略円形状である。   The return light L4 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side exits from the entrance end face 4a. The return light L4 emitted from the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c. The beam shape of the return light L4 is substantially circular.

ここで、半導体レーザ装置1Cの光ファイバ4に光ファイバ増幅器等が接続されている場合、光ファイバ増幅器で半導体レーザ2の波長λ1の光を波長λ2の光に変換するので、光ファイバ増幅器で発生した戻り光L4は、波長λ2の光となる。   Here, when an optical fiber amplifier or the like is connected to the optical fiber 4 of the semiconductor laser device 1C, the optical fiber amplifier converts the light with the wavelength λ1 of the semiconductor laser 2 into the light with the wavelength λ2. The returned light L4 is light having a wavelength λ2.

フィルタ5Cは、波長λ2の光は透過しないので、光ファイバ4の入射端面4aから出射した戻り光L4はフィルタ5Cで遮断され、半導体レーザ2には入射しない。また、フィルタ5Cは光ファイバ4の光軸に対して傾斜しているので、フィルタ5Cで遮断され反射した戻り光L4は、再び光ファイバ4の入射端面4aに入射しない。   Since the filter 5C does not transmit light having the wavelength λ2, the return light L4 emitted from the incident end face 4a of the optical fiber 4 is blocked by the filter 5C and does not enter the semiconductor laser 2. Further, since the filter 5C is inclined with respect to the optical axis of the optical fiber 4, the return light L4 blocked and reflected by the filter 5C does not enter the incident end face 4a of the optical fiber 4 again.

このような構成によれば、光ファイバ4を出射端面4b側から入射端面4a側へ導波された半導体レーザ2の発振波長以外の戻り光L4は、半導体レーザ2に入射しないので、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Cを提供することができる。   According to such a configuration, the return light L4 other than the oscillation wavelength of the semiconductor laser 2 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side does not enter the semiconductor laser 2, and thus the semiconductor laser 2 Thus, it is possible to provide the semiconductor laser device 1C in which fluctuations in the oscillation spectrum, surface degradation, and occurrence of end face destruction are reduced.

<第4の実施の形態の半導体レーザ装置の構成例>
図4は第4の実施の形態の半導体レーザ装置1Dの一例を示す構成図で、次に、半導体レーザ装置の第4の実施の形態について説明する。第4の実施の形態の半導体レーザ装置1Dは、図1で説明した第1の実施の形態の半導体レーザ装置1Aのフィルタ5Aと、図2で説明した第2の実施の形態の半導体レーザ装置1Bのフィルタ5Bを備えて、光ファイバ4の入射端面4aで反射した戻り光L2と、光ファイバ4を出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3の双方を遮断できるようにしたものである。
<Configuration Example of Semiconductor Laser Device According to Fourth Embodiment>
FIG. 4 is a block diagram showing an example of a semiconductor laser device 1D according to the fourth embodiment. Next, a fourth embodiment of the semiconductor laser device will be described. The semiconductor laser device 1D of the fourth embodiment includes the filter 5A of the semiconductor laser device 1A of the first embodiment described in FIG. 1 and the semiconductor laser device 1B of the second embodiment described in FIG. Of the return light L2 reflected by the incident end face 4a of the optical fiber 4, and the return light L3 guided from the output end face 4b side to the incident end face 4a side and emitted from the incident end face 4a. Both can be cut off.

ここで、図4は半導体レーザ装置1Dの構成を模式的に示し、図1で説明した半導体レーザ装置1A及び図2で説明した半導体レーザ装置1Bと同等の構成を有する部位については、同じ番号を付して説明する。   Here, FIG. 4 schematically shows the configuration of the semiconductor laser device 1D, and parts having the same configuration as the semiconductor laser device 1A described in FIG. 1 and the semiconductor laser device 1B described in FIG. A description will be given.

半導体レーザ装置1Dは、第1の実施の形態の半導体レーザ装置1Aと同様に、シリンドリカルレンズ3a及び非球面レンズ3bは、半導体レーザ2の光軸P1上に配置され、非球面レンズ3c及び光ファイバ4は、光軸P2が半導体レーザ2の光軸P1に対して平行にずらして配置される。   In the semiconductor laser device 1D, similarly to the semiconductor laser device 1A of the first embodiment, the cylindrical lens 3a and the aspheric lens 3b are disposed on the optical axis P1 of the semiconductor laser 2, and the aspheric lens 3c and the optical fiber. 4 is arranged such that the optical axis P2 is shifted parallel to the optical axis P1 of the semiconductor laser 2.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aで横長の略楕円形状のビーム形状に整形され、非球面レンズ3b及び非球面レンズ3cによって光ファイバ4へ導光されて、図4(b)に示すように、入射角θ2で入射端面4aに入射するように構成される。 The laser light L1 emitted from the semiconductor laser 2 is shaped into a horizontally long and substantially elliptical beam shape by the cylindrical lens 3a, and is guided to the optical fiber 4 by the aspherical lens 3b and the aspherical lens 3c. As shown to b), it is comprised so that it may inject into the incident end surface 4a with incident angle (theta) 2 .

入射ビームの広がり角度(半角)をθ1とすると、θ1<θ2となるように光学系を構成してあり、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は、空間的に分離する。 The optical system is configured such that θ 12 where θ 1 is the spread angle (half angle) of the incident beam. Between the aspherical lens 3b and the aspherical lens 3c, the laser beam of the semiconductor laser 2 is formed. The optical path of the return light L2 reflected by L1 and the incident end face 4a of the optical fiber 4 is spatially separated.

フィルタ5Aは、非球面レンズ3bと非球面レンズ3cの間で光路分離された半導体レーザ2のレーザ光L1は透過し、光ファイバ4の入射端面4aで反射した戻り光L2は遮断する形状を有する。   The filter 5A has a shape in which the laser light L1 of the semiconductor laser 2 separated from the optical path between the aspherical lens 3b and the aspherical lens 3c is transmitted, and the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked. .

また、光ファイバ4を導波されて、出射端面4bで反射する等によって、光ファイバ4を出射端面4b側から入射端面4aへ導波される戻り光L3は、入射端面4aから放射角θ3で出射する。 Further, the return light L3 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a, for example, by being guided by the optical fiber 4 and reflected by the exit end face 4b, is emitted from the entrance end face 4a at the radiation angle θ 3. Exit with

光ファイバ4を出射端面4b側から入射端面4aへ導波されて、入射端面4aから出射し、非球面レンズ3cで平行光に変換された戻り光L3のビーム径をW2とする。また、半導体レーザ2から照射され、シリンドリカルレンズ3aで整形され、非球面レンズ3bで平行光に変換されたレーザ光L1のY軸方向のビーム径をW1とする。半導体レーザ装置1Dは、第2の実施の形態の半導体レーザ装置1Bと同様に、W1<W2となるように、光学系が構成される。   The beam diameter of the return light L3, which is guided from the exit end face 4b side to the entrance end face 4a, exits from the entrance end face 4a, and is converted into parallel light by the aspheric lens 3c, is W2. The beam diameter in the Y-axis direction of the laser beam L1 irradiated from the semiconductor laser 2, shaped by the cylindrical lens 3a, and converted into parallel light by the aspheric lens 3b is defined as W1. The semiconductor laser device 1D has an optical system configured to satisfy W1 <W2, similarly to the semiconductor laser device 1B of the second embodiment.

そして、フィルタ5Bは、開口部6のY軸方向の大きさW3が、W1<W3<W2となるように構成される。   The filter 5B is configured such that the size W3 of the opening 6 in the Y-axis direction satisfies W1 <W3 <W2.

<第4の実施の形態の半導体レーザ装置の動作例>
次に、第4の実施の形態の半導体レーザ装置1Dの動作例について、図4等を参照して説明する。
<Operation Example of Semiconductor Laser Device of Fourth Embodiment>
Next, an operation example of the semiconductor laser device 1D according to the fourth embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となり、非球面レンズ3bによって平行光に変換される。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by the vertical radiation angle being converted to about 1/10 by the cylindrical lens 3a, and parallel by the aspherical lens 3b. Converted to light.

非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Aは、半導体レーザ2から照射され、シリンドリカルレンズ3aで整形され非球面レンズ3bで平行光に変換されたレーザ光L1は透過する形状であるので、半導体レーザ2から照射されたレーザ光L1は、フィルタ5Aを透過する。   The filter 5A disposed between the aspherical lens 3b and the aspherical lens 3c is shaped to transmit the laser light L1 irradiated from the semiconductor laser 2, shaped by the cylindrical lens 3a and converted into parallel light by the aspherical lens 3b. Therefore, the laser beam L1 emitted from the semiconductor laser 2 passes through the filter 5A.

また、非球面レンズ3bで平行光に変換されたレーザ光L1のY軸方向のビーム径をW1とすると、非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Bは、Y軸方向にW3(>W1)の大きさを持つ開口部6を備えるので、フィルタ5Aを透過したレーザ光L1は、フィルタ5Bの開口部6を透過して非球面レンズ3cに入射する。   Further, when the beam diameter in the Y-axis direction of the laser light L1 converted into parallel light by the aspheric lens 3b is W1, the filter 5B disposed between the aspheric lens 3b and the aspheric lens 3c has a Y-axis direction. Is provided with an opening 6 having a size of W3 (> W1), the laser light L1 transmitted through the filter 5A passes through the opening 6 of the filter 5B and enters the aspherical lens 3c.

非球面レンズ3c及び光ファイバ4は、半導体レーザ2の光軸P1に対して平行にずらして配置されるので、半導体レーザ2から照射されたレーザ光L1は、非球面レンズ3cによって入射角θ2で光ファイバ4の入射端面4aに集光する。 Since the aspheric lens 3c and the optical fiber 4 are arranged to be shifted parallel to the optical axis P1 of the semiconductor laser 2, the laser light L1 emitted from the semiconductor laser 2 is incident on the incident angle θ 2 by the aspheric lens 3c. The light is condensed on the incident end face 4 a of the optical fiber 4.

光ファイバ4の入射端面4aに集光したレーザ光L1の大部分は、光ファイバ4の図示しないコアに入射して導波される。これに対して、光ファイバ4の入射端面4aに集光したレーザ光L1の一部は、入射端面4aで反射する。   Most of the laser light L1 collected on the incident end face 4a of the optical fiber 4 is incident on a core (not shown) of the optical fiber 4 and guided there. On the other hand, a part of the laser beam L1 condensed on the incident end face 4a of the optical fiber 4 is reflected by the incident end face 4a.

光ファイバ4の入射端面4aに集光したレーザ光L1は、入射角θ2で入射するので、入射端面4aで反射する戻り光L2は、入射角θ2と同じ反射角で反射する。そして、光ファイバ4への入射ビームの広がり角度θ1(半角)に対して、θ1<θ2としてあるので、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は空間的に分離する。そして、光ファイバ4の入射端面4aで反射した戻り光L2は、フィルタ5Aで遮断され、半導体レーザ2に再入射することが阻止される。 Laser light L1 converged on the entrance end face 4a of the optical fiber 4, is incident at an incident angle theta 2, the return light L2 reflected by the incident end surface 4a is reflected at the same reflection angle as the incident angle theta 2. Since θ 12 with respect to the spread angle θ 1 (half angle) of the incident beam to the optical fiber 4, the laser light L 1 of the semiconductor laser 2 is between the aspheric lens 3 b and the aspheric lens 3 c. The optical path of the return light L2 reflected by the incident end face 4a of the optical fiber 4 is spatially separated. Then, the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked by the filter 5A, and is prevented from entering the semiconductor laser 2 again.

光ファイバ4に入射した光は、入射端面4a側から出射端面4b側へ導波される。光ファイバ4の入射端面4a側から出射端面4b側へ導波される光の一部は、出射端面4bで反射する等によって戻り光となり、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   The light incident on the optical fiber 4 is guided from the incident end face 4a side to the outgoing end face 4b side. A part of the light guided from the incident end face 4a side to the outgoing end face 4b side of the optical fiber 4 becomes return light by being reflected by the outgoing end face 4b and the like, and the optical fiber 4 is moved from the outgoing end face 4b side to the incident end face 4a side. Waveguided.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される戻り光L3は、入射端面4aから出射する。光ファイバ4の入射端面4aから出射した戻り光L3は、非球面レンズ3cで平行光に変換される。   The return light L3 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side exits from the entrance end face 4a. The return light L3 emitted from the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c.

上述したように、非球面レンズ3cで平行光に変換された戻り光L3のビーム径をW2とすると、フィルタ5Bの開口部6のY軸方向の大きさW3は、W3<W2となるように構成されるので、光ファイバ4の入射端面4aから出射した戻り光L3は、フィルタ5Bの開口部6より外側の部分がフィルタ5Bで遮断される。   As described above, when the beam diameter of the return light L3 converted into parallel light by the aspherical lens 3c is W2, the size W3 in the Y-axis direction of the opening 6 of the filter 5B is such that W3 <W2. Thus, the return light L3 emitted from the incident end face 4a of the optical fiber 4 is blocked by the filter 5B at the portion outside the opening 6 of the filter 5B.

なお、フィルタ5Bの開口部6の内側を透過した戻り光L3は、一部がフィルタ5Aで遮断される。これにより、半導体レーザ2を照射する戻り光の光量は更に減少する。   A part of the return light L3 transmitted through the opening 6 of the filter 5B is blocked by the filter 5A. Thereby, the light quantity of the return light which irradiates the semiconductor laser 2 further decreases.

このような構成によれば、光ファイバ4の入射端面4aで反射した戻り光L2が、再び半導体レーザ2に入射することを阻止することができる。また、光ファイバ4の出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3の一部を遮断することができる。これにより、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Dを提供することができる。   According to such a configuration, it is possible to prevent the return light L2 reflected by the incident end face 4a of the optical fiber 4 from entering the semiconductor laser 2 again. In addition, a part of the return light L3 that is guided from the exit end face 4b side of the optical fiber 4 to the entrance end face 4a side and exits from the entrance end face 4a can be blocked. Thereby, it is possible to provide the semiconductor laser device 1D in which the fluctuation of the oscillation spectrum of the semiconductor laser 2, the surface degradation, and the occurrence of end face destruction are reduced.

なお、第4の実施の形態の半導体レーザ装置1Dでは、非球面レンズ3c及び光ファイバ4を光軸P1に対して平行にずらして配置しているが、例えば入射端面4aを傾斜させた斜め研磨ファイバを用いれば、光軸をずらさずとも、光路分離が実現可能である。また、フィルタ5Aとフィルタ5Bを一体で構成しても良い。   In the semiconductor laser device 1D of the fourth embodiment, the aspherical lens 3c and the optical fiber 4 are arranged so as to be shifted in parallel with the optical axis P1, but for example, oblique polishing with the incident end face 4a inclined. If a fiber is used, optical path separation can be realized without shifting the optical axis. Further, the filter 5A and the filter 5B may be configured integrally.

<第5の実施の形態の半導体レーザ装置の構成例>
図5は第5の実施の形態の半導体レーザ装置1Eの一例を示す構成図で、次に、半導体レーザ装置の第5の実施の形態について説明する。第5の実施の形態の半導体レーザ装置1Eは、図1で説明した第1の実施の形態の半導体レーザ装置1Aのフィルタ5Aと、図3で説明した第3の実施の形態の半導体レーザ装置1Cのフィルタ5Cを備えて、光ファイバ4の入射端面4aで反射した戻り光L2と、半導体レーザ2の発振波長と異なる波長の戻り光L4の双方を遮断できるようにしたものである。
<Configuration Example of Semiconductor Laser Device of Fifth Embodiment>
FIG. 5 is a block diagram showing an example of a semiconductor laser device 1E according to the fifth embodiment. Next, a fifth embodiment of the semiconductor laser device will be described. The semiconductor laser device 1E of the fifth embodiment includes the filter 5A of the semiconductor laser device 1A of the first embodiment described in FIG. 1 and the semiconductor laser device 1C of the third embodiment described in FIG. The filter 5C is provided so that both the return light L2 reflected by the incident end face 4a of the optical fiber 4 and the return light L4 having a wavelength different from the oscillation wavelength of the semiconductor laser 2 can be blocked.

ここで、図5は半導体レーザ装置1Eの構成を模式的に示し、図1で説明した半導体レーザ装置1A及び図3で説明した半導体レーザ装置1Cと同等の構成を有する部位については、同じ番号を付して説明する。   Here, FIG. 5 schematically shows the configuration of the semiconductor laser device 1E, and the same reference numerals are given to parts having the same configuration as the semiconductor laser device 1A described in FIG. 1 and the semiconductor laser device 1C described in FIG. A description will be given.

半導体レーザ装置1Eは、第1の実施の形態の半導体レーザ装置1Aと同様に、シリンドリカルレンズ3a及び非球面レンズ3bは、半導体レーザ2の光軸P1上に配置され、非球面レンズ3c及び光ファイバ4は、光軸P2が半導体レーザ2の光軸P1に対して平行にずらして配置される。   In the semiconductor laser device 1E, similarly to the semiconductor laser device 1A of the first embodiment, the cylindrical lens 3a and the aspheric lens 3b are arranged on the optical axis P1 of the semiconductor laser 2, and the aspheric lens 3c and the optical fiber. 4 is arranged such that the optical axis P2 is shifted parallel to the optical axis P1 of the semiconductor laser 2.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aで横長の略楕円形状のビーム形状に整形され、非球面レンズ3b及び非球面レンズ3cによって光ファイバ4へ導光されて、図4(b)で説明したように、入射角θ2で入射端面4aに入射するように構成される。 The laser light L1 emitted from the semiconductor laser 2 is shaped into a horizontally long and substantially elliptical beam shape by the cylindrical lens 3a, and is guided to the optical fiber 4 by the aspherical lens 3b and the aspherical lens 3c. as described in b), configured to be incident on the incident end surface 4a at an incident angle theta 2.

入射ビームの広がり角度(半角)をθ1とすると、θ1<θ2となるように光学系を構成してあり、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は、空間的に分離する。 The optical system is configured such that θ 12 where θ 1 is the spread angle (half angle) of the incident beam. Between the aspherical lens 3b and the aspherical lens 3c, the laser beam of the semiconductor laser 2 is formed. The optical path of the return light L2 reflected by L1 and the incident end face 4a of the optical fiber 4 is spatially separated.

フィルタ5Aは、非球面レンズ3bと非球面レンズ3cの間で光路分離された半導体レーザ2のレーザ光L1は透過し、光ファイバ4の入射端面4aで反射した戻り光L2は遮断する形状を有する。   The filter 5A has a shape in which the laser light L1 of the semiconductor laser 2 separated from the optical path between the aspherical lens 3b and the aspherical lens 3c is transmitted, and the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked. .

また、フィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過し、波長λ1と異なる波長の光は反射する波長選択フィルタで、光ファイバ4の光軸P2に対して斜めに配置される。   The filter 5C is a wavelength selection filter that transmits the laser light L1 with the wavelength λ1 emitted from the semiconductor laser 2 and reflects the light with a wavelength different from the wavelength λ1, and is inclined with respect to the optical axis P2 of the optical fiber 4. Be placed.

<第5の実施の形態の半導体レーザ装置の動作例>
次に、第5の実施の形態の半導体レーザ装置1Eの動作例について、図5等を参照して説明する。
<Operation Example of Semiconductor Laser Device in Fifth Embodiment>
Next, an operation example of the semiconductor laser device 1E according to the fifth embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となり、非球面レンズ3bによって平行光に変換される。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by the vertical radiation angle being converted to about 1/10 by the cylindrical lens 3a, and parallel by the aspherical lens 3b. Converted to light.

非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過するので、半導体レーザ2から照射されたレーザ光L1は、フィルタ5Cを透過する。   Since the filter 5C disposed between the aspherical lens 3b and the aspherical lens 3c transmits the laser light L1 having the wavelength λ1 emitted from the semiconductor laser 2, the laser light L1 emitted from the semiconductor laser 2 is filtered. It passes through 5C.

また、フィルタ5Aは、半導体レーザ2から照射され、シリンドリカルレンズ3aで整形され非球面レンズ3bで平行光に変換されたレーザ光L1は透過する形状であるので、フィルタ5Cを透過したレーザ光L1は、フィルタ5Aを透過して非球面レンズ3cに入射する。   The filter 5A is shaped to transmit the laser light L1 irradiated from the semiconductor laser 2, shaped by the cylindrical lens 3a and converted into parallel light by the aspherical lens 3b, and therefore the laser light L1 transmitted through the filter 5C is transmitted through the filter 5A. The light passes through the filter 5A and enters the aspherical lens 3c.

非球面レンズ3c及び光ファイバ4は、半導体レーザ2の光軸P1に対して平行にずらして配置されるので、半導体レーザ2から照射されたレーザ光L1は、非球面レンズ3cによって入射角θ2で光ファイバ4の入射端面4aに集光する。 Since the aspheric lens 3c and the optical fiber 4 are arranged to be shifted parallel to the optical axis P1 of the semiconductor laser 2, the laser light L1 emitted from the semiconductor laser 2 is incident on the incident angle θ 2 by the aspheric lens 3c. The light is condensed on the incident end face 4 a of the optical fiber 4.

光ファイバ4の入射端面4aに集光したレーザ光L1の大部分は、光ファイバ4の図示しないコアに入射して導波される。これに対して、光ファイバ4の入射端面4aに集光したレーザ光L1の一部は、入射端面4aで反射する。   Most of the laser light L1 collected on the incident end face 4a of the optical fiber 4 is incident on a core (not shown) of the optical fiber 4 and guided there. On the other hand, a part of the laser beam L1 condensed on the incident end face 4a of the optical fiber 4 is reflected by the incident end face 4a.

光ファイバ4の入射端面4aに集光したレーザ光L1は、入射角θ2で入射するので、入射端面4aで反射する戻り光L2は、入射角θ2と同じ反射角で反射する。そして、光ファイバ4への入射ビームの広がり角度θ1(半角)に対して、θ1<θ2としてあるので、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は空間的に分離する。そして、光ファイバ4の入射端面4aで反射した戻り光L2は、フィルタ5Aで遮断され、半導体レーザ2に再入射することが阻止される。 Laser light L1 converged on the entrance end face 4a of the optical fiber 4, is incident at an incident angle theta 2, the return light L2 reflected by the incident end surface 4a is reflected at the same reflection angle as the incident angle theta 2. Since θ 12 with respect to the spread angle θ 1 (half angle) of the incident beam to the optical fiber 4, the laser light L 1 of the semiconductor laser 2 is between the aspheric lens 3 b and the aspheric lens 3 c. The optical path of the return light L2 reflected by the incident end face 4a of the optical fiber 4 is spatially separated. Then, the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked by the filter 5A, and is prevented from entering the semiconductor laser 2 again.

光ファイバ4に入射した光は、入射端面4a側から出射端面4b側へ導波される。光ファイバ4の入射端面4a側から出射端面4b側へ導波された光の一部は、光ファイバ4と接続された図示しない光ファイバ増幅器等の他装置で反射等することにより、光ファイバ4の出射端面4bに結合し、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   The light incident on the optical fiber 4 is guided from the incident end face 4a side to the outgoing end face 4b side. A part of the light guided from the incident end face 4 a side to the outgoing end face 4 b side of the optical fiber 4 is reflected by another device such as an optical fiber amplifier (not shown) connected to the optical fiber 4, thereby the optical fiber 4. The optical fiber 4 is guided from the exit end face 4b side to the entrance end face 4a side.

ここで、半導体レーザ装置1Eの光ファイバ4に光ファイバ増幅器が接続されている場合、光ファイバ増幅器で半導体レーザ2の波長λ1の光を波長λ2の光に変換するので、光ファイバ増幅器で発生した戻り光は、波長λ2の光となる。   Here, when an optical fiber amplifier is connected to the optical fiber 4 of the semiconductor laser device 1E, the optical fiber amplifier converts the light with the wavelength λ1 of the semiconductor laser 2 into the light with the wavelength λ2, so that the optical fiber amplifier generates the optical fiber amplifier. The return light becomes light of wavelength λ2.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される戻り光L4は、入射端面4aから出射する。光ファイバ4の入射端面4aから出射した戻り光L4は、非球面レンズ3cで平行光に変換される。   The return light L4 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side exits from the entrance end face 4a. The return light L4 emitted from the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c.

非球面レンズ3cで平行光に変換された戻り光L4の一部は、フィルタ5Aで遮断される。また、フィルタ5Cは、波長λ2の光は透過しないので、フィルタ5Aを透過した波長λ2の戻り光L4はフィルタ5Cで遮断され、半導体レーザ2には入射しない。更に、フィルタ5Cは光ファイバ4の光軸P2に対して傾斜しているので、フィルタ5Cで遮断され反射した戻り光L4は、再び光ファイバ4の入射端面4aに入射しない。   Part of the return light L4 converted into parallel light by the aspheric lens 3c is blocked by the filter 5A. Further, since the filter 5C does not transmit the light having the wavelength λ2, the return light L4 having the wavelength λ2 transmitted through the filter 5A is blocked by the filter 5C and does not enter the semiconductor laser 2. Furthermore, since the filter 5C is inclined with respect to the optical axis P2 of the optical fiber 4, the return light L4 blocked and reflected by the filter 5C does not enter the incident end face 4a of the optical fiber 4 again.

このような構成によれば、光ファイバ4の入射端面4aで反射した戻り光L2が、再び半導体レーザ2に入射することを阻止することができる。また、光ファイバ4を出射端面4b側から入射端面4a側へ導波された半導体レーザ2の発振波長以外の戻り光L4は、半導体レーザ2に入射しない。これにより、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Eを提供することができる。   According to such a configuration, it is possible to prevent the return light L2 reflected by the incident end face 4a of the optical fiber 4 from entering the semiconductor laser 2 again. Further, the return light L4 other than the oscillation wavelength of the semiconductor laser 2 guided through the optical fiber 4 from the emission end face 4b side to the incident end face 4a side does not enter the semiconductor laser 2. As a result, it is possible to provide the semiconductor laser device 1E in which the fluctuation of the oscillation spectrum of the semiconductor laser 2, the surface deterioration, and the occurrence of end face destruction are reduced.

なお、第5の実施の形態の半導体レーザ装置1Eでは、非球面レンズ3c及び光ファイバ4を光軸P1に対して平行にずらして配置しているが、例えば入射端面4aを傾斜させた斜め研磨ファイバを用いれば、光軸をずらさずとも、光路分離が実現可能である。   In the semiconductor laser device 1E of the fifth embodiment, the aspherical lens 3c and the optical fiber 4 are arranged so as to be shifted parallel to the optical axis P1, but for example, oblique polishing with the incident end face 4a inclined. If a fiber is used, optical path separation can be realized without shifting the optical axis.

<第6の実施の形態の半導体レーザ装置の構成例>
図6は第6の実施の形態の半導体レーザ装置1Fの一例を示す構成図で、次に、半導体レーザ装置の第6の実施の形態について説明する。第6の実施の形態の半導体レーザ装置1Fは、図2で説明した第2の実施の形態の半導体レーザ装置1Bのフィルタ5Bと、図3で説明した第3の実施の形態の半導体レーザ装置1Cのフィルタ5Cを備えて、光ファイバ4を出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3と、半導体レーザ2の発振波長と異なる波長の戻り光L4の双方を遮断できるようにしたものである。
<Configuration Example of Semiconductor Laser Device in Sixth Embodiment>
FIG. 6 is a block diagram showing an example of a semiconductor laser device 1F according to the sixth embodiment. Next, a sixth embodiment of the semiconductor laser device will be described. The semiconductor laser device 1F of the sixth embodiment includes the filter 5B of the semiconductor laser device 1B of the second embodiment described in FIG. 2 and the semiconductor laser device 1C of the third embodiment described in FIG. The return light L3 guided from the exit end face 4b side to the entrance end face 4a side and emitted from the entrance end face 4a and the return light L4 having a wavelength different from the oscillation wavelength of the semiconductor laser 2 are provided. Both can be cut off.

ここで、図6は半導体レーザ装置1Fの構成を模式的に示し、図2で説明した半導体レーザ装置1B及び図3で説明した半導体レーザ装置1Cと同等の構成を有する部位については、同じ番号を付して説明する。   Here, FIG. 6 schematically shows the configuration of the semiconductor laser device 1F, and parts having the same configuration as the semiconductor laser device 1B described in FIG. 2 and the semiconductor laser device 1C described in FIG. A description will be given.

半導体レーザ装置1Fは、第2の実施の形態の半導体レーザ装置1Bと同様に、シリンドリカルレンズ3a及び非球面レンズ3bと共に、非球面レンズ3c及び光ファイバ4は、半導体レーザ2の光軸P1上に配置される。   Similar to the semiconductor laser device 1B of the second embodiment, the semiconductor laser device 1F has the aspheric lens 3c and the optical fiber 4 on the optical axis P1 of the semiconductor laser 2 together with the cylindrical lens 3a and the aspheric lens 3b. Be placed.

上述したように、半導体レーザ2から照射され、光ファイバ4に入射したレーザ光L1の一部は、光ファイバ4の出射端面4bで反射する等によって戻り光となり、出射端面4b側から入射端面4aへ導波され、入射端面4aから出射する。   As described above, a part of the laser light L1 irradiated from the semiconductor laser 2 and incident on the optical fiber 4 becomes return light by being reflected by the emission end face 4b of the optical fiber 4, and the like, and enters the incident end face 4a from the emission end face 4b side. And is emitted from the incident end face 4a.

光ファイバ4の入射端面4aから出射し、非球面レンズ3cで平行光に変換された戻り光L3(L4)のビーム径をW2とする。また、半導体レーザ2から照射され、シリンドリカルレンズ3aで整形され、非球面レンズ3bで平行光に変換されたレーザ光L1のY軸方向のビーム径をW1とする。半導体レーザ装置1Fは、第2の実施の形態の半導体レーザ装置1Bと同様に、W1<W2となるように、光学系が構成される。   The beam diameter of the return light L3 (L4) emitted from the incident end face 4a of the optical fiber 4 and converted into parallel light by the aspherical lens 3c is W2. The beam diameter in the Y-axis direction of the laser beam L1 irradiated from the semiconductor laser 2, shaped by the cylindrical lens 3a, and converted into parallel light by the aspheric lens 3b is defined as W1. As in the semiconductor laser device 1B of the second embodiment, the semiconductor laser device 1F has an optical system configured to satisfy W1 <W2.

そして、フィルタ5Bは、開口部6のY軸方向の大きさW3が、W1<W3<W2となるように構成される。   The filter 5B is configured such that the size W3 of the opening 6 in the Y-axis direction satisfies W1 <W3 <W2.

また、フィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過し、波長λ1と異なる波長の光は反射する波長選択フィルタで、光ファイバ4の光軸P1に対して斜めに配置される。   The filter 5C is a wavelength selection filter that transmits the laser light L1 with the wavelength λ1 emitted from the semiconductor laser 2 and reflects the light with a wavelength different from the wavelength λ1, and is inclined with respect to the optical axis P1 of the optical fiber 4. Be placed.

<第6の実施の形態の半導体レーザ装置の動作例>
次に、第6の実施の形態の半導体レーザ装置1Fの動作例について、図6等を参照して説明する。
<Operation Example of Semiconductor Laser Device of Sixth Embodiment>
Next, an operation example of the semiconductor laser device 1F according to the sixth embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となり、非球面レンズ3bによって平行光に変換される。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by the vertical radiation angle being converted to about 1/10 by the cylindrical lens 3a, and parallel by the aspherical lens 3b. Converted to light.

非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過するので、半導体レーザ2から照射されたレーザ光L1は、フィルタ5Cを透過する。   Since the filter 5C disposed between the aspherical lens 3b and the aspherical lens 3c transmits the laser light L1 having the wavelength λ1 emitted from the semiconductor laser 2, the laser light L1 emitted from the semiconductor laser 2 is filtered. It passes through 5C.

また、非球面レンズ3bで平行光に変換されたレーザ光L1のY軸方向のビーム径をW1とすると、非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Bは、Y軸方向にW3(>W1)の大きさを持つ開口部6を備えるので、フィルタ5Cを透過したレーザ光L1は、フィルタ5Bの開口部6を透過して非球面レンズ3cに入射する。   Further, when the beam diameter in the Y-axis direction of the laser light L1 converted into parallel light by the aspheric lens 3b is W1, the filter 5B disposed between the aspheric lens 3b and the aspheric lens 3c has a Y-axis direction. Is provided with an opening 6 having a size of W3 (> W1), the laser light L1 transmitted through the filter 5C passes through the opening 6 of the filter 5B and enters the aspherical lens 3c.

非球面レンズ3cに入射したレーザ光L1は光ファイバ4の入射端面4aに集光する。光ファイバ4に入射した光は、入射端面4a側から出射端面4b側へ導波される。光ファイバ4の入射端面4a側から出射端面4b側へ導波される光の一部は、出射端面4bで反射する等によって戻り光となり、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   The laser beam L1 incident on the aspheric lens 3c is condensed on the incident end surface 4a of the optical fiber 4. The light incident on the optical fiber 4 is guided from the incident end face 4a side to the outgoing end face 4b side. A part of the light guided from the incident end face 4a side to the outgoing end face 4b side of the optical fiber 4 becomes return light by being reflected by the outgoing end face 4b and the like, and the optical fiber 4 is moved from the outgoing end face 4b side to the incident end face 4a side. Waveguided.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される戻り光L3は、入射端面4aから出射する。光ファイバ4の入射端面4aから出射した戻り光L3は、非球面レンズ3cで平行光に変換される。   The return light L3 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side exits from the entrance end face 4a. The return light L3 emitted from the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c.

上述したように、非球面レンズ3cで平行光に変換された戻り光L3のビーム径をW2とすると、フィルタ5Bの開口部6のY軸方向の大きさW3は、W3<W2となるように構成されるので、光ファイバ4の入射端面4aから出射した戻り光L3は、フィルタ5Bの開口部6より外側の部分がフィルタ5Bで遮断される。   As described above, when the beam diameter of the return light L3 converted into parallel light by the aspherical lens 3c is W2, the size W3 in the Y-axis direction of the opening 6 of the filter 5B is such that W3 <W2. Thus, the return light L3 emitted from the incident end face 4a of the optical fiber 4 is blocked by the filter 5B at the portion outside the opening 6 of the filter 5B.

ここで、半導体レーザ装置1Fの光ファイバ4に光ファイバ増幅器が接続されている場合、光ファイバ増幅器で半導体レーザ2の波長λ1の光を波長λ2の光に変換するので、光ファイバ増幅器で発生した戻り光は、波長λ2の光となる。   Here, when an optical fiber amplifier is connected to the optical fiber 4 of the semiconductor laser device 1F, the optical fiber amplifier converts the light with the wavelength λ1 of the semiconductor laser 2 into the light with the wavelength λ2, so that the optical fiber amplifier generates the optical fiber amplifier. The return light becomes light of wavelength λ2.

フィルタ5Cは、波長λ2の光は透過しないので、フィルタ5Bを透過した波長λ2の戻り光L4はフィルタ5Cで遮断され、半導体レーザ2には入射しない。更に、フィルタ5Cは光ファイバ4の光軸に対して傾斜しているので、フィルタ5Cで遮断され反射した戻り光L4は、再び光ファイバ4の入射端面4aに入射しない。   Since the filter 5C does not transmit the light having the wavelength λ2, the return light L4 having the wavelength λ2 transmitted through the filter 5B is blocked by the filter 5C and does not enter the semiconductor laser 2. Further, since the filter 5C is inclined with respect to the optical axis of the optical fiber 4, the return light L4 blocked and reflected by the filter 5C does not enter the incident end face 4a of the optical fiber 4 again.

このような構成によれば、光ファイバ4の出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3の一部を遮断することができる。また、半導体レーザ2の発振波長以外の戻り光L4は、半導体レーザ2に入射しない。これにより、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Eを提供することができる。   According to such a configuration, it is possible to block part of the return light L3 that is guided from the exit end face 4b side of the optical fiber 4 to the entrance end face 4a side and exits from the entrance end face 4a. Further, the return light L4 other than the oscillation wavelength of the semiconductor laser 2 does not enter the semiconductor laser 2. As a result, it is possible to provide the semiconductor laser device 1E in which the fluctuation of the oscillation spectrum of the semiconductor laser 2, the surface deterioration, and the occurrence of end face destruction are reduced.

<第7の実施の形態の半導体レーザ装置の構成例>
図7は第7の実施の形態の半導体レーザ装置1Gの一例を示す構成図で、次に、半導体レーザ装置の第7の実施の形態について説明する。第7の実施の形態の半導体レーザ装置1Gは、図1で説明した第1の実施の形態の半導体レーザ装置1Aのフィルタ5Aと、図2で説明した第2の実施の形態の半導体レーザ装置1Bのフィルタ5Bと、図3で説明した第3の実施の形態の半導体レーザ装置1Cのフィルタ5Cを備えて、光ファイバ4の入射端面4aで反射した戻り光L2と、光ファイバ4を出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3と、半導体レーザ2の発振波長と異なる波長の戻り光L4を遮断できるようにしたものである。
<Configuration Example of Semiconductor Laser Device in Seventh Embodiment>
FIG. 7 is a block diagram showing an example of a semiconductor laser device 1G of the seventh embodiment. Next, a seventh embodiment of the semiconductor laser device will be described. The semiconductor laser device 1G of the seventh embodiment includes the filter 5A of the semiconductor laser device 1A of the first embodiment described in FIG. 1 and the semiconductor laser device 1B of the second embodiment described in FIG. 3 and the filter 5C of the semiconductor laser device 1C according to the third embodiment described with reference to FIG. 3, and the return light L2 reflected by the incident end face 4a of the optical fiber 4 and the optical fiber 4 through the outgoing end face 4b. The return light L3 guided from the side to the incident end face 4a side and emitted from the incident end face 4a and the return light L4 having a wavelength different from the oscillation wavelength of the semiconductor laser 2 can be blocked.

ここで、図7は半導体レーザ装置1Gの構成を模式的に示し、図1で説明した半導体レーザ装置1A、図2で説明した半導体レーザ装置1B及び図3で説明した半導体レーザ装置1Cと同等の構成を有する部位については、同じ番号を付して説明する。   7 schematically shows the configuration of the semiconductor laser device 1G, which is equivalent to the semiconductor laser device 1A described in FIG. 1, the semiconductor laser device 1B described in FIG. 2, and the semiconductor laser device 1C described in FIG. About the site | part which has a structure, the same number is attached | subjected and demonstrated.

半導体レーザ装置1Gは、第1の実施の形態の半導体レーザ装置1Aと同様に、シリンドリカルレンズ3a及び非球面レンズ3bは、半導体レーザ2の光軸P1上に配置され、非球面レンズ3c及び光ファイバ4は、光軸P2が半導体レーザ2の光軸P1に対して平行にずらして配置される。   In the semiconductor laser device 1G, similarly to the semiconductor laser device 1A of the first embodiment, the cylindrical lens 3a and the aspheric lens 3b are disposed on the optical axis P1 of the semiconductor laser 2, and the aspheric lens 3c and the optical fiber. 4 is arranged such that the optical axis P2 is shifted parallel to the optical axis P1 of the semiconductor laser 2.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aで横長の略楕円形状のビーム形状に整形され、非球面レンズ3b及び非球面レンズ3cによって光ファイバ4へ導光されて、図4(b)等で説明したように、入射角θ2で入射端面4aに入射するように構成される。 The laser light L1 emitted from the semiconductor laser 2 is shaped into a horizontally long and substantially elliptical beam shape by the cylindrical lens 3a, and is guided to the optical fiber 4 by the aspherical lens 3b and the aspherical lens 3c. b) as described in such configured to be incident on the incident end surface 4a at an incident angle theta 2.

入射ビームの広がり角度(半角)をθ1とすると、θ1<θ2となるように光学系を構成してあり、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は、空間的に分離する。 The optical system is configured such that θ 12 where θ 1 is the spread angle (half angle) of the incident beam. Between the aspherical lens 3b and the aspherical lens 3c, the laser beam of the semiconductor laser 2 is formed. The optical path of the return light L2 reflected by L1 and the incident end face 4a of the optical fiber 4 is spatially separated.

フィルタ5Aは、非球面レンズ3bと非球面レンズ3cの間で光路分離された半導体レーザ2のレーザ光L1は透過し、光ファイバ4の入射端面4aで反射した戻り光L2は遮断する形状を有する。   The filter 5A has a shape in which the laser light L1 of the semiconductor laser 2 separated from the optical path between the aspherical lens 3b and the aspherical lens 3c is transmitted, and the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked. .

また、光ファイバ4の出射端面4bで反射する等によって、光ファイバ4を出射端面4b側から入射端面4aへ導波される戻り光L3は、入射端面4aから放射角θ3で出射する。 Further, such as by reflected at the light output end face 4b of the optical fiber 4, the return light L3 guided to the incident end surface 4a of the optical fiber 4 from the exit end face 4b side is emitted at emission angle theta 3 from the incident end surface 4a.

光ファイバ4を出射端面4b側から入射端面4aへ導波されて、入射端面4aから出射し、非球面レンズ3cで平行光に変換された戻り光L3のビーム径をW2とする。また、半導体レーザ2から照射され、シリンドリカルレンズ3aで整形され、非球面レンズ3bで平行光に変換されたレーザ光L1のY軸方向のビーム径をW1とする。半導体レーザ装置1Gは、第2の実施の形態の半導体レーザ装置1Bと同様に、W1<W2となるように、光学系が構成される。   The beam diameter of the return light L3, which is guided from the exit end face 4b side to the entrance end face 4a, exits from the entrance end face 4a, and is converted into parallel light by the aspheric lens 3c, is W2. The beam diameter in the Y-axis direction of the laser beam L1 irradiated from the semiconductor laser 2, shaped by the cylindrical lens 3a, and converted into parallel light by the aspheric lens 3b is defined as W1. The semiconductor laser device 1G has an optical system so that W1 <W2, as in the semiconductor laser device 1B of the second embodiment.

そして、フィルタ5Bは、開口部6のY軸方向の大きさW3が、W1<W3<W2となるように構成される。   The filter 5B is configured such that the size W3 of the opening 6 in the Y-axis direction satisfies W1 <W3 <W2.

また、フィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過し、波長λ1と異なる波長の光は反射する波長選択フィルタで、光ファイバ4の光軸P2に対して斜めに配置される。   The filter 5C is a wavelength selection filter that transmits the laser light L1 with the wavelength λ1 emitted from the semiconductor laser 2 and reflects the light with a wavelength different from the wavelength λ1, and is inclined with respect to the optical axis P2 of the optical fiber 4. Be placed.

<第7の実施の形態の半導体レーザ装置の動作例>
次に、第7の実施の形態の半導体レーザ装置1Gの動作例について、図7等を参照して説明する。
<Operation Example of Semiconductor Laser Device in Seventh Embodiment>
Next, an operation example of the semiconductor laser device 1G according to the seventh embodiment will be described with reference to FIG.

半導体レーザ2から照射されたレーザ光L1は、シリンドリカルレンズ3aによって垂直方向の放射角が約10分の1に変換されることで、横長の略楕円形状のビーム形状となり、非球面レンズ3bによって平行光に変換される。   The laser beam L1 emitted from the semiconductor laser 2 is converted into a horizontally elongated substantially elliptical beam shape by the vertical radiation angle being converted to about 1/10 by the cylindrical lens 3a, and parallel by the aspherical lens 3b. Converted to light.

非球面レンズ3bと非球面レンズ3cの間に配置されるフィルタ5Cは、半導体レーザ2から照射された波長λ1のレーザ光L1は透過するので、半導体レーザ2から照射されたレーザ光L1は、フィルタ5Cを透過する。   Since the filter 5C disposed between the aspherical lens 3b and the aspherical lens 3c transmits the laser light L1 having the wavelength λ1 emitted from the semiconductor laser 2, the laser light L1 emitted from the semiconductor laser 2 is filtered. It passes through 5C.

また、フィルタ5Aは、半導体レーザ2から照射され、シリンドリカルレンズ3aで整形され非球面レンズ3bで平行光に変換されたレーザ光L1は透過する形状であるので、フィルタ5Cを透過したレーザ光L1は、フィルタ5Aを透過する。   The filter 5A is shaped to transmit the laser light L1 irradiated from the semiconductor laser 2, shaped by the cylindrical lens 3a and converted into parallel light by the aspherical lens 3b, and therefore the laser light L1 transmitted through the filter 5C is transmitted through the filter 5A. , And passes through the filter 5A.

更に、非球面レンズ3bで平行光に変換されたレーザ光L1のY軸方向のビーム径をW1とすると、フィルタ5Bは、Y軸方向にW3(>W1)の大きさを持つ開口部6を備えるので、フィルタ5Aを透過したレーザ光L1は、フィルタ5Bの開口部6を透過して非球面レンズ3cに入射する。   Further, if the beam diameter in the Y-axis direction of the laser light L1 converted into parallel light by the aspherical lens 3b is W1, the filter 5B has an opening 6 having a size of W3 (> W1) in the Y-axis direction. Thus, the laser beam L1 that has passed through the filter 5A passes through the opening 6 of the filter 5B and enters the aspherical lens 3c.

非球面レンズ3c及び光ファイバ4は、半導体レーザ2の光軸P1に対して平行にずらして配置されるので、半導体レーザ2から照射されたレーザ光L1は、非球面レンズ3cによって入射角θ2で光ファイバ4の入射端面4aに集光する。 Since the aspheric lens 3c and the optical fiber 4 are arranged to be shifted parallel to the optical axis P1 of the semiconductor laser 2, the laser light L1 emitted from the semiconductor laser 2 is incident on the incident angle θ 2 by the aspheric lens 3c. The light is condensed on the incident end face 4 a of the optical fiber 4.

光ファイバ4の入射端面4aに集光したレーザ光L1の大部分は、光ファイバ4の図示しないコアに入射して導波される。これに対して、光ファイバ4の入射端面4aに集光したレーザ光L1の一部は、入射端面4aで反射する。   Most of the laser light L1 collected on the incident end face 4a of the optical fiber 4 is incident on a core (not shown) of the optical fiber 4 and guided there. On the other hand, a part of the laser beam L1 condensed on the incident end face 4a of the optical fiber 4 is reflected by the incident end face 4a.

光ファイバ4の入射端面4aに集光したレーザ光L1は、入射角θ2で入射するので、入射端面4aで反射する戻り光L2は、入射角θ2と同じ反射角で反射する。そして、光ファイバ4への入射ビームの広がり角度θ1(半角)に対して、θ1<θ2としてあるので、非球面レンズ3bと非球面レンズ3cの間では、半導体レーザ2のレーザ光L1と光ファイバ4の入射端面4aで反射した戻り光L2の光路は空間的に分離する。そして、光ファイバ4の入射端面4aで反射した戻り光L2は、フィルタ5Aで遮断され、半導体レーザ2に再入射することが阻止される。 Laser light L1 converged on the entrance end face 4a of the optical fiber 4, is incident at an incident angle theta 2, the return light L2 reflected by the incident end surface 4a is reflected at the same reflection angle as the incident angle theta 2. Since θ 12 with respect to the spread angle θ 1 (half angle) of the incident beam to the optical fiber 4, the laser light L 1 of the semiconductor laser 2 is between the aspheric lens 3 b and the aspheric lens 3 c. The optical path of the return light L2 reflected by the incident end face 4a of the optical fiber 4 is spatially separated. Then, the return light L2 reflected by the incident end face 4a of the optical fiber 4 is blocked by the filter 5A, and is prevented from entering the semiconductor laser 2 again.

光ファイバ4に入射した光は、入射端面4a側から出射端面4b側へ導波される。光ファイバ4の入射端面4a側から出射端面4b側へ導波される光の一部は、出射端面4bで反射する等によって戻り光となり、光ファイバ4を出射端面4b側から入射端面4a側へ導波される。   The light incident on the optical fiber 4 is guided from the incident end face 4a side to the outgoing end face 4b side. A part of the light guided from the incident end face 4a side to the outgoing end face 4b side of the optical fiber 4 becomes return light by being reflected by the outgoing end face 4b and the like, and the optical fiber 4 is moved from the outgoing end face 4b side to the incident end face 4a side. Waveguided.

光ファイバ4を出射端面4b側から入射端面4a側へ導波される戻り光L3は、入射端面4aから出射する。光ファイバ4の入射端面4aから出射した戻り光L3は、非球面レンズ3cで平行光に変換される。   The return light L3 guided through the optical fiber 4 from the exit end face 4b side to the entrance end face 4a side exits from the entrance end face 4a. The return light L3 emitted from the incident end face 4a of the optical fiber 4 is converted into parallel light by the aspheric lens 3c.

上述したように、非球面レンズ3cで平行光に変換された戻り光L3のビーム径をW2とすると、フィルタ5Bの開口部6のY軸方向の大きさW3は、W3<W2となるように構成されるので、光ファイバ4の入射端面4aから出射した戻り光L3は、フィルタ5Bの開口部6より外側の部分がフィルタ5Bで遮断される。なお、フィルタ5Bの開口部6の内側を透過した戻り光L3は、一部がフィルタ5Aで遮断される。   As described above, when the beam diameter of the return light L3 converted into parallel light by the aspherical lens 3c is W2, the size W3 in the Y-axis direction of the opening 6 of the filter 5B is such that W3 <W2. Thus, the return light L3 emitted from the incident end face 4a of the optical fiber 4 is blocked by the filter 5B at the portion outside the opening 6 of the filter 5B. A part of the return light L3 that has passed through the opening 6 of the filter 5B is blocked by the filter 5A.

ここで、半導体レーザ装置1Gの光ファイバ4に光ファイバ増幅器が接続されている場合、光ファイバ増幅器で半導体レーザ2の波長λ1の光を波長λ2の光に変換するので、光ファイバ増幅器で発生した戻り光は、波長λ2の光となる。   Here, when an optical fiber amplifier is connected to the optical fiber 4 of the semiconductor laser device 1G, the optical fiber amplifier converts the light with the wavelength λ1 of the semiconductor laser 2 into the light with the wavelength λ2. The return light becomes light of wavelength λ2.

フィルタ5Cは、波長λ2の光は透過しないので、フィルタ5B及びフィルタ5Aを透過した波長λ2の戻り光L4はフィルタ5Cで遮断され、半導体レーザ2には入射しない。更に、フィルタ5Cは光ファイバ4の光軸に対して傾斜しているので、フィルタ5Cで遮断され反射した戻り光L4は、再び光ファイバ4の入射端面4aに入射しない。   Since the filter 5C does not transmit light of wavelength λ2, the return light L4 of wavelength λ2 that has passed through the filters 5B and 5A is blocked by the filter 5C and does not enter the semiconductor laser 2. Further, since the filter 5C is inclined with respect to the optical axis of the optical fiber 4, the return light L4 blocked and reflected by the filter 5C does not enter the incident end face 4a of the optical fiber 4 again.

このような構成によれば、光ファイバ4の入射端面4aで反射した戻り光L2が、再び半導体レーザ2に入射することを阻止することができる。また、光ファイバ4の出射端面4b側から入射端面4a側へ導波され、入射端面4aから出射した戻り光L3の一部を遮断することができる。更に、半導体レーザ2の発振波長以外の戻り光L4は、半導体レーザ2に入射しない。これにより、半導体レーザ2の発振スペクトルの変動や表面劣化、端面破壊の発生を低減した半導体レーザ装置1Gを提供することができる。   According to such a configuration, it is possible to prevent the return light L2 reflected by the incident end face 4a of the optical fiber 4 from entering the semiconductor laser 2 again. In addition, a part of the return light L3 that is guided from the exit end face 4b side of the optical fiber 4 to the entrance end face 4a side and exits from the entrance end face 4a can be blocked. Further, the return light L4 other than the oscillation wavelength of the semiconductor laser 2 does not enter the semiconductor laser 2. As a result, it is possible to provide the semiconductor laser device 1G in which the fluctuation of the oscillation spectrum of the semiconductor laser 2, the surface degradation, and the occurrence of end face destruction are reduced.

なお、第7の実施の形態の半導体レーザ装置1Gでは、非球面レンズ3c及び光ファイバ4を光軸に対して平行にずらして配置しているが、例えば入射端面4aを傾斜させた斜め研磨ファイバを用いれば、光軸をずらさずとも、光路分離が実現可能である。また、フィルタ5Aとフィルタ5Bを一体で構成しても良い。   In the semiconductor laser device 1G of the seventh embodiment, the aspherical lens 3c and the optical fiber 4 are arranged so as to be shifted parallel to the optical axis. If is used, optical path separation can be realized without shifting the optical axis. Further, the filter 5A and the filter 5B may be configured integrally.

本発明は、加工に利用される光を出力する半導体レーザ装置に適用される。   The present invention is applied to a semiconductor laser device that outputs light used for processing.

第1の実施の形態の半導体レーザ装置1Aの一例を示す構成図である。It is a block diagram which shows an example of 1 A of semiconductor laser apparatuses of 1st Embodiment. 第2の実施の形態の半導体レーザ装置1Bの一例を示す構成図である。It is a block diagram which shows an example of the semiconductor laser apparatus 1B of 2nd Embodiment. 第3の実施の形態の半導体レーザ装置1Cの一例を示す構成図である。It is a block diagram which shows an example of 1 C of semiconductor laser apparatuses of 3rd Embodiment. 第4の実施の形態の半導体レーザ装置1Dの一例を示す構成図である。It is a block diagram which shows an example of semiconductor laser apparatus 1D of 4th Embodiment. 第5の実施の形態の半導体レーザ装置1Eの一例を示す構成図である。It is a block diagram which shows an example of the semiconductor laser apparatus 1E of 5th Embodiment. 第6の実施の形態の半導体レーザ装置1Fの一例を示す構成図である。It is a block diagram which shows an example of the semiconductor laser apparatus 1F of 6th Embodiment. 第7の実施の形態の半導体レーザ装置1Gの一例を示す構成図である。It is a block diagram which shows an example of the semiconductor laser apparatus 1G of 7th Embodiment.

符号の説明Explanation of symbols

1・・・半導体レーザ装置、2・・・半導体レーザ、3a・・・シリンドリカルレンズ、3b・・・非球面レンズ、3c・・・非球面レンズ、4・・・光ファイバ、5・・・フィルタ、6・・・開口部
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser apparatus, 2 ... Semiconductor laser, 3a ... Cylindrical lens, 3b ... Aspherical lens, 3c ... Aspherical lens, 4 ... Optical fiber, 5 ... Filter , 6 ... opening

Claims (11)

レーザ光を出射する光源と、
レーザ光を導波する光ガイドと、
前記光源から出射されたレーザ光を整形し、前記光ガイドに集光させる光学素子と、
前記光源から出射され、前記光学素子で整形されたレーザ光は通し、前記光ガイドで発生した戻り光は遮断するフィルタと
を備えたことを特徴とする半導体レーザ装置。
A light source that emits laser light;
A light guide for guiding laser light;
An optical element that shapes the laser light emitted from the light source and focuses the light on the light guide;
A semiconductor laser device comprising: a filter that transmits laser light emitted from the light source and shaped by the optical element, and that blocks return light generated by the light guide.
前記光源から出射され、前記光学素子で整形されたレーザ光と、前記光ガイドの入射端面で反射した戻り光の光路を分離する光路分離手段を備え、前記戻り光の光路に前記フィルタを配置した
ことを特徴とする請求項1記載の半導体レーザ装置。
An optical path separating unit that separates the optical path of the laser light emitted from the light source and shaped by the optical element and the return light reflected by the incident end face of the light guide, and the filter is disposed in the optical path of the return light The semiconductor laser device according to claim 1.
前記光学素子は、前記光源から出射されたレーザ光の垂直方向の放射角を狭めて横長のビーム形状に整形する第1のレンズと、前記第1のレンズを透過したレーザ光を前記光ガイドに集光する第2のレンズを少なくとも備え、
前記第1のレンズで整形され、前記第2のレンズで集光されたレーザ光を前記光ガイドの前記入射端面に斜めに入射させて光路分離手段を構成する
ことを特徴とする請求項2記載の半導体レーザ装置。
The optical element includes a first lens that narrows a vertical radiation angle of laser light emitted from the light source and shapes the laser light into a horizontally long beam shape, and laser light that has passed through the first lens is used as the light guide. At least a second lens for condensing,
The optical path separating means is configured by obliquely entering laser light shaped by the first lens and condensed by the second lens into the incident end face of the light guide. Semiconductor laser device.
前記光学素子は、前記光源から出射されたレーザ光の垂直方向の放射角を狭めて横長のビーム形状に整形する第1のレンズと、前記第1のレンズを透過したレーザ光を前記光ガイドに集光する第2のレンズを少なくとも備えて、前記第1のレンズで整形したレーザ光のビーム形状が、前記光ガイドを導波されて入射端面から出射した戻り光のビーム形状より小さくなるように構成され、
前記フィルタは、前記第1のレンズで整形されたレーザ光は通す開口部を備えた
ことを特徴とする請求項1記載の半導体レーザ装置。
The optical element includes a first lens that narrows a vertical radiation angle of laser light emitted from the light source and shapes the laser light into a horizontally long beam shape, and laser light that has passed through the first lens is used as the light guide. At least a second lens for condensing is provided, and the beam shape of the laser light shaped by the first lens is made smaller than the beam shape of the return light guided by the light guide and emitted from the incident end face. Configured,
The semiconductor laser device according to claim 1, wherein the filter includes an opening through which the laser light shaped by the first lens passes.
前記フィルタは、前記光源から出射された波長のレーザ光は通す波長選択フィルタで、前記光ガイドの光軸の鉛直面に対して傾斜して配置された
ことを特徴とする請求項1記載の半導体レーザ装置。
2. The semiconductor according to claim 1, wherein the filter is a wavelength selection filter that allows a laser beam having a wavelength emitted from the light source to pass through and is inclined with respect to a vertical plane of an optical axis of the light guide. Laser device.
前記光学素子で整形されたレーザ光を前記光ガイドの前記入射端面に斜めに入射させて、前記光源から出射されたレーザ光と、前記光ガイドの入射端面で反射した戻り光の光路を分離する光路分離手段を備えると共に、
前記光学素子は、前記光源から出射されたレーザ光の垂直方向の放射角を狭めて横長のビーム形状に整形する第1のレンズと、前記第1のレンズを透過したレーザ光を前記光ガイドに集光する第2のレンズを少なくとも備えて、前記第1のレンズで整形したレーザ光のビーム形状が、前記光ガイドを導波されて入射端面から出射した戻り光のビーム形状より小さくなるように構成され、
前記フィルタは、前記戻り光の光路に配置される第1のフィルタと、
前記第1のレンズで整形されたレーザ光は通す開口部を有する第2のフィルタを備えた
ことを特徴とする請求項1記載の半導体レーザ装置。
The laser light shaped by the optical element is obliquely incident on the incident end face of the light guide to separate the optical path of the laser light emitted from the light source and the return light reflected by the incident end face of the light guide. With optical path separating means,
The optical element includes a first lens that narrows a vertical radiation angle of laser light emitted from the light source and shapes the laser light into a horizontally long beam shape, and laser light that has passed through the first lens is used as the light guide. At least a second lens for condensing is provided, and the beam shape of the laser light shaped by the first lens is made smaller than the beam shape of the return light guided by the light guide and emitted from the incident end face. Configured,
The filter includes a first filter disposed in an optical path of the return light;
The semiconductor laser device according to claim 1, further comprising a second filter having an opening through which the laser light shaped by the first lens passes.
前記第1のフィルタと前記第2のフィルタを一体に構成した
ことを特徴とする請求項6記載の半導体レーザ装置。
The semiconductor laser device according to claim 6, wherein the first filter and the second filter are integrally formed.
前記光学素子で整形されたレーザ光を前記光ガイドの前記入射端面に斜めに入射させて、前記光源から出射されたレーザ光と、前記光ガイドの入射端面で反射した戻り光の光路を分離する光路分離手段を備えると共に、
前記フィルタは、前記戻り光の光路に配置される第1のフィルタと、前記光源から出射された波長のレーザ光は通す第2のフィルタを備え、前記第2のフィルタを、前記光ガイドの光軸の鉛直面に対して傾斜して配置した
ことを特徴とする請求項1記載の半導体レーザ装置。
The laser light shaped by the optical element is obliquely incident on the incident end face of the light guide to separate the optical path of the laser light emitted from the light source and the return light reflected by the incident end face of the light guide. With optical path separating means,
The filter includes a first filter disposed in the optical path of the return light, and a second filter through which the laser light having a wavelength emitted from the light source passes, and the second filter passes through the light guide light. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is arranged to be inclined with respect to a vertical plane of the shaft.
前記光学素子は、前記光源から出射されたレーザ光の垂直方向の放射角を狭めて横長ビーム形状に整形する第1のレンズと、前記第1のレンズを透過したレーザ光を前記光ガイドに集光する第2のレンズを少なくとも備えて、前記第1のレンズで整形したレーザ光のビーム形状が、前記光ガイドを導波されて入射端面から出射した戻り光のビーム形状より小さくなるように構成され、
前記フィルタは、前記第1のレンズで整形されたレーザ光は通す開口部を有する第1のフィルタと、前記光源から出射された波長のレーザ光は通す第2のフィルタを備え、前記第2のフィルタを、前記光ガイドの光軸の鉛直面に対して傾斜して配置した
ことを特徴とする請求項1記載の半導体レーザ装置。
The optical element collects, in the light guide, a first lens that narrows the vertical emission angle of the laser light emitted from the light source and shapes the laser light into a horizontally elongated beam shape, and the laser light that has passed through the first lens. At least a second lens that emits light is provided, and the beam shape of the laser light shaped by the first lens is configured to be smaller than the beam shape of the return light that is guided by the light guide and emitted from the incident end face. And
The filter includes a first filter having an opening through which laser light shaped by the first lens passes, and a second filter through which laser light having a wavelength emitted from the light source passes, The semiconductor laser device according to claim 1, wherein the filter is disposed to be inclined with respect to a vertical plane of the optical axis of the light guide.
前記光学素子で整形されたレーザ光を前記光ガイドの前記入射端面に斜めに入射させて、前記光源から出射されたレーザ光と、前記光ガイドの入射端面で反射した戻り光の光路を分離する光路分離手段を備えると共に、
前記光学素子は、前記光源から出射されたレーザ光の垂直方向の放射角を狭めて横長のビーム形状に整形する第1のレンズと、前記第1のレンズを透過したレーザ光を前記光ガイドに集光する第2のレンズを少なくとも備えて、前記第1のレンズで整形したレーザ光のビーム形状が、前記光ガイドを導波されて入射端面から出射した戻り光のビーム形状より小さくなるように構成され、
前記フィルタは、前記戻り光の光路に配置される第1のフィルタと、前記第1のレンズで整形されたレーザ光は通す開口部を有する第2のフィルタと、前記光源から出射された波長のレーザ光は通す第3のフィルタを備え、前記第3のフィルタを、前記光ガイドの光軸の鉛直面に対して傾斜して配置した
ことを特徴とする請求項1記載の半導体レーザ装置。
The laser light shaped by the optical element is obliquely incident on the incident end face of the light guide to separate the optical path of the laser light emitted from the light source and the return light reflected by the incident end face of the light guide. With optical path separating means,
The optical element includes a first lens that narrows a vertical radiation angle of laser light emitted from the light source and shapes the laser light into a horizontally long beam shape, and laser light that has passed through the first lens is used as the light guide. At least a second lens for condensing is provided, and the beam shape of the laser light shaped by the first lens is made smaller than the beam shape of the return light guided by the light guide and emitted from the incident end face. Configured,
The filter includes a first filter disposed in the optical path of the return light, a second filter having an opening through which the laser light shaped by the first lens passes, and a wavelength of light emitted from the light source. The semiconductor laser device according to claim 1, further comprising a third filter through which laser light passes, wherein the third filter is disposed to be inclined with respect to a vertical plane of an optical axis of the light guide.
前記第1のフィルタと前記第2のフィルタを一体に構成した
ことを特徴とする請求項10記載の半導体レーザ装置。
The semiconductor laser device according to claim 10, wherein the first filter and the second filter are integrally formed.
JP2004336476A 2004-11-19 2004-11-19 Semiconductor laser device Pending JP2006147879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336476A JP2006147879A (en) 2004-11-19 2004-11-19 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336476A JP2006147879A (en) 2004-11-19 2004-11-19 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2006147879A true JP2006147879A (en) 2006-06-08

Family

ID=36627208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336476A Pending JP2006147879A (en) 2004-11-19 2004-11-19 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2006147879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016032A (en) * 2008-07-01 2010-01-21 Nec Corp External resonator type laser module and method of manufacturing the same
JP2012133191A (en) * 2010-12-22 2012-07-12 Alps Electric Co Ltd Optical device
JP2016164671A (en) * 2013-09-12 2016-09-08 古河電気工業株式会社 Semiconductor laser module
US10061092B2 (en) 2013-09-12 2018-08-28 Furukawa Electric Co., Ltd. Semiconductor laser module
JP2020017680A (en) * 2018-07-26 2020-01-30 昭和オプトロニクス株式会社 Semiconductor laser module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016032A (en) * 2008-07-01 2010-01-21 Nec Corp External resonator type laser module and method of manufacturing the same
JP2012133191A (en) * 2010-12-22 2012-07-12 Alps Electric Co Ltd Optical device
JP2016164671A (en) * 2013-09-12 2016-09-08 古河電気工業株式会社 Semiconductor laser module
US9746627B2 (en) 2013-09-12 2017-08-29 Furukawa Electric Co., Ltd. Semiconductor laser module
US10061092B2 (en) 2013-09-12 2018-08-28 Furukawa Electric Co., Ltd. Semiconductor laser module
JP2020017680A (en) * 2018-07-26 2020-01-30 昭和オプトロニクス株式会社 Semiconductor laser module
JP7154057B2 (en) 2018-07-26 2022-10-17 京セラSoc株式会社 semiconductor laser module

Similar Documents

Publication Publication Date Title
JP4226482B2 (en) Laser beam multiplexer
US9331457B2 (en) Semiconductor laser apparatus
JP5717714B2 (en) Multiplexing device, multiplexing method, and LD module
US20130208361A1 (en) Optical cross-coupling mitigation system for multi-wavelength beam combining systems
JP6157194B2 (en) Laser apparatus and light beam wavelength coupling method
JP6058166B2 (en) Semiconductor laser device
JP2015072955A (en) Spectrum beam coupling fiber laser device
EP1703601A1 (en) Fiber laser oscillator
JP2008124358A (en) Laser module
JP2016224376A (en) Laser apparatus
JP6093388B2 (en) Multiplexer, method of manufacturing multiplexer, and LD module
JP2006147879A (en) Semiconductor laser device
US11287574B2 (en) Optical fiber bundle with beam overlapping mechanism
JP4544014B2 (en) Laser device and fiber coupling module
JPWO2018173101A1 (en) Laser processing equipment
US10359584B2 (en) Light source device
JP2007248581A (en) Laser module
JP2001208924A (en) Optical fiber
JP7398649B2 (en) Laser processing equipment and laser processing method
JP2009168846A (en) Light condensing device and light condensing method
WO2019176572A1 (en) Laser oscillator, laser machining device, optical fiber, optical fiber production method, and, optical fiber production device
JP6949289B1 (en) Laser device
JPWO2020174752A1 (en) Optical resonator and laser processing equipment
CN114761835A (en) Optical unit, beam coupling device, and laser processing machine
JP2006163256A (en) Wavelength converting crystal and wavelength conversion optical system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060614