JP2006147671A - Device for driving a plurality of elements - Google Patents

Device for driving a plurality of elements Download PDF

Info

Publication number
JP2006147671A
JP2006147671A JP2004332583A JP2004332583A JP2006147671A JP 2006147671 A JP2006147671 A JP 2006147671A JP 2004332583 A JP2004332583 A JP 2004332583A JP 2004332583 A JP2004332583 A JP 2004332583A JP 2006147671 A JP2006147671 A JP 2006147671A
Authority
JP
Japan
Prior art keywords
magnet
coil
driving
drive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004332583A
Other languages
Japanese (ja)
Inventor
Riyouko Ichinose
亮子 一野瀬
Tadashi Ozaka
忠史 尾坂
Kazuji Yoshida
和司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004332583A priority Critical patent/JP2006147671A/en
Publication of JP2006147671A publication Critical patent/JP2006147671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electromagnets (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce size and weight of a device for driving a plurality of elements and also improve response property of the same device. <P>SOLUTION: A plurality of magnets 3 are allocated in two dimensions on the upper surface of a magnet fixing plate 1 in the device 22 for driving a plurality of elements. The magnets provided side by side have the opposite polarities. In the upper part of the magnets, a center yoke 10 is mounted and a coil 5 provided with mounted drive element 6 at the upper part thereof is inserted to the center yoke. A housing 2x is formed of a cover 2 where a hole is formed to the position corresponding to the position of the drive element, a side yoke 7, and a magnet fixing plate 1; and the coil and magnets are accommodated within this housing. When the electrical power is supplied to the coil, the drive element pushes the coil to the outside of housing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の駆動素子を用いる複数駆動装置に係り、特に各々の駆動素子を独立して突出後退駆動する駆動装置に関する。   The present invention relates to a plurality of drive devices using a plurality of drive elements, and more particularly to a drive device that drives each drive element to project and retract independently.

従来の複数の駆動素子を有する駆動装置の例が、特許文献1に記載されている。この公報に記載の駆動装置では、複数の表示素子全体に磁場を作り、各表示素子に取り付けられたコイルに電流を流して各表示素子を独立駆動している。表示素子毎に磁力を閉じ込めるヨークが不要なので、ソレノイドを用いたときよりも小型軽量化を実現できる。   An example of a driving device having a plurality of conventional driving elements is described in Patent Document 1. In the driving apparatus described in this publication, a magnetic field is generated in the entire plurality of display elements, and each display element is driven independently by passing a current through a coil attached to each display element. Since a yoke for confining magnetic force is not required for each display element, it is possible to realize a smaller and lighter weight than when a solenoid is used.

この駆動装置は、次のように構成されている。箱状ヨークの内底に磁石を吸着させ、磁石の上面に板状ヨークを吸着させる。板状ヨークに、棒状のヨークを林立させる。コイルを巻いた筒状の表示素子を、棒状のヨークにかぶせる。コイルの導線は、表示素子ストローク分の余裕を持って、箱状ヨーク内の給電線に固定される。表示素子の先端は、箱状ヨークの上面に開けた穴に通されている。棒状ヨークと箱状ヨークとの間で磁界が発生し、これらの中間に位置するコイルに電流を流すと、コイルが進退する。   This drive device is configured as follows. A magnet is attracted to the inner bottom of the box-shaped yoke, and a plate-shaped yoke is attracted to the upper surface of the magnet. A rod-shaped yoke is made to stand on the plate-shaped yoke. A cylindrical display element wound with a coil is placed on a rod-shaped yoke. The conductive wire of the coil is fixed to the power supply line in the box-shaped yoke with a margin for the display element stroke. The tip of the display element is passed through a hole formed in the upper surface of the box-shaped yoke. A magnetic field is generated between the rod-shaped yoke and the box-shaped yoke, and when a current is passed through the coil located between these, the coil advances and retreats.

特開2000−89895号公報JP 2000-89895 A

上記特許文献1に記載の駆動装置では、箱状ヨークの中心部分と周辺部分で磁界の強さが異なる。そのため、各表示素子に同じ強さの駆動力を与えようとすると、各表示素子の位置により電流量を変えるか、コイルの巻き数を変えるか、ヨークを十分厚いものとすることなどが必要であった。そして、表示素子毎に磁界の強さを計算し、必要な電流量やコイルの巻き数を設定しなければならなかった。なお、ヨークは鉄などの金属であるから、ヨークを厚くすると装置重量が大きくなる。   In the driving device described in Patent Document 1, the strength of the magnetic field is different between the central portion and the peripheral portion of the box-shaped yoke. Therefore, if the same driving force is to be applied to each display element, it is necessary to change the amount of current depending on the position of each display element, change the number of turns of the coil, or make the yoke sufficiently thick. there were. Then, the strength of the magnetic field must be calculated for each display element, and the necessary amount of current and the number of turns of the coil have to be set. Since the yoke is a metal such as iron, the thickness of the device increases when the yoke is thick.

箱状ヨークを用いると、箱状ヨークの内部と外部では磁界の強さが変化し、コイルが箱状ヨークの内部から外部へ移動するのに伴い駆動力が大きく変化する。コイルの位置に無関係に均一な駆動力を得るためには、コイルの位置に応じて電流量を変えるか、箱状ヨークを厚くしてコイルをヨーク内だけで移動させる必要がある。また、コイルの巻き数を多くして少電流で高出力を得ようとすると、スペースの制限があるからコイル線径を小さくする。表示素子を高密度化すると、細い線径のコイルを稠密に配線する必要があり、組み立て性が低下する。   When the box-shaped yoke is used, the strength of the magnetic field changes inside and outside the box-shaped yoke, and the driving force changes greatly as the coil moves from the inside to the outside of the box-shaped yoke. In order to obtain a uniform driving force regardless of the position of the coil, it is necessary to change the amount of current according to the position of the coil, or to thicken the box-shaped yoke and move the coil only within the yoke. Further, if the number of turns of the coil is increased to obtain a high output with a small current, the coil wire diameter is reduced due to space limitations. When the density of the display elements is increased, it is necessary to densely wire coils having a thin wire diameter, and the assemblability is deteriorated.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、複数素子駆動装置を小型軽量化するとともに素子の配置位置による駆動力のムラを低減することにある。本発明の他の目的は、複数素子駆動装置の組み立て性を向上させることにある。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to reduce the size and weight of a multi-element driving device and to reduce uneven driving force due to the arrangement position of elements. Another object of the present invention is to improve the assemblability of a multi-element drive device.

上記目的を達成する本発明の特徴は、容器内に複数の磁石を二次元的に固定配置し、各磁石の上方に移動可能にコイルを配置し、このコイルの上面であってほぼ中心部に上下方向に延在する駆動素子を配置し、容器の上面にこの駆動素子が通過可能な穴を形成したものである。   A feature of the present invention that achieves the above object is that a plurality of magnets are fixedly arranged in a two-dimensional manner in a container, and a coil is arranged so as to be movable above each magnet. A drive element extending in the vertical direction is arranged, and a hole through which the drive element can pass is formed on the upper surface of the container.

そしてこの特徴において、コイルを容器内に収容し、駆動素子をコイル上面に固定し、隣り合う磁石の上下方向の極性を互いに異ならせるのが好ましい。また、コイルを容器内に収容し、駆動素子をコイル上面に固定された中空の部材で形成し、この駆動素子の中空部とコイルの中心部とに挿入される中心ヨークを磁石の上方に取り付け、隣り合う磁石の上下方向の極性を互いに異ならせるようにしてもよい。   In this feature, it is preferable that the coil is accommodated in the container, the drive element is fixed to the upper surface of the coil, and the polarities of the adjacent magnets are made different from each other. Also, the coil is housed in a container, the drive element is formed of a hollow member fixed to the upper surface of the coil, and a central yoke inserted into the hollow part of the drive element and the central part of the coil is attached above the magnet. The polarities of the adjacent magnets in the vertical direction may be different from each other.

さらに、駆動素子が通過する穴が中心部に形成された穴付き磁石を、容器の裏面側に取り付け、この穴付き磁石の穴に駆動素子を貫通させてもよく、コイルの近傍に、コイルの上下方向移動に応じて変形する電極と、この電極に接触可能に接続板とを設けてもよい。   Further, a magnet with a hole in which a hole through which the driving element passes is formed at the center may be attached to the back side of the container, and the driving element may be passed through the hole of the magnet with the hole. You may provide the electrode which deform | transforms according to an up-down direction movement, and a connection board so that this electrode can be contacted.

上記目的を達成する本発明の他の特徴は、中心から外側に磁場を掛けられた第1のコイルと、外側から中心に磁場を掛けられた第2のコイルをそれぞれ複数個用いて交互に二次元的に配置し、第1のコイルと第2のコイルの中心軸を互いに平行にし、この複数個の第1、第2のコイルを容器内に収容し、第1および第2のコイルのそれぞれに容器外へ突出可能な駆動素子を設けたものである。   Another feature of the present invention that achieves the above-described object is that two or more first coils each having a magnetic field applied from the center to the outside and two second coils each having a magnetic field applied from the outside to the center are alternately used. Dimensionally arranged, the central axes of the first coil and the second coil are parallel to each other, the plurality of first and second coils are accommodated in a container, and each of the first and second coils Is provided with a drive element capable of projecting out of the container.

そしてこの特徴において、磁石のN極に吸着させた第1の棒状強磁性体と磁石のS極に吸着させた第2の棒状強磁性体を交互に複数本林立配置し、第1の棒状強磁性体に第1のコイルを、第2の棒状強磁性体に第2のコイルを通し、複数の第1および第2のコイルの少なくともいずれかに通電し、この通電されたコイルに挿入される第1または第2の棒状強磁性体に沿って前記駆動素子を移動させるのが好ましい。また、容器内に異極が隣り合うように複数の磁石を固定配置し、各磁石の磁極面に巻き取り面がほぼ平行でかつ各磁石の磁極面と中心軸が一致するように第1および第2のコイルを配置し、複数の第1および第2のコイルの少なくともいずれかに通電し、この通電されたコイルに取り付けた前記駆動素子を通電されたコイルと同じ中心軸を有する磁石の磁極面にほぼ垂直に移動させるようにしてもよい。   In this feature, a plurality of first rod-like ferromagnets adsorbed on the N pole of the magnet and second rod-like ferromagnets adsorbed on the S pole of the magnet are alternately arranged in a forest, and the first rod-like strong magnetic material is arranged. The first coil is passed through the magnetic body, the second coil is passed through the second rod-shaped ferromagnetic body, and at least one of the plurality of first and second coils is energized and inserted into the energized coil. It is preferable to move the drive element along the first or second rod-shaped ferromagnetic material. A plurality of magnets are fixedly arranged in the container so that different poles are adjacent to each other, and the first and second magnets are arranged so that the winding surface is substantially parallel to the magnetic pole surface of each magnet and the magnetic pole surface of each magnet coincides with the central axis. A magnetic pole of a magnet having the same central axis as the coil that is energized with the second coil disposed, energized in at least one of the plurality of first and second coils, and the drive element attached to the energized coil You may make it move to a surface substantially perpendicularly.

さらにまたは、各磁石の上面側の中心部に棒状強磁性体を設け、棒状強磁性体を第1および第2のコイルの中心部に挿入してもよく、駆動素子を通す穴が形成された穴開き磁石を、この穴開き磁石の下面と磁石の上面とが同極になるように第1および第2のコイルの上方に配置してもよい。   In addition, a rod-shaped ferromagnet may be provided at the center on the upper surface side of each magnet, and the rod-shaped ferromagnet may be inserted into the center of the first and second coils, and a hole through which the drive element passes is formed. You may arrange | position a perforated magnet above the 1st and 2nd coil so that the lower surface of this perforated magnet and the upper surface of a magnet may have the same polarity.

上記目的を達成する本発明のさらに他の特徴は、移動可能に設けられた複数の駆動素子と、各駆動素子に設けられこの駆動素子を駆動する駆動手段と、各駆動素子に取り付けた駆動手段の電極接点と、駆動素子が通過可能な案内穴が形成されたガイド板と、このガイド板に固定された固定電極とを有し、この固定電極と電極接点を接触させ、固定電極から電極接点に通電して駆動手段が駆動素子を案内穴を通して移動させるものである。   Still another feature of the present invention that achieves the above object is that a plurality of drive elements provided movably, drive means provided in each drive element for driving the drive elements, and drive means attached to each drive element. Electrode guide, a guide plate formed with a guide hole through which the drive element can pass, and a fixed electrode fixed to the guide plate. The fixed electrode and the electrode contact are brought into contact with each other, and the electrode contact from the fixed electrode The drive means moves the drive element through the guide hole.

そしてこの特徴において、駆動手段はコイルと磁石とを有し、磁石は中心から外側への磁場を掛ける第1の磁石と、コイルの外側から中心に磁場を掛ける第2の磁石とを有するのがよく、固定電極を駆動素子毎に複数設け、複数の固定電極は互いに電極接点に接触する範囲が駆動素子の移動方向に異なっており、固定電極に選択的に通電して駆動素子の移動量を変化させるものであってもよい。
In this feature, the driving means includes a coil and a magnet, and the magnet includes a first magnet that applies a magnetic field from the center to the outside and a second magnet that applies a magnetic field from the outside to the center of the coil. Often, a plurality of fixed electrodes are provided for each driving element, and the plurality of fixed electrodes have different ranges in contact with the electrode contacts in the direction of movement of the driving element. It may be changed.

本発明によれば、駆動素子が有するコイルに掛けられる磁場の方向を隣り合う駆動素子で互いに逆方向にして複数素子駆動装置を構成したので、駆動素子の配置位置による駆動力のばらつきを低減できる。また、固定電極と電極接点とを接触させて給電したので、配線が不要となり、複数素子駆動装置の組み立て性が向上する。   According to the present invention, the multi-element drive device is configured with the directions of the magnetic field applied to the coil of the drive element being opposite to each other by the adjacent drive elements, so that it is possible to reduce variations in driving force due to the arrangement position of the drive elements. . Moreover, since the fixed electrode and the electrode contact are brought into contact with each other to supply power, wiring is not necessary, and the assemblability of the multi-element drive device is improved.

以下、本発明に係る複数素子駆動装置のいくつかの実施例を、図面を用いて説明する。   Several embodiments of the multi-element drive device according to the present invention will be described below with reference to the drawings.

図1に、複数素子駆動装置22の縦断面図(同図(a))および上面図(同図(b))を示す。天板を形成するケース2と、側板を形成する側面ヨーク7と、底板を形成する磁石固定板1とで箱状に形成された容器2x内には、円柱状の多数の磁石3が整列されて並べられている。磁石3を並べて配置したので、周辺部の磁力は中央部の磁力より若干増加する。側面ヨーク7を用いて、周辺部の磁力の増加を抑制する。隣り合う磁石3同士は、磁極の向きが逆になるように、磁石固定板1に接着剤等で固定されている。円筒形をした磁石3の上面には、円筒の径よりやや小径で強磁性体の内ヨーク14が配置されており、内ヨーク14のほぼ軸心部には、上方に延びる中心ヨーク10が取り付けられている。   FIG. 1 shows a longitudinal sectional view (FIG. 1A) and a top view (FIG. 1B) of the multi-element driving device 22. A large number of columnar magnets 3 are arranged in a container 2x formed in a box shape by a case 2 forming a top plate, a side yoke 7 forming a side plate, and a magnet fixing plate 1 forming a bottom plate. Are lined up. Since the magnets 3 are arranged side by side, the magnetic force at the peripheral part slightly increases from the magnetic force at the central part. The side yoke 7 is used to suppress an increase in magnetic force in the peripheral portion. Adjacent magnets 3 are fixed to the magnet fixing plate 1 with an adhesive or the like so that the directions of the magnetic poles are reversed. A ferromagnetic inner yoke 14 having a diameter slightly smaller than the diameter of the cylinder is arranged on the upper surface of the cylindrical magnet 3, and a central yoke 10 extending upward is attached to a substantially axial center portion of the inner yoke 14. It has been.

中心ヨーク10を取り囲んで、中心部に穴が形成されたコイル5が、上下方向に移動可能に配置されている。コイル5の上面には中心に穴が形成された円板である鍔状接触部6aが配置されている。鍔状接触部6aの穴径よりも大きい外径を有する袋状に形成された駆動素子6が、鍔状接触部6aの上面に接着剤で取り付けられている。鍔状接触部6aおよび駆動素子6を中心ヨーク10に挿し込み、コイル5とともに上下移動させる。コイル5の材質は磁石3に吸着しないものであり、駆動素子6は、磁石3に吸着しないプラスチック製である。   A coil 5 surrounding the central yoke 10 and having a hole formed in the central portion thereof is disposed so as to be movable in the vertical direction. On the upper surface of the coil 5, a bowl-shaped contact portion 6a, which is a disc having a hole formed at the center, is disposed. A driving element 6 formed in a bag shape having an outer diameter larger than the hole diameter of the hook-shaped contact portion 6a is attached to the upper surface of the hook-shaped contact portion 6a with an adhesive. The hook-shaped contact portion 6 a and the drive element 6 are inserted into the central yoke 10 and moved up and down together with the coil 5. The material of the coil 5 is not attracted to the magnet 3, and the drive element 6 is made of plastic that is not attracted to the magnet 3.

平板または曲面で形成されたケース2には、駆動素子6の位置に対応して穴が形成されており、駆動素子6の先端が、容器2xから飛び出ることを可能にしている。ケース2の材質は軽量化のためにはプラスチックがよく、磁気の外部漏洩を防止するには強磁性体がよい。強磁性体 を用いる場合には、中心ヨーク10からカバー2まで所定距離だけ離すようにする。これは、中心ヨーク10からカバー2までの距離が近すぎたときに磁力線がカバー2に向かい、駆動素子6の駆動力を低下させるのを防止するためである。   In the case 2 formed of a flat plate or a curved surface, a hole is formed corresponding to the position of the drive element 6, and the tip of the drive element 6 can jump out of the container 2x. The material of the case 2 is preferably plastic for weight reduction, and is preferably a ferromagnetic material to prevent external leakage of magnetism. When a ferromagnetic material is used, the center yoke 10 and the cover 2 are separated from each other by a predetermined distance. This is to prevent the lines of magnetic force from moving toward the cover 2 when the distance from the center yoke 10 to the cover 2 is too short, thereby reducing the driving force of the driving element 6.

駆動素子6は、電源停止時には容器2a内に、保持されている。コイルの導線11は、コイル5の上下移動にも対応できるゆとりをもって、磁石固定板1に形成した配線穴12から磁石固定板1の裏側に配した電極線15および接地電極線16に接続する(図3参照)。なお、磁石3と隣接磁石3の間には電極線の配線を行う隙間は無く、磁石3や内ヨーク14の表面に配線を行うと配線の厚み部分の磁場をコイル5の駆動に利用できなくなる。そこで、配線穴12を通して配線した。このようにすることにより、コイル導線11の変形による駆動素子6の移動抵抗も減らすことができる。電極線15と接地電極線16は制御装置13に接続されており、制御装置13からコイルに5に通電して、駆動素子6を駆動する。   The drive element 6 is held in the container 2a when the power is stopped. The lead wire 11 of the coil is connected from the wiring hole 12 formed in the magnet fixing plate 1 to the electrode wire 15 and the ground electrode wire 16 arranged on the back side of the magnet fixing plate 1 with a space that can cope with the vertical movement of the coil 5 ( (See FIG. 3). There is no gap between the magnet 3 and the adjacent magnet 3 for wiring the electrode wire, and if the wiring is performed on the surface of the magnet 3 or the inner yoke 14, the magnetic field in the thickness portion of the wiring cannot be used for driving the coil 5. . Therefore, wiring was made through the wiring hole 12. By doing in this way, the movement resistance of the drive element 6 by the deformation | transformation of the coil conducting wire 11 can also be reduced. The electrode line 15 and the ground electrode line 16 are connected to the control device 13, and the control device 13 energizes the coil 5 to drive the drive element 6.

磁石固定板1の材質が鉄などの強磁性体であれば、磁力で吸着するので接着剤は不要である。この場合、磁束も集束できるので、磁力の外部への漏れが防止され、駆動素子6の駆動力を大出力化できる。磁気回路は隣り合う磁石間でほぼ閉じるので、磁石固定板1は磁石1個分の磁束を集束できる厚さを有すればよい。例えば、直径7mmで高さ5mmのネオジム磁石を使用する場合には、強磁性体の磁石固定板1の厚さを0.5mm以下にできる。   If the material of the magnet fixing plate 1 is a ferromagnetic material such as iron, it is adsorbed by a magnetic force, so no adhesive is necessary. In this case, since the magnetic flux can also be focused, leakage of the magnetic force to the outside is prevented, and the driving force of the driving element 6 can be increased. Since the magnetic circuit is substantially closed between adjacent magnets, the magnet fixing plate 1 only needs to have a thickness that can concentrate the magnetic flux of one magnet. For example, when a neodymium magnet having a diameter of 7 mm and a height of 5 mm is used, the thickness of the ferromagnetic magnet fixing plate 1 can be reduced to 0.5 mm or less.

磁石3の整列方法を、図2を用いて説明する。第1の磁石3aの上面がN極ならば、隣に配置された第2の磁石3bの上面をS極にする。このように磁石の極を交互に、碁盤の目状に配置する。磁石3は円柱に限らず、四角柱等も使用できるが、円筒形が最も磁気効率が高い。同一のスペースでできるだけ大きな磁力を得られるように、磁石3、3を密接させる。磁石3、3を接触させて整列すれば、強磁性体の磁石固定板1に吸着させた磁石3に位置ずれが生じにくい。   A method for aligning the magnets 3 will be described with reference to FIG. If the upper surface of the first magnet 3a is an N pole, the upper surface of the second magnet 3b disposed adjacent to it is an S pole. In this way, the magnet poles are alternately arranged in a grid pattern. The magnet 3 is not limited to a column, but a square column or the like can be used, but a cylindrical shape has the highest magnetic efficiency. The magnets 3 and 3 are brought into close contact so that as much magnetic force as possible can be obtained in the same space. If the magnets 3 and 3 are brought into contact with each other and aligned, the magnet 3 adsorbed on the ferromagnetic magnet fixing plate 1 is unlikely to be displaced.

複数素子駆動装置22がピンディスプレイであれば、駆動素子6はピンディスプレイの表示素子に力を与えて、情報を伝達する。その際、駆動素子6が表示手段となるように、表示素子としての材質や形状とすれば、別に表示手段を設ける必要がなくなる。内ヨーク14は、磁石3の磁極面に吸着する。この磁極面の極性は、磁石固定板1に吸着している面とは逆の極性である。内ヨーク14は磁石3の磁力線を、中心ヨーク10に誘導しコイル5を通過する磁力線を増やす。これにより、駆動素子6の駆動力が増大する。   If the multi-element driving device 22 is a pin display, the driving element 6 transmits information by applying force to the display element of the pin display. At that time, if the material or shape of the display element is set so that the drive element 6 becomes the display means, it is not necessary to provide a separate display means. The inner yoke 14 is attracted to the magnetic pole surface of the magnet 3. The polarity of the magnetic pole surface is opposite to that of the surface attracted to the magnet fixing plate 1. The inner yoke 14 induces the magnetic lines of force of the magnet 3 to the central yoke 10 and increases the lines of magnetic force passing through the coil 5. Thereby, the driving force of the drive element 6 increases.

磁石3の磁極を内ヨーク14で大きく覆えば、多くの磁力線をコイル5に誘導できる。しかしながら隣りあう内ヨーク14や磁石3と接近しすぎると、磁力線が隣の内ヨーク14や磁石3に向かい、駆動素子6の駆動力が低下するので、適度に間隔を設けている。内ヨーク14の厚さは、隣りの内ヨーク14や磁石3との接近面積を減らし、コイル5に誘導する磁力線を増すために薄い方がよい。中心ヨーク10を林立させると、中心ヨーク10を垂直に結ぶ磁力線が増し、コイル5を垂直に横切る磁力線が増える。この結果、駆動力が増大する。それとともに、磁石3から遠ざかることによる磁力低下を低減できる。   If the magnetic pole of the magnet 3 is largely covered by the inner yoke 14, many lines of magnetic force can be induced to the coil 5. However, if it is too close to the adjacent inner yoke 14 or magnet 3, the lines of magnetic force are directed toward the adjacent inner yoke 14 or magnet 3, and the driving force of the driving element 6 is reduced. The thickness of the inner yoke 14 is preferably thin in order to reduce the approach area with the adjacent inner yoke 14 and the magnet 3 and increase the lines of magnetic force induced to the coil 5. When the central yoke 10 is erected, the magnetic lines that connect the central yoke 10 vertically increase, and the magnetic lines that cross the coil 5 vertically increase. As a result, the driving force increases. At the same time, a decrease in magnetic force caused by moving away from the magnet 3 can be reduced.

このように構成した本実施例の複数素子駆動装置22では、コイル5に電流を流すと、コイル5は中心ヨーク10に沿って上方に移動する。中心ヨーク10の長さは、コイル5の移動量に対して十分かつ最小の長さとするのがよい。すなわち、コイル5が最も高い位置まで移動したときに、コイル5の上面と中心ヨーク10の上面が同じ高さになる程度にする。また、磁石3の磁力を十分大きくすると、コイル5の移動に伴いコイル5に掛かる磁力の変動を抑制できる。   In the multi-element drive device 22 of this embodiment configured as described above, when a current is passed through the coil 5, the coil 5 moves upward along the central yoke 10. The length of the central yoke 10 should be sufficient and minimum with respect to the amount of movement of the coil 5. That is, when the coil 5 moves to the highest position, the upper surface of the coil 5 and the upper surface of the central yoke 10 are set to the same height. Further, when the magnetic force of the magnet 3 is sufficiently increased, fluctuations in the magnetic force applied to the coil 5 as the coil 5 moves can be suppressed.

駆動素子6に電流を流した時の動作原理は、以下のとおりである。磁石3のN極から垂直方向に放出される磁力線は、隣接する磁石3のS極の方向に向きを変えて、隣の磁石のS極に垂直に突入する。このとき、磁石3とコイル5の中心軸は一致しているので、コイル5の中心から外側へ向かう磁力線が発生する。内ヨーク14と中心ヨーク10を備えているので、磁石3のN極から垂直方向に放出された磁力線は、中心ヨーク10に集まる。そして、中心ヨーク10を経て、中心ヨーク10から垂直に放出されコイル5の中心から外側へ向かい、隣りの中心ヨーク10に入る。   The operation principle when a current is passed through the drive element 6 is as follows. The lines of magnetic force emitted in the vertical direction from the N pole of the magnet 3 change direction in the direction of the S pole of the adjacent magnet 3 and enter the S pole of the adjacent magnet vertically. At this time, since the central axes of the magnet 3 and the coil 5 coincide with each other, lines of magnetic force are generated from the center of the coil 5 to the outside. Since the inner yoke 14 and the center yoke 10 are provided, the lines of magnetic force emitted in the vertical direction from the north pole of the magnet 3 gather at the center yoke 10. Then, it passes through the central yoke 10 and is emitted perpendicularly from the central yoke 10, goes outward from the center of the coil 5, and enters the adjacent central yoke 10.

隣接するS極側のコイル5には、同様に外側から中心に向かう磁力線が発生する。コイル5の巻線に磁力線と直交する向きの電流が流れると、フレミング左手の法則により、コイル5の中心軸方向の力が発生する。コイル5が中心軸方向に移動すると、駆動素子6が磁石固定板1から外側へ突出する方向に駆動される。逆方向に電流を流せば、駆動素子6が磁石固定板1から内側へ戻る方向に駆動される。   Similarly, magnetic field lines from the outside toward the center are generated in the adjacent coil 5 on the south pole side. When a current in a direction perpendicular to the magnetic field lines flows through the winding of the coil 5, a force in the central axis direction of the coil 5 is generated according to the Fleming left-hand rule. When the coil 5 moves in the central axis direction, the drive element 6 is driven in a direction protruding outward from the magnet fixing plate 1. If a current is passed in the reverse direction, the drive element 6 is driven in the direction returning from the magnet fixing plate 1 to the inside.

駆動力F[N]の大きさは、磁束密度B[T]、電流I[A]、導線の長さL[m]に比例する。すなわち、F=B×I×Lであるから、電流量によって駆動力の強さを制御することができる。例えば、直径7mm、高さ3mmのネオジム磁石と、線径0.06mm、巻き数1690回、内径2mm、外径6mm、高さ5mmのコイルを使用し、中心ヨーク長を5mmにすると、複数素子駆動装置22の駆動力として、電流0.02Aで約0.04Nが得られる。   The magnitude of the driving force F [N] is proportional to the magnetic flux density B [T], the current I [A], and the length L [m] of the conducting wire. That is, since F = B × I × L, the strength of the driving force can be controlled by the amount of current. For example, if a neodymium magnet with a diameter of 7 mm and a height of 3 mm, a coil with a wire diameter of 0.06 mm, a number of turns of 1690, an inner diameter of 2 mm, an outer diameter of 6 mm, and a height of 5 mm are used, and the central yoke length is 5 mm, multiple elements As a driving force of the driving device 22, about 0.04N is obtained at a current of 0.02A.

本実施例で示した複数素子駆動装置22では、隣り合う極が異極となるように交互に磁石3を配置したので、磁気回路は隣接磁石3、3間でほぼ閉じる。その結果、各コイル5を通過する磁力線は配置した磁石3の1個分であり、並べる磁石の個数にほとんど影響されない。したがって、配置する駆動素子6の本数が異なっても、駆動力をほぼ一定にできる。   In the multi-element drive device 22 shown in the present embodiment, the magnets 3 are alternately arranged so that adjacent poles are different from each other, so that the magnetic circuit is substantially closed between the adjacent magnets 3 and 3. As a result, the line of magnetic force passing through each coil 5 is one magnet 3 arranged, and is hardly affected by the number of magnets arranged. Therefore, even if the number of drive elements 6 to be arranged is different, the driving force can be made substantially constant.

図1に示した複数素子駆動装置22を、触覚刺激通信装置21に適用したときのブロック図を、図4に示す。触覚刺激通信装置21は、複数の触覚刺激通信装置21の間で触覚刺激でコミュニケーションする。触覚刺激通信装置21は、複数素子駆動装置22および刺激方法指示手段23、通信手段24、電源25、これらを制御する制御手段26を有する。   FIG. 4 shows a block diagram when the multi-element drive device 22 shown in FIG. 1 is applied to the tactile stimulus communication device 21. The tactile stimulus communication device 21 communicates with a plurality of tactile stimulus communication devices 21 by tactile stimulus. The tactile stimulation communication device 21 includes a multi-element driving device 22, a stimulation method instruction unit 23, a communication unit 24, a power source 25, and a control unit 26 that controls these.

複数素子駆動装置22は、駆動素子6を進退させて近接対象物に接触触覚刺激を与える。刺激方法指示手段23は、指で触れた位置や強さを検出する手段を有する。この検出手段は、例えば静電容量センサや重量センサをマトリック状に配置したものである。検出した位置及び強さは、刺激方法情報として通信データ化される。通信手段24は他の触覚刺激通信装置21に刺激方法情報を送信するとともに、他の触覚刺激通信装置1からの刺激方法情報を受信する。受信した刺激方法情報に従い、複数素子駆動装置22が触覚刺激を出力する。   The multi-element drive device 22 moves the drive element 6 back and forth to give a contact object to the proximity object. The stimulation method instruction means 23 has means for detecting the position and strength touched by a finger. This detection means is, for example, a capacitance sensor or weight sensor arranged in a matrix. The detected position and strength are converted into communication data as stimulation method information. The communication unit 24 transmits the stimulation method information to the other tactile stimulus communication device 21 and receives the stimulation method information from the other tactile stimulus communication device 1. According to the received stimulation method information, the multi-element driving device 22 outputs a tactile stimulus.

図5に、図4に示した触覚刺激通信装置21を斜視図で示す。触覚刺激通信装置21は、掌に載る程度の大きさおよび重量である。触覚刺激通信装置21の一方の面には刺激方法指示手段23が、他方の面には複数素子駆動装置22が設けられている。触覚刺激通信装置21を、接続ケーブル28を用いて携帯電話27に接続する。その際、通信手段24は携帯電話27の通信機能を利用して他の触覚刺激通信装置21と通信する。なお、パソコンに接続してパソコンの通信機能を利用してもよいし、電波や赤外線などを用いて通信手段24が他の触覚刺激通信装置21と通信できるようにしてもよい。   FIG. 5 is a perspective view of the tactile stimulus communication device 21 shown in FIG. The tactile stimulus communication device 21 has a size and a weight that can be placed on a palm. A stimulation method instruction means 23 is provided on one surface of the tactile stimulation communication device 21, and a multi-element drive device 22 is provided on the other surface. The tactile stimulus communication device 21 is connected to the mobile phone 27 using the connection cable 28. At that time, the communication means 24 communicates with another tactile stimulation communication device 21 using the communication function of the mobile phone 27. The communication function of the personal computer may be used by connecting to a personal computer, or the communication unit 24 may communicate with another tactile stimulation communication device 21 using radio waves or infrared rays.

図6に、掌上に触覚刺激通信装置21を置いたときの様子を、断面図で示す。複数素子駆動装置22を掌側に、刺激方法指示手段23を上面にして手29に載せている。触覚刺激通信装置21の筐体の縁は、手で包むようにして支える。複数素子駆動装置22から駆動素子6が突出すると、駆動素子6は掌に接触して接触刺激を与える。駆動素子6が後退すると、掌への接触刺激が解除される。   FIG. 6 is a cross-sectional view showing a state where the tactile stimulus communication device 21 is placed on the palm. The multi-element driving device 22 is placed on the hand 29 with the palm side and the stimulation method instruction means 23 on the top. The edge of the housing of the tactile stimulus communication device 21 is supported by being wrapped by hand. When the driving element 6 protrudes from the multi-element driving device 22, the driving element 6 comes into contact with the palm and gives a contact stimulus. When the drive element 6 moves backward, the contact stimulus to the palm is released.

使用者は、図7に示すように触覚刺激通信装置21の上面に設けた刺激方法指示手段23の表面を指でなぞる。すると、指で触れた位置及び強さが、所定の通信周期で通信相手の触覚刺激通信装置21に送信される。通信相手の触覚刺激通信装置21の複数素子駆動装置22が作動して、指で触れた位置に対応する駆動素子6が掌側へ突出する。したがって、指で丸の形状になぞれば、相手の手のひらに順次丸の形状の接触刺激が出力される。これにより、文字の通信や意思の伝達が可能になる。優しくなでれば弱い力でなぞった接触刺激が出力され、強く叩けば、強い接触刺激が出力される。   As shown in FIG. 7, the user traces the surface of the stimulation method instruction means 23 provided on the upper surface of the tactile stimulation communication device 21 with a finger. Then, the position and strength touched by the finger are transmitted to the tactile stimulus communication device 21 of the communication partner at a predetermined communication cycle. The multi-element drive device 22 of the tactile stimulus communication device 21 of the communication partner is activated, and the drive element 6 corresponding to the position touched by the finger protrudes toward the palm side. Therefore, if a finger is traced into a round shape, a round contact stimulus is sequentially output to the palm of the other party. As a result, it is possible to communicate characters and communicate intentions. If gently touching, a contact stimulus traced with a weak force is output, and if hit gently, a strong contact stimulus is output.

複数素子駆動装置の他の実施例を、図8に縦断面図(同図(a))および上面図(同図(b))で示す。本実施例が、図1に示した実施例と相違するのは、駆動素子6側にも磁石4を配置したことにある。さらに、上下の磁石4、3が形成する隙間であって各コイル5間には、コイル5の上下動を案内するガイド9が上下方向に延びて設けられている。上側の磁石4の軸心部には穴4xが形成されており、コイル5に載置した鍔状接触部6aに取り付けた棒状の駆動素子6がこの穴4xを移動可能になっている。   Another embodiment of the multi-element driving apparatus is shown in FIG. 8 in a longitudinal sectional view (FIG. 8A) and a top view (FIG. 8B). This embodiment is different from the embodiment shown in FIG. 1 in that the magnet 4 is also arranged on the drive element 6 side. Further, a guide 9 that guides the vertical movement of the coil 5 is provided between the coils 5 in the gap formed by the upper and lower magnets 4, 3. A hole 4x is formed in the axial center portion of the upper magnet 4, and a rod-like drive element 6 attached to the hook-shaped contact portion 6a mounted on the coil 5 can move through the hole 4x.

上側の磁石4はカバー2に固定されており、下側の磁石3は磁石固定板1に固定または吸着している。カバー2と磁石固定板1とは、周縁部で固定ねじ8およびナット8aで固定されている。図9に示すように、上側の磁石4も、隣り合う磁石4と極性は反対になっている。そして、対応する下側の磁石3とも反対の極性になっている。すなわち、上側の磁石4の上面側がS極であれば、下側の磁石3の下面もS極となるように配置されている。上側の磁石4と下側の磁石は同軸上に配置されている。   The upper magnet 4 is fixed to the cover 2, and the lower magnet 3 is fixed or attracted to the magnet fixing plate 1. The cover 2 and the magnet fixing plate 1 are fixed by a fixing screw 8 and a nut 8a at the periphery. As shown in FIG. 9, the upper magnet 4 is also opposite in polarity to the adjacent magnet 4. And the corresponding lower magnet 3 has the opposite polarity. That is, if the upper surface side of the upper magnet 4 is the S pole, the lower surface of the lower magnet 3 is also arranged to be the S pole. The upper magnet 4 and the lower magnet are arranged coaxially.

隣り合う磁石4は異極となるので、磁石3と同様に、第1の磁石4aのN極から隣接する第2の磁石4bのS極に磁力線が発生する。これにより、磁石3の磁力線だけが作用する場合に比べ、コイル5の駆動力が増大する。磁石3と磁石4は同極が向かい合うので反発力が発生する。この不具合を解消するために、カバー5と磁石固定板1には、剛性の高い材質のものを使用するとともに、固定ネジ8を用いてカバーと磁石固定板1を固定している。カバー5の材質は鉄などの強磁性体であれば剛性が高く、外部への磁気漏洩を防止できる。また、磁石4をカバー2に固定する際に、接着剤が不要となる。   Since the adjacent magnets 4 have different polarities, lines of magnetic force are generated from the north pole of the first magnet 4a to the south pole of the second magnet 4b adjacent to the first magnet 4a. Thereby, compared with the case where only the magnetic force line of the magnet 3 acts, the driving force of the coil 5 increases. Since the magnet 3 and the magnet 4 are opposite to each other, a repulsive force is generated. In order to solve this problem, the cover 5 and the magnet fixing plate 1 are made of a highly rigid material, and the cover and the magnet fixing plate 1 are fixed using fixing screws 8. If the cover 5 is made of a ferromagnetic material such as iron, the cover 5 has high rigidity and can prevent magnetic leakage to the outside. Further, no adhesive is required when fixing the magnet 4 to the cover 2.

本実施例では、中心ヨーク10及び内ヨーク14の代わりにコイル5を囲うガイド9を使用している。これにより、コイル5は中心ヨーク10に沿って移動する代わりにガイド9に沿って移動可能になる。なお、配線穴12をカバー2側に設け、カバー2側で配線している。これにより、コイル5及び駆動素子6の取り付けが容易になり、組み立て性が向上する。   In this embodiment, a guide 9 surrounding the coil 5 is used instead of the central yoke 10 and the inner yoke 14. Thus, the coil 5 can move along the guide 9 instead of moving along the central yoke 10. The wiring hole 12 is provided on the cover 2 side and wired on the cover 2 side. Thereby, attachment of the coil 5 and the drive element 6 becomes easy, and assembly property improves.

本複数素子駆動装置22の組み立て方法を、以下に説明する。カバー2の裏面側に上側の磁石4を整列し、この磁石4にガイド9を接着する。次いで、コイル5に鍔状接触部6aを介して各駆動素子6を接着する。コイル導線11を配線穴12に通すとともに、各駆動素子6を下面側から上側の磁石4の中心穴4xに通す。コイル5を、ガイド9の枠内に収める。カバー2の穴2aから引き出されたコイル導線11を、図示しない電極線に接続する。一方、磁石固定板1の上面に下側の磁石3を整列する。この磁石固定板1と、コイル5および上側の磁石4が取り付けられたカバー2を、磁石3とコイル5が向き合うように位置決めし、固定ネジ8とナット8aで固定する。   A method for assembling the multi-element drive device 22 will be described below. The upper magnet 4 is aligned on the back side of the cover 2, and a guide 9 is bonded to the magnet 4. Next, each drive element 6 is bonded to the coil 5 via the hook-shaped contact portion 6a. The coil lead wire 11 is passed through the wiring hole 12 and each drive element 6 is passed from the lower surface side to the center hole 4x of the upper magnet 4. The coil 5 is accommodated in the frame of the guide 9. The coil conducting wire 11 drawn out from the hole 2a of the cover 2 is connected to an electrode wire (not shown). On the other hand, the lower magnet 3 is aligned on the upper surface of the magnet fixing plate 1. The magnet fixing plate 1 and the cover 2 to which the coil 5 and the upper magnet 4 are attached are positioned so that the magnet 3 and the coil 5 face each other, and are fixed with fixing screws 8 and nuts 8a.

本実施例によれば、中心ヨークが不要なので、駆動素子6を中実部材とすることができ、駆動素子6を細くできる。その結果、上側の磁石4の穴4xの径が小さくなり、磁力が増大する。なお、本実施例において、コイル5の上下移動を容易にするために中心ヨーク10を使用することも可能である。この場合、中心ヨーク10の長さを下側の磁石3から上側の磁石4までの距離より長くすると磁石3、4による駆動力が減少するので、下側の磁石3から上側の磁石4までの距離より短くする。   According to this embodiment, since the central yoke is unnecessary, the drive element 6 can be a solid member, and the drive element 6 can be made thin. As a result, the diameter of the hole 4x of the upper magnet 4 is reduced and the magnetic force is increased. In the present embodiment, the central yoke 10 can be used to facilitate the vertical movement of the coil 5. In this case, if the length of the central yoke 10 is made longer than the distance from the lower magnet 3 to the upper magnet 4, the driving force by the magnets 3, 4 decreases, so the lower magnet 3 to the upper magnet 4 Make it shorter than the distance.

本発明に係る複数素子駆動装置22のさらに他の実施例を、図10および図11に斜視図で示す。これらの図では、駆動素子の1個だけを図示している。本実施例では、コイル3の断線を防止する手段を設けている点で上記実施例と相違する。少ない電流量でできるだけ大きな駆動力を得るためには、コイル5の巻線を細くして巻き数を増やせばよい。しかしながら、コイル5の巻線を細くすると、断線しやすくなる。特に、コイル5の導線11は、駆動素子6の移動に従い塑性変形を繰り返し、コイル5と磁石3の間に挟まったりして断線しやすくなる。   Still another embodiment of the multi-element drive device 22 according to the present invention is shown in perspective views in FIGS. In these figures, only one of the drive elements is shown. The present embodiment is different from the above-described embodiment in that a means for preventing the coil 3 from being disconnected is provided. In order to obtain as large a driving force as possible with a small amount of current, the number of turns may be increased by making the winding of the coil 5 thinner. However, if the winding of the coil 5 is thinned, it becomes easy to break. In particular, the conductive wire 11 of the coil 5 repeats plastic deformation as the driving element 6 moves, and is easily caught between the coil 5 and the magnet 3.

駆動素子6の鍔状接触部6aの上面に、導体の第1の接続板52と第2の接続板53を取り付ける。コイル5の巻き初めの内側導線11aを第1の接続板52に、巻き終わりの外側導線11bを第2の接続板53に接続する。内側コイル導線11aと外側コイル導線11bには、余裕を必要としない。そこで、第1、第2の接続板52、53に導線11a、11bを接続したら、コイル5と鍔状接触部6aの表面に導線11a、11bを接着し、樹脂で覆い固めている。   A conductor first connection plate 52 and a second connection plate 53 are attached to the upper surface of the bowl-shaped contact portion 6 a of the drive element 6. The inner conducting wire 11 a at the beginning of winding of the coil 5 is connected to the first connecting plate 52, and the outer conducting wire 11 b at the end of winding is connected to the second connecting plate 53. No margin is required for the inner coil conductor 11a and the outer coil conductor 11b. Therefore, when the conducting wires 11a and 11b are connected to the first and second connecting plates 52 and 53, the conducting wires 11a and 11b are bonded to the surfaces of the coil 5 and the bowl-shaped contact portion 6a and are covered with resin.

磁石3およびコイル5の周方向ほぼ対称位置2箇所には、上下方向に延びる第1、第2の電極50、51が配置されている。第1、第2の電極50、51は、薄いプラスチックシート上に電極を形成した細いフレキシブルな電極で、先端部が丸められている。第1、第2の電極50、51の丸められた先端が、それぞれ第1、第2の接続板50、51に当接している。各電極50、51の他端部は、配線穴12から磁石支持板1の配面側に延びている。駆動素子6が突出すると、図11に示すように、第1、第2のの電極50、B51の先端の丸み部の径が小さくなり、コイルが上下動しても確実に通電状態を保つ。本実施例によれば、細い導線11を変形させなくとも、比較的丈夫なフレキシブル電極を変形させるだけで、断線を回避できる。   First and second electrodes 50 and 51 extending in the vertical direction are arranged at two substantially symmetrical positions in the circumferential direction of the magnet 3 and the coil 5. The first and second electrodes 50 and 51 are thin flexible electrodes in which electrodes are formed on a thin plastic sheet, and the tips are rounded. The rounded tips of the first and second electrodes 50 and 51 are in contact with the first and second connection plates 50 and 51, respectively. The other end of each electrode 50, 51 extends from the wiring hole 12 to the surface side of the magnet support plate 1. When the drive element 6 protrudes, as shown in FIG. 11, the diameters of the rounded portions at the tips of the first and second electrodes 50 and B51 are reduced, and the energized state is reliably maintained even when the coil moves up and down. According to this embodiment, even if the thin conductive wire 11 is not deformed, the disconnection can be avoided only by deforming the relatively strong flexible electrode.

本発明に係る複数素子駆動装置22のさらに他の実施例を、図12ないし図14に示す。図12は、複数素子駆動装置22の縦断面図(同図(a))および上面図(同図(b))である。図13は、駆動素子6の1個だけの斜視図であり、図14は駆動素子6の上面図である。本実施例は、図1に示した実施例とコイル5への通電経路が相違している。本実施例では、組み立て性の向上と断線防止を図っている。   Still another embodiment of the multi-element driving device 22 according to the present invention is shown in FIGS. 12 is a longitudinal sectional view (FIG. 12 (a)) and a top view (FIG. 12 (b)) of the multi-element driving device 22. FIG. FIG. 13 is a perspective view of only one drive element 6, and FIG. 14 is a top view of the drive element 6. In this embodiment, the energization path to the coil 5 is different from the embodiment shown in FIG. In the present embodiment, the assembling property is improved and the disconnection is prevented.

図13に示すように、駆動素子6の外周面のほぼ対称位置に、第1、第2の電極接点41、42を形成する。コイル5の巻き初めの内側導線11aを第1の電極接点41に、巻き終わりの外側導線11bを第2の電極接点42に接続する。カバー2の駆動素子穴2aの縁であって、第1、第2の電極接点41、42の周方向位置に対応する位置に、第1、第2の固定電極43、44を設ける。第1の電極接点41に第1の固定電極41を、第2の電極接点44に第2の固定電極42を接触させる。   As shown in FIG. 13, first and second electrode contacts 41 and 42 are formed at substantially symmetrical positions on the outer peripheral surface of the drive element 6. The inner conductor 11a at the beginning of winding of the coil 5 is connected to the first electrode contact 41, and the outer conductor 11b at the end of winding is connected to the second electrode contact 42. First and second fixed electrodes 43 and 44 are provided at positions corresponding to the circumferential positions of the first and second electrode contacts 41 and 42 on the edge of the drive element hole 2 a of the cover 2. The first fixed electrode 41 is brought into contact with the first electrode contact 41, and the second fixed electrode 42 is brought into contact with the second electrode contact 44.

固定電極43、44が電極接点41、42に安定して接触するように、第1、第2の固定電極43、44を駆動素子6に押し付ける。例えば、プラスチックシート上に第1、第2の固定電極43、44を形成し、プラスチックシートを駆動素子穴2aに通す。プラスチックシートの先端部を湾曲させ、カバー2の裏面側で固定する。プラスチックシートの湾曲面の固定電極43、44を電極接点41、42に接触させる。これにより、プラスチックシートの湾曲面の弾性により、駆動素子6に押し付け力が付与される。なお、駆動素子6が進退しても電極接点41、42が常に固定電極43、44と接するように、電極接点41、42の軸方向長さ(上下方向長さ)は十分長い。   The first and second fixed electrodes 43 and 44 are pressed against the driving element 6 so that the fixed electrodes 43 and 44 are in stable contact with the electrode contacts 41 and 42. For example, first and second fixed electrodes 43 and 44 are formed on a plastic sheet, and the plastic sheet is passed through the drive element hole 2a. The tip of the plastic sheet is bent and fixed on the back side of the cover 2. The fixed electrodes 43 and 44 on the curved surface of the plastic sheet are brought into contact with the electrode contacts 41 and 42. Thereby, a pressing force is applied to the drive element 6 by the elasticity of the curved surface of the plastic sheet. The axial lengths (vertical lengths) of the electrode contacts 41 and 42 are sufficiently long so that the electrode contacts 41 and 42 are always in contact with the fixed electrodes 43 and 44 even when the drive element 6 moves back and forth.

各コイル5が面する磁石3の極性により、コイル5を進退させる電流の向きが異なるので、接触させる第1、第2の電極接点41、42と、第1、第2の固定電極43、44の組み合わせを、磁石3の極性に応じて変える。例えば、第1の固定電極43を駆動電圧、第2の固定電極44を接地電圧とする。あるコイル5の第1の電極接点41を第1の固定電極43に、第2の電極接点42を第2の固定電極44に接触させたら、このコイル5が面する磁極と逆の磁極に面するコイル5の第1の電極接点41を第2の固定電極44に、第2の電極接点42を第1の固定電極43に接触させる。   Depending on the polarity of the magnet 3 that each coil 5 faces, the direction of the current that causes the coil 5 to advance and retreat is different. Therefore, the first and second electrode contacts 41 and 42 to be brought into contact with and the first and second fixed electrodes 43 and 44. Is changed according to the polarity of the magnet 3. For example, the first fixed electrode 43 is a drive voltage, and the second fixed electrode 44 is a ground voltage. When a first electrode contact 41 of a certain coil 5 is brought into contact with the first fixed electrode 43 and a second electrode contact 42 is brought into contact with the second fixed electrode 44, the coil 5 faces the magnetic pole opposite to the magnetic pole facing the coil 5. The first electrode contact 41 of the coil 5 to be contacted is brought into contact with the second fixed electrode 44, and the second electrode contact 42 is brought into contact with the first fixed electrode 43.

このように電極接点41、42および固定電極43、44を配置すれば、接地電圧に対して正方向の駆動電圧を印加すると駆動素子6が突出し、負方向の駆動電圧を印加すると駆動素子6が後退する。そして、全ての駆動素子6において駆動電圧の向きと突出後退の向きを等しくすることができ、駆動素子6の制御が容易になる。なお、駆動素子6が回転して電極接点41、42と固定電極43、44との組み合わせが変化しないように、駆動素子6にガイド溝45を形成する。図14に示すように、カバー2にガイド爪46を形成し、ガイド爪46がガイド溝45に係止して、駆動素子6の回転を防止する。   If the electrode contacts 41 and 42 and the fixed electrodes 43 and 44 are arranged in this way, the drive element 6 protrudes when a positive drive voltage is applied to the ground voltage, and the drive element 6 is applied when a negative drive voltage is applied. fall back. In all the drive elements 6, the direction of the drive voltage and the direction of protrusion and retraction can be made equal, and the control of the drive elements 6 becomes easy. A guide groove 45 is formed in the drive element 6 so that the combination of the electrode contacts 41 and 42 and the fixed electrodes 43 and 44 does not change due to rotation of the drive element 6. As shown in FIG. 14, a guide claw 46 is formed on the cover 2, and the guide claw 46 is engaged with the guide groove 45 to prevent the drive element 6 from rotating.

第1、第2の固定電極43、44が駆動素子6に付与する押し付け力は、駆動素子6の進退動作を妨げない程度に小さく、重力により駆動素子6が移動させられる力よりは大きい。コイル5への通電が停止されると、停止位置で駆動素子6が固定される。したがって、目的の位置まで移動させるときのみ通電し、目的の位置に移動したら停電させれば、節電となる。これにより、携帯用機器に適用しても、動作電力を確保できる。   The pressing force applied to the drive element 6 by the first and second fixed electrodes 43 and 44 is small enough not to hinder the forward / backward movement of the drive element 6 and is larger than the force that moves the drive element 6 by gravity. When energization of the coil 5 is stopped, the drive element 6 is fixed at the stop position. Therefore, if power is supplied only when moving to the target position, and if a power failure occurs after moving to the target position, power is saved. Thereby, even if it applies to a portable apparatus, operating power is securable.

本発明に係る複数素子駆動装置22のさらに他の実施例を、図15および図16を用いて説明する。図15では、駆動素子の1個だけを斜視図で示している。図16は、図5の上面図である。本実施例では、上記各実施例と異なり、駆動素子6の進退位置、すなわち上下方向位置を段階的に可変にしている。図12で示した実施例の電極接点41、42の一方を、駆動素子6の軸方向先端部にいくにしたがい広くなる変形電極接点54で置き換えている。他方の電極接点は、図12で示したものと同じであるが、この電極接点は接地用電極接点55として使用する。   Still another embodiment of the multi-element drive device 22 according to the present invention will be described with reference to FIGS. In FIG. 15, only one drive element is shown in a perspective view. FIG. 16 is a top view of FIG. In the present embodiment, unlike the above embodiments, the advance / retreat position of the drive element 6, that is, the vertical position, is made variable stepwise. One of the electrode contacts 41 and 42 of the embodiment shown in FIG. 12 is replaced with a deformed electrode contact 54 that becomes wider as it goes to the tip of the driving element 6 in the axial direction. The other electrode contact is the same as that shown in FIG. 12, but this electrode contact is used as the ground electrode contact 55.

図16に示すようにカバー2には、駆動素子穴2aの周囲に放射状に、上位置用固定電極47、中位置用固定電極48、下位置用固定電極49の3種類の固定電極が形成されている。上位置用固定電極47は駆動素子6が最も後退した位置から最も突出した位置まで移動する間、常に変形電極接点54に接する位置に設ける。中位置用固定電極48は、駆動素子6が最も後退した位置から中程度突出した位置まで移動する間、変形電極接点54に接する位置に設ける。下位置用固定電極49は、駆動素子6が最も後退した位置からわずかに突出した位置まで移動する間、変形電極接点54に接する位置に設ける。接地用電極接点55に、第2の固定電極44を接触させる。   As shown in FIG. 16, the cover 2 is formed with three types of fixed electrodes, the upper position fixed electrode 47, the middle position fixed electrode 48, and the lower position fixed electrode 49, radially around the drive element hole 2a. ing. The upper position fixed electrode 47 is always provided at a position in contact with the deformed electrode contact 54 while the drive element 6 moves from the most retracted position to the most protruded position. The middle position fixed electrode 48 is provided at a position in contact with the deformed electrode contact 54 while the driving element 6 moves from the most retracted position to the middle protruding position. The lower position fixed electrode 49 is provided at a position in contact with the deformed electrode contact 54 while the drive element 6 moves from the most retracted position to a position slightly protruding. The second fixed electrode 44 is brought into contact with the ground electrode contact 55.

本実施例によれば、通電する電極を、上位置用固定電極47、中位置用固定電極48、下位置用固定電極49から選択すれば、駆動素子6の進退位置を、最大突出位置、中程度突出位置、小突出位置の3段階に変化させることができる。なお、本実施例では高さ位置を3段階に変化させているが、この数に限るものではなく、固定電極の数と接触位置の種類を変更することにより、任意数の段階にすることができる。本実施例で示した複数素子駆動装置をピンディスプレイに適用すれば、形状の輪郭だけでなく表面の凹凸も表示することが可能となる。   According to the present embodiment, if the electrode to be energized is selected from the upper position fixed electrode 47, the middle position fixed electrode 48, and the lower position fixed electrode 49, the advance / retreat position of the drive element 6 is set to the maximum projecting position, It can be changed in three stages: a protruding position and a small protruding position. In this embodiment, the height position is changed in three steps, but the number is not limited to this number, and the number of fixed electrodes and the kind of contact position can be changed to any number of steps. it can. When the multi-element driving device shown in this embodiment is applied to a pin display, not only the contour of the shape but also the surface irregularities can be displayed.

本発明のさらに他の実施例を、図17および図18を用いて説明する。図17は、複数素子駆動装置22の縦断面図であり、図18はその磁石3aの配置を示す斜視図である。本実施例は、図1に示した複数素子駆動装置22と磁石3aの配置が相違している。すなわち、図1の実施例では磁石3aを密接配置し、その各々に対応してコイル5を設けていたが、本実施例ではコイル5の配置は図1の実施例のままで、磁石3aだけを1個おきに配置している。   Still another embodiment of the present invention will be described with reference to FIGS. FIG. 17 is a longitudinal sectional view of the multi-element driving device 22, and FIG. 18 is a perspective view showing the arrangement of the magnets 3a. In this embodiment, the arrangement of the multi-element driving device 22 shown in FIG. 1 and the magnet 3a is different. That is, in the embodiment of FIG. 1, the magnets 3a are closely arranged, and the coils 5 are provided corresponding to each of them. However, in this embodiment, the arrangement of the coils 5 is the same as that of the embodiment of FIG. Are arranged every other.

磁石3a上に載置したコイル5と、磁石3aの無い中心ヨーク10bに取り付けたコイル5を交互に配置したので、中心ヨーク10bは、強磁性体の磁石固定板1に固定されカバー2の裏面近くまで延在する。中心ヨーク10bの磁石3aの高さのところには、磁石に吸着しない材質の鍔56が取り付けられている。これにより、磁石3aがあっても無くてもコイル5の可動範囲をほぼ同一にできる。磁石3aは、図18に示すように極性を合わせている。すなわち、磁石3aの上面がS極であり、下面がN極である。   Since the coil 5 mounted on the magnet 3a and the coil 5 attached to the central yoke 10b without the magnet 3a are alternately arranged, the central yoke 10b is fixed to the ferromagnetic magnet fixing plate 1 and the back surface of the cover 2 It extends to near. A flange 56 made of a material that is not attracted to the magnet is attached at the height of the magnet 3a of the center yoke 10b. Thereby, the movable range of the coil 5 can be made substantially the same with or without the magnet 3a. The magnet 3a has the same polarity as shown in FIG. That is, the upper surface of the magnet 3a is the S pole and the lower surface is the N pole.

本実施例によれば、図1に示した複数素子駆動装置22よりも、少ない磁石数で同程度の駆動力を発生できる。したがって、コスト削減および軽量化が可能になる。また、磁石3aのあるところの中心ヨーク10と無いところの長い中心ヨーク10bの間隔を変えずに、磁石3aとスペースの比を変えて磁極面積を大きくすれば、駆動力を増大できる。   According to the present embodiment, it is possible to generate the same level of driving force with a smaller number of magnets than in the multi-element driving device 22 shown in FIG. Therefore, cost reduction and weight reduction are possible. Further, the driving force can be increased by changing the ratio of the magnet 3a to the space and increasing the magnetic pole area without changing the distance between the central yoke 10 where the magnet 3a is present and the long central yoke 10b where the magnet 3a is not present.

本実施例では、磁石3aのあるところの中心ヨーク10と磁石3aの無いところの中心ヨーク10bによりコイル5に与えられる磁力が異なる。つまり、磁石3aの無いところの中心ヨーク10bの方が磁力が小さく、磁石3aの無いところの中心ヨーク10bの最外周部ではさらに磁力が小さくなる。したがって、同じ駆動力とするために、コイル5の巻き数を変えるかまたはコイル5に通電する電流値を変化させている。このとき、側ヨークを使用しないで、最外周部における中心ヨーク10bの磁力の低下を抑制する。なお、コイルの巻き数を変える場合、コイルの高さを高くし、その分鍔56の位置を下げるようにしてもよい
本実施例の複数素子駆動装置22では、コイル5の進退位置により磁力が僅かに変化するので、進退位置をより鮮明に意識させる装置に用いると好適である。また、隣り合う磁石3aは同方向を向いているので、反発力が発生する。発生した反発力により磁石固定板1から磁石3aがずれないように、磁石3aの配置間隔を十分に大きくする。磁石固定板1では、磁石3aや中心ヨーク10bが接触する部分以外はスペースであるから、穴を形成すれば軽量化が図られる。または、磁石固定板1を細分割した強磁性体片を軽量のプラスチック板に固定し、各強磁性体片に磁石3aと中心ヨーク10bとを組合わせてもよい。
In the present embodiment, the magnetic force applied to the coil 5 is different between the central yoke 10 where the magnet 3a is present and the central yoke 10b where the magnet 3a is not present. That is, the magnetic force is smaller in the central yoke 10b without the magnet 3a, and the magnetic force is further reduced in the outermost peripheral portion of the central yoke 10b without the magnet 3a. Therefore, in order to obtain the same driving force, the number of turns of the coil 5 is changed or the value of the current supplied to the coil 5 is changed. At this time, a decrease in the magnetic force of the central yoke 10b in the outermost peripheral portion is suppressed without using the side yoke. Note that when changing the number of turns of the coil, the height of the coil may be increased and the position of the rod 56 may be lowered. In the multi-element drive device 22 of the present embodiment, the magnetic force is increased depending on the advance / retreat position of the coil 5. Since it changes slightly, it is preferable to use it for a device that makes the advance / retreat position clearer. Moreover, since the adjacent magnets 3a face the same direction, a repulsive force is generated. The arrangement interval of the magnets 3a is sufficiently increased so that the magnets 3a are not displaced from the magnet fixing plate 1 by the generated repulsive force. Since the magnet fixing plate 1 is a space other than a portion where the magnet 3a and the center yoke 10b are in contact with each other, the weight can be reduced by forming a hole. Alternatively, the ferromagnetic piece obtained by subdividing the magnet fixing plate 1 may be fixed to a lightweight plastic plate, and the magnet 3a and the central yoke 10b may be combined with each ferromagnetic piece.

図19ないし図23を用いて、本発明に係る複数素子駆動装置22のさらに他の実施例を説明する。図19は複数素子駆動装置の縦断面図である。図20、22、23は複数素子駆動装置に用いる磁石の配置図でありその上面図、図21は図20の斜視図である。本実施例では、図1に示した実施例と異なり、直方体の磁石57を用いている。   Still another embodiment of the multi-element drive device 22 according to the present invention will be described with reference to FIGS. FIG. 19 is a longitudinal sectional view of a multi-element driving device. 20, 22, and 23 are layout views of magnets used in the multi-element drive device, and FIG. 21 is a perspective view of FIG. 20. In this embodiment, a rectangular parallelepiped magnet 57 is used unlike the embodiment shown in FIG.

直方体の磁石57の左右両側面には表面ヨーク58が吸着されている。この表面ヨーク58の上面であって前後方向中間部には、中心ヨーク10が配置されている。中心ヨーク10、10間の前後左右方向距離は、等しい。中心に穴が形成されたコイル5に、この中心ヨーク10を通す。コイル5の径は、磁石3の左右方向長さより僅かに短い。隣り合う磁石3、3間には、表面ヨーク58を介して、磁石3よりも高さが低く磁石3の位置決めに用いるスペーサ59が配置されている。   Surface yokes 58 are attracted to the left and right side surfaces of the rectangular parallelepiped magnet 5 7. The central yoke 10 is disposed on the upper surface of the front yoke 58 and in the middle in the front-rear direction. The front-rear and left-right distances between the center yokes 10 and 10 are equal. The central yoke 10 is passed through the coil 5 having a hole formed in the center. The diameter of the coil 5 is slightly shorter than the length of the magnet 3 in the left-right direction. Between the adjacent magnets 3 and 3, a spacer 59 having a height lower than that of the magnet 3 and used for positioning the magnet 3 is disposed via the surface yoke 58.

磁石固定板1は、非磁性である。図20に示すように、隣り合う磁石57の左右に対向する面は、異なる極性を有している。図21に示すように、磁石57の向きを等しくし、市松模様状にずらして配置している。図22および図23は、磁石57の配置を変えた変形例であり、図22では、磁石57の配列において、左右方向には同じ極性とし、前後方向(図では上下方向)には逆の極性となるように、2種の磁石57a、57bを配置している。また、図23では、磁石57の磁力の方向や磁極の配置を変化させている。本実施例およびいずれの変形例においても、磁石57の磁極面積と磁極方向長さが図1に示した実施例の磁石3に等しければ、少ない磁石数で図1の実施例と同程度の駆動力が得られ、複数素子駆動装置のコスト削減と軽量化を実現できる。また、中心ヨーク10を表面ヨーク58の上面であって前後方向両端部に配置し、中心ヨーク10、10間の前後左右方向距離が等しくなるように磁石57を配置すれば、よりコスト削減と軽量化を実現できる。   The magnet fixing plate 1 is nonmagnetic. As shown in FIG. 20, the left and right surfaces of adjacent magnets 57 have different polarities. As shown in FIG. 21, the magnets 57 are arranged in the same direction and shifted in a checkered pattern. 22 and 23 are modified examples in which the arrangement of the magnets 57 is changed. In FIG. 22, in the arrangement of the magnets 57, the polarities are the same in the left-right direction and the opposite polarities in the front-rear direction (up-down direction in the figure). Two kinds of magnets 57a and 57b are arranged so that In FIG. 23, the direction of the magnetic force of the magnet 57 and the arrangement of the magnetic poles are changed. In this embodiment and any of the modifications, if the magnetic pole area of the magnet 57 and the magnetic pole direction length are equal to the magnet 3 of the embodiment shown in FIG. 1, the number of magnets is the same as that of the embodiment of FIG. Power can be obtained, and cost reduction and weight reduction of the multi-element drive device can be realized. Further, if the central yoke 10 is disposed on the upper surface of the surface yoke 58 at both ends in the front-rear direction, and the magnets 57 are disposed so that the front-rear and left-right distances between the central yokes 10, 10 are equal, the cost can be reduced and the weight can be reduced. Can be realized.

本発明に係る複数素子駆動装置の一実施例の縦断面図(a)および上面図(b)である。It is the longitudinal cross-sectional view (a) and top view (b) of one Example of the multiple element drive device based on this invention. 図1に示した複数素子駆動装置に用いる磁石の配置を説明する図である。It is a figure explaining arrangement | positioning of the magnet used for the multiple element drive device shown in FIG. 図1に示した複数素子駆動装置における配線を説明する図である。It is a figure explaining the wiring in the multiple element drive device shown in FIG. 本発明に係る複数素子駆動装置を用いた触覚刺激通信装置の一実施例ブロック図である。1 is a block diagram of an embodiment of a tactile stimulus communication device using a multi-element drive device according to the present invention. 図4に示した触覚刺激通信装置の斜視図である。It is a perspective view of the tactile stimulus communication apparatus shown in FIG. 図4に示した触覚刺激通信装置の一部の縦断面図である。It is a longitudinal cross-sectional view of a part of the tactile stimulus communication apparatus shown in FIG. 図4に示した触覚刺激通信装置の一部の斜視図である。FIG. 5 is a perspective view of a part of the tactile stimulus communication apparatus shown in FIG. 4. 本発明に係る複数素子駆動装置の他の実施例の縦断面図(a)および上面図(b)である。It is the longitudinal cross-sectional view (a) and top view (b) of the other Example of the multiple element drive device based on this invention. 図8に示した複数素子駆動装置に用いる磁石の配置を説明する図である。It is a figure explaining arrangement | positioning of the magnet used for the multiple element drive device shown in FIG. 本発明に係る複数素子駆動装置のさらに他の実施例の斜視図である。It is a perspective view of the further another Example of the multiple element drive device which concerns on this invention. 図10に示した複数素子駆動装置の動作時の状態を示す斜視図である。It is a perspective view which shows the state at the time of operation | movement of the multiple element drive device shown in FIG. 本発明に係る複数素子駆動装置のさらに他の実施例の縦断面図(a)および上面図(b)である。It is the longitudinal cross-sectional view (a) and top view (b) of other Example of the multiple element drive device based on this invention. 図12に示した複数素子駆動装置における電流供給方法を説明する図である。It is a figure explaining the electric current supply method in the multiple element drive device shown in FIG. 図12に示した複数素子駆動装置における電流供給方法を説明する図である。It is a figure explaining the electric current supply method in the multiple element drive device shown in FIG. 本発明に係る複数素子駆動装置のさらに他の実施例の斜視図である。It is a perspective view of the further another Example of the multiple element drive device which concerns on this invention. 図15に示した複数素子駆動装置における電流供給方法説明する図である。It is a figure explaining the electric current supply method in the multiple element drive device shown in FIG. 本発明に係る複数素子駆動装置のさらに他の実施例の縦断面図である。It is a longitudinal cross-sectional view of the further another Example of the multiple element drive device based on this invention. 図17に示した複数素子駆動装置に用いる磁石の配置を説明する図である。It is a figure explaining arrangement | positioning of the magnet used for the multiple element drive device shown in FIG. 本発明に係る複数素子駆動装置のさらに他の実施例の縦断面図である。It is a longitudinal cross-sectional view of the further another Example of the multiple element drive device based on this invention. 図19に示した複数素子駆動装置に用いる磁石の配置を説明する図である。It is a figure explaining arrangement | positioning of the magnet used for the multiple element drive device shown in FIG. 図20に示した磁石の斜視図である。It is a perspective view of the magnet shown in FIG. 図19に示した複数素子駆動装置に用いる磁石配置の他の例の上面図である。FIG. 20 is a top view of another example of a magnet arrangement used in the multi-element drive device shown in FIG. 19. 図19に示した複数素子駆動装置に用いる磁石配置のさらに他の例の上面図である。FIG. 20 is a top view of still another example of the magnet arrangement used in the multiple element drive device shown in FIG. 19.

符号の説明Explanation of symbols

1…磁石固定板、2…カバー(ガイド板)、2a…駆動素子穴、2x…容器、3…磁石、3a…磁石、3b…磁石、4…穴有り磁石、4a…穴有り磁石、4b…穴有り磁石、5…コイル、6…駆動素子、6a…鍔状接触部、7…側面ヨーク、8…固定ネジ、8a…ナット、9…ガイド、10…中心ヨーク、10b…長い中心ヨーク、11…コイル導線、11a…内側コイル導線、11b…外側コイル導線、12…配線穴、13…制御装置、14…内ヨーク、15…電極線、16…接地電極線、21…触覚刺激通信装置、22…複数素子駆動装置、23…刺激方法指示手段、24…電源、25…制御手段、26…通信手段、27…携帯電話、28…接続ケーブル、29…手のひら、30…指、41…第1の電極接点、42…第2の電極接点、43…第1の固定電極、44…第2の固定電極、45…ガイド溝、46…ガイド爪、47…上位置用固定電極、48…中位置用固定電極、49…下位置用固定電極、50…第1のフレキシブル電極、51…第2のフレキシブル電極、52…第1の接続板、53…第2の接続板、54…変形電極接点、55…接地電極接点、56…鍔、57…磁石、57a…磁石、57b…磁石、58…表面ヨーク、59…スペーサ。 DESCRIPTION OF SYMBOLS 1 ... Magnet fixing plate, 2 ... Cover (guide plate), 2a ... Drive element hole, 2x ... Container, 3 ... Magnet, 3a ... Magnet, 3b ... Magnet, 4 ... Magnet with hole, 4a ... Magnet with hole, 4b ... Magnet with hole, 5 ... coil, 6 ... drive element, 6a ... hook contact portion, 7 ... side yoke, 8 ... fixing screw, 8a ... nut, 9 ... guide, 10 ... center yoke, 10b ... long center yoke, 11 DESCRIPTION OF SYMBOLS ... Coil lead, 11a ... Inner coil lead, 11b ... Outer coil lead, 12 ... Wiring hole, 13 ... Control device, 14 ... Inner yoke, 15 ... Electrode wire, 16 ... Ground electrode wire, 21 ... Tactile stimulation communication device, 22 ... Multi-element drive device, 23 ... Stimulation method instruction means, 24 ... Power supply, 25 ... Control means, 26 ... Communication means, 27 ... Mobile phone, 28 ... Connection cable, 29 ... Palm, 30 ... Finger, 41 ... First Electrode contact, 42 ... second electrode contact, 4 DESCRIPTION OF SYMBOLS 1st fixed electrode, 44 ... 2nd fixed electrode, 45 ... Guide groove, 46 ... Guide claw, 47 ... Fixed electrode for upper positions, 48 ... Fixed electrode for middle positions, 49 ... Fixed electrode for lower positions, 50 ... 1st flexible electrode, 51 ... 2nd flexible electrode, 52 ... 1st connection board, 53 ... 2nd connection board, 54 ... Deformed electrode contact, 55 ... Ground electrode contact, 56 ... 鍔, 57 ... Magnet , 57a ... magnet, 57b ... magnet, 58 ... surface yoke, 59 ... spacer.

Claims (13)

容器内に複数の磁石を二次元的に固定配置し、各磁石の上方に移動可能にコイルを配置し、このコイルの上面であってほぼ中心部に上下方向に延在する駆動素子を配置し、前記容器の上面にこの駆動素子が通過可能な穴を形成したことを特徴とする複数素子駆動装置。   A plurality of magnets are fixedly arranged in a two-dimensional manner in a container, a coil is arranged so as to be movable above each magnet, and a driving element extending in the vertical direction is arranged on the upper surface of the coil and substantially at the center. A multi-element driving device, wherein a hole through which the driving element can pass is formed on the upper surface of the container. 前記コイルを前記容器内に収容し、前記駆動素子をコイル上面に固定し、隣り合う前記磁石の上下方向の極性を互いに異ならせたことを特徴とする請求項1に記載の複数素子駆動装置。   2. The multi-element drive device according to claim 1, wherein the coil is housed in the container, the drive element is fixed to an upper surface of the coil, and adjacent magnets have different vertical polarities. 前記コイルを前記容器内に収容し、前記駆動素子をコイル上面に固定された中空の部材で形成し、この駆動素子の中空部と前記コイルの中心部とに挿入される中心ヨークを前記磁石の上方に取り付け、隣り合う前記磁石の上下方向の極性を互いに異ならせたことを特徴とする請求項1に記載の複数素子駆動装置。   The coil is housed in the container, the drive element is formed of a hollow member fixed to the upper surface of the coil, and a central yoke inserted into the hollow part of the drive element and the central part of the coil is disposed on the magnet. The multi-element drive device according to claim 1, wherein the upper and lower magnets are attached in an upward direction and have different polarities in the vertical direction. 前記駆動素子が通過する穴が中心部に形成された穴付き磁石を、前記容器の裏面側に取り付け、この穴付き磁石の穴に前記駆動素子を貫通させたことを特徴とする請求項2に記載の複数素子駆動装置。   The holed magnet in which a hole through which the driving element passes is formed at the center is attached to the back side of the container, and the driving element is penetrated through the hole of the holed magnet. The multi-element drive device described. 前記コイルの近傍に、コイルの上下方向移動に応じて変形する電極と、この電極に接触可能に接続板とを設けたことを特徴とする請求項1ないし4のいずれか1項に記載の複数素子駆動装置   5. The plurality of electrodes according to claim 1, wherein an electrode that is deformed in accordance with the vertical movement of the coil and a connection plate that can come into contact with the electrode are provided in the vicinity of the coil. Element drive device 中心から外側に磁場を掛けられた第1のコイルと、外側から中心に磁場を掛けられた第2のコイルをそれぞれ複数個用いて交互に二次元的に配置し、第1のコイルと第2のコイルの中心軸を互いに平行にし、この複数個の第1、第2のコイルを容器内に収容し、前記第1および第2のコイルのそれぞれに容器外へ突出可能な駆動素子を設けたことを特徴とする複数素子駆動装置。   A plurality of first coils having a magnetic field applied from the center to the outside and a plurality of second coils having a magnetic field applied from the outside to the center are alternately arranged two-dimensionally. The central axes of the coils are parallel to each other, the plurality of first and second coils are accommodated in a container, and a drive element capable of projecting out of the container is provided in each of the first and second coils. A multi-element drive device characterized by that. 磁石のN極に吸着させた第1の棒状強磁性体と磁石のS極に吸着させた第2の棒状強磁性体を交互に複数本林立配置し、第1の棒状強磁性体に前記第1のコイルを、第2の棒状強磁性体に前記第2のコイルを通し、複数の第1および第2のコイルの少なくともいずれかに通電し、この通電されたコイルに挿入される第1または第2の棒状強磁性体に沿って前記駆動素子を移動させることを特徴とする請求項6に記載の複数素子駆動装置。   A plurality of first rod-shaped ferromagnets adsorbed on the N pole of the magnet and second rod-shaped ferromagnets adsorbed on the S pole of the magnet are alternately arranged in a forest, and the first rod-shaped ferromagnet is placed on the first rod-shaped ferromagnet. The first coil is inserted into the energized coil by energizing at least one of the plurality of first and second coils through the second coil through the second rod-shaped ferromagnetic body. The multi-element driving apparatus according to claim 6, wherein the driving element is moved along a second rod-shaped ferromagnetic body. 前記容器内に異極が隣り合うように複数の磁石を固定配置し、各磁石の磁極面に巻き取り面がほぼ平行でかつ各磁石の磁極面と中心軸が一致するように前記第1および第2のコイルを配置し、複数の第1および第2のコイルの少なくともいずれかに通電し、この通電されたコイルに取り付けた前記駆動素子を通電されたコイルと同じ中心軸を有する磁石の磁極面にほぼ垂直に移動させることを特徴とする請求項6に記載の複数素子駆動装置。   A plurality of magnets are fixedly arranged so that different poles are adjacent to each other in the container, and the first and the first and A magnetic pole of a magnet having the same central axis as the coil that is energized with the second coil disposed, energized in at least one of the plurality of first and second coils, and the drive element attached to the energized coil The multi-element driving apparatus according to claim 6, wherein the multi-element driving apparatus is moved substantially perpendicular to the surface. 前記各磁石の上面側の中心部に棒状強磁性体を設け、前記棒状強磁性体を前記第1および第2のコイルの中心部に挿入したことを特徴とする請求項8に記載の複数素子駆動装置。   The multi-element according to claim 8, wherein a rod-shaped ferromagnetic body is provided at a center portion on an upper surface side of each magnet, and the rod-shaped ferromagnetic body is inserted into the center portions of the first and second coils. Drive device. 前記駆動素子を通す穴が形成された穴開き磁石を、この穴開き磁石の下面と前記磁石の上面とが同極になるように前記第1および第2のコイルの上方に配置したことを特徴とする請求項7または請求項9に記載の複数素子駆動装置。   A perforated magnet in which a hole for passing the driving element is formed is disposed above the first and second coils so that the bottom surface of the perforated magnet and the top surface of the magnet have the same polarity. The multi-element driving apparatus according to claim 7 or 9. 移動可能に設けられた複数の駆動素子と、各駆動素子に設けられこの駆動素子を駆動する駆動手段と、各駆動素子に取り付けた前記駆動手段の電極接点と、前記駆動素子が通過可能な案内穴が形成されたガイド板と、このガイド板に固定された固定電極とを有し、この固定電極と前記電極接点を接触させ、前記固定電極から前記電極接点に通電して前記駆動手段が前記駆動素子を前記案内穴を通して移動させることを特徴とする複数素子駆動装置。   A plurality of drive elements provided movably, drive means provided in each drive element for driving the drive elements, electrode contacts of the drive means attached to the drive elements, and guides through which the drive elements can pass A guide plate in which a hole is formed; and a fixed electrode fixed to the guide plate. The fixed electrode and the electrode contact are brought into contact with each other, and the driving means is energized from the fixed electrode to the electrode contact. A multi-element driving apparatus, wherein the driving element is moved through the guide hole. 前記駆動手段はコイルと磁石とを有し、磁石は中心から外側への磁場を掛ける第1の磁石と、前記コイルの外側から中心に磁場を掛ける第2の磁石とを有することを特徴とする請求項11に記載の複数素子駆動装置。   The driving means includes a coil and a magnet, and the magnet includes a first magnet that applies a magnetic field from the center to the outside, and a second magnet that applies a magnetic field from the outside to the center of the coil. The multi-element drive device according to claim 11. 前記固定電極を駆動素子毎に複数設け、複数の固定電極は互いに前記電極接点に接触する範囲が駆動素子の移動方向に異なっており、固定電極に選択的に通電して前記駆動素子の移動量を変化させることを特徴とする請求項11または請求項12に記載の複数素子駆動装置。   A plurality of the fixed electrodes are provided for each driving element, and the plurality of fixed electrodes have different ranges in contact with the electrode contacts in the moving direction of the driving elements. The multi-element drive device according to claim 11, wherein the multi-element drive device is changed.
JP2004332583A 2004-11-17 2004-11-17 Device for driving a plurality of elements Pending JP2006147671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332583A JP2006147671A (en) 2004-11-17 2004-11-17 Device for driving a plurality of elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332583A JP2006147671A (en) 2004-11-17 2004-11-17 Device for driving a plurality of elements

Publications (1)

Publication Number Publication Date
JP2006147671A true JP2006147671A (en) 2006-06-08

Family

ID=36627032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332583A Pending JP2006147671A (en) 2004-11-17 2004-11-17 Device for driving a plurality of elements

Country Status (1)

Country Link
JP (1) JP2006147671A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162191A1 (en) * 2019-02-05 2020-08-13 日本電信電話株式会社 Pseudo force-sense presentation device
CN113721772A (en) * 2021-08-05 2021-11-30 荣耀终端有限公司 Electronic device
CN115083240A (en) * 2022-07-27 2022-09-20 之江实验室 Static driven braille point display device and method
JP7376188B2 (en) 2018-06-08 2023-11-08 ジョンソン,ジェフリー,トーマス Unlimited Reach and Touch Tablet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376188B2 (en) 2018-06-08 2023-11-08 ジョンソン,ジェフリー,トーマス Unlimited Reach and Touch Tablet
WO2020162191A1 (en) * 2019-02-05 2020-08-13 日本電信電話株式会社 Pseudo force-sense presentation device
JP2020126446A (en) * 2019-02-05 2020-08-20 日本電信電話株式会社 Pseudo force sense presentation device
JP7159894B2 (en) 2019-02-05 2022-10-25 日本電信電話株式会社 Pseudo haptic presentation device
US11815572B2 (en) 2019-02-05 2023-11-14 Nippon Telegraph And Telephone Corporation Pseudo force sense generation apparatus
CN113721772A (en) * 2021-08-05 2021-11-30 荣耀终端有限公司 Electronic device
CN115083240A (en) * 2022-07-27 2022-09-20 之江实验室 Static driven braille point display device and method
CN115083240B (en) * 2022-07-27 2022-11-15 之江实验室 Static driven braille point display device and method

Similar Documents

Publication Publication Date Title
US9323356B2 (en) Projective capacitive stylus and controlling method thereof
US20170070132A1 (en) Linear Vibrator
JP2013541282A (en) Electrodynamic actuator
KR20140029630A (en) Touch motion switch
JP2006147671A (en) Device for driving a plurality of elements
EP3855762A1 (en) Horn structure and magnetic circuit system thereof
CN209151028U (en) A kind of combined vibrating energy collecting device based on piezoelectricity and electromagnetic coupling
US10999681B2 (en) Moving magnet actuator with coil for panel audio loudspeakers
JP2016134135A (en) Input device
CN104902150A (en) Camera electromagnetic driving structure
CN108476361A (en) A kind of exoskeletal more series coils
CN217469651U (en) Motor device and massager
JP2010029037A (en) Linear motor and portable device provided with linear motor
CN210298066U (en) Horn device
CN101995968B (en) Input pen with function of electromagnetic induction
JP5327097B2 (en) Method for manufacturing same-pole opposed magnet and vibration generator
US20220312119A1 (en) Moving magnet actuator with voice coil
CN111162652A (en) Power generation device and self-generating switch
CN210298000U (en) Horn device
CN210298067U (en) Horn device
JP2007098238A (en) Vibration generator
JP2013065495A (en) Input detector
WO2021056294A1 (en) Horn apparatus
CN214544068U (en) Small lens driving device with high thrust
CN211579846U (en) Power generation device and self-generating switch

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425