JP2006145678A - Belt for electrophotography and image forming apparatus - Google Patents

Belt for electrophotography and image forming apparatus Download PDF

Info

Publication number
JP2006145678A
JP2006145678A JP2004333249A JP2004333249A JP2006145678A JP 2006145678 A JP2006145678 A JP 2006145678A JP 2004333249 A JP2004333249 A JP 2004333249A JP 2004333249 A JP2004333249 A JP 2004333249A JP 2006145678 A JP2006145678 A JP 2006145678A
Authority
JP
Japan
Prior art keywords
belt
image
electrophotographic
forming apparatus
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004333249A
Other languages
Japanese (ja)
Inventor
Akihiko Nakazawa
明彦 仲沢
Hidekazu Matsuda
秀和 松田
Yuji Sakurai
有治 櫻井
Atsushi Tanaka
篤志 田中
Takashi Kusaba
隆 草場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004333249A priority Critical patent/JP2006145678A/en
Publication of JP2006145678A publication Critical patent/JP2006145678A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a belt for electrophotography and an image forming apparatus by which high picture quality free of image problems relative to a fine discharging phenomenon such as polka-dotted image ommission and striped density unevenness and phenomena such as scattering and density unevenness in belt pitch for electrophotography can be obtained and an excellent image can be obtained even when an environment changes in a short period. <P>SOLUTION: In the belt for electrophotography used for the electrophotographic image forming apparatus which develops an electrostatic latent image formed on a photoreceptor with a developer and transfers the obtained visual image onto a transfer material after applying a voltage to it, the belt for electrophotography being characterized in that the belt contains at least thermoplastic resin and a conductive agent, which is made principally of carbon in a fine fibrous state and has a 0.1 to 1 μm mean diameter and a ≥1 μm mean length ≥10 times as large as the diameter. The image forming apparatus has the belt for electrophotography. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子写真用ベルト、電子写真用画像形成装置に関し、詳しくは、電子写真方式を用いた複写機やプリンター等に関する。   The present invention relates to an electrophotographic belt and an electrophotographic image forming apparatus, and more particularly to a copying machine, a printer, and the like using an electrophotographic system.

中間転写ベルトや転写搬送ベルト等の電子写真用ベルトを使用した画像形成装置は、フルカラー画像情報や多色画像情報の複数の成分色画像を順次積層転写してフルカラー画像や多色画像を合成再現した画像形成物を出力するフルカラー画像形成装置や多色画像形成装置、又はフルカラー画像形成機能や多色画像形成機能を備えた画像形成装置として有効である。   An image forming apparatus using an electrophotographic belt such as an intermediate transfer belt or transfer / conveying belt sequentially stacks and transfers multiple component color images of full-color image information and multi-color image information to synthesize and reproduce full-color images and multi-color images. The present invention is effective as a full-color image forming apparatus or multi-color image forming apparatus that outputs an image formed product, or an image forming apparatus having a full-color image forming function or a multi-color image forming function.

例えば、中間転写ベルト等を用いた画像形成装置を有するフルカラー画像形成装置は、従来の技術である転写ドラム上に転写材を張り付け、又は吸着し、そこへ電子写真感光体から画像を転写する画像形成装置を有したフルカラー画像形成装置と比較すると、転写材に加工(例えばグリッパーに把持する、吸着する、曲率をもたせる等)を必要とせずに中間転写ベルトから画像を転写することができるため、封筒、ハガキ、ラベル紙等、薄い紙(40g/m紙)から厚い紙(200g/m紙)まで、幅の広狭、長さの長短によらず、転写材を多種多様に選択することができるという利点を有している。 For example, a full-color image forming apparatus having an image forming apparatus using an intermediate transfer belt or the like is an image in which a transfer material is pasted or adsorbed on a transfer drum, which is a conventional technique, and an image is transferred from the electrophotographic photosensitive member thereto. Compared to a full-color image forming apparatus having a forming apparatus, it is possible to transfer an image from an intermediate transfer belt without requiring processing (for example, gripping, adsorbing, giving a curvature, etc.) to a transfer material. envelopes, postcards, label paper or the like, thin to the paper (40 g / m 2 paper) from thick paper (200 g / m 2 paper), wide and narrow width, regardless of the length of long, selecting a transfer material great variety Has the advantage of being able to

更に、必要な色数に応じた複数の電子写真感光体を配置し、1パスで中間転写ベルト上に直接トナー画像を転写して各色を重ね合わせた上で一括して転写材に転写する方法や、複数の電子写真写真感光体を配置するまでは同様だが、転写材を転写搬送ベルトで支持し、各色の画像を転写材に連続転写して色を重ね合わせる方式もある。これらの手段はプリント速度を大幅に向上する手段として有効である。しかし、このような転写方式の場合、電子写真用ベルトに厚さムラがあるとベルトの回転ムラが発生し、各色の転写位置がずれてしまうという問題があり、電子写真用ベルトの製造を難しいものにしている。   Furthermore, a method of arranging a plurality of electrophotographic photosensitive members corresponding to the required number of colors, transferring the toner image directly onto the intermediate transfer belt in one pass, superimposing the respective colors, and transferring them to the transfer material at once. It is the same until a plurality of electrophotographic photoconductors are arranged, but there is also a method in which the transfer material is supported by a transfer conveyance belt, images of each color are continuously transferred to the transfer material, and the colors are superimposed. These means are effective as means for greatly improving the printing speed. However, in the case of such a transfer system, there is a problem that if the electrophotographic belt is uneven in thickness, the uneven rotation of the belt occurs and the transfer position of each color is shifted, making it difficult to manufacture the electrophotographic belt. I'm making things.

また、モノクロの画像形成装置の場合でもプリントスピードを向上し、同時に優れた画質を得るために転写搬送ベルトを使用することがある。転写搬送ベルトは、予め転写材を吸着、支持して画像転写部位に供給出来るので転写状態が安定し、さらに転写材が電子写真感光体へ巻きつくことを防止する効果も得られる為である。   Even in the case of a monochrome image forming apparatus, a transfer conveyance belt may be used in order to improve the printing speed and at the same time obtain an excellent image quality. This is because the transfer / conveying belt can adsorb and support the transfer material in advance and supply it to the image transfer site, so that the transfer state is stabilized and the effect of preventing the transfer material from being wound around the electrophotographic photosensitive member can be obtained.

中間転写ベルトとして使用した際には、中間転写ドラムのような剛体のシリンダーを用いる場合と比較して画像形成装置内部に配置する際の自由度が増して、スペースの有効利用による装置本体の小型化やコストダウンを行うことができる。   When used as an intermediate transfer belt, the degree of freedom in arranging inside an image forming apparatus is increased compared to the case of using a rigid cylinder such as an intermediate transfer drum, and the apparatus body can be made smaller by effectively using space. And cost reduction.

しかし、これらの電子写真用ベルトは使用する目的に応じて様々な特性を満たすことが必要であり、解決すべき問題も多い。特に、近年は画質向上のため、LBP(レーザービームプリンター)や複写機等の画像形成装置本体で露光スポット径や現像剤(トナー)粒径の微細化を進めたり、現像及び転写電界の制御の緻密化等の様々な手段を取り入れている。この結果、非常に高精彩な画像が得られるようになってきているが、一方でコストダウンも重要な課題であり、部品点数を削減する方法や一つの部品に多くの機能を持たせる等、できる限り装置の小型化や軽量化が進められている。また、本体価格の低下に伴い、購買層が広がって、小規模オフィスや一般家庭等の従来に比べ低温低湿又は高温高湿の広範囲な環境で使用することを想定した設計も求められるようになってきている。その結果、中間転写ベルトや転写搬送ベルト等の電子写真用ベルトにも画質向上、コストダウン、広範囲の環境への対応、更には画像形成装置本体の構成に合わせた最適設計が今まで以上に重要となっていると言える。   However, these electrophotographic belts must satisfy various characteristics depending on the purpose of use, and there are many problems to be solved. In particular, in recent years, in order to improve image quality, the exposure spot diameter and developer (toner) particle diameter have been made finer in image forming apparatus bodies such as LBPs (laser beam printers) and copiers, and development and transfer electric field control. It incorporates various means such as densification. As a result, very high-definition images have come to be obtained, but on the other hand, cost reduction is also an important issue, such as a method to reduce the number of parts and giving many functions to one part, etc. As much as possible, miniaturization and weight reduction of the device are being promoted. In addition, as the price of the main unit declines, the purchase range expands, and a design that is expected to be used in a wide range of environments with low temperature and low humidity or high temperature and high humidity compared to conventional cases such as small offices and general households has come to be required. It is coming. As a result, it is more important than ever for electrophotographic belts such as intermediate transfer belts and transfer conveyance belts to improve image quality, reduce costs, handle a wide range of environments, and optimize the design to match the configuration of the main body of the image forming apparatus. It can be said that

電子写真用ベルトは、抵抗を調整するために何らかの抵抗制御物質を混合する手段が使われる。しかし、いずれの手段も一長一短がある。例えば、カーボンブラックや導電性金属酸化物粒子等の粒子状導電性フィラーは低抵抗化しやすいが、粒子の凝集や分散の不均一に起因する抵抗ムラが発生し易い。特にこれらの非常に抵抗の低い導電性粒子の凝集物はその部位の転写電界に大きな影響を与え、凝集物の大きさ以上の範囲で斑点状に色抜けを生じたり、絶縁破壊(所謂リーク現象)による欠損を生じるなどの問題がある。またこういった粒子状の添加剤を添加すると電子写真用ベルトの耐屈曲性が低下し、繰り返しの使用の際に破損を生じるなどの問題もあるため、導電性フィラーは使用量の低減や分散手段の改善が必要となっている。   The electrophotographic belt uses a means for mixing some resistance control substance to adjust the resistance. However, each means has advantages and disadvantages. For example, although particulate conductive fillers such as carbon black and conductive metal oxide particles tend to have low resistance, resistance unevenness due to non-uniform particle aggregation and dispersion tends to occur. In particular, aggregates of these conductive particles with very low resistance have a great influence on the transfer electric field at the site, causing discoloration in the form of spots in the range exceeding the size of the aggregates, or dielectric breakdown (so-called leakage phenomenon). ). In addition, when such particulate additives are added, the bending resistance of the electrophotographic belt is lowered, and there are problems such as damage during repeated use. Improvement of the means is necessary.

更に、その抵抗の均一性においても非常に難しい問題がある。例えば、低分子量のイオン導電剤を分散させ、体積抵抗率や表面抵抗率を十分に下げ、且つ抵抗均一性を高めたベルトを中間転写ベルトとして用いた場合でも、放電現象に起因する画像問題が発生することがある。この現象は、低温低湿の環境下で全面ベタやハーフトーンの画像をプリントすると一次転写部や二次転写部で剥離放電を生じてトナー画像が乱され、水玉状の転写不良が発生するものである。一方で高温高湿の環境下では、電子写真感光体と平行に縞状の濃度ムラを生じることもある。高温高湿の環境では、各部の抵抗が低下して放電現象は減少するが、トナーの帯電量も低下しているため、一次転写部で非常に微弱であっても剥離放電が発生すると一次転写されたトナーに不均一な電荷を与えることになり、帯電量のばらつきから二次転写効率が部分的に変化して縞状の画像ムラが発生するものと考えられる。この現象は導電性フィラー等で電子写真用ベルト中に数μmから数十μm程度の導電剤の不均一分散状態を作ることで、表面抵抗率や体積抵抗率が同等であっても改善の方向に向かうことから、ミクロ的に電荷を逃がすポイントが必要と推測され、抵抗制御だけでは問題を解決出来ないことを示している。しかし導電性粒子の凝集物は耐電圧の低下を招く為、その制御が非常に難しい。   Furthermore, there is a very difficult problem in the uniformity of the resistance. For example, even when a belt in which a low molecular weight ionic conductive agent is dispersed, the volume resistivity or the surface resistivity is sufficiently lowered and the resistance uniformity is increased is used as an intermediate transfer belt, there is an image problem caused by a discharge phenomenon. May occur. This phenomenon occurs when a solid or halftone image is printed in a low-temperature, low-humidity environment, causing a peeling discharge in the primary transfer section or secondary transfer section, disturbing the toner image, and causing a polka dot transfer failure. is there. On the other hand, in a high-temperature and high-humidity environment, striped density unevenness may occur in parallel with the electrophotographic photosensitive member. In high-temperature and high-humidity environments, the resistance of each part decreases and the discharge phenomenon decreases, but the charge amount of the toner also decreases.Therefore, even if it is very weak at the primary transfer part, primary transfer occurs when peeling discharge occurs. It is considered that non-uniform charges are given to the toner, and the secondary transfer efficiency is partially changed due to the variation in the charge amount, resulting in striped image unevenness. This phenomenon can be improved even if the surface resistivity and volume resistivity are the same by creating a non-uniform dispersion state of the conductive agent of several μm to several tens of μm in the electrophotographic belt with the conductive filler. From this point, it is speculated that there is a need for a microscopic point of charge release, which indicates that resistance control alone cannot solve the problem. However, since the aggregate of conductive particles causes a decrease in withstand voltage, it is very difficult to control.

粒状の導電性フィラーに対して、さらに高い導電性を有し、添加量の低減が可能で耐屈曲性を改善可能な手段として繊維状の添加剤を電子写真用ベルトに混合する手段もあるが、例えば直径が数μm〜20μm程度の炭素繊維を数十μm〜数mm程度の長さにカットしたカーボンファイバーでは繊維径が大きすぎ、ベルトの耐電圧の低下や抵抗のムラが発生する。耐電圧の低下を避けるためにベルトの厚さを厚くすると今度は電子写真用ベルトの厚さムラが悪化して色ずれが悪化するという悪循環を招く為、好ましくない。一方で特許文献1に係る特開2002-214928号公報では繊維径が100nm以下でアスペクト比が5以上の炭素フィブリルを含むエンドレスベルトが提案されている。このように細い炭素フィブリルは粒状のカーボンブラックや上記炭素繊維に比較すると導電性が高い点で効果が認められるが、一方で前述の放電現象の抑制効果や分散状態の制御については不十分である。原因は定かではないが細すぎる粒径により最適な放電ポイントが得られない点や原子配列が平滑な為、バインダーとの界面で層分離を生じて分散不良や抵抗ムラになるものと予想される。さらに炭素フィブリルの僅かな添加量の差でもベルトの抵抗が大きく変化する為、電子写真用ベルトに必要な細かい抵抗制御が困難であるという問題もある。   Although there is a means of mixing a fibrous additive into an electrophotographic belt as a means that has higher conductivity with respect to the granular conductive filler, can reduce the amount of addition, and can improve the bending resistance. For example, a carbon fiber obtained by cutting a carbon fiber having a diameter of about several μm to 20 μm into a length of about several tens of μm to several mm has a fiber diameter that is too large, resulting in a decrease in the withstand voltage of the belt and uneven resistance. Increasing the thickness of the belt in order to avoid a decrease in the withstand voltage is not preferable because this causes a vicious circle in which the uneven thickness of the electrophotographic belt is deteriorated and the color shift is deteriorated. On the other hand, Japanese Patent Application Laid-Open No. 2002-214928 related to Patent Document 1 proposes an endless belt including carbon fibrils having a fiber diameter of 100 nm or less and an aspect ratio of 5 or more. Such fine carbon fibrils are effective in terms of high conductivity compared to granular carbon black and the above carbon fibers, but on the other hand, they are insufficient for the above-mentioned suppression of the discharge phenomenon and control of the dispersion state. . Although the cause is not clear, the optimal discharge point cannot be obtained due to the too small particle size, and the atomic arrangement is smooth, so it is expected that the layer separation will occur at the interface with the binder, resulting in poor dispersion and uneven resistance . Furthermore, since the resistance of the belt changes greatly even with a slight difference in the amount of carbon fibril added, there is a problem that it is difficult to control the resistance required for the electrophotographic belt.

転写搬送ベルトの場合はベルトと感光体の間に紙が入る為、中間転写ベルトほど顕著ではないが同様の傾向があり、それぞれ解決しなければならない問題である。   In the case of the transfer / conveying belt, paper enters between the belt and the photosensitive member, and thus, although not as noticeable as the intermediate transfer belt, there is a similar tendency, which must be solved.

電子写真用ベルトの電気的特性の調整がより複雑になってきた要因として分離帯電器や二次転写前帯電器を省略したり、電源装置の数を減らす等、本体のコストダウンを進める為により性能の優れた電子写真用ベルトが必要とされていることが挙げられる。現像方式も二成分現像方式より小型化できる非磁性一成分方式が多くなりつつあるが、この方式はトナーに均一で高い帯電量を与えるという点ではキャリアを使用した二成分現像より不利になることがあり、高温高湿環境下など現像条件の厳しい時にトナー帯電量の低下を生じて転写性が低下する場合もある。また、他の要因として現像の均一化が進んだ結果、従来は目立たなかったレベルの転写の不均一性が顕在化したものとも推定される。これらに加えて、使用環境が拡大していることが更に、放電現象や濃度ムラを増大させており、電子写真用ベルトの設計をより難しくしている。   The adjustment of the electrical characteristics of the electrophotographic belt has become a more complicated factor in order to reduce the cost of the main unit, such as omitting the separation charger and pre-secondary charger, and reducing the number of power supply units. It is mentioned that an electrophotographic belt having excellent performance is required. There is an increasing number of non-magnetic one-component development methods that can be made smaller than the two-component development method, but this method is disadvantageous compared to two-component development using a carrier in that it provides a uniform and high charge amount to the toner. In some cases, the toner charge amount decreases when the development conditions are severe, such as in a high-temperature and high-humidity environment, and the transferability may decrease. In addition, as a result of the progress of uniform development as another factor, it is presumed that the non-conspicuous level of transfer non-uniformity has become apparent. In addition to these, the expansion of the use environment further increases the discharge phenomenon and density unevenness, making it more difficult to design an electrophotographic belt.

更に、電子写真用ベルト上に残留したトナーのクリーニング機構は、帯電装置により転写残トナーに一次転写と逆の極性の電荷を与え、一次転写と同時に電子写真感光体へ戻し、電子写真感光体のクリーニング機構で回収する方法が好ましい。この方法によれば、電子写真用ベルトにファーブラシやブレード等のクリーニング装置を設けて電子写真感光体と別にクリーニングする場合と比較して、廃トナーボックスの数を減らしたり、廃トナーの搬送機構を作る必要が無く、装置本体の小型化やコストダウンが可能となる。この場合、廃トナーボックスを複数交換する必要が無いため、メンテナンス性も向上する。しかし、中間転写ベルト上の転写残トナーに均一で適正な電荷を与えないとクリーニング不良や一次転写されるトナーへの干渉が発生し、画像問題となる為、中間転写ベルトと導電性ローラーやコロナ帯電器などのクリーニング用帯電機構の間で均一な電流が流れることが必要である。従って中間転写ベルトの抵抗や放電現象の均一化が転写同時クリーニングを行う上でも必須な要素となっている。
特開2002-214928号公報
Further, the cleaning mechanism for the toner remaining on the electrophotographic belt applies a charge having a polarity opposite to that of the primary transfer to the transfer residual toner by the charging device, and returns to the electrophotographic photoreceptor simultaneously with the primary transfer. A method of collecting with a cleaning mechanism is preferred. According to this method, the number of waste toner boxes can be reduced or the waste toner transport mechanism compared to the case where a cleaning device such as a fur brush or blade is provided on the electrophotographic belt to perform cleaning separately from the electrophotographic photosensitive member. Therefore, it is possible to reduce the size and cost of the apparatus body. In this case, since it is not necessary to replace a plurality of waste toner boxes, the maintainability is improved. However, if a uniform and appropriate charge is not applied to the residual toner on the intermediate transfer belt, cleaning failure or interference with the primary transfer toner will occur, resulting in image problems. Therefore, the intermediate transfer belt and the conductive roller or corona It is necessary that a uniform current flows between cleaning charging mechanisms such as a charger. Accordingly, the uniformity of the resistance and discharge phenomenon of the intermediate transfer belt is an essential element for simultaneous transfer cleaning.
Japanese Patent Laid-Open No. 2002-214928

以上のように電子写真用ベルトを使用した画像形成装置において様々な課題を解決した画像形成装置や電子写真用ベルトは未だ得られていない。   As described above, an image forming apparatus and an electrophotographic belt that have solved various problems in an image forming apparatus using an electrophotographic belt have not yet been obtained.

本発明の目的は、水玉状画像抜けや縞状の濃度ムラなど微細な放電現象に関わる画像問題や飛び散り、電子写真用ベルトピッチの濃度ムラといった現象の無い高い画質が得られ、短期間に環境が変動しても良好な画像が得られる電子写真用ベルト及び画像形成装置を提供することである。   The object of the present invention is to obtain high image quality without image problems or scattering related to fine discharge phenomenon such as polka dot image omission or stripe density unevenness, density unevenness of electrophotographic belt pitch, etc. It is an object to provide an electrophotographic belt and an image forming apparatus that can obtain a good image even if the fluctuations occur.

上記の課題は、感光体上に形成された静電潜像を現像剤で現像し、得られた可視画像を、電圧を印加して転写材上に転写する電子写真方式の画像形成装置に用いられる電子写真用ベルトであって、少なくとも熱可塑性樹脂と導電剤を含有し、該導電剤は主に炭素からなる微細な繊維状で平均直径が0.1μm〜1μm、平均長さは1μm以上且つ平均直径に対して10倍以上であることを特徴とすることで解決できる。   The above-described problem is applied to an electrophotographic image forming apparatus in which an electrostatic latent image formed on a photoreceptor is developed with a developer, and the obtained visible image is transferred onto a transfer material by applying a voltage. An electrophotographic belt comprising at least a thermoplastic resin and a conductive agent, the conductive agent being a fine fiber mainly composed of carbon, having an average diameter of 0.1 μm to 1 μm, an average length of 1 μm or more and This can be solved by having a characteristic that the average diameter is 10 times or more.

上記の課題は、感光体上に形成された静電潜像を現像剤で現像し、得られた可視画像を、電圧を印加して転写材上に転写する電子写真方式の画像形成装置に用いられる電子写真用ベルトであって、少なくとも熱可塑性樹脂と導電剤を含有し、該導電剤は主に炭素からなり、両端の平均直径が異なる円筒状の形状を有する最低構成単位を重ね合わせて見かけ上、繊維状とした平均直径0.001μm〜1μmで見かけ平均長さが0.5μm以上且つ平均直径に対して長さが10倍以上の導電剤であることを特徴とすることで解決できる。   The above-described problem is applied to an electrophotographic image forming apparatus in which an electrostatic latent image formed on a photoreceptor is developed with a developer, and the obtained visible image is transferred onto a transfer material by applying a voltage. An electrophotographic belt comprising at least a thermoplastic resin and a conductive agent, wherein the conductive agent is mainly composed of carbon, and is apparently formed by superimposing minimum structural units having cylindrical shapes having different average diameters at both ends. Furthermore, it can be solved by using a conductive agent having an average diameter of 0.001 μm to 1 μm in a fibrous form, an apparent average length of 0.5 μm or more, and a length of 10 times or more with respect to the average diameter.

上記の課題は、感光体上に形成された静電潜像を現像剤で現像し、得られた可視画像を電圧を印加して転写材上に転写する電子写真方式の画像形成装置において、該画像形成装置に上記の電子写真用ベルトを用いることを特徴とすることで解決できる。   In the electrophotographic image forming apparatus in which the electrostatic latent image formed on the photosensitive member is developed with a developer and the obtained visible image is transferred onto a transfer material by applying a voltage. This can be solved by using the electrophotographic belt described above in the image forming apparatus.

本発明において各種の問題を解決する為には、使用する導電剤の大きさまたは形状に大きな特徴がある。本発明の主に炭素からなる導電剤は比較的少ない添加量で抵抗を調整出来、同時に太さに対して長さが大きい為、電子写真用ベルトの強度、特に弾性率と耐屈曲性の双方が向上し、耐電圧の低下や放電現象による画像不良の抑制効果が高い。本発明では導電剤の平均直径が0.1μm未満だと微細な放電による画像欠陥が発生し易く、分散不良も生じる。平均直径1μmを超えると耐電圧が低下し、絶縁破壊が起きる。好ましくは平均直径0.1μm〜0.5μmである。また、平均長さは1μm以上でかつ平均直径に対して10倍以上必要である。この範囲より小さいと導電性が低下したり、電子写真用ベルトの弾性率や耐屈曲性の低下を生じる。好ましい範囲は10倍〜30倍である。平均長さは30μm以下が好ましい。長過ぎる場合は耐電圧の低下を生じる場合がある。また、形状では図7に模式的に示したように中空でφr1に対してφr2が小さく、両端の平均直径が異なる円筒状で主にグラファイトからなる構成単位を図8のように重ね合わせて見かけ上繊維状の構造にしたものが良い。この形状によれば平均直径が0.001μm〜1μmの範囲で良好な特性が得られる。前述の特開2002-214928号公報のようなグラファイトが中空の繊維状になった炭素フィブリルではない点が効果を発揮する上で重要である。   In order to solve various problems in the present invention, there is a great feature in the size or shape of the conductive agent used. The conductive agent mainly composed of carbon of the present invention can adjust the resistance with a relatively small addition amount, and at the same time has a large length with respect to the thickness. And the effect of suppressing image defects due to a decrease in withstand voltage or a discharge phenomenon is high. In the present invention, when the average diameter of the conductive agent is less than 0.1 μm, image defects due to fine discharge are likely to occur, and poor dispersion occurs. When the average diameter exceeds 1 μm, the withstand voltage is lowered and dielectric breakdown occurs. The average diameter is preferably 0.1 μm to 0.5 μm. Further, the average length must be 1 μm or more and 10 times or more the average diameter. If it is smaller than this range, the conductivity is lowered, and the elastic modulus and the bending resistance of the electrophotographic belt are lowered. A preferred range is 10 to 30 times. The average length is preferably 30 μm or less. If it is too long, the withstand voltage may be lowered. In addition, as shown schematically in FIG. 7, it is hollow and has a small φr2 with respect to φr1 and a cylindrical shape with different average diameters at both ends. An upper fiber structure is preferable. According to this shape, good characteristics can be obtained when the average diameter is in the range of 0.001 μm to 1 μm. The point that graphite is not a carbon fibril in the form of a hollow fiber as described in JP-A-2002-214928 is important for achieving the effect.

まず一見すると繊維状に連なって見えているが、最低の構成単位がずっと小さく、重ね合わせの間や表面に原子または分子レベルの凹凸や空隙がある為、樹脂と界面が馴染みやすく、分散性が良好で層分離が起きにくい。またこういった空隙や凹凸が多いことは前述の放電現象に伴う画像欠陥を抑制する効果や抵抗を安定的に制御する上で有効である。この要因は定かではないが突起部よりトンネル効果による電子の移動が大きく、過大な電荷の蓄積が生じない為ではないかと予想される。また、グラファイトからなる繊維は電子の流れがスムーズで抵抗の低減効果は高いが添加量による抵抗変動が急激に発生し、制御しにくいのに対して、本発明の材料によれば抵抗のコントロールもし易い。このような形状は透過型電子顕微鏡(TEM)によって観察することが出来る。また、本発明で図8に示されるような炭素からなる導電剤は樹脂が溶融混練する際に一部が分離したり、切断されたりする。前述の炭素フィブリルは炭素原子間の結合が非常に強固で、まず切断が起きることは無いので、このことから本発明の材料が前述の炭素フィブリルとは異なることが明らかである。このように溶融混練の際に分離した少量の微細粒子も、抵抗や放電現象による画像欠陥に対して有効に働く要因のひとつと考えられる。繊維状に連なっていても一体の繊維ではない為、平均直径0.01μm以下の微細な炭素フィブリルより導電性の制御と放電抑制の効果が高く、且つ粒子状のカーボンブラックより導電性は高いため添加量を減らすことが可能で、ベルトの耐屈曲性向上や、粒子の凝集による不良を削減する効果が得られることが特徴である。この構造を有する場合は平均長さ0.5μm以上で良好な導電性が得られる。また、平均長さは30μm以下、平均長さは直径に対して30倍〜5000倍の範囲が好ましい。   At first glance, it looks like a continuous fiber, but the smallest structural unit is much smaller, and there are irregularities and voids at the atomic or molecular level on the surface and on the surface. Good and layer separation hardly occurs. In addition, the large number of such voids and irregularities is effective in stably controlling the effect of suppressing image defects and the resistance caused by the above-described discharge phenomenon. Although this factor is not certain, it is expected that the movement of electrons due to the tunnel effect is larger than that of the protrusion, and excessive charge accumulation does not occur. In addition, the graphite fiber has a smooth electron flow and a high resistance reduction effect. However, the resistance fluctuation due to the added amount abruptly occurs and is difficult to control, whereas the material of the present invention also controls the resistance. easy. Such a shape can be observed with a transmission electron microscope (TEM). In the present invention, the conductive agent made of carbon as shown in FIG. 8 is partly separated or cut when the resin is melt-kneaded. Since the above-mentioned carbon fibrils have very strong bonds between carbon atoms and no cutting occurs first, it is clear from this that the material of the present invention is different from the above-mentioned carbon fibrils. Thus, a small amount of fine particles separated during melt-kneading is considered to be one of the factors that effectively work against image defects due to resistance and discharge phenomenon. Because it is not a monolithic fiber even though it is continuous in a fibrous form, it has higher conductivity control and discharge suppression effects than fine carbon fibrils with an average diameter of 0.01 μm or less, and is more conductive than particulate carbon black. It is possible to reduce the amount of addition, and it is characterized in that the effect of improving the bending resistance of the belt and reducing defects due to the aggregation of particles can be obtained. In the case of having this structure, good conductivity can be obtained with an average length of 0.5 μm or more. The average length is preferably 30 μm or less, and the average length is preferably in the range of 30 to 5000 times the diameter.

本発明によれば、幅広い環境で水玉状転写抜けや縞状のムラ飛び散り等のない高画質が得られる電子写真用ベルト、及びこの電子写真用ベルトを備えた画像形成装置を提供することが可能となる。   According to the present invention, it is possible to provide an electrophotographic belt capable of obtaining a high image quality without polka dot transfer omissions or striped uneven scattering in a wide range of environments, and an image forming apparatus including the electrophotographic belt. It becomes.

以下に、本発明を実施するための最良の形態を詳細に説明する。   The best mode for carrying out the present invention will be described in detail below.

本発明を実施する材料、製法、形態の例を示すが、必ずしも下記に限定されるものではない。   Examples of materials, manufacturing methods, and forms for carrying out the present invention are shown, but are not necessarily limited to the following.

本発明のベルトに用いられる成形用原料のうちの主たる材料である熱可塑性樹脂は、本発明の特性を満たしていれば特に制約はない。例えば、ポリエチレンやポリプロピレン等のオレフィン系樹脂やポリスチレン系樹脂、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、変性ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、更にはポリサルホンやポリエーテルサルホン及びポリフェニレンサルファイド等の硫黄含有樹脂、ポリフッ化ビニリデンやポリエチレン−四フッ化エチレン共重合体等のフッ素含有樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、ポリ塩化ビニリデン、熱可塑性ポリイミド、各種熱可塑性エラストマー等やこれらの各種変性樹脂や共重合体を1種類あるいは2種類以上使用することができる。   The thermoplastic resin, which is the main material among the molding raw materials used for the belt of the present invention, is not particularly limited as long as it satisfies the characteristics of the present invention. For example, olefinic resins such as polyethylene and polypropylene, polystyrene resins, acrylic resins, polyester resins, polycarbonate resins, polyamide resins, modified polyphenylene oxide resins, polyacetal resins, and also sulfur-containing materials such as polysulfone, polyethersulfone and polyphenylene sulfide. Resins, fluorine-containing resins such as polyvinylidene fluoride and polyethylene-tetrafluoroethylene copolymer, polyurethane resins, silicone resins, ketone resins, polyvinylidene chloride, thermoplastic polyimide, various thermoplastic elastomers, and various modified resins One type or two or more types of copolymers can be used.

続いて、導電剤は本発明の特徴であり、主にグラファイトからなる繊維状または図8の構造を有する見かけ上、繊維状になったもののうち、前述の範囲のものが用いられる。こういった微細な炭素からなる中空の繊維状物質が得られる方法は以前から知られている。製法は気相中で炭素を成長させるものが一般的で、CVD法、アーク放電を用いたレーザー蒸散法など各種あり、その中から目的にあったサイズまたは形状を得られる手段を適宜選択すればよく、特に制約を受けるものではない。   Subsequently, the conductive agent is a feature of the present invention, and among the fibrous form mainly composed of graphite or the apparently fibrous form having the structure of FIG. A method for obtaining such a hollow fibrous material composed of fine carbon has been known for a long time. Production methods are generally those in which carbon is grown in the gas phase, and there are various methods such as CVD methods and laser evaporation methods using arc discharge. Well, not particularly restricted.

本発明の電子写真用ベルトにおいては、必要に応じてさらに別の導電剤を併用することも出来るが特性の悪化を抑えるためその使用量や添加手段には注意を要する。例えば、カーボンブラック、導電性金属酸化物粒子及び金属粉等のような導電性粒子や、界面活性剤、有機塩類、無機塩類等の固体電解質やグリコール類、ポリエーテル類などの高分子帯電防止剤等の所謂イオン導電剤がある。しかし、主となる熱可塑性樹脂に十分に相溶し、ブリードを生じない材料を選ぶことが好ましい。更には、主たるバインダーとなる熱可塑性樹脂または熱可塑性エラストマーに抵抗の低い材料を選択する等の手段がある。更に、必要に応じて滑剤や非導電性の金属酸化物粒子や各種の顔料等、電子写真用ベルトの離型性や強度の向上や着色が必要な場合には、他の材料を添加してもよい。例えば、滑剤としてはPTFEやシリコーン樹脂の微粉末、補強材として、二酸化ケイ素、二酸化チタン、酸化亜鉛、炭酸カルシウム及び酸化アルミニウム等が挙げられる。   In the electrophotographic belt of the present invention, another conductive agent may be used in combination as necessary, but care must be taken with respect to the amount used and addition means in order to suppress deterioration of characteristics. For example, conductive antistatic agents such as carbon black, conductive metal oxide particles and metal powders, solid electrolytes such as surfactants, organic salts and inorganic salts, and glycols and polyethers. And so-called ionic conductive agents. However, it is preferable to select a material that is sufficiently compatible with the main thermoplastic resin and does not cause bleeding. Furthermore, there are means such as selecting a material having low resistance for the thermoplastic resin or thermoplastic elastomer as the main binder. In addition, if necessary, it is necessary to add other materials such as lubricants, non-conductive metal oxide particles, various pigments, etc., if it is necessary to improve the releasability, strength, or color of the belt for electrophotography. Also good. Examples of the lubricant include fine powder of PTFE and silicone resin, and examples of the reinforcing material include silicon dioxide, titanium dioxide, zinc oxide, calcium carbonate, and aluminum oxide.

以下に本発明の実施形態について一例を示す。   An example of the embodiment of the present invention is shown below.

成形方法はシームレスベルトの製造が可能で、かつ製造効率が高くてコストを抑制できる製造方法が好ましい。その手段として環状ダイスから連続溶融押し出しをし、その後、必要な長さに切断してベルトを製造する方法が挙げられる。例えば、チューブ押し出しやインフレーション成形が好適である。インフレーション成形は成形効率が高いだけではなく、1種類のダイスから直径の異なる複数のサイズのチューブを押し出すことが可能であり、多機種に展開する際の設備投資が低減できる等のメリットもある。更に、押し出し時に溶融状態で膨張させるため、通常の押し出し成形より厚い部分が選択的に周方向に延伸され、厚さムラが低減するという利点もある。また、別の製造手段としてTダイによりシート成形した後、所望の長さに切断して、端部を接合し、ベルト化する製造方法がある。この方法では膜厚の均一性が高く、更に二軸延伸装置を使用することが出来るため、フィルムの機械強度向上が出来る等の利点がある。しかし、一方でつなぎ目を避けるため、画像形成装置本体の設計に影響が出る等の問題もある。   The molding method is preferably a production method that can produce a seamless belt, has high production efficiency, and can reduce costs. As a means for this, there is a method of producing a belt by continuously melting and extruding from an annular die and then cutting to a required length. For example, tube extrusion or inflation molding is suitable. Inflation molding not only has high molding efficiency, but also has the advantage that it is possible to extrude a plurality of sizes of tubes with different diameters from one type of die, reducing capital investment when deploying to multiple models. Furthermore, since it is expanded in a molten state at the time of extrusion, there is an advantage that a portion thicker than normal extrusion is selectively stretched in the circumferential direction and thickness unevenness is reduced. As another manufacturing means, there is a manufacturing method in which a sheet is formed by a T-die, cut to a desired length, end portions are joined, and a belt is formed. This method has advantages such as high uniformity of film thickness and the ability to improve the mechanical strength of the film because a biaxial stretching apparatus can be used. However, on the other hand, in order to avoid the seam, there is a problem that the design of the image forming apparatus main body is affected.

本発明における電子写真用ベルトの厚さは、40μm〜300μm、特には50μm〜200μmの範囲が好ましい。この範囲内とすることで、成形安定性が良好となり、また厚さムラを生じ難く、耐久強度も十分で、ベルトの破断や割れが発生するのを有効に抑制することができる。また材料増によるコストが高くなることを抑えることができると共に、画像形成装置本体に組み込んだ際に張架軸の内面と外面の周速差が大きくなり、中間転写ベルトとして使用した場合には外面の収縮による画像飛び散り等の発生も有効に抑制することができる。更に、屈曲耐久性の低下やベルトの剛性が高くなり過ぎて駆動トルクが増大し、本体の大型化やコスト増加を招来することもない。また、厚さ精度は画像形成装置各色の転写ステーション間距離などの影響を受ける為、一概には言えないが、一般的に厚さムラ(平均値と最大値又は最小値の差)は±10μm、好ましくは±5μm以下である。同時に色ずれを抑制する為には電子写真用ベルトの弾性率も高いことが好ましく、500MPa以上が良い。   The thickness of the electrophotographic belt in the present invention is preferably in the range of 40 μm to 300 μm, particularly 50 μm to 200 μm. By setting it within this range, the molding stability becomes good, thickness unevenness hardly occurs, the durability strength is sufficient, and it is possible to effectively prevent the belt from breaking or cracking. In addition, the increase in cost due to the increase in material can be suppressed, and the difference in peripheral speed between the inner surface and outer surface of the tensioning shaft when incorporated in the image forming apparatus main body increases. The occurrence of image splattering due to the shrinkage of the image can be effectively suppressed. Furthermore, the bending durability is lowered and the belt rigidity becomes too high, so that the driving torque is increased, and the main body is not enlarged and the cost is not increased. In addition, the thickness accuracy is affected by the distance between transfer stations for each color of the image forming apparatus, so it cannot be generally stated, but generally the thickness unevenness (difference between the average value and the maximum or minimum value) is ± 10 μm. Preferably, it is ± 5 μm or less. At the same time, in order to suppress color misregistration, the elastic modulus of the electrophotographic belt is preferably high, and is preferably 500 MPa or more.

図5に本発明に係わる成形装置一例を示す。本装置は基本的には、押し出し機、押し出しダイス及び気体吹き込み装置より成る。   FIG. 5 shows an example of a molding apparatus according to the present invention. The apparatus basically comprises an extruder, an extrusion die, and a gas blowing device.

まず、成形用樹脂、導電剤及び添加剤等を所望の処方に基づき、予め予備混合後、混練分散した成形用原料を押し出し機100に具備したホッパー102に投入する。押し出し機100は、成形用原料が、後工程でのベルト成形が可能となる溶融粘度となり、また、原料相互が均一分散するように、設定温度及び押し出し機のスクリュー構成は選択される。成形用原料は、押し出し機100中で溶融混練され溶融体となり環状ダイス103に入る。環状ダイス103は、気体導入路104が配設されており、気体導入路104から空気が環状ダイス103の中央に吹き込まれることによりダイス103を通過した溶融体は径方向に拡大膨張し、筒状フィルム110となる。この時吹き込まれる気体は、空気以外に窒素、二酸化炭素又はアルゴン等を選択することができる。膨張した成形体は、外部冷却リング105により冷却されつつ上方向に引き上げられる。通常、インフレーション装置では安定板106でチューブを左右から押し潰して、シート状に折り畳み、ピンチローラ107で内部のエアーが抜けないように挟持して一定速度で引き取る方法がとられる。次いで、引き取られたフィルムをカット装置108で切断し、所望の大きさの筒状フィルムを得る。   First, a molding resin, a conductive agent, an additive, and the like are premixed in advance based on a desired formulation, and then the kneaded and dispersed molding raw material is charged into a hopper 102 provided in the extruder 100. In the extruder 100, the set temperature and the screw configuration of the extruder are selected so that the forming raw material has a melt viscosity that enables belt forming in a subsequent process, and the raw materials are uniformly dispersed. The forming raw material is melted and kneaded in the extruder 100 to become a melt and enters the annular die 103. The annular die 103 is provided with a gas introduction path 104. When air is blown from the gas introduction path 104 into the center of the annular die 103, the melt that has passed through the die 103 expands and expands in the radial direction, thereby forming a cylindrical shape. Film 110 is obtained. The gas blown at this time can select nitrogen, a carbon dioxide, argon, etc. other than air. The expanded molded body is pulled upward while being cooled by the external cooling ring 105. Usually, in the inflation apparatus, the tube is crushed from the left and right with the stabilizing plate 106, folded into a sheet shape, pinched by the pinch roller 107 so that the air inside does not escape, and taken at a constant speed. Next, the taken film is cut by the cutting device 108 to obtain a tubular film having a desired size.

本発明においては多層化してもよいが、何層にした場合でも電子写真用ベルトの弾性率は500MPa以上が好ましい。また、弾性材料のみからなる電子写真用ベルトは色ずれが発生するため好ましくない。   In the present invention, the number of layers may be increased. However, the elastic modulus of the electrophotographic belt is preferably 500 MPa or more regardless of the number of layers. In addition, an electrophotographic belt made of only an elastic material is not preferable because color shift occurs.

これを組成の異なる材料で繰り返して行い、2種類以上の筒状フィルムを成形し、接着剤を用いて張り合わせたり、熱や溶剤で溶着する手段で多層化してもよい。また、2層の同時押し出しも可能であり、その場合は図6に示されるように更に押し出し機101を追加配置し、押し出し機100の混練溶融体と同時に2層用の環状ダイス103へ、押し出し機110の混練溶融体を送り込み、2層同時に拡大膨張させることで2層ベルトを得ることができる。もちろん3層以上のときは、層数に応じ相応に押し出し機を準備すればよい。このように本発明においては、単層のみならず、多層構成の電子写真用ベルトを一段工程で、かつ短時間に寸法精度良く、成形することが可能である。この短時間成形が可能ということは、量生産及び低コスト生産が可能であることを十分示唆するものである。   This may be repeated with materials having different compositions, and two or more types of cylindrical films may be formed and laminated using an adhesive, or may be multilayered by means of welding with heat or a solvent. Simultaneous extrusion of two layers is also possible. In that case, as shown in FIG. 6, an extruder 101 is additionally arranged, and the two-layer annular die 103 is extruded simultaneously with the kneaded melt of the extruder 100. A two-layer belt can be obtained by feeding the kneaded melt of the machine 110 and expanding and expanding two layers simultaneously. Of course, when there are three or more layers, an extruder may be prepared corresponding to the number of layers. As described above, in the present invention, not only a single layer but also a multilayer electrophotographic belt can be formed in a single step and with high dimensional accuracy in a short time. The fact that this short-time molding is possible sufficiently suggests that mass production and low-cost production are possible.

本発明においてインフレーション成形を行った場合、環状ダイスと成形された円筒状フィルムの厚さ比、すなわち環状ダイスのギャップ(スリット)の幅に対する、成形された円筒状フィルムの厚さの比較が前者に対して後者は1/3以下であることが好ましく、更に好ましくは1/5以下である。同様に、環状ダイスと成形された円筒状フィルムの直径の比率を環状ダイス103のダイスリットの外径に対して、筒状フィルム110の外径の比をパーセントで表すと50%〜400%の範囲が好ましい。これらは材料の延伸状態を現すものであり、厚さ比が1/3より大きい場合は延伸が不十分で強度の低下や抵抗及び厚さのムラ等の不具合が生じることがある。一方で外形が400パーセントを超える場合や50%未満の場合では過剰に延伸されており、成形安定性が低下し、また、本発明における必要な厚さを確保することが難しくなる。   When inflation molding is performed in the present invention, the former is a comparison of the thickness ratio of the molded cylindrical film to the thickness ratio of the annular die and the molded cylindrical film, that is, the width of the gap (slit) of the annular die. On the other hand, the latter is preferably 1/3 or less, and more preferably 1/5 or less. Similarly, when the ratio of the diameter of the annular die to the outer diameter of the die slit of the annular die 103 is expressed as a percentage of the outer diameter of the cylindrical film 110, it is 50% to 400%. A range is preferred. These represent the stretched state of the material, and when the thickness ratio is greater than 1/3, the stretching is insufficient, and problems such as a decrease in strength and unevenness in resistance and thickness may occur. On the other hand, when the outer shape exceeds 400% or less than 50%, the film is stretched excessively, the molding stability is lowered, and it is difficult to secure the necessary thickness in the present invention.

次に、この筒状フィルムに表面粗さや寸法を調整したり、成形の際にフィルムについた折り目を除去する等の目的で型を使用した加工を行ってもよい。具体的には、線膨張係数の異なる材料で作られた直径の異なる一組の円筒型を使用する方法がある。小径の円筒型(内型)の線膨張係数は、大径の円筒型(外型)の線膨張係数より大きくなるように材質を選択する。一例として内型は、アルミニウムで製造し、外型はステンレス製にする等である。この内型に筒状フィルムを被せた後、その内型を外型内に挿入して、内型と外型で筒状フィルムを挟み込むようにする。この際、内型は筒状フィルムよりやや大きく設計し、フィルムを延ばしつつ被せる方が好ましい。型の間のギャップは、加熱する温度と内型・外型の線膨張係数の差及び必要とされる圧力で計算して求める。ここで、内型、筒状フィルム、外型の順でセットされた型を樹脂の軟化点温度付近まで加熱する。加熱により線膨張係数の大きい内型は外型より膨張し、筒状フィルム全面に均一な圧力がかかる。この時、軟化点付近に達した樹脂フィルムの表面は外型内面に、裏面は内型表面に押し付けられるため、それぞれの面粗さを個別に制御することが出来る。その後、冷却してフィルムを型から外すことで所望の表面性を得ることができる。例えば、電子写真用ベルト表面は鏡面にして帯電電位を上昇させ、裏面はある程度の粗さを有して帯電電位を引き下げられるようにするなどである。また、上記の内型のみを使用して成形したフィルムを被せて加熱する方法でも折り目の除去や寸法の微調整を行うことができる。   Next, the cylindrical film may be processed using a mold for the purpose of adjusting the surface roughness and dimensions, or removing the crease attached to the film during molding. Specifically, there is a method of using a set of cylindrical shapes having different diameters made of materials having different linear expansion coefficients. The material is selected so that the linear expansion coefficient of the small-diameter cylindrical (inner mold) is larger than that of the large-diameter cylindrical (outer mold). For example, the inner mold is made of aluminum, and the outer mold is made of stainless steel. After covering the inner mold with the cylindrical film, the inner mold is inserted into the outer mold, and the cylindrical film is sandwiched between the inner mold and the outer mold. At this time, it is preferable that the inner mold is designed to be slightly larger than the cylindrical film and the film is covered while being stretched. The gap between the molds is obtained by calculating the difference between the heating temperature and the linear expansion coefficient between the inner and outer molds and the required pressure. Here, the mold set in the order of the inner mold, the cylindrical film, and the outer mold is heated to near the softening point temperature of the resin. By heating, the inner mold having a large linear expansion coefficient expands from the outer mold, and a uniform pressure is applied to the entire surface of the cylindrical film. At this time, since the surface of the resin film that has reached the vicinity of the softening point is pressed against the inner surface of the outer mold and the back surface is pressed against the inner mold surface, each surface roughness can be individually controlled. Then, the desired surface property can be obtained by cooling and removing the film from the mold. For example, the surface of the electrophotographic belt is mirrored to increase the charging potential, and the back surface has a certain degree of roughness so that the charging potential can be lowered. Moreover, the removal of a crease | fold and fine adjustment of a dimension can be performed also by the method of covering and heating the film shape | molded using only said inner type | mold.

この後、必要に応じて補強部材やガイド部材、位置検知部材の取り付けや精密カットを行って電子写真用ベルトを製造する。また、材料を分散する手段は通常の方法が使用できるが、二軸押し出し機で溶融押し出しする手段は高いせん断力(シェア)が得られるため、材料の均一分散に好適である。特に本発明の導電剤を分散する際には注意が必要である。従って、二軸押し出し機で溶融混練するだけではなく、それ以前に高濃度の材料をニーダーなどで溶融混練してマスターバッチ化しておく手段や各種カップリング材で導電剤を処理する方法、また、粉末の樹脂を使用すると予備混合で導電性粒子と混ざり易く、且つ溶融押し出しする際に粉末樹脂がすぐに溶けて導電性粒子の凝集体を造りにくく出来るなど各種の手段を単独または組み合わせて使用することが好ましい。   Thereafter, if necessary, the reinforcing member, the guide member, and the position detecting member are attached or precision cut to manufacture an electrophotographic belt. Moreover, although the method of disperse | distributing a material can use a normal method, since the means to melt-extrude with a biaxial extruder can obtain high shearing force (share), it is suitable for uniform dispersion | distribution of material. In particular, care must be taken when dispersing the conductive agent of the present invention. Therefore, not only melt-kneading with a twin screw extruder, but also a means of previously melting and kneading a high-concentration material with a kneader or the like and a method of treating the conductive agent with various coupling materials, When powder resin is used, it is easy to mix with conductive particles by premixing, and various means are used singly or in combination, such as powder resin dissolves quickly during melt extrusion, making it difficult to form aggregates of conductive particles. It is preferable.

また、本発明の効果をより高める為にトナーの円形度頻度分布の平均円形度を好ましくは0.920〜0.995、より好ましくは0.950〜0.995、更に好ましくは0.970〜0.990とすることがよい。このようなトナーは転写効率が高いため、本発明の電子写真用ベルトと組み合わせて使用することにより、特に転写性が低下する際に発生する高温高湿下縞状の画像不良を改善する効果が非常に大きくなる。更に、トナー粒子の円形度頻度分布の円形度標準偏差を好ましくは0.040未満、より好ましくは0.035未満、更に好ましくは0.015以上0.030未満とするとトナーの帯電均一性が更に向上する。また、円相当個数平均径D1(μm)が2〜10μmの範囲が好ましい。   In order to further enhance the effects of the present invention, the average circularity of the circularity frequency distribution of the toner is preferably 0.920 to 0.995, more preferably 0.950 to 0.995, and still more preferably 0.970 to 0.970. 0.990 is preferable. Since such toner has high transfer efficiency, it can be used in combination with the electrophotographic belt of the present invention, and has the effect of improving high-temperature and high-humidity striped image defects that occur particularly when transferability is lowered. Become very large. Further, when the circularity standard deviation of the circularity frequency distribution of the toner particles is preferably less than 0.040, more preferably less than 0.035, and even more preferably 0.015 or more and less than 0.030, the charge uniformity of the toner is further improved. improves. Further, the circle equivalent number average diameter D1 (μm) is preferably in the range of 2 to 10 μm.

本発明における円形度はトナーの凹凸の度合いを示す指標であり、トナーが完全な球形の場合に1.000を示し、表面形状が複雑になる程、円形度は小さな値となる。   The circularity in the present invention is an index indicating the degree of unevenness of the toner, and is 1.000 when the toner is a perfect sphere. The more complicated the surface shape, the smaller the circularity.

次に、本発明のベルトが用いられる画像形成装置の一例を示す。   Next, an example of an image forming apparatus using the belt of the present invention is shown.

図1は電子写真プロセスを利用したフルカラー画像形成装置(複写機あるいはレーザービームプリンター)である。   FIG. 1 shows a full-color image forming apparatus (copier or laser beam printer) using an electrophotographic process.

第1の画像担持体として繰り返し使用される回転ドラム型の電子写真感光体(以下感光ドラムと記す)1は、矢示の方向に所定の周速度(プロセススピード)をもって回転駆動される。   A rotating drum type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum) 1 that is repeatedly used as a first image bearing member is rotationally driven in a direction indicated by an arrow with a predetermined peripheral speed (process speed).

感光ドラム1は回転過程で、一次帯電器2により所定の極性・電位に一様に帯電処理される。32は一次帯電器の電源であり、ここでは直流に交流を重畳して印加しているが、直流のみでもよい。次いで不示の露光手段(フルカラー原稿画像の色分解・結像露光光学系、画像情報の時系列電気デジタル画素信号に対応して変調されたレーザービームを出力するレーザースキャナによる走査露光系等)による露光光3を受けることにより目的のフルカラー画像の第1の色成分像(例えばイエロー色成分像)に対応した静電潜像が形成される。次いで、その静電潜像が第1の現像器(イエロー色現像器41)により第1色であるイエロートナーYで現像される。この時、第2〜第4の現像器(マゼンタ色現像器42、シアン色現像器43、ブラック色現像器44)の各現像器は、作動−オフになっていて感光ドラム1には作用せず、上記第1色のイエロートナー画像は上記第2〜第4の現像器による影響を受けない。   The photosensitive drum 1 is uniformly charged to a predetermined polarity and potential by the primary charger 2 during the rotation process. Reference numeral 32 denotes a power source for the primary charger. Here, alternating current is superimposed on direct current, but only direct current may be applied. Next, by unshown exposure means (color separation / imaging exposure optical system of full-color original image, scanning exposure system by laser scanner that outputs laser beam modulated in accordance with time series electric digital pixel signal of image information, etc.) By receiving the exposure light 3, an electrostatic latent image corresponding to a first color component image (for example, a yellow color component image) of the target full-color image is formed. Next, the electrostatic latent image is developed with yellow toner Y as the first color by the first developing device (yellow color developing device 41). At this time, the developing units of the second to fourth developing units (magenta color developing unit 42, cyan color developing unit 43, and black color developing unit 44) are turned off and do not act on the photosensitive drum 1. The first color yellow toner image is not affected by the second to fourth developing units.

中間転写ベルト5は、矢印方向に感光ドラム1と同じ周速度をもって回転駆動されている。感光ドラム1上に形成担持された上記第1色のイエロートナー画像が、感光ドラム1と中間転写ベルト5とのニップ部を通過する過程で、一次転写ローラ6から中間転写ベルト5に印加される一次転写バイアスによって形成される電界により、中間転写ベルト5の外周面に順次一次転写されていく。中間転写ベルト5に対応する第一色のイエロートナー画像の転写を終えた感光ドラム1の表面は、クリーニング装置13により清掃される。以下、同様にして第2色のマゼンタトナー画像、第3色のシアントナー画像及び第4色のブラックトナー画像が順次中間転写ベルト5上に重ね合わせて転写され、目的のフルカラー画像に対応した合成カラートナー画像が形成される。二次転写ローラ7は、二次転写対向ローラ8に対応し平行に軸受させて中間転写ベルト5の下面部に離間可能な状態に配設してある。感光ドラム1から中間転写ベルト5への第1〜第4色のトナー画像の順次重畳転写のための一次転写バイアスは、トナーとは逆極性(+)でバイアス電源30から印加される。その印加電圧は、例えば+100V〜2kVの範囲である。感光ドラム1から中間転写ベルト5への第1〜第3色のトナー画像の一次転写工程において、二次転写ローラ7は中間転写ベルト5から離間させることも可能である。中間転写ベルト5上に転写された合成カラートナー画像の転写材Pへの転写においては、二次転写ローラ7が中間転写ベルト5に当接されると共に、給紙ローラ11から転写材ガイド10を通って、中間転写ベルト5と二次転写ローラ7との当接ニップに所定のタイミングで転写材Pが給送され、二次転写バイアスが電源31から二次転写ローラ7に印加される。この二次転写バイアスにより中間転写ベルト5から第2の画像担持体である転写材Pへ合成カラートナー画像が二次転写される。この際に中間転写ベルト上の二次転写前のトナー画像の帯電を補助する装置は、本装置には付加されていない。トナー画像の転写を受けた転写材Pは、定着器15へ導入され加熱定着される。転写材Pへの画像転写終了後、中間転写ベルト5には離接自在に配置されたクリーニング用帯電部材9が当接され、感光ドラム1とは逆極性のバイアスを印加することにより、転写材Pに転写されずに中間転写ベルト5上に残留している転写残トナーに一次転写時と逆極性の電荷が付与される。33はバイアス電源であり、ここでは、直流に交流を重畳して印加している。一次転写時と逆極性に帯電された前記転写残トナーは、感光ドラム1とのニップ部及びその近傍において感光ドラム1に静電的に転写されることにより、中間転写体がクリーニングされる。この工程は、一次転写と同時に行うことができるためスループットの低下を生じない。   The intermediate transfer belt 5 is rotationally driven at the same peripheral speed as the photosensitive drum 1 in the direction of the arrow. The yellow toner image of the first color formed and supported on the photosensitive drum 1 is applied from the primary transfer roller 6 to the intermediate transfer belt 5 in the process of passing through the nip portion between the photosensitive drum 1 and the intermediate transfer belt 5. The primary transfer is sequentially performed on the outer peripheral surface of the intermediate transfer belt 5 by an electric field formed by the primary transfer bias. The surface of the photosensitive drum 1 after the transfer of the first color yellow toner image corresponding to the intermediate transfer belt 5 is cleaned by the cleaning device 13. In the same manner, the second color magenta toner image, the third color cyan toner image, and the fourth color black toner image are sequentially superimposed and transferred onto the intermediate transfer belt 5 and synthesized corresponding to the target full color image. A color toner image is formed. The secondary transfer roller 7 is disposed in parallel with the secondary transfer counter roller 8 so as to be separated from the lower surface of the intermediate transfer belt 5 by bearing in parallel. A primary transfer bias for sequentially superimposing and transferring the first to fourth color toner images from the photosensitive drum 1 to the intermediate transfer belt 5 is applied from a bias power source 30 with a polarity (+) opposite to that of the toner. The applied voltage is, for example, in the range of +100 V to 2 kV. In the primary transfer step of the first to third color toner images from the photosensitive drum 1 to the intermediate transfer belt 5, the secondary transfer roller 7 can be separated from the intermediate transfer belt 5. In transferring the composite color toner image transferred onto the intermediate transfer belt 5 to the transfer material P, the secondary transfer roller 7 is brought into contact with the intermediate transfer belt 5 and the transfer material guide 10 is moved from the paper feed roller 11. Then, the transfer material P is fed to the contact nip between the intermediate transfer belt 5 and the secondary transfer roller 7 at a predetermined timing, and a secondary transfer bias is applied from the power source 31 to the secondary transfer roller 7. By this secondary transfer bias, the composite color toner image is secondarily transferred from the intermediate transfer belt 5 to the transfer material P as the second image carrier. At this time, an apparatus for assisting charging of the toner image before the secondary transfer on the intermediate transfer belt is not added to the apparatus. The transfer material P that has received the transfer of the toner image is introduced into the fixing device 15 and heated and fixed. After the image transfer to the transfer material P is completed, a cleaning charging member 9 disposed so as to be detachable is brought into contact with the intermediate transfer belt 5, and a transfer material having a polarity opposite to that of the photosensitive drum 1 is applied. The transfer residual toner that is not transferred to P but remains on the intermediate transfer belt 5 is given a charge having a polarity opposite to that at the time of primary transfer. Reference numeral 33 denotes a bias power source. Here, an alternating current is superimposed on a direct current and applied. The transfer residual toner charged to a polarity opposite to that at the time of primary transfer is electrostatically transferred to the photosensitive drum 1 at and near the nip portion with the photosensitive drum 1, thereby cleaning the intermediate transfer member. Since this step can be performed simultaneously with the primary transfer, the throughput does not decrease.

つづいて、中間転写ベルトと電子写真感光体が一体に支持されたプロセスカートリッジについて図2で説明する。前記プロセスカートリッジは、少なくとも中間転写ベルト5と電子写真感光体1及び一次転写手段6が一体に支持され、装置本体から着脱自在に構成されていればよい。図2では、更に中間転写ベルトクリーニング機構13、電子写真感光体のクリーニング機構9も一体ユニットとして付属している。本発明の中間転写ベルトのクリーニングは、前述のように転写残トナーを一次転写と逆の極性に帯電させ、一次転写部で電子写真感光体に戻すために必要な機構であり、中抵抗の弾性体からなるクリーニングローラ9を装備している。電子写真感光体のクリーニングは、ブレードクリーニングである。本カートリッジにおいては廃トナー容器も一体となっており、中間転写ベルト−電子写真感光体双方の転写残トナーもカートリッジ交換時に同時に廃棄されるため、メンテナンス性の向上に貢献している。また、中間転写ベルトは、駆動ローラ8とテンションローラ12の2本のローラで張架され部品点数の削減と小型化を図っている。ここで、駆動ローラ8は同時にクリーニングローラの対向ローラとなっている。中間転写ベルトに従動して回転するテンションローラー12は、スライドする機構を有しており、圧縮ばねにより矢印の方向に圧接され、中間転写ベルトに張力を与えている。そのスライド幅は1〜5mm程度で、ばねの圧力合計は5〜100N程度である。また、電子写真感光体1と駆動ローラ8は非示のカップリングを有し、本体から回転駆動力が伝達されるようになっている。   Next, a process cartridge in which the intermediate transfer belt and the electrophotographic photosensitive member are integrally supported will be described with reference to FIG. The process cartridge only needs to be configured so that at least the intermediate transfer belt 5, the electrophotographic photosensitive member 1, and the primary transfer means 6 are integrally supported and are detachable from the apparatus main body. In FIG. 2, an intermediate transfer belt cleaning mechanism 13 and an electrophotographic photosensitive member cleaning mechanism 9 are also attached as an integrated unit. As described above, the cleaning of the intermediate transfer belt of the present invention is a mechanism necessary for charging the transfer residual toner to a polarity opposite to that of the primary transfer and returning it to the electrophotographic photosensitive member at the primary transfer portion. Equipped with a body-cleaning roller 9. Cleaning of the electrophotographic photosensitive member is blade cleaning. In this cartridge, a waste toner container is also integrated, and the transfer residual toner on both the intermediate transfer belt and the electrophotographic photosensitive member is discarded at the same time when the cartridge is replaced, which contributes to improvement in maintainability. Further, the intermediate transfer belt is stretched by two rollers of a driving roller 8 and a tension roller 12 to reduce the number of parts and reduce the size. Here, the driving roller 8 is simultaneously a counter roller of the cleaning roller. The tension roller 12 that rotates following the intermediate transfer belt has a sliding mechanism, is pressed in the direction of the arrow by a compression spring, and applies tension to the intermediate transfer belt. The slide width is about 1 to 5 mm, and the total pressure of the spring is about 5 to 100N. The electrophotographic photosensitive member 1 and the driving roller 8 have a coupling (not shown) so that a rotational driving force is transmitted from the main body.

更に、別の画像形成装置の例を図3と図4に示す。図3と図4は電子写真感光体1を画像形成に必要な現像剤の数と同数具備したもので、フルカラープリントの印字スピードが飛躍的に向上する利点がある。   Further, another example of the image forming apparatus is shown in FIGS. 3 and 4 are provided with the same number of developers as the number of developers necessary for image formation, and there is an advantage that the printing speed of full-color printing is remarkably improved.

図3は中間転写ベルトを使用したもので、1と同様に電子写真感光体1に形成された可視画像は中間転写ベルト5に順次転写され、重ね合わされた後、二次転写ローラ7でトナーと逆極性のバイアスを印加され、転写材Pの上に一括転写される。中間転写ベルトに残留した現像剤は、クリーニング装置18で除去される。   FIG. 3 uses an intermediate transfer belt. Similar to 1, the visible image formed on the electrophotographic photosensitive member 1 is sequentially transferred to the intermediate transfer belt 5 and superimposed, and then the toner is transferred to the toner by the secondary transfer roller 7. A reverse polarity bias is applied, and the transfer is performed on the transfer material P at once. The developer remaining on the intermediate transfer belt is removed by the cleaning device 18.

図4は転写搬送ベルト方式の一例である。転写材Pは吸着ローラ63でバイアスを印加され、転写搬送ベルト16に吸着し搬送される。電子写真感光体上に形成された各色の画像は、転写搬送ベルト上に吸着された転写材Pに転写ローラ17からトナーと逆極性のバイアスを印加されて順次転写され、重ね合わされた後、定着装置15で加熱定着される。   FIG. 4 shows an example of the transfer conveyance belt system. The transfer material P is biased by the suction roller 63 and is sucked and transported to the transfer transport belt 16. The image of each color formed on the electrophotographic photosensitive member is sequentially transferred to the transfer material P adsorbed on the transfer conveyance belt by applying a bias having a polarity opposite to that of the toner from the transfer roller 17 and superimposed, and then fixed. Heat fixing is performed by the device 15.

次に、本発明における各特性の測定方法を説明する。   Next, a method for measuring each characteristic in the present invention will be described.

<弾性率測定方法>
電子写真用ベルトからサンプルを幅20mm、長さ100mmで周方向に切り出し、厚さを測定した後、引っ張り試験機(テンシロンRTC−1250A、オリエンテック社製)に装着する。厚さはサンプル内5点の平均とする。測定間隔は50mm、試験速度は5mm/minとして引っ張り試験を行い、伸びと応力をレコーダーで記録し、伸びが0.2%と0.5%のときの応力を読み取り、下式で弾性率を計算する。
<Elastic modulus measurement method>
A sample is cut out from the belt for electrophotography with a width of 20 mm and a length of 100 mm in the circumferential direction, and after measuring the thickness, the sample is mounted on a tensile tester (Tensilon RTC-1250A, manufactured by Orientec Corp.). The thickness is the average of 5 points in the sample. Conduct a tensile test with a measurement interval of 50 mm and a test speed of 5 mm / min, record the elongation and stress with a recorder, read the stress when the elongation is 0.2% and 0.5%, and calculate the elastic modulus using the following formula: calculate.

この測定を5回行い、平均した値が本発明の弾性率である。   This measurement is performed 5 times, and the average value is the elastic modulus of the present invention.

弾性率=(f2−f1)/(20×t)×1000 [MPa]
(式中、f1は0.2%伸びの応力[N]、f2は0.5%伸びの応力[N]、tはサンプルの厚さ[mm]を示す。)
Elastic modulus = (f2−f1) / (20 × t) × 1000 [MPa]
(In the formula, f1 represents a stress [N] of 0.2% elongation, f2 represents a stress [N] of 0.5% elongation, and t represents a thickness [mm] of the sample.)

<電子写真用ベルト厚さ測定方法>
最低メモリ1μmのダイヤルゲージを用いて電子写真用ベルト周方向に10mm間隔で測定し、平均値と最大値、最小値を求めた。厚さムラは平均値に対する最大値又は最小値の差とした。
<Electrophotographic belt thickness measurement method>
Measurements were made at intervals of 10 mm in the circumferential direction of the electrophotographic belt using a dial gauge having a minimum memory of 1 μm, and an average value, a maximum value, and a minimum value were obtained. The thickness unevenness was defined as a difference between the maximum value and the minimum value with respect to the average value.

<導電材サイズ測定方法>
導電剤をSEM(走査電子顕微鏡)またはTEM(透過電子顕微鏡)で観察し、任意の20個の個体について長さを計測し、直径は各個体について3箇所づつ計測し平均した。測定倍率は導電剤サイズに合わせて適宜調整し、必要に応じて包埋剤中に導電剤を分散し、ミクロトームでスライスして観察を行った。
<Measurement method of conductive material size>
The conductive agent was observed with SEM (scanning electron microscope) or TEM (transmission electron microscope), the length was measured for any 20 individuals, and the diameter was measured and averaged at three locations for each individual. The measurement magnification was appropriately adjusted according to the size of the conductive agent, and the conductive agent was dispersed in the embedding agent as necessary, and observation was performed by slicing with a microtome.

<トナー円形度測定方法>
本発明におけるトナーの円相当径、円形度及びそれらの頻度分布とは、トナー粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではフロー式粒子像測定装置「FPIA−1000型」(東亜医用電子社製)を用いて測定を行い、後述の数1の式を用いて算出した。
<Toner circularity measurement method>
In the present invention, the equivalent circle diameter, circularity, and frequency distribution of the toner are used as a simple method for quantitatively expressing the shape of the toner particles. In the present invention, the flow type particle image measuring device “FPIA” is used. -1000 "(manufactured by Toa Medical Electronics Co., Ltd.) was used for measurement, and calculation was performed using the formula 1 described later.

ここで、「粒子投影面積」とは二値化されたトナー粒子像の面積であり、「粒子投影像の周囲長」とは該トナー粒子像のエッジ点を結んで得られる輪郭線の長さと定義する。本発明における円形度はトナーの凹凸の度合いを示す指標であり、トナーが完全な球形の場合に1.000を示し、表面形状が複雑になる程、円形度は小さな値となる。本発明において、トナーの個数基準の粒径頻度分布の平均値を意味する円相当個数平均径D1(μm)と粒径標準偏差SDdは、粒度分布の分割点iでの粒径(中心値)をdi、頻度をfiとすると後述の数2の式から算出される。   Here, the “particle projected area” is the area of the binarized toner particle image, and the “peripheral length of the particle projected image” is the length of the contour line obtained by connecting the edge points of the toner particle image. Define. The circularity in the present invention is an index indicating the degree of unevenness of the toner, and is 1.000 when the toner is a perfect sphere. The more complicated the surface shape, the smaller the circularity. In the present invention, the circle-equivalent number average diameter D1 (μm) and the particle diameter standard deviation SDd, which mean the average value of the particle number frequency distribution based on the number of toners, are the particle diameter (center value) at the dividing point i of the particle size distribution. Is di and frequency is fi.

以下に、具体的な実施例をもって本発明をより詳細に説明する。なお、実施例中の%は質量%を意味する。
(導電剤の種類)
導電剤A
炭素を気相成長させて図8の構造を有する平均長さが6.8μm、平均直径が0.011μmの見かけ上中空の炭素繊維。
導電剤B
導電剤Aと同様の構造で平均長さが3.8μm、平均径が0.008μmの見かけ上中空の炭素繊維。
導電剤C
平均直径0.15μm、平均長さ15.6μmの中空炭素繊維(図8の構造は有していない)
導電剤D
平均直径0.81μm、平均長さ22.6μmの炭素繊維(図8の構造は有していない)
電子写真用ベルト成形用コンパウンド1
PBT(ポリブチレンテレフタレート) 70%
導電剤A 30%
上記材料を加圧式ニーダーで加熱しつつ撹拌し、十分にPBT中に導電剤を分散した後、ニーダーから取り出し、カッターで大まかに切断し、さらに粉砕して直径2〜3mmのマスターバッチ1を得た。
このマスターバッチ1とPBTを二軸押し出し機を用いて下記割合で混合し、ストランドで押し出してカットし、電子写真用ベルト成形用コンパウンド1を得た。
Hereinafter, the present invention will be described in more detail with specific examples. In the examples,% means mass%.
(Type of conductive agent)
Conductive agent A
An apparently hollow carbon fiber having an average length of 6.8 μm and an average diameter of 0.011 μm having the structure of FIG. 8 obtained by vapor growth of carbon.
Conductive agent B
An apparently hollow carbon fiber having a structure similar to that of the conductive agent A, an average length of 3.8 μm, and an average diameter of 0.008 μm.
Conductive agent C
Hollow carbon fiber having an average diameter of 0.15 μm and an average length of 15.6 μm (not having the structure of FIG. 8)
Conductive agent D
Carbon fiber having an average diameter of 0.81 μm and an average length of 22.6 μm (not having the structure of FIG. 8)
Electrophotographic belt molding compound 1
PBT (polybutylene terephthalate) 70%
Conductive agent A 30%
The above material is stirred while being heated with a pressure kneader, and the conductive agent is sufficiently dispersed in the PBT, then taken out from the kneader, roughly cut with a cutter, and further pulverized to obtain a master batch 1 having a diameter of 2 to 3 mm. It was.
The master batch 1 and PBT were mixed at the following ratio using a biaxial extruder, extruded with a strand and cut to obtain a compound 1 for forming an electrophotographic belt.

PBT(ポリブチレンテレフタレート) 90.5%
マスターバッチ1 9.5%
配合量と材料を下記に示すように変更した他はベルト成形用コンパウンド1と同様にしてベルト成形用コンパウンド2〜6を製造した。
電子写真用ベルト成形用コンパウンド2
マスターバッチ2
PBT(ポリブチレンテレフタレート) 80%
導電剤B 20%
上記マスターバッチ2を下記二軸押し出し機を用いて下記割合で混合し、ペレットとした。
PBT (polybutylene terephthalate) 90.5%
Masterbatch 1 9.5%
Belt molding compounds 2 to 6 were produced in the same manner as belt molding compound 1 except that the blending amounts and materials were changed as shown below.
Electrophotographic belt molding compound 2
Masterbatch 2
80% PBT (polybutylene terephthalate)
Conductive agent B 20%
The said masterbatch 2 was mixed in the following ratio using the following biaxial extruder, and it was set as the pellet.

PBT(ポリブチレンテレフタレート) 91%
マスターバッチ2 9%
電子写真用ベルト成形用コンパウンド3
マスターバッチ3
PA(ポリアミド) 70%
導電剤C 30%
上記マスターバッチ3を下記二軸押し出し機を用いて下記割合で混合し、ペレットとした。
PBT (polybutylene terephthalate) 91%
Masterbatch 2 9%
Electrophotographic belt molding compound 3
Masterbatch 3
PA (polyamide) 70%
Conductive agent C 30%
The master batch 3 was mixed at the following ratio using the following biaxial extruder to obtain pellets.

PA(ポリアミド) 70%
マスターバッチ3 30%
電子写真用ベルト成形用コンパウンド4
マスターバッチ4
PA(ポリアミド) 70%
導電剤D 30%
上記マスターバッチ3を下記二軸押し出し機を用いて下記割合で混合し、ペレットとした。
PA (polyamide) 70%
Masterbatch 3 30%
Electrophotographic belt molding compound 4
Master batch 4
PA (polyamide) 70%
Conductive agent D 30%
The master batch 3 was mixed at the following ratio using the following biaxial extruder to obtain pellets.

PA(ポリアミド) 60%
マスターバッチ4 40%
上記コンパウンドを用いて下記の電子写真用ベルトを成形し、プリント試験を行った。
PA (polyamide) 60%
Masterbatch 4 40%
The following electrophotographic belt was formed using the above compound, and a print test was conducted.

図5の成形装置を使用して成形を行った。図5において、成形用ダイス103は環状ダイスとし、環状のスリットの外径がφ100mmのものを用いた。ダイスリットは1.0mmとした。この成形装置で押し出し機の材料ホッパー102には十分に加熱乾燥させた前記ベルト成形用コンパウンド1を投入し加熱溶融して環状ダイから円筒状で押し出した。この際にダイスの周囲には外部冷却リング105が設置されており、押し出されたフィルムに周囲から空気を吹き付けて冷却を行った。続いて、押し出された筒状フィルムの内部には気体導入路104より空気を吹き込み、直径139mmまで拡大膨張させた後、引き取り装置で一定の速度で連続的に引き取った。ピンチローラに続くカット装置108で筒状フィルムをカットした。この筒状フィルムを線膨張係数の異なる金属からなる一組の円筒型を用いてサイズと表面平滑性を調整し、同時に折り目除去を行った。まず、アルミニウム製の直径140mmの内型に、直径139mmで製造した筒状フィルム1をやや延ばしつつ被せた。つづいてその内型を、内面を鏡面に加工したステンレス製外型に挿入し、樹脂が溶融する温度まで加熱した。温度上昇に伴い、線膨張係数の大きい内型が筒状フィルム1を外型に押し当て、裏、表それぞれの表面粗さと寸法の調整が行われた。温度上昇後1分間保持して冷却した。冷却後、型から外して幅250mmになるように端部を精密にカットし、ベルト両端部裏面にゴム製の蛇行防止部材を取り付けて直径140mmの電子写真用ベルト1を作製した。この電子写真用ベルト1の弾性率は1380[MPa]、平均厚さは110μm、厚さムラは±5μm以内であった。   Molding was performed using the molding apparatus of FIG. In FIG. 5, the molding die 103 was an annular die, and an annular slit having an outer diameter of φ100 mm was used. The die slit was 1.0 mm. In this molding apparatus, the belt molding compound 1 sufficiently heated and dried was put into the material hopper 102 of the extruder, heated and melted, and extruded from the annular die in a cylindrical shape. At this time, an external cooling ring 105 was installed around the die, and cooling was performed by blowing air from the periphery to the extruded film. Subsequently, air was blown into the extruded tubular film through the gas introduction passage 104, and the air was expanded to a diameter of 139 mm, and then continuously taken out at a constant speed by a take-up device. The cylindrical film was cut with a cutting device 108 following the pinch roller. The cylindrical film was adjusted in size and surface smoothness using a pair of cylindrical molds made of metals having different linear expansion coefficients, and creases were removed at the same time. First, the tubular film 1 manufactured with a diameter of 139 mm was covered with an inner mold made of aluminum with a diameter of 140 mm while slightly extending. Subsequently, the inner mold was inserted into a stainless outer mold whose inner surface was processed into a mirror surface, and heated to a temperature at which the resin melted. As the temperature rose, the inner mold with a large linear expansion coefficient pressed the tubular film 1 against the outer mold, and the surface roughness and dimensions of the back and front were adjusted. The temperature was raised for 1 minute to cool. After cooling, the end portion was precisely cut so as to have a width of 250 mm after being removed from the mold, and rubber meandering preventing members were attached to the back surfaces of both end portions of the belt to produce an electrophotographic belt 1 having a diameter of 140 mm. The electrophotographic belt 1 had an elastic modulus of 1380 [MPa], an average thickness of 110 μm, and thickness unevenness within ± 5 μm.

<プリント試験>
直径140mmの電子写真用ベルト1を1の画像形成装置に装着した。トナーは粒径6.5μm、円形度0.981、円形度標準偏差は0.021で、円形度0.95未満のトナー粒子数は2.6個数%の懸濁重合法で製造したものを用い、現像方式は非磁性一成分方式とした。プロセススピードは120mmで中間転写ベルトと感光体は個別に駆動され、感光体の速度100に対して中間転写ベルトの速度は100.3になるようにした。23℃/55%RHの環境で毎分4枚のスピードでA4サイズのフルカラー画像プリント確認試験を行った。その結果、画像の濃度ムラや部分的な転写抜け等の特に問題となる画像はなく、良好な結果であった。その後さらに4%の印字率でフルカラー5000枚の耐久試験を行った後、同様のパターンで画像を確認したが、特に問題は無く良好な結果であった。
<Print test>
The electrophotographic belt 1 having a diameter of 140 mm was attached to one image forming apparatus. The toner has a particle size of 6.5 μm, a circularity of 0.981, a circularity standard deviation of 0.021, and a toner having a circularity of less than 0.95 produced by a suspension polymerization method having 2.6% by number of toner particles. The developing method used was a non-magnetic one-component method. The process speed was 120 mm, the intermediate transfer belt and the photosensitive member were individually driven, and the speed of the intermediate transfer belt was set to 100.3 with respect to the speed 100 of the photosensitive member. An A4 size full color image print confirmation test was performed at a speed of 4 sheets per minute in an environment of 23 ° C./55% RH. As a result, there were no particularly problematic images such as image density unevenness or partial transfer omission, and the results were satisfactory. Thereafter, after a durability test of 5,000 full-color sheets was performed at a printing rate of 4%, an image was confirmed with the same pattern, but there was no particular problem and the result was satisfactory.

次に、高温高湿(H/H)30℃/80%RHと低温低湿(L/L)15℃/10%RHの環境下で同様にプリント試験を行ったところ特に問題の無い良好な画像が得られた。なお、○は良好、△は実用上問題なし、×は不良と評価した。   Next, when a print test was conducted in the same manner in an environment of high temperature and high humidity (H / H) 30 ° C./80% RH and low temperature and low humidity (L / L) 15 ° C./10% RH, a good image with no particular problems was obtained. was gotten. In addition, (circle) evaluated that it was favorable, (triangle | delta) had no problem practically, and x was bad.

実施例1において押し出し時に入れる空気の量を調整し、直径219mmサイズの筒状フィルムを成形し、押し出し成形後に使用する円筒型のサイズを変えて内型の直径を220mmとした以外は実施例1と同様にして直径220mmの電子写真用ベルト2を製造した。この電子写真用ベルト2を図3の装置にセットし、感光体4個を有するタンデム方式の中間転写ベルトとして実施例1と同様にプリント試験を行った。この際の中間転写ベルトのプロセススピードは95mmでフルカラーのプリントスピードはA4毎分16枚であった。その結果実施例1と同様に良好な画像を得ることが出来た。結果を表1に示す。   Example 1 except that the amount of air introduced at the time of extrusion in Example 1 was adjusted, a cylindrical film having a diameter of 219 mm was formed, and the diameter of the inner mold was changed to 220 mm by changing the size of the cylindrical mold used after extrusion. In the same manner, an electrophotographic belt 2 having a diameter of 220 mm was produced. The electrophotographic belt 2 was set in the apparatus shown in FIG. 3, and a print test was conducted in the same manner as in Example 1 as a tandem intermediate transfer belt having four photoreceptors. At this time, the process speed of the intermediate transfer belt was 95 mm, and the full color printing speed was 16 sheets per minute for A4. As a result, good images could be obtained as in Example 1. The results are shown in Table 1.

実施例1において押し出し時に入れる空気の量を調整し、直径164mmサイズの筒状フィルムを成形し、型のサイズを変えて直径165mmとした以外は実施例1と同様にして直径165mmの電子写真用ベルト3を製造した。この電子写真用ベルト3を図4の装置にセットし、転写搬送ベルトとして実施例1と同様にプリント試験を行った。この際の転写搬送ベルトのプロセススピードは95mmでフルカラーのプリントスピードはA4毎分16枚である。その結果実施例1と同様に良好な画像を得ることが出来た。結果を表1に示す。   For electrophotography having a diameter of 165 mm in the same manner as in Example 1, except that the amount of air introduced during extrusion is adjusted, a cylindrical film having a diameter of 164 mm is formed, and the size of the mold is changed to 165 mm. A belt 3 was produced. The electrophotographic belt 3 was set in the apparatus shown in FIG. 4, and a print test was conducted as in Example 1 as a transfer conveyance belt. At this time, the process speed of the transfer conveyance belt is 95 mm, and the full color printing speed is 16 sheets per minute for A4. As a result, good images could be obtained as in Example 1. The results are shown in Table 1.

実施例2において原材料を電子写真用ベルト成形用コンパウンド2に変更し、厚さをやや厚くした以外は同様にして電子写真用ベルト4を成形し、プリント試験を行った。その結果実施例1と同様に良好な画像を得ることが出来た。結果を表1に示す。   The electrophotographic belt 4 was molded in the same manner as in Example 2 except that the raw material was changed to the electrophotographic belt molding compound 2 and the thickness was slightly increased, and a print test was performed. As a result, good images could be obtained as in Example 1. The results are shown in Table 1.

実施例2において原材料を電子写真用ベルト成形用コンパウンド3に変更し、厚さをやや薄くした以外は同様にして電子写真用ベルト5を成形し、プリント試験を行った。その結果実施例1と同様に良好な画像を得ることが出来た。結果を表1に示す。   The electrophotographic belt 5 was molded in the same manner as in Example 2 except that the raw material was changed to the electrophotographic belt molding compound 3 and the thickness was slightly reduced, and a print test was performed. As a result, good images could be obtained as in Example 1. The results are shown in Table 1.

実施例2において原材料を電子写真用ベルト成形用コンパウンド4に変更し、厚さをやや薄くした以外は同様にして電子写真用ベルト6を成形し、プリント試験を行った。その結果H/H耐久後に若干の画像濃度ムラを生じたが実用可能と判断した。結果を表1に示す。   The electrophotographic belt 6 was molded in the same manner as in Example 2 except that the raw material was changed to the electrophotographic belt molding compound 4 and the thickness was slightly reduced, and a print test was performed. As a result, some image density unevenness occurred after the H / H endurance, but it was judged to be practical. The results are shown in Table 1.

[比較例1]
実施例1において導電剤を下記に変更し、マスターバッチを使用せず、二軸押し出し機で溶融混練してストランドで押し出し、カッターでペレット化して比較コンパウンド1を得た。
[Comparative Example 1]
In Example 1, the conductive agent was changed to the following, and a comparative compound 1 was obtained by melting and kneading with a twin screw extruder, extruding with a strand, and pelletizing with a cutter, without using a masterbatch.

比較導電剤1:直径3.5μm 長さ50μmの図8の構造を有しない炭素繊維
配合比
PBT(実施例1と同じ) 85%
比較導電剤1 15%
比較コンパウンド1を使用した他は実施例1と同様にして電子写真用ベルトを作製し、試験を行った。その結果、初期から部分的な画像のムラが見られ、耐久試験中に耐電圧不良に起因すると思われる画像抜けが発生した為、抵抗の均一性と耐電圧に問題があるものと判断した。
Comparative conductive agent 1: Diameter 3.5 μm Length 50 μm Carbon fiber blending ratio without the structure of FIG. 8 PBT (same as Example 1) 85%
Comparative conductive agent 1 15%
An electrophotographic belt was produced and tested in the same manner as in Example 1 except that the comparative compound 1 was used. As a result, partial unevenness of the image was observed from the initial stage, and an image dropout caused by defective withstand voltage occurred during the durability test. Therefore, it was judged that there was a problem in uniformity of resistance and withstand voltage.

[比較例2]
実施例1において導電剤と配合比を下記に変更した他は同様にして比較コンパウンド2を得た。
[Comparative Example 2]
A comparative compound 2 was obtained in the same manner except that the conductive agent and the mixing ratio were changed to the following in Example 1.

比較導電剤2:直径0.003μm 長さ5.6μmの中空炭素繊維で図8の構造を有しないもの。
比較マスターバッチ1
PBT(ポリブチレンテレフタレート) 80%
比較導電剤2 20%
比較コンパウンド2
PBT(ポリブチレンテレフタレート) 90%
比較マスターバッチ1 10%
上記比較コンパウンド2を使用した他は実施例1と同様にして電子写真用ベルトを作製し、試験を行った。その結果、H/Hで初期から微細な放電に起因すると思われる縞上の画像ムラがハーフトーン上に見られ、微細な放電抑制効果が不十分であるものと判断した。
Comparative conductive agent 2: A hollow carbon fiber having a diameter of 0.003 μm and a length of 5.6 μm, which does not have the structure shown in FIG.
Comparison masterbatch 1
80% PBT (polybutylene terephthalate)
Comparative conductive agent 2 20%
Comparison compound 2
90% PBT (polybutylene terephthalate)
Comparison masterbatch 1 10%
An electrophotographic belt was prepared and tested in the same manner as in Example 1 except that the comparative compound 2 was used. As a result, it was judged that the image unevenness on the stripes, which seems to be caused by the fine discharge from the beginning at H / H, was seen on the halftone, and the fine discharge suppressing effect was insufficient.

本発明の電子写真用ベルトを中間転写ベルトとして用いた4プロセスのフルカラー画像形成装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of a four-process full-color image forming apparatus using an electrophotographic belt of the present invention as an intermediate transfer belt. 本発明の中間転写ベルトと電子写真感光体が一体に支持されたプロセスカートリッジの概略構成を示す図である。FIG. 2 is a diagram illustrating a schematic configuration of a process cartridge in which an intermediate transfer belt and an electrophotographic photosensitive member of the present invention are integrally supported. 本発明の電子写真用ベルトを中間転写ベルトとして用いた4連感光体方式のフルカラー画像形成装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of a four-conductor type full-color image forming apparatus using an electrophotographic belt of the present invention as an intermediate transfer belt. FIG. 本発明の電子写真用ベルトを転写搬送ベルトとして用いたフルカラー画像形成装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of a full-color image forming apparatus using an electrophotographic belt of the present invention as a transfer conveyance belt. 本発明の電子写真用ベルト(単層)の成形装置の概略構成を示す図である。It is a figure which shows schematic structure of the shaping | molding apparatus of the electrophotographic belt (single layer) of this invention. 本発明の電子写真用ベルト(2層)の成形装置の概略構成を示す図である。It is a figure which shows schematic structure of the shaping | molding apparatus of the belt for electrophotography (2 layers) of this invention. 本発明の導電剤の両端で直径の異なる構成単位を示す模式図である。It is a schematic diagram which shows the structural unit from which a diameter differs in the both ends of the electrically conductive agent of this invention. 本発明の導電剤の最低構成単位の重なりの構成を示す模式図である。It is a schematic diagram which shows the structure of the overlap of the minimum structural unit of the electrically conductive agent of this invention.

符号の説明Explanation of symbols

1 感光ドラム
2 一次帯電器
3 露光光
5 中間転写ベルト
6 一次転写ローラ
7 二次転写ローラ
8 二次転写対向ローラ
9 クリーニング用帯電部材
10 転写材ガイド
11 給紙ローラ
12 テンションローラー
13 クリーニング装置
15 定着器
16 転写搬送ベルト
17 転写ローラ
18 クリーニング装置
30、31、33 バイアス電源
32 一次帯電器電源
41 イエロー色現像装置
42 マゼンタ色現像装置
43 シアン色現像装置
44 ブラック色現像装置
63 吸着ローラ
100、101 1軸押し出し機
102、109 材料ホッパー
103 環状ダイス
104 気体導入路
105 外部冷却リング
106 安定板
107 ピンチローラ
108 カット装置
110 筒状フィルム
P 転写剤
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Primary charger 3 Exposure light 5 Intermediate transfer belt 6 Primary transfer roller 7 Secondary transfer roller 8 Secondary transfer counter roller 9 Cleaning charging member 10 Transfer material guide 11 Paper feed roller 12 Tension roller 13 Cleaning device 15 Fixing Device 16 Transfer conveyor belt 17 Transfer roller 18 Cleaning device 30, 31, 33 Bias power source 32 Primary charger power source 41 Yellow color developing device 42 Magenta color developing device 43 Cyan color developing device 44 Black color developing device 63 Adsorption rollers 100, 101 1 Shaft extruders 102 and 109 Material hopper 103 Annular die 104 Gas introduction path 105 External cooling ring 106 Stabilizing plate 107 Pinch roller 108 Cut device 110 Cylindrical film P Transfer agent

Claims (4)

感光体上に形成された静電潜像を現像剤で現像し、得られた可視画像を電圧を印加して転写材上に転写する電子写真方式の画像形成装置に用いられる電子写真用ベルトであって、少なくとも熱可塑性樹脂と導電剤を含有し、該導電剤は主に炭素からなる微細な繊維状で平均直径が0.1μm〜1μm、平均長さは1μm以上且つ直径に対して10倍以上であることを特徴とする電子写真用ベルト。   An electrophotographic belt used in an electrophotographic image forming apparatus that develops an electrostatic latent image formed on a photoreceptor with a developer and applies a voltage to the obtained visible image on a transfer material. It contains at least a thermoplastic resin and a conductive agent, and the conductive agent is a fine fiber mainly composed of carbon, with an average diameter of 0.1 μm to 1 μm, an average length of 1 μm or more, and 10 times the diameter. An electrophotographic belt characterized by the above. 感光体上に形成された静電潜像を現像剤で現像し、得られた可視画像を電圧を印加して転写材上に転写する電子写真方式の画像形成装置に用いられる電子写真用ベルトであって、少なくとも熱可塑性樹脂と導電剤を含有し、該導電剤は主に炭素からなり、両端の直径が異なる円筒状の形状を有する最低構成単位を重ね合わせて見かけ上、繊維状とした平均直径0.001μm〜1μmで、見かけ平均長さが0.5μm以上且つ直径に対して長さが10倍以上の導電剤であることを特徴とする電子写真用ベルト。   An electrophotographic belt used in an electrophotographic image forming apparatus that develops an electrostatic latent image formed on a photoreceptor with a developer and applies a voltage to the obtained visible image on a transfer material. An average containing a thermoplastic resin and a conductive agent, the conductive agent being mainly composed of carbon and having a cylindrical shape with different diameters at both ends, which are superposed on each other and apparently fibrous. An electrophotographic belt characterized by being a conductive agent having a diameter of 0.001 μm to 1 μm, an apparent average length of 0.5 μm or more and a length of 10 times or more of the diameter. 前記電子写真用ベルトの厚さが40μm〜300μmであり、厚さのムラが±10μm以内であり、弾性率が500MPa以上で画像形成装置が複数の感光体を有している請求項1又は2に記載の電子写真用ベルト。   The thickness of the electrophotographic belt is 40 μm to 300 μm, the unevenness of thickness is within ± 10 μm, the elastic modulus is 500 MPa or more, and the image forming apparatus has a plurality of photoconductors. The electrophotographic belt described in 1. 感光体上に形成された静電潜像を現像剤で現像し、得られた可視画像を電圧を印加して転写材上に転写する電子写真方式の画像形成装置であって、該画像形成装置に請求項1〜3のいずれかに記載の電子写真用ベルトを用いていることを特徴とする画像形成装置。   An electrophotographic image forming apparatus that develops an electrostatic latent image formed on a photoreceptor with a developer, and transfers the obtained visible image onto a transfer material by applying a voltage to the image forming apparatus. An image forming apparatus using the electrophotographic belt according to claim 1.
JP2004333249A 2004-11-17 2004-11-17 Belt for electrophotography and image forming apparatus Withdrawn JP2006145678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333249A JP2006145678A (en) 2004-11-17 2004-11-17 Belt for electrophotography and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333249A JP2006145678A (en) 2004-11-17 2004-11-17 Belt for electrophotography and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2006145678A true JP2006145678A (en) 2006-06-08

Family

ID=36625486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333249A Withdrawn JP2006145678A (en) 2004-11-17 2004-11-17 Belt for electrophotography and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2006145678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112619A (en) * 2017-01-10 2018-07-19 大倉工業株式会社 Transfer belt for image forming apparatus and method for manufacturing transfer belt for image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112619A (en) * 2017-01-10 2018-07-19 大倉工業株式会社 Transfer belt for image forming apparatus and method for manufacturing transfer belt for image forming apparatus

Similar Documents

Publication Publication Date Title
US8050604B2 (en) Belt member and image forming apparatus using the belt member
JP2004094178A (en) Electrophotographic endless belt, process cartridge, and electrophotographic system
JP5517427B2 (en) Seamless belt for electrophotography
JP2002214927A (en) Intermediate transfer body and transfer member, method for manufacturing them and image forming device using them
JP2007010714A (en) Belt for electrophotography and image forming apparatus
JP2006145678A (en) Belt for electrophotography and image forming apparatus
JP2000275980A (en) Intermediate transfer medium, production of intermediate transfer medium and image forming device
JP4136507B2 (en) Electrophotographic belt, image forming apparatus, and process cartridge
EP2818939B1 (en) Belt assembly, image-forming apparatus, and method for manufacturing the belt assembly
JP2008044179A (en) Conductive belt, manufacturing method of the same and image forming device having the same
JP2003316174A (en) Intermediate transfer medium and transfer member, method for manufacturing intermediate transfer medium and transfer member, and image forming device using intermediate transfer medium and transfer member
JP2007155987A (en) Electrophotographic endless belt, electrophotographic apparatus and method for manufacturing electrophotographic endless belt
JP3935395B2 (en) Process cartridge, electrophotographic apparatus, image forming apparatus, and intermediate transfer belt
JP3943976B2 (en) Belt-shaped transfer member, method for manufacturing belt-shaped transfer member, image forming apparatus, and intermediate transfer belt-latent image carrier integrated cartridge
JP2006069046A (en) Semiconductive film, its production method, and charge controlling member
JP2006154062A (en) Thermoplastic resin endless belt for electrophotography, electrophotographic apparatus with thermoplastic resin endless belt for electrophotography and method for manufacturing thermoplastic resin endless belt for electrophotography
JP2003287964A (en) Intermediate transfer belt, intermediate transfer belt and electrophotographic photoreceptor drum incorporated type cartridge, image forming apparatus and image forming method
JP3913137B2 (en) Intermediate transfer belt, intermediate transfer belt-electrophotographic photosensitive member integrated cartridge, and electrophotographic apparatus
JP2002251081A (en) Cartridge integrated with latent image carrier/ intermediate transfer rotating body, image forming device and method therefor
JP2002328543A (en) Process cartridge, image forming device and intermediate transfer belt
JP2016218427A (en) Structure composed of semiconductor resin composition, intermediate transfer body, and image forming apparatus
JP2003149956A (en) Process cartridge, electrophotographic apparatus, image forming method, and intermediate transfer belt
JP2011095480A (en) Conductive seamless belt
JP3950751B2 (en) Electrophotographic belt, electrophotographic photosensitive member-intermediate transfer belt integrated cartridge, image forming apparatus, and method for producing electrophotographic belt
JP4401939B2 (en) Electrophotographic endless belt, electrophotographic endless belt manufacturing method, and electrophotographic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205