JP2006144482A - Frame structure of structure - Google Patents

Frame structure of structure Download PDF

Info

Publication number
JP2006144482A
JP2006144482A JP2004338979A JP2004338979A JP2006144482A JP 2006144482 A JP2006144482 A JP 2006144482A JP 2004338979 A JP2004338979 A JP 2004338979A JP 2004338979 A JP2004338979 A JP 2004338979A JP 2006144482 A JP2006144482 A JP 2006144482A
Authority
JP
Japan
Prior art keywords
truss
arch
curved
span
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004338979A
Other languages
Japanese (ja)
Inventor
Okimori Sato
起司 佐藤
Hidefumi Enomoto
秀文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2004338979A priority Critical patent/JP2006144482A/en
Publication of JP2006144482A publication Critical patent/JP2006144482A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the frame structure of a structure capable of increasing the degree of freedom of a design on a lower frame by reducing a thrust working to the lower frame supporting an arch roof. <P>SOLUTION: The structure is composed of the arch roof 1 in which the span direction X is formed in a pent roof-shape-flowing arch shape. The arch roof 1 is formed in a curved-surface truss 2. The curved surface truss 2 is composed of arched main materials 5 juxtaposed in the girder-line direction while being extended in the span direction X, tie rods 6 built among the main materials 5 and 5 while crossed at right angles with the main materials 5 and diagonal members 7 arranged on the diagonals of grids formed of the main materials 5 and the tie rods 6. In a gable surface 4 extended in the span direction X of the structure, braces 8 made of steel pipes supporting the curved-surface trusses 2 are assembled in an elevation truss shape, and the lower end sections of each brace 8 are supported by SRC columns 10 made of steel framed reinforced concrete. Then, the lower frames 3 extended in the girder-line direction Y of the structure are constituted of steel-pipe columns 9 having a circular cross section juxtaposed in the girder-line direction Y. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、構造物の架構構造に関し、特にアーチ屋根を有する構造物の架構構造に関する。   The present invention relates to a frame structure of a structure, and more particularly to a frame structure of a structure having an arch roof.

アーチ屋根50を有する構造物では、アーチ屋根50の自重およびアーチ屋根50に作用する付加荷重からなる鉛直荷重Vによって、アーチ屋根50を支持する下部架構51に大きなスラスト力S(アーチ屋根50の境界部が外に拡がろうとする力)が発生する(図6参照)。そのため、強固な下部架構を構築してスラスト力を処理したりしている。
他方、ドーム構造では、開口部を形成するアーチの両端を吊りケーブルによってアーチ下方の梁と連結して力学的に閉じた場を構成し、開口部に生じるスラスト力を処理する手法が提案されている(特許文献1参照)。
特開平10−219836号公報 (第2頁、第1図)
In the structure having the arch roof 50, a large thrust force S (boundary of the arch roof 50) is applied to the lower frame 51 that supports the arch roof 50 due to the vertical load V composed of the weight of the arch roof 50 and an additional load acting on the arch roof 50. Force) (see FIG. 6). For this reason, a strong lower frame is constructed to handle the thrust force.
On the other hand, in the dome structure, a method has been proposed in which both ends of the arch forming the opening are connected to the beam below the arch by a suspension cable to form a mechanically closed field, and the thrust force generated in the opening is processed. (See Patent Document 1).
Japanese Patent Laid-Open No. 10-211983 (2nd page, Fig. 1)

しかしながら、建築計画その他の制約により、スラスト力を受ける下部架構を片持ち柱など面外剛性の確保が難しい構造形式にしなければならない場合には、強固な下部架構を構築することができず、下部架構でスラスト力を処理することは難しい。
また、アーチ屋根のスパンは、柱間に梁が架設できないような長大スパンであるケースが殆どであり、特許文献1のような手法を採用することは難しい。
However, if the lower frame that receives thrust force has to be made into a structural form where it is difficult to ensure out-of-plane rigidity, such as a cantilever column, due to architectural plans and other constraints, a strong lower frame cannot be constructed. It is difficult to handle the thrust force on the frame.
Moreover, the span of the arch roof is almost always a long span in which a beam cannot be installed between the columns, and it is difficult to adopt the technique as in Patent Document 1.

本発明は、上述する問題点に鑑みてなされたもので、アーチ屋根を支持する下部架構に作用するスラスト力を軽減し、以て下部架構の設計自由度を増大させることができる構造物の架構構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is a structural frame that can reduce the thrust force acting on the lower frame that supports the arch roof and thereby increase the degree of freedom in designing the lower frame. The purpose is to provide a structure.

上記目的を達成するため、本発明に係る構造物の架構構造は、スパン方向がアーチ状になったアーチ屋根を有する構造物の架構構造であって、前記アーチ屋根は、スパン方向に延在して桁行方向に並設されるアーチ状の主材と、前記主材間に架設される繋ぎ材と、前記主材と前記繋ぎ材で形成されるグリッドの対角線上に配される斜材とからなる曲面トラスであることを特徴とする。
スパン方向がアーチ状になったアーチ屋根を有する構造物の場合、アーチ屋根には、アーチ屋根をスパン方向に拡げようとするスラスト力が発生する。このスラスト力は、スパンの両端部にあってアーチ屋根を支持する下部架構に大きな面外力として作用する。
本発明では、主材と繋ぎ材でグリッド状に形成されるアーチ屋根に斜材を配することにより、屋根面の中で力の流れの方向を変えている。即ち、スパン方向に作用するスラスト力を曲面トラスの斜材を介して構造物の妻面側に伝達させて処理することで、スパン両端部の下部架構に作用するスラスト力を大幅に低減させている。その結果、スパン両端部の下部架構を強固とする必要がなくなり、設計の自由度が増大する。
To achieve the above object, a frame structure of a structure according to the present invention is a frame structure of a structure having an arch roof whose span direction is arched, and the arch roof extends in the span direction. Arch-shaped main members arranged side by side in the row direction, a connecting member constructed between the main members, and a diagonal member arranged on a diagonal line of a grid formed by the main member and the connecting member It is a curved truss.
In the case of a structure having an arch roof having an arch shape in the span direction, a thrust force is generated in the arch roof to expand the arch roof in the span direction. This thrust force acts as a large out-of-plane force on the lower frame that supports the arch roof at both ends of the span.
In the present invention, the direction of the force flow is changed in the roof surface by arranging the diagonal material on the arch roof formed in a grid shape with the main material and the connecting material. In other words, the thrust force acting in the span direction is transmitted to the end face of the structure via the diagonal member of the curved truss, and the thrust force acting on the lower frame at both ends of the span is greatly reduced. Yes. As a result, there is no need to strengthen the lower frame at both ends of the span, and the degree of freedom in design increases.

また、本発明に係る構造物の架構構造では、前記構造物のスパン方向に延在する妻面は、並設された柱上に、前記曲面トラスを支持するブレースがトラス状に組まれていてもよい。
本発明では、並設された柱の上にブレースをトラス状に組むことにより、妻面の強度と剛性を増大させ、斜材を介して妻面に伝達されるスラスト力を処理するものである。
Further, in the frame structure of the structure according to the present invention, the end face extending in the span direction of the structure includes braces that support the curved truss on the pillars arranged in parallel. Also good.
In the present invention, the strength and rigidity of the wife surface are increased by assembling the braces on the columns arranged side by side, and the thrust force transmitted to the wife surface through the diagonal is processed. .

また、本発明に係る構造物の架構構造では、前記曲面トラスのスパン方向中央部に配設される前記繋ぎ材は、端部が前記主材に剛接合されていてもよい。
本発明では、曲面トラスのスパン方向中央部に配設される繋ぎ材の端部を主材と剛接合することにより、曲面トラスの座屈耐力を増大させることができる。
Moreover, in the frame structure of the structure which concerns on this invention, the edge part may be rigidly joined to the said main material in the said joining material arrange | positioned in the span direction center part of the said curved truss.
In the present invention, the buckling strength of the curved truss can be increased by rigidly joining the end of the connecting member disposed in the center portion in the span direction of the curved truss with the main material.

本発明によれば、アーチ屋根を、アーチ状の主材と、主材間に架設される繋ぎ材と、主材と繋ぎ材で形成されるグリッドの対角線上に配される斜材とからなる曲面トラスとすることにより、スラスト力が構造物の妻面に集約され、スパン両端部の下部架構に作用するスラスト力が大幅に低減される。その結果、スパン両端部の下部架構を強固とする必要がなくなり、設計自由度を増大させることができる。   According to the present invention, the arch roof is composed of an arch-shaped main material, a connecting material constructed between the main materials, and a diagonal material arranged on a diagonal line of a grid formed by the main material and the connecting material. By using the curved truss, the thrust force is concentrated on the end face of the structure, and the thrust force acting on the lower frame at both ends of the span is greatly reduced. As a result, it is not necessary to strengthen the lower frame at both ends of the span, and the degree of freedom in design can be increased.

以下、本発明に係る構造物の架構構造の実施形態について図面に基づいて説明する。
図1は、本発明に係る構造物の架構構造の一例を示す斜視図である。
図1に示すように、本実施形態に係る構造物は、スパン方向Xが片流れのアーチ状になったアーチ屋根1からなる構造物であり、鉄筋コンクリート造のマットスラブ12上に構築されている。
アーチ屋根1のライズとアーチスパンとの比を示すスパンライズ比は0.05程度であり、一般に低ライズアーチ屋根と呼ばれているものである。なお、ライズとは、アーチ端同士を結ぶ線からアーチクラウンまでの高さのことをいう。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a frame structure of a structure according to the present invention will be described based on the drawings.
FIG. 1 is a perspective view showing an example of a frame structure of a structure according to the present invention.
As shown in FIG. 1, the structure which concerns on this embodiment is a structure which consists of the arch roof 1 in which the span direction X became the arch shape of the single flow, and is constructed | assembled on the mat slab 12 of a reinforced concrete structure.
The span rise ratio indicating the ratio between the rise of the arch roof 1 and the arch span is about 0.05, and is generally called a low rise arch roof. The rise means the height from the line connecting the arch ends to the arch crown.

アーチ屋根1は、スパン方向Xに延在して桁行方向Yに並設されるアーチ状に形成された主材5と、主材5に直交して主材5、5間に架設される繋ぎ材6と、主材5と繋ぎ材6で形成されるグリッドの対角線上に配される斜材7とから構成された曲面トラス2である。但し、曲面トラス2の中央部には斜材7が配されておらず、曲面トラス2の中央部に平面視で菱形が形成されるように、曲面トラス2の各隅角部に斜めに斜材7が並設して配されている。後述するが、このように斜材7を配設することにより、鉛直荷重に対して斜材7には常に引張力が作用し、座屈に対する配慮が不要となる。
曲面トラス2の各部材には鋼材を使用しており、主材5および繋ぎ材6にはH形鋼を、斜材7には平鋼をそれぞれ使用している。
The arch roof 1 has a main material 5 formed in an arch shape that extends in the span direction X and is juxtaposed in the row direction Y, and a bridge that is laid between the main materials 5 and 5 orthogonal to the main material 5. This is a curved truss 2 composed of a material 6 and a diagonal material 7 arranged on a diagonal line of a grid formed by the main material 5 and the connecting material 6. However, the diagonal member 7 is not disposed in the central portion of the curved truss 2, and each corner portion of the curved truss 2 is obliquely inclined so that a rhombus is formed in the central portion of the curved truss 2 in plan view. The material 7 is arranged side by side. As will be described later, by arranging the diagonal member 7 in this manner, a tensile force always acts on the diagonal member 7 with respect to the vertical load, and consideration for buckling becomes unnecessary.
Steel members are used for the members of the curved truss 2, H-shaped steel is used for the main material 5 and the connecting material 6, and flat steel is used for the diagonal material 7.

構造物のスパン方向Xに延在する妻面4は、曲面トラス2を支持する鋼管製のブレース8が立面視トラス状に組まれ、各ブレース8の下端部を鉄骨鉄筋コンクリート造のSRC柱10が支持する構造になっている。
SRC柱10、10間には鉄骨鉄筋コンクリート造のSRC梁11が架設され、SRC柱10、10とSRC梁11に囲まれた構面内は鉄筋コンクリート造のRC壁15となっている。
On the end face 4 extending in the span direction X of the structure, a steel pipe brace 8 supporting the curved truss 2 is assembled in a truss shape in elevation, and the lower end of each brace 8 is an SRC column 10 made of steel reinforced concrete. Is a structure to support.
A SRC beam 11 made of steel reinforced concrete is laid between the SRC columns 10 and 10, and a RC wall 15 made of reinforced concrete is formed in the construction surface surrounded by the SRC columns 10 and 10 and the SRC beam 11.

一方、構造物の桁行方向Yに延在する下部架構3(スパン両端部の下部架構)は、桁行方向Yに並設された断面円形の鋼管柱9から構成されており、大きな面外剛性が確保しにくい構造となっている。   On the other hand, the lower frame 3 (the lower frame at both ends of the span) extending in the crossing direction Y of the structure is composed of steel pipe columns 9 having a circular cross section arranged side by side in the crossing direction Y, and has a large out-of-plane rigidity. The structure is difficult to secure.

また、一方の妻面4側には、川下側より川上側が大きく水平に跳ね出した平面視三角形状の跳ね出し屋根1aが形成されている。   In addition, on one wife face 4 side, a projecting roof 1a having a triangular shape in a plan view is formed in which the upper side of the river is larger than the lower side of the river and is projected horizontally.

図2は、曲面トラス2内の力の流れを示したものであり、(a)は曲面トラス2の平面図、(b)は鉛直荷重作用時のA部の軸力図である。なお、軸力図において、実線は引張力、破線は圧縮力を表し、帯の幅は軸力の大きさに比例している。
図2に示すように、曲面トラス2を構成する主材5および繋ぎ材6には、外周部を構成する妻面主材5aおよび外周繋ぎ材6aを除いて圧縮力が作用し、斜材7と妻面主材5aおよび外周繋ぎ材6aには引張力が作用する。
曲面トラス2をスパン方向Xに拡げようとするスラスト力は、斜材7によって力の向きを変えられ、妻面主材5aおよび外周繋ぎ材6aに引張力として作用しているのである。その結果、桁行方向Yに延在する下部架構3に作用する面外方向のスラスト力は、鋼管柱9で処理できるほど小さなものとなる。
一方、妻面主材5aに作用する引張力は、ブレース8とSRC柱10によって剛に構成された妻面4で面内力として処理される。
2A and 2B show the flow of force in the curved truss 2, wherein FIG. 2A is a plan view of the curved truss 2, and FIG. 2B is an axial force diagram of the portion A when a vertical load is applied. In the axial force diagram, the solid line represents the tensile force, the broken line represents the compressive force, and the width of the band is proportional to the magnitude of the axial force.
As shown in FIG. 2, compressive force acts on the main member 5 and the connecting member 6 constituting the curved truss 2 except for the end face main member 5a and the outer connecting member 6a constituting the outer peripheral portion, and the diagonal member 7 Tensile force acts on the end face main material 5a and the outer peripheral connecting material 6a.
The thrust force for expanding the curved truss 2 in the span direction X is changed in the direction of the force by the diagonal member 7 and acts as a tensile force on the end face main material 5a and the outer peripheral connecting material 6a. As a result, the thrust force acting in the out-of-plane direction acting on the lower frame 3 extending in the beam running direction Y is small enough to be processed by the steel pipe column 9.
On the other hand, the tensile force acting on the end face main material 5 a is processed as an in-plane force on the end face 4 that is rigidly constituted by the brace 8 and the SRC column 10.

図3は、曲面トラス2の水上側の支承部を示したものであり、(a)は構造物の立断面図、(b)はB部の斜視図である。
曲面トラス2は、水上側において、桁行方向Yに回転軸を有するピン支承13を介して鋼管柱9によって支持されており、曲面トラス2の端部で曲げモーメントが発生しないようになっている。
また、ピン支承13と鋼管柱9との間には、ステンレスプレートからなる滑り板14が介装されており、曲面トラス2施工時にはローラー支承の役目を果たしている。これにより、施工時の応力が曲面トラス2を構成する部材に残留することがなく、各部材は鉛直荷重をフルに処理することができる。なお、竣工後は、滑り板14はピン支承13および鋼管柱9に固定され、滑り板14の水平移動は拘束される。
FIGS. 3A and 3B show the water-side support portion of the curved truss 2, wherein FIG. 3A is a vertical sectional view of the structure, and FIG. 3B is a perspective view of the B portion.
The curved truss 2 is supported by the steel pipe column 9 via a pin bearing 13 having a rotation axis in the direction of crossing Y on the water side, so that no bending moment is generated at the end of the curved truss 2.
Further, a sliding plate 14 made of a stainless steel plate is interposed between the pin support 13 and the steel pipe column 9 and serves as a roller support when the curved truss 2 is constructed. Thereby, the stress at the time of construction does not remain on the members constituting the curved truss 2, and each member can fully process the vertical load. After completion, the sliding plate 14 is fixed to the pin support 13 and the steel pipe column 9, and the horizontal movement of the sliding plate 14 is restricted.

次に、繋ぎ材6の端部接合条件の違いによる曲面トラス2の座屈耐力について説明する。図2に示したように、鉛直荷重時に、曲面トラス2を構成する主材5および繋ぎ材6には圧縮力が作用するため、曲面トラス2の座屈耐力に関する検討が必要となる。
図4は、曲面トラス2を構成する繋ぎ材6の端部接合条件を示したものであり、(a)は中央部1列の繋ぎ材6’を主材5と剛接合とした場合、(b)は中央部2列の繋ぎ材6’、6’を主材5と剛接合とした場合、(c)は中央部3列の繋ぎ材6’、6’、6’を主材5と剛接合とした場合である。
一方、図5は、曲面トラス2中央点における鉛直荷重と撓み量との関係を示すグラフであり、CASE0は繋ぎ材6の両端を主材5と全てピン接合した場合、CASE1は図4(a)の場合、CASE2は図4(b)の場合、CASE3は図4(c)の場合にそれぞれ対応している。なお、固定荷重は、曲面トラス2の自重および曲面トラス2に作用する付加荷重の総和であるとともに、縦軸は鉛直荷重を固定荷重で基準化したものであり、鉛直荷重の最大値が座屈荷重に相当する。
図5より、繋ぎ材6の両端を主材5と全てピン接合した場合が最も座屈荷重および撓み量が小さく、中央部3列の繋ぎ材6’、6’、6’を主材5と剛接合とした場合が最も座屈荷重および撓み量が大きくなることがわかる。また、中央部2列の繋ぎ材6’、6’を主材5と剛接合とした場合と中央部3列の繋ぎ材6’、6’、6’を主材5と剛接合とした場合とでは座屈荷重および撓み量がさほど変わらないことがわかる。
従って、曲面トラス2中央部2列の繋ぎ材6’、6’を主材5と剛接合すれば、曲面トラス2の座屈耐力を効果的に向上させることができる。
Next, the buckling strength of the curved truss 2 due to the difference in end joining conditions of the connecting material 6 will be described. As shown in FIG. 2, since a compressive force acts on the main member 5 and the connecting member 6 constituting the curved truss 2 at the time of vertical load, it is necessary to examine the buckling strength of the curved truss 2.
FIG. 4 shows an end joining condition of the connecting member 6 constituting the curved truss 2, and FIG. 4A shows a case where the connecting member 6 ′ in the central portion 1 row is rigidly connected to the main member 5. b) When the connecting members 6 ′ and 6 ′ in the central two rows are rigidly connected to the main material 5, (c), the connecting materials 6 ′, 6 ′ and 6 ′ in the three central rows are connected to the main material 5. This is a case of rigid connection.
On the other hand, FIG. 5 is a graph showing the relationship between the vertical load and the amount of deflection at the center point of the curved truss 2, and CASE 0 is a case where both ends of the connecting material 6 are all pin-joined with the main material 5, and CASE 1 is shown in FIG. ), CASE2 corresponds to the case of FIG. 4B, and CASE3 corresponds to the case of FIG. 4C. The fixed load is the sum of the weight of the curved truss 2 and the additional load acting on the curved truss 2, and the vertical axis is obtained by standardizing the vertical load with the fixed load, and the maximum vertical load is the buckling. Corresponds to load.
From FIG. 5, when both ends of the connecting material 6 are all pin-joined with the main material 5, the buckling load and the amount of deflection are the smallest, and the connecting materials 6 ′, 6 ′, 6 ′ in the central three rows are connected to the main material 5. It can be seen that the buckling load and the amount of deflection are the largest when rigid bonding is used. In addition, when the connecting members 6 ′ and 6 ′ in the central two rows are rigidly connected to the main material 5 and the connecting materials 6 ′, 6 ′ and 6 ′ in the three central rows are rigidly connected to the main material 5 It can be seen that the buckling load and the amount of deflection do not change so much.
Therefore, the buckling strength of the curved truss 2 can be effectively improved if the connecting members 6 ′ and 6 ′ in the central portion of the curved truss 2 are rigidly joined to the main material 5.

本実施形態による構造物の架構構造では、アーチ屋根1を、アーチ状の主材5と、主材5に直交して主材5、5間に架設される繋ぎ材6と、主材5と繋ぎ材6で形成されるグリッドの対角線上に配される斜材7とからなる曲面トラス2とすることにより、スラスト力が構造物の妻面4に集約され、桁行方向Yに延在する下部架構3に作用するスラスト力が大幅に低減される。これに伴い、妻面4を、並設されたSRC柱10上にブレース8をトラス状に組んだ構成として、妻面4の強度と剛性を増大させることにより、斜材7を介して妻面4に伝達されるスラスト力を処理する。
その結果、桁行方向Yに延在する下部架構3を強固とする必要がなくなり、躯体数量が削減され、工費および工期の縮減を図ることができる。加えて、桁行方向Yに延在する下部架構3を強固とする必要がないので、設計自由度を増大させることができる。
In the frame structure of the structure according to the present embodiment, the arch roof 1 is composed of an arch-shaped main material 5, a connecting material 6 laid between the main materials 5 and 5 orthogonal to the main material 5, and the main material 5. By forming the curved truss 2 composed of the diagonal member 7 arranged on the diagonal line of the grid formed by the connecting material 6, the thrust force is concentrated on the end surface 4 of the structure, and the lower portion extending in the column direction Y The thrust force acting on the frame 3 is greatly reduced. Along with this, the end face 4 has a structure in which braces 8 are assembled in a truss shape on the SRC pillars 10 arranged side by side, thereby increasing the strength and rigidity of the end face 4 so that the end face is interposed via the diagonal member 7. The thrust force transmitted to 4 is processed.
As a result, there is no need to strengthen the lower frame 3 extending in the column direction Y, the number of frames can be reduced, and the construction cost and construction period can be reduced. In addition, since it is not necessary to strengthen the lower frame 3 extending in the column direction Y, the degree of freedom in design can be increased.

以上、本発明に係る構造物の架構構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記の実施形態では、片流れのアーチ屋根としているが、スパン中央部が最も高くなった両流れのアーチ屋根でもよい。また、上記の実施形態では、妻面は、並設された柱とトラス状のブレースから構成されていたが、妻面全体を鉄筋コンクリート壁で構成し、妻面に伝達されるスラスト力を処理してもよい。要は、本発明において所期の機能が得られればよいのである。   As mentioned above, although embodiment of the frame structure of the structure based on this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, in the above-described embodiment, a single-flow arch roof is used, but a double-flow arch roof having the highest span center may be used. In the above embodiment, the end face is composed of columns and truss-like braces arranged side by side, but the entire end face is composed of a reinforced concrete wall to process the thrust force transmitted to the end face. May be. In short, it is only necessary to obtain the desired function in the present invention.

本発明に係る構造物の架構構造の一例を示す斜視図である。It is a perspective view which shows an example of the frame structure of the structure based on this invention. 曲面トラス内の力の流れを示し、(a)は曲面トラスの平面図、(b)は鉛直荷重作用時のA部の軸力図である。The flow of force in the curved truss is shown, (a) is a plan view of the curved truss, (b) is an axial force diagram of the A part at the time of vertical load action. 曲面トラスの水上側支承部を示し、(a)は本発明に係る構造物の立断面図、(b)はB部の斜視図である。The waterside support part of a curved truss is shown, (a) is a sectional elevation view of the structure according to the present invention, and (b) is a perspective view of part B. 曲面トラスを構成する繋ぎ材の端部接合条件を示し、(a)は中央部1列の繋ぎ材を主材と剛接合とした場合、(b)は中央部2列の繋ぎ材を主材と剛接合とした場合、(c)は中央部3列の繋ぎ材を主材と剛接合とした場合である。The end joining conditions of the connecting material constituting the curved truss are shown, and (a) shows a case where the connecting material in the center part is connected to the main material and the main material is rigidly connected, and (b) shows the connecting material in the center part in two rows. (C) is a case where the connecting members in the central three rows are rigidly joined to the main material. 曲面トラス中央点における鉛直荷重と撓み量との関係を示すグラフである。It is a graph which shows the relationship between the vertical load in the curved truss center point, and the amount of bending. アーチ屋根を有する構造物に作用するスラスト力を説明するための構造物の立断面図である。It is an elevation sectional view of a structure for explaining thrust power which acts on a structure which has an arch roof.

符号の説明Explanation of symbols

1、50 アーチ屋根
2 曲面トラス
3、51 下部架構
4 妻面
5 主材
5a 妻面主材
6、6’ 繋ぎ材
6a 外周繋ぎ材
7 斜材
8 ブレース
9 鋼管柱
10 SRC柱
11 SRC梁
12 マットスラブ
13 ピン支承
14 滑り板
15 RC壁
X スパン方向
Y 桁行方向
S スラスト力
V 鉛直荷重
DESCRIPTION OF SYMBOLS 1,50 Arch roof 2 Curved truss 3,51 Lower frame 4 End surface 5 Main material 5a End surface main material 6, 6 'Connection material 6a Outer connection material 7 Diagonal material 8 Brace 9 Steel pipe column 10 SRC column 11 SRC beam 12 Mat Slab 13 Pin support 14 Sliding plate 15 RC wall X Span direction Y Girder direction S Thrust force V Vertical load

Claims (3)

スパン方向がアーチ状になったアーチ屋根を有する構造物の架構構造であって、
前記アーチ屋根は、スパン方向に延在して桁行方向に並設されるアーチ状の主材と、前記主材間に架設される繋ぎ材と、前記主材と前記繋ぎ材で形成されるグリッドの対角線上に配される斜材とからなる曲面トラスであることを特徴とする構造物の架構構造。
It is a frame structure of a structure having an arch roof whose span direction is arched,
The arch roof includes an arch-shaped main material that extends in the span direction and is juxtaposed in the longitudinal direction, a connecting material that is laid between the main materials, and a grid that is formed by the main material and the connecting material. A frame structure of a structure, characterized in that it is a curved truss composed of diagonal members arranged on the diagonal line of.
前記構造物のスパン方向に延在する妻面は、並設された柱上に、前記曲面トラスを支持するブレースがトラス状に組まれていることを特徴とする請求項1に記載の構造物の架構構造。   2. The structure according to claim 1, wherein the end face extending in the span direction of the structure has braces that support the curved truss in a truss shape on parallel columns. Frame structure. 前記曲面トラスのスパン方向中央部に配設される前記繋ぎ材は、端部が前記主材に剛接合されていることを特徴とする請求項1または2に記載の構造物の架構構造。   3. The frame structure of the structure according to claim 1, wherein an end portion of the connecting member disposed in a center portion in the span direction of the curved truss is rigidly joined to the main member.
JP2004338979A 2004-11-24 2004-11-24 Frame structure of structure Pending JP2006144482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338979A JP2006144482A (en) 2004-11-24 2004-11-24 Frame structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338979A JP2006144482A (en) 2004-11-24 2004-11-24 Frame structure of structure

Publications (1)

Publication Number Publication Date
JP2006144482A true JP2006144482A (en) 2006-06-08

Family

ID=36624490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338979A Pending JP2006144482A (en) 2004-11-24 2004-11-24 Frame structure of structure

Country Status (1)

Country Link
JP (1) JP2006144482A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605885A (en) * 2012-04-02 2012-07-25 张培聪 Large-sized closed roof formed by light steel truss arch for building
CN109281435A (en) * 2018-11-16 2019-01-29 中建二局安装工程有限公司 A kind of double slope roof trusses of the recessed fish-bellied type of large span and its installation method
CN110512796A (en) * 2019-07-10 2019-11-29 中建钢构有限公司 A kind of Double curved arc large span steel truss and preparation method thereof
CN110778108A (en) * 2019-10-30 2020-02-11 中国建筑第八工程局有限公司 Construction method of complex space multi-curved surface double-layer oblique crossing concrete grid structure
CN113789851A (en) * 2021-09-26 2021-12-14 浙大城市学院 Arc cantilever truss stay cable bearing combined long-span corridor structure and construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138046A (en) * 1986-11-28 1988-06-10 株式会社オクジュー Execution of ceiling
JPH01223237A (en) * 1987-07-27 1989-09-06 L Berger Horst Freely extensible roof structure
JPH04176930A (en) * 1990-11-09 1992-06-24 Shimizu Corp Roof structure
JPH07207804A (en) * 1994-01-17 1995-08-08 Taisei Corp Roof frame
JPH08144371A (en) * 1994-11-18 1996-06-04 Sato Kogyo Co Ltd Dome building
JPH11256749A (en) * 1998-03-10 1999-09-21 Kimio Saito Structure of roof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138046A (en) * 1986-11-28 1988-06-10 株式会社オクジュー Execution of ceiling
JPH01223237A (en) * 1987-07-27 1989-09-06 L Berger Horst Freely extensible roof structure
JPH04176930A (en) * 1990-11-09 1992-06-24 Shimizu Corp Roof structure
JPH07207804A (en) * 1994-01-17 1995-08-08 Taisei Corp Roof frame
JPH08144371A (en) * 1994-11-18 1996-06-04 Sato Kogyo Co Ltd Dome building
JPH11256749A (en) * 1998-03-10 1999-09-21 Kimio Saito Structure of roof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605885A (en) * 2012-04-02 2012-07-25 张培聪 Large-sized closed roof formed by light steel truss arch for building
CN109281435A (en) * 2018-11-16 2019-01-29 中建二局安装工程有限公司 A kind of double slope roof trusses of the recessed fish-bellied type of large span and its installation method
CN109281435B (en) * 2018-11-16 2020-11-24 中建二局安装工程有限公司 Large-span concave fish belly type double-slope roof truss and installation method thereof
CN110512796A (en) * 2019-07-10 2019-11-29 中建钢构有限公司 A kind of Double curved arc large span steel truss and preparation method thereof
WO2021004187A1 (en) * 2019-07-10 2021-01-14 中建科工集团有限公司 Double-curved arc-shaped large-span steel truss and manufacturing method thereof
CN110778108A (en) * 2019-10-30 2020-02-11 中国建筑第八工程局有限公司 Construction method of complex space multi-curved surface double-layer oblique crossing concrete grid structure
CN113789851A (en) * 2021-09-26 2021-12-14 浙大城市学院 Arc cantilever truss stay cable bearing combined long-span corridor structure and construction method

Similar Documents

Publication Publication Date Title
KR101065633B1 (en) Prestressed steel tubular truss beam by external prestressing method
CN111364616A (en) Super high-rise building giant frame bottom inclined leg rigid frame type supporting structure and construction method
JP5129977B2 (en) Steel slit dam
JP2006144482A (en) Frame structure of structure
CN113006280A (en) Vertical face arc-shaped steel frame-support-based double-ring combined super-high-rise structure and forming method
JP2008240466A (en) Reinforcing structure of building structure having overhead travelling crane
JP5940416B2 (en) building
JP2006274617A (en) Factory building where overhead traveling crane travels
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP2008208612A (en) External aseismatic reinforcing structure
CN211774543U (en) Net rack and lattice type truss column top connecting structure
JP2005068821A (en) Roof framing
JP2008075314A (en) Aseismic control structure of connected buildings
JP2006070679A (en) Continuous girder bridge in which triangle structures having damping/supporting devices at lower ends are connected by girder
JP7020046B2 (en) How to repair existing structures
JP7449143B2 (en) building frame structure
JP6877857B2 (en) Gate pillar seismic retrofitting device
JP5283361B2 (en) Roof frame construction method and roof frame
CN109235898A (en) A kind of huge space transformational structure of novel large-span prestressed rigid body and its construction method
JP5971545B2 (en) Structure of pipe brace intersection of spherical tank legs
JP7036368B2 (en) Beam material and support structure of beam material
KR102654228B1 (en) Earthquake-resistant structure for pedestrian bridges using steel pipe girders
JP3870374B2 (en) Column main reinforcement joint structure
CN217150621U (en) Embedded steel braced frame conversion post connection structure and beam column connected node
JP2004263383A (en) X type crossing chord beam string structure body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019