JP2006144062A - Method for producing magnesium alloy sheet metal having fine crystal grain - Google Patents

Method for producing magnesium alloy sheet metal having fine crystal grain Download PDF

Info

Publication number
JP2006144062A
JP2006144062A JP2004334820A JP2004334820A JP2006144062A JP 2006144062 A JP2006144062 A JP 2006144062A JP 2004334820 A JP2004334820 A JP 2004334820A JP 2004334820 A JP2004334820 A JP 2004334820A JP 2006144062 A JP2006144062 A JP 2006144062A
Authority
JP
Japan
Prior art keywords
rolling
magnesium alloy
warm
alloy sheet
sheet metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004334820A
Other languages
Japanese (ja)
Other versions
JP4429877B2 (en
Inventor
Sukenori Nakaura
祐典 中浦
Koichi Ohori
紘一 大堀
Takeshi Sakagami
武 坂上
Akira Watabe
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004334820A priority Critical patent/JP4429877B2/en
Publication of JP2006144062A publication Critical patent/JP2006144062A/en
Application granted granted Critical
Publication of JP4429877B2 publication Critical patent/JP4429877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a magnesium alloy sheet metal having fine crystal grains and whose cost performance is excellent. <P>SOLUTION: The method for producing a magnesium alloy sheet metal comprises a process where the molten metal of a magnesium alloy comprising, by mass, 1 to 6.5% Al, 0.2 to 2.0% Zn, 0.1 to 0.5% Mn, and the balance Mg with inevitable impurities is subjected to continuous casting-rolling so as to be a beltlike sheet with a sheet thickness of 3 to 10 mm, and the cast sheet is subjected to homogenizing treatment, is thereafter subjected to hot rolling, and is subsequently subjected to warm rolling. A part or the whole of the warm rolling is performed by different peripheral speed rolling at a draft of at least 15% or higher in which the peripheral speed ratio between upper and lower rolls is 1.1 to 1.8, thus a fine-grained structure with a mean particle diameter of ≤5 μm is obtained. The magnesium alloy sheet metal having a fine-grained structure, and suitable for applications requiring strength, ductility, superplasticity or the like can be easily and securely produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マグネシウム合金板のせん断変形付加異周速圧延法により得られる微細粒組織を有するマグネシウム合金薄板の製造方法に関するものである。   The present invention relates to a method for producing a magnesium alloy sheet having a fine grain structure obtained by a shear deformation-added different speed rolling method of a magnesium alloy sheet.

マグネシウム合金の機械的性質は結晶粒度に強く依存し、結晶粒が微細になるほど強度および伸びが向上し、また超塑性が現れやすくなるなどのように、いろいろな優れた特性があることがよく知られている。従来、微細な結晶粒組織を有するマグネシウム合金板を製造する方法としては、加工熱処理法がよく用いられている。この方法は、熱間加工時の動的再結晶現象、あるいは温間加工の中間および/または後での熱処理時の溶質元素の固溶、析出現象や回復と再結晶現象を制御して、さらに多くの場合、前記の各現象を総合的に制御して結晶粒の微細化を図るものである。また、最近ではECAP(Equal channel angular pressing)などの強ひずみ加工法も開発されている。   It is well known that the mechanical properties of magnesium alloys are strongly dependent on the crystal grain size, and that they have various excellent properties, such as the finer the crystal grains, the higher the strength and elongation, and the easier superplasticity appears. It has been. Conventionally, as a method for producing a magnesium alloy plate having a fine crystal grain structure, a thermomechanical processing method is often used. This method controls the dynamic recrystallization phenomenon during hot working, or the solid solution, precipitation phenomenon, recovery and recrystallization phenomenon of solute elements during the heat treatment during and / or after warm working. In many cases, the above-mentioned phenomena are comprehensively controlled to refine crystal grains. Recently, a strong strain processing method such as ECAP (Equal channel angular pressing) has been developed.

しかしながら、マグネシウム合金の結晶構造は稠密六法晶であることから、常温で塑性変形しにくく冷間加工性が悪いため、従来の厚いスラブからの製造方法においては、加熱と熱間または温間での圧延が繰り返されることから、加工熱処理法を適用したとしても得られるマグネシウム合金板の結晶粒のサイズは10μm程度が限界であった。また、ECAPなどの強ひずみ加工法は未だ実験室レベルの技術であり、マグネシウム合金板の量産技術として適用できるものではない。
さらに、上述した従来の方法では、所定の厚さのマグネシウム合金板を製造するための加熱と圧延が繰り返されることから、非常に多くの時間と労力を必要とし、生産性向上の障害にもなっており、そしてこのことは、マグネシウム合金板の製造コストにも反映していた。
However, since the crystal structure of the magnesium alloy is a dense hexagonal crystal, plastic deformation at room temperature is difficult and cold workability is poor. Therefore, in the conventional manufacturing method from a thick slab, heating and hot or warm Since rolling is repeated, the limit of the crystal grain size of the magnesium alloy sheet obtained even when the heat treatment method is applied is about 10 μm. In addition, a strong strain processing method such as ECAP is still a laboratory level technique and cannot be applied as a mass production technique for magnesium alloy sheets.
Furthermore, in the conventional method described above, since heating and rolling for producing a magnesium alloy sheet having a predetermined thickness are repeated, a great amount of time and labor are required, which hinders improvement in productivity. This was also reflected in the manufacturing cost of the magnesium alloy sheet.

本発明は、上記事情を背景としてなされたものであり、微細な結晶粒を有するマグネシウム合金薄板を効率よく製造することができる製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a production method capable of efficiently producing a magnesium alloy thin plate having fine crystal grains.

すなわち、本発明の微細な結晶粒を有するマグネシウム合金薄板の製造方法のうち、第1の発明は、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含み、残部がMg及び不可避不純物からなるマグネシウム合金溶湯を、板厚3〜10mmの帯状板に連続鋳造圧延し、その鋳造板を均質化処理し、その後、熱間圧延した後、温間圧延する工程を有し、前記温間圧延の一部または全部を、少なくとも15%以上の圧下率で上下ロールのロール周速比が1.1〜1.8である異周速圧延にて温間圧延することによって平均粒径5μm以下の微細粒組織を得ることを特徴とする。   That is, in the method for producing a magnesium alloy thin plate having fine crystal grains of the present invention, the first invention is mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: Magnesium alloy molten metal containing 0.1 to 0.5%, the balance being Mg and inevitable impurities, is continuously cast and rolled into a strip with a plate thickness of 3 to 10 mm, and the cast plate is homogenized. And a step of warm rolling after hot rolling, and the roll peripheral speed ratio of the upper and lower rolls is 1.1 to 1.8 at a rolling reduction of at least 15% in part or all of the warm rolling. A fine grain structure having an average grain size of 5 μm or less is obtained by warm rolling by different peripheral speed rolling.

また、第2の発明の微細な結晶粒を有するマグネシウム合金薄板の製造方法は、第1の発明において、前記熱間と温間圧延工程の途中または温間圧延工程途中に中間焼鈍工程を有することを特徴とする。   Moreover, the manufacturing method of the magnesium alloy thin plate having fine crystal grains according to the second aspect of the present invention has an intermediate annealing step in the middle of the hot and warm rolling steps or in the middle of the warm rolling step in the first aspect. It is characterized by.

以上説明したように、本発明によれば、質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含み、残部がMg及び不可避不純物からなるマグネシウム合金溶湯を、板厚3〜10mmの帯状板に連続鋳造圧延し、その鋳造板を均質化処理し、その後、熱間圧延した後、温間圧延する工程を有し、前記温間圧延の一部または全部を、少なくとも15%以上の圧下率で上下ロールのロール周速比が1.1〜1.8である異周速圧延にて温間圧延することによって平均粒径5μm以下の微細粒組織を得るので、従来の製造法より、平均粒径5μm以下の微細粒組織を有するマグネシウム合金薄板を簡単かつ確実に製造することができる。したがって、強度、延性、超塑性などが要求される用途に好適なアルミニウム合金薄板が得られる効果がある。   As described above, according to the present invention, in mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0.1 to 0.5%, and the balance Has a process of continuously casting and rolling a molten magnesium alloy composed of Mg and inevitable impurities into a strip-shaped plate having a thickness of 3 to 10 mm, homogenizing the cast plate, and then hot rolling and then warm rolling. Then, a part or all of the warm rolling is warm-rolled by different circumferential speed rolling in which the roll circumferential speed ratio of the upper and lower rolls is 1.1 to 1.8 at a reduction ratio of at least 15% or more. Since a fine grain structure having an average particle diameter of 5 μm or less is obtained, a magnesium alloy thin plate having a fine grain structure having an average grain diameter of 5 μm or less can be easily and reliably produced by a conventional production method. Therefore, there is an effect that an aluminum alloy thin plate suitable for applications requiring strength, ductility, superplasticity, and the like can be obtained.

以下に、本発明の微細な結晶粒を有するマグネシウム合金板(以下、「マグネシウム合金板」という。)の製造法について説明する。   Below, the manufacturing method of the magnesium alloy board (henceforth a "magnesium alloy board") which has the fine crystal grain of this invention is demonstrated.

Alは、1〜6.5%の範囲内で添加されていることが好ましく、2〜4%の範囲内で添加されていることがより好ましい。Alは、鋳造性、強度等の機械的性質および耐食性の向上を目的として積極的に添加されるものであるが、Alの添加量が6.5%を超えると、圧延工程における加工性が低下する。また、Alの添加量が1%未満では、十分な鋳造性、強度および耐食性が得られない。   Al is preferably added in the range of 1 to 6.5%, and more preferably in the range of 2 to 4%. Al is positively added for the purpose of improving mechanical properties such as castability and strength, and corrosion resistance. However, if the amount of Al exceeds 6.5%, workability in the rolling process decreases. To do. Moreover, if the addition amount of Al is less than 1%, sufficient castability, strength and corrosion resistance cannot be obtained.

Znは、0.2〜2.0%の範囲内で添加されていることが好ましい。Znは、Alと同様に、鋳造性と強度等の機械的性質の向上に寄与するものであるが、Znの添加量が2.0%を超えると、鋳造性が低下する。また、Znの添加量が0.2%未満では、強度が低下することがあり、その結果としてプレス成形性が低下することがある。   Zn is preferably added in the range of 0.2 to 2.0%. Zn, like Al, contributes to improvement of mechanical properties such as castability and strength. However, if the added amount of Zn exceeds 2.0%, castability deteriorates. Further, if the added amount of Zn is less than 0.2%, the strength may decrease, and as a result, the press formability may decrease.

Mnは、0.1〜0.5%の範囲内で添加されていることが好ましい。Mnは、耐食性を低下させる元素の影響を緩和する効果を有するものである。すなわち、Mnを添加することによって、耐食性を低下させる不純物元素であるFeの影響を緩和することができ、上記の範囲内で添加することによって、その効果を最も発揮することができ、0.5%を超えると連続鋳造圧延時に粗大な金属間化合物が生成し、圧延性が悪化する。   Mn is preferably added in the range of 0.1 to 0.5%. Mn has an effect of alleviating the influence of elements that lower the corrosion resistance. That is, by adding Mn, the influence of Fe, which is an impurity element that lowers the corrosion resistance, can be mitigated, and by adding within the above range, the effect can be most exerted. If it exceeds 100%, a coarse intermetallic compound is produced during continuous casting and rolling, and the rollability deteriorates.

次に、本発明のマグネシウム合金薄板の製造方法は、図1に示すように、マグネシウム合金溶湯を、例えば双ロール法により、板厚3〜10mmの帯状板に連続鋳造圧延し、その鋳造板を均質化処理し、その後、熱間圧延した後、温間圧延により製品板厚とする工程において、温間圧延工程の一部または全部で少なくとも15%以上の圧下率で上下ロールのロール周速比が1.1〜1.8である異周速圧延機にて温間圧延することを特徴とするものである。   Next, the manufacturing method of the magnesium alloy thin plate of the present invention, as shown in FIG. 1, continuously cast and rolls the molten magnesium alloy into a strip plate having a thickness of 3 to 10 mm by, for example, a twin roll method. Rolling speed ratio of upper and lower rolls at a reduction ratio of at least 15% or more in a part or all of the warm rolling process in the process of homogenizing, then hot rolling, and making the product sheet thickness by warm rolling It is characterized by warm rolling with a different peripheral speed rolling mill having a thickness of 1.1 to 1.8.

連続鋳造圧延:
この工程は、マグネシウム合金の溶湯を、例えば水冷された一対のロールの間に供給し、連続的に薄い帯状板に鋳造圧延する工程である。本発明においては、連続鋳造圧延工程によって、極めて効率的なマグネシウム合金板の製造を可能にしたものである。本発明としては双ロールによる連続鋳造圧延方法が好適なものとして挙げられるが、特定の方法に限定されるものではない。また、双ロール法においては、例えば溶解炉で得られるマグネシウム合金溶湯をタンディッシュに供給し、該タンディッシュから供給されるマグネシウム合金溶湯を双ロールで圧延する。
Continuous casting and rolling:
In this step, the molten magnesium alloy is supplied between, for example, a pair of water-cooled rolls and continuously cast and rolled into a thin strip. In the present invention, a highly efficient magnesium alloy sheet can be produced by a continuous casting and rolling process. As the present invention, a continuous casting and rolling method using twin rolls may be mentioned as a suitable method, but the present invention is not limited to a specific method. In the twin roll method, for example, molten magnesium alloy obtained in a melting furnace is supplied to a tundish, and the molten magnesium alloy supplied from the tundish is rolled with a twin roll.

均質化処理:
この熱処理は急冷凝固された連続鋳造圧延におけるAl、Zn溶質元素のデンドライト・セル境界および板厚中心部での高濃度の偏析を解消する熱処理である。熱処理条件としては370℃〜470℃の温度範囲で1時間以上行うのが好ましい。この熱処理により上記偏析が解消され、その後の圧延性に優れたマグネシウム合金板を得ることができる。
Homogenization treatment:
This heat treatment is a heat treatment for eliminating segregation of high concentration at the dendrite cell boundary and central portion of the plate thickness of Al and Zn solute elements in rapidly cast and solidified continuous rolling. As heat treatment conditions, it is preferable to carry out at a temperature range of 370 ° C. to 470 ° C. for 1 hour or longer. By this heat treatment, the above segregation is eliminated, and a magnesium alloy sheet excellent in subsequent rolling properties can be obtained.

熱間/温間圧延:
この工程は、所定の厚さの連続鋳造圧延板を所定の厚さのマグネシウム合金板に加工するための工程である。ここで、300℃以上での圧延を熱間圧延、300℃未満での圧延を温間圧延とする。最終温間圧延工程での圧下率としては、50%以上の圧下率を特に好ましく適用できる。この圧下率は、一回(一パス)の圧延であっても複数回の圧延であってもよく特に限定されない。
Hot / warm rolling:
This step is a step for processing a continuously cast and rolled plate having a predetermined thickness into a magnesium alloy plate having a predetermined thickness. Here, rolling at 300 ° C. or higher is hot rolling, and rolling at less than 300 ° C. is warm rolling. As the rolling reduction in the final warm rolling step, a rolling reduction of 50% or more can be particularly preferably applied. This rolling reduction may be one time (one pass) or a plurality of times of rolling, and is not particularly limited.

温間異周速圧延:
上記温間圧延工程の一部または全部で異周速圧延を行う。この異周速圧延時に、上下ロールのロール周速比が1.1より小さくなると、十分な付加せん断変形が得られないため、微細な結晶粒が得られない。一方、ロール周速比が1.8より大きくなると、結晶粒微細化への効果がそれほど向上しないばかりでなく、操業が困難になる恐れがある。また、圧延率は、15%より小さい場合、十分なせん断ひずみが得られず、結晶粒が微細にならない。さらに、圧延時の温度が300℃を超えると、動的再結晶が生じ、平均粒径5μm以下の微細な結晶粒組織が得られない。なお、異周速圧延を行う異周速圧延機の構成は本発明として特に限定されるものではなく、既知の装置を用いることができる。
Warm different peripheral speed rolling:
Different circumferential speed rolling is performed in part or all of the warm rolling step. If the roll peripheral speed ratio of the upper and lower rolls is less than 1.1 during this different peripheral speed rolling, sufficient additional shear deformation cannot be obtained, and fine crystal grains cannot be obtained. On the other hand, if the roll peripheral speed ratio is larger than 1.8, not only the effect on crystal grain refinement will not be improved, but also the operation may become difficult. Further, when the rolling rate is less than 15%, sufficient shear strain cannot be obtained, and the crystal grains do not become fine. Furthermore, when the temperature at the time of rolling exceeds 300 degreeC, dynamic recrystallization will arise and the fine grain structure with an average particle diameter of 5 micrometers or less will not be obtained. In addition, the structure of the different peripheral speed rolling mill which performs different peripheral speed rolling is not specifically limited as this invention, A well-known apparatus can be used.

中間焼鈍工程は、熱間圧延工程と温間圧延工程の間に、あるいは温間圧延工程の途中に設けることができる。温間圧延工程では、温間圧延での圧下率が80%を超える場合に設けるのが好ましい。一の温間圧延工程での圧下率が80%以下であっても、二以上の温間圧延工程でのトータルの圧下率が80%を超える場合には、中間焼鈍工程を設け、その後に最終温間圧延工程を設けることが好ましい。
なお、中間焼鈍の条件としては、300〜350℃の温度範囲で1〜8時間または350〜450℃の温度範囲で1分以下を例示することができる。中間焼鈍は、バッチ炉、連続炉のいずれであってもよい。
The intermediate annealing process can be provided between the hot rolling process and the warm rolling process or in the middle of the warm rolling process. In the warm rolling step, it is preferably provided when the rolling reduction in warm rolling exceeds 80%. Even if the reduction ratio in one warm rolling process is 80% or less, if the total reduction ratio in two or more warm rolling processes exceeds 80%, an intermediate annealing process is provided, and then the final It is preferable to provide a warm rolling process.
In addition, as conditions of intermediate annealing, 1 minute or less can be illustrated in the temperature range of 1 to 8 hours in the temperature range of 300-350 degreeC, or 350-450 degreeC. The intermediate annealing may be either a batch furnace or a continuous furnace.

以下に、実施例と比較例によって本発明を更に詳しく説明する。
(実施例)
双ロール法により、表1に示す合金組成からなるマグネシウム合金溶湯から、厚さ5mmの帯状板を連続鋳造圧延した。得られた鋳造圧延板を450℃で8時間の均質化処理を施した後、一部の供試材では熱間圧延(圧延後板厚2.0mm)、温間圧延により厚さ1.05mmの板とし、その後上下ロールのロール周速比が1.4で圧下率が約24%の温間異周速圧延を行い、厚さ0.80mmの薄板に製造した(実施例1)。また、一部の供試材では上記と同様の工程で厚さ2.0mmまで熱間圧延し、次いで300℃で1時間の中間焼鈍を行った後、上記と同条件の温間圧延により厚さ0.80mmの本発明に係るマグネシウム合金板を得た(実施例2)。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Example)
A strip-like plate having a thickness of 5 mm was continuously cast and rolled from a molten magnesium alloy having an alloy composition shown in Table 1 by a twin roll method. The obtained cast and rolled plate was subjected to a homogenization treatment at 450 ° C. for 8 hours, and then a part of the test material was hot-rolled (plate thickness after rolling 2.0 mm) and warm-rolled to a thickness of 1.05 mm. After that, it was subjected to warm different peripheral speed rolling with the roll peripheral speed ratio of the upper and lower rolls of 1.4 and the rolling reduction of about 24%, and manufactured into a thin plate having a thickness of 0.80 mm (Example 1). Further, some test materials were hot-rolled to a thickness of 2.0 mm in the same process as described above, then subjected to intermediate annealing at 300 ° C. for 1 hour, and then warm-rolled under the same conditions as above. A magnesium alloy plate according to the present invention having a thickness of 0.80 mm was obtained (Example 2).

Figure 2006144062
Figure 2006144062

(比較例1、2)
実施例1に示した製造工程における温間異周速圧延を、上下ロールのロール周速比1.0(比較例1)またはロール周速比1.05(比較例2)で行うこと以外は同条件により供試材を作製した。
(Comparative Examples 1 and 2)
Except performing the warm different peripheral speed rolling in the manufacturing process shown in Example 1 with the roll peripheral speed ratio of the upper and lower rolls of 1.0 (Comparative Example 1) or the roll peripheral speed ratio of 1.05 (Comparative Example 2). A specimen was prepared under the same conditions.

(比較例3)
通常の溶解法により、表1に示す成分組成からなるマグネシウム合金を溶製し、厚さ60mmのスラブを作製した。このスラブを460℃に加熱した後、1パス当たり5〜30%の圧下率で厚さ30mmになるまで熱間圧延を行った。このときの熱間圧延においては、材料温度が400℃以上になるように維持させた。次に、熱間圧延された板材を研削した後、パス間に設けた加熱炉により、その板厚を340〜380℃の温度に維持させつつ圧延を行い、厚さ3mmの板材に加工した。さらに、温度200〜230℃、1パス当たりの圧下率2〜5%の温間圧延を繰り返し行い、厚さ0.80mmのマグネシウム合金板を得た。
上記の実施例と比較例については、平均粒径は、いずれも製造された薄板の縦断面において撮影した顕微鏡写真を用い、切断法によって測定した。上記の実施例1、2および比較例1〜3の測定結果を表2に示した。
(Comparative Example 3)
A magnesium alloy having a component composition shown in Table 1 was melted by a normal melting method to produce a slab having a thickness of 60 mm. The slab was heated to 460 ° C. and then hot-rolled at a reduction rate of 5 to 30% per pass until the thickness reached 30 mm. In the hot rolling at this time, the material temperature was maintained at 400 ° C. or higher. Next, after the hot-rolled plate material was ground, it was rolled by a heating furnace provided between passes while maintaining the plate thickness at a temperature of 340 to 380 ° C., and processed into a plate material having a thickness of 3 mm. Furthermore, warm rolling at a temperature of 200 to 230 ° C. and a reduction rate of 2 to 5% per pass was repeated to obtain a magnesium alloy plate having a thickness of 0.80 mm.
About said Example and the comparative example, the average particle diameter was measured by the cutting method, using the microscope picture image | photographed in the longitudinal cross-section of all the manufactured thin plates. The measurement results of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 2.

Figure 2006144062
Figure 2006144062

表2から分かるように、比較例よりも、本発明法によって得られた実施例のマグネシウム合金薄板の結晶粒がかなり微細化となっている。また、同じ異周速圧延を行っても、異周速圧延条件が本発明範囲外にあると、結晶粒が粗大となる。
なお、本発明は上記の実施例によって制約を受けるものではなく、適合しうる範囲で適切に変更実施することが勿論可能であり、それも本発明の技術的範囲に含まれる。
As can be seen from Table 2, the crystal grains of the magnesium alloy thin plate of the example obtained by the method of the present invention are considerably finer than the comparative example. Moreover, even if the same different peripheral speed rolling is performed, if the different peripheral speed rolling conditions are outside the scope of the present invention, the crystal grains become coarse.
It should be noted that the present invention is not limited by the above-described embodiments, and can of course be appropriately modified within a compatible range, and is also included in the technical scope of the present invention.

本発明の一実施形態の製造工程を示す図である。It is a figure which shows the manufacturing process of one Embodiment of this invention.

Claims (2)

質量%で、Al:1〜6.5%、Zn:0.2〜2.0%、Mn:0.1〜0.5%を含み、残部がMg及び不可避不純物からなるマグネシウム合金溶湯を、板厚3〜10mmの帯状板に連続鋳造圧延し、その鋳造板を均質化処理し、その後、熱間圧延した後、温間圧延する工程を有し、前記温間圧延の一部または全部を、少なくとも15%以上の圧下率で上下ロールのロール周速比が1.1〜1.8である異周速圧延にて温間圧延することによって平均粒径5μm以下の微細粒組織を得ることを特徴とするマグネシウム合金薄板の製造方法。   A magnesium alloy melt containing, by mass%, Al: 1 to 6.5%, Zn: 0.2 to 2.0%, Mn: 0.1 to 0.5%, the balance being Mg and inevitable impurities, Continuously cast and rolled into a strip having a thickness of 3 to 10 mm, homogenizing the cast plate, and then hot rolling and then hot rolling, and a part or all of the warm rolling is performed. And obtaining a fine grain structure having an average particle size of 5 μm or less by warm rolling at a rolling speed ratio of 1.1 to 1.8 at a rolling reduction ratio of at least 15% or more. A method for producing a magnesium alloy sheet. 前記熱間と温間圧延工程の途中または温間圧延工程途中に中間焼鈍工程を有することを特徴とする請求項1に記載のマグネシウム合金薄板の製造方法。   The method for producing a magnesium alloy sheet according to claim 1, further comprising an intermediate annealing step in the middle of the hot and warm rolling steps or in the middle of the warm rolling step.
JP2004334820A 2004-11-18 2004-11-18 Method for producing magnesium alloy sheet having fine crystal grains Expired - Fee Related JP4429877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334820A JP4429877B2 (en) 2004-11-18 2004-11-18 Method for producing magnesium alloy sheet having fine crystal grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334820A JP4429877B2 (en) 2004-11-18 2004-11-18 Method for producing magnesium alloy sheet having fine crystal grains

Publications (2)

Publication Number Publication Date
JP2006144062A true JP2006144062A (en) 2006-06-08
JP4429877B2 JP4429877B2 (en) 2010-03-10

Family

ID=36624106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334820A Expired - Fee Related JP4429877B2 (en) 2004-11-18 2004-11-18 Method for producing magnesium alloy sheet having fine crystal grains

Country Status (1)

Country Link
JP (1) JP4429877B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044936A1 (en) * 2006-10-11 2008-04-17 Norsk Hydro Asa Magnesium alloy sheet process
JP2008163398A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
JP2008163402A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
WO2010150651A1 (en) * 2009-06-26 2010-12-29 住友電気工業株式会社 Magnesium alloy plate
WO2011004672A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Magnesium alloy plate
US7879165B2 (en) 2005-03-28 2011-02-01 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy plate and magnesium alloy plate
JP2011058054A (en) * 2009-09-10 2011-03-24 Osaka Prefecture Univ Magnesium alloy-rolled material and method for producing the same
JP2011157626A (en) * 2005-03-28 2011-08-18 Sumitomo Electric Ind Ltd Magnesium alloy sheet
CN102240676A (en) * 2011-05-11 2011-11-16 北京科技大学 Rolling device for preparing high-toughness high-formability magnesium alloy sheet strip coil
CN102357527A (en) * 2011-06-22 2012-02-22 重庆大学 Magnesium alloy plate rolling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200349A (en) * 2000-01-18 2001-07-24 Nisshin Manufacturing Kk METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY
JP2003328064A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2004107743A (en) * 2002-09-19 2004-04-08 Sumitomo Metal Ind Ltd Magnesium alloy sheet and its manufacturing method
JP2004115862A (en) * 2002-09-26 2004-04-15 Toyo Kohan Co Ltd Malleable magnesium sheet excellent in formability and its manufacturing method
JP2006144043A (en) * 2004-11-17 2006-06-08 Mitsubishi Alum Co Ltd Method for producing magnesium alloy sheet having excellent press moldability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200349A (en) * 2000-01-18 2001-07-24 Nisshin Manufacturing Kk METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY
JP2003328064A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2004107743A (en) * 2002-09-19 2004-04-08 Sumitomo Metal Ind Ltd Magnesium alloy sheet and its manufacturing method
JP2004115862A (en) * 2002-09-26 2004-04-15 Toyo Kohan Co Ltd Malleable magnesium sheet excellent in formability and its manufacturing method
JP2006144043A (en) * 2004-11-17 2006-06-08 Mitsubishi Alum Co Ltd Method for producing magnesium alloy sheet having excellent press moldability

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879165B2 (en) 2005-03-28 2011-02-01 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy plate and magnesium alloy plate
JP2011157626A (en) * 2005-03-28 2011-08-18 Sumitomo Electric Ind Ltd Magnesium alloy sheet
WO2008044936A1 (en) * 2006-10-11 2008-04-17 Norsk Hydro Asa Magnesium alloy sheet process
JP2008163398A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
JP2008163402A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy thin sheet
WO2010150651A1 (en) * 2009-06-26 2010-12-29 住友電気工業株式会社 Magnesium alloy plate
JP2011006754A (en) * 2009-06-26 2011-01-13 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP2011017041A (en) * 2009-07-07 2011-01-27 Sumitomo Electric Ind Ltd Magnesium alloy sheet
WO2011004672A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Magnesium alloy plate
US9334554B2 (en) 2009-07-07 2016-05-10 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
JP2011058054A (en) * 2009-09-10 2011-03-24 Osaka Prefecture Univ Magnesium alloy-rolled material and method for producing the same
CN102240676A (en) * 2011-05-11 2011-11-16 北京科技大学 Rolling device for preparing high-toughness high-formability magnesium alloy sheet strip coil
CN102357527A (en) * 2011-06-22 2012-02-22 重庆大学 Magnesium alloy plate rolling device

Also Published As

Publication number Publication date
JP4429877B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP2008308703A (en) Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material
JP4780601B2 (en) Magnesium alloy plate excellent in press formability and manufacturing method thereof
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP4991280B2 (en) Magnesium alloy sheet manufacturing method
JP4429877B2 (en) Method for producing magnesium alloy sheet having fine crystal grains
JP2010121165A (en) Magnesium alloy sheet and method for producing the same
JP4991281B2 (en) Magnesium alloy sheet manufacturing method
JP4099395B2 (en) Method for producing high-strength aluminum alloy foil
WO2015060492A1 (en) Method for manufacturing aluminum-zinc-magnesium-copper alloy plate member having refined crystal grains
JP3767492B2 (en) Method for producing aluminum flexible foil
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2006144043A (en) Method for producing magnesium alloy sheet having excellent press moldability
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP2012214844A (en) Aluminum alloy fin material for heat exchanger, and method for manufacturing the same
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
KR20160091863A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
KR20160012231A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP2008161879A (en) Method for producing magnesium alloy rolled sheet
JPH0978168A (en) Aluminum alloy sheet
JP4364616B2 (en) High strength Al-Fe alloy foil and manufacturing method thereof
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees