JP2006144058A - Grain-oriented electromagnetic steel sheet having superior magnetic property, and manufacturing method therefor - Google Patents

Grain-oriented electromagnetic steel sheet having superior magnetic property, and manufacturing method therefor Download PDF

Info

Publication number
JP2006144058A
JP2006144058A JP2004334153A JP2004334153A JP2006144058A JP 2006144058 A JP2006144058 A JP 2006144058A JP 2004334153 A JP2004334153 A JP 2004334153A JP 2004334153 A JP2004334153 A JP 2004334153A JP 2006144058 A JP2006144058 A JP 2006144058A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
region
laser
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004334153A
Other languages
Japanese (ja)
Other versions
JP4616623B2 (en
Inventor
Tatsuhiko Sakai
辰彦 坂井
Masao Yabumoto
政男 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004334153A priority Critical patent/JP4616623B2/en
Publication of JP2006144058A publication Critical patent/JP2006144058A/en
Application granted granted Critical
Publication of JP4616623B2 publication Critical patent/JP4616623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain-oriented electromagnetic steel sheet which has a low iron loss at a high magnetic flux density, and to further provide the grain-oriented electromagnetic steel sheet having low magnetostriction as well. <P>SOLUTION: The grain-oriented electromagnetic steel sheet after having been irradiated with a laser beam to reduce the iron loss shows a magnetic flux density B8 of 1.92 T or higher when a magnetizing force of 800 A/m is applied to the steel sheet, and has crystals that include both of the region in which the absolute value of an angle β is 0° and the region in which the absolute value of an angle β is 2°in the same crystal grain, so as to occupy 30% or more in the total area of the steel sheet by an area rate. The steel sheet also includes the region in which the absolute value of the angle β is 2°or higher, in the crystal grain, so as to occupy 20% to 70% in the crystal grain area by the area rate. The steel sheet also has a mark which has been formed by irradiation with the laser beam on the surface or a circulating current magnetic domain which has been formed in a laser-irradiated part, controlled to have a width of 10 μm to 200 μm in a rolling direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザを照射することにより鉄損を低減した磁気特性の優れた方向性電磁鋼板とその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet with excellent magnetic properties, in which iron loss is reduced by irradiating a laser, and a manufacturing method thereof.

鉄の結晶の磁化容易軸が鋼板製造工程の圧延方向にほぼそろった電磁鋼板は方向性電磁鋼板とよばれ、トランス鉄芯の材料として非常に優れている。方向性電磁鋼板の性能を示す重要な指標は、磁束密度、鉄損、および磁歪である。
磁束密度は、結晶の磁化容易軸のそろった度合い、すなわち結晶方位性が高い材料ほど大きくなる傾向がある。磁束密度を表すパラメータとして一般にB8[T]が用いられ、これは磁化力800A/mにおいて鋼板に発生する磁束密度である。すなわち、B8の値が大きい素材ほど結晶方位性が高く、一定の磁化力で発生する磁束密度が大きくなるため、小型で効率の優れたトランスが製造できるという利点がある。
鉄損の指標は一般にW17/50[W/kg]が用いられる。W17/50は最大磁束密度1.7T、周波数50Hzで交流励磁したときの鉄損値であり、小さい方が効率の高いトランスが製造できる。
磁歪はトランスの騒音を表す指標となるパラメータであり、一定の磁化力の下での圧延方向の鋼板の伸縮率を示す値である。この値が大きい素材をトランス鉄芯に用いると交流磁界においては騒音が大きくなる傾向がある。
An electromagnetic steel sheet having an easy axis of magnetization of iron crystals substantially aligned in the rolling direction of the steel sheet manufacturing process is called a directional electromagnetic steel sheet, and is extremely excellent as a material for a transformer iron core. Important indicators that indicate the performance of grain-oriented electrical steel sheets are magnetic flux density, iron loss, and magnetostriction.
The magnetic flux density tends to increase as the degree of alignment of the easy axes of crystal, that is, the material with higher crystal orientation. B8 [T] is generally used as a parameter representing the magnetic flux density, which is a magnetic flux density generated in the steel plate at a magnetizing force of 800 A / m. That is, a material having a larger value of B8 has a higher crystal orientation and a higher magnetic flux density generated with a constant magnetizing force, so that there is an advantage that a transformer having a small size and excellent efficiency can be manufactured.
Generally, the index of iron loss is W17 / 50 [W / kg]. W17 / 50 is an iron loss value when AC excitation is performed at a maximum magnetic flux density of 1.7 T and a frequency of 50 Hz, and a smaller one can produce a transformer with higher efficiency.
Magnetostriction is a parameter serving as an index representing transformer noise, and is a value indicating the expansion / contraction rate of a steel sheet in the rolling direction under a constant magnetizing force. When a material having a large value is used for a transformer iron core, noise tends to increase in an alternating magnetic field.

すなわち磁束密度が高く、鉄損と磁歪が低い程、トランス素材として性能の優れた方向性電磁鋼板となる。中でも、鉄損は最も重要な指標であり、様々な鉄損低減の方策が考案されてきた。
鉄損は渦電流損とヒステリシス損に分離され、方向性電磁鋼板では渦電流損が鉄損の半分以上を占める。ヒステリシス損はB8が高い素材ほど低い傾向にあり、鉄損低減の観点で高B8素材の開発が行われてきた。
渦電流損は古典的渦電流損と異常渦電流損に分けられる。古典的渦電流損は鋼板の板厚に比例するため、材料の薄手化で低減されてきている。一方、異常渦電流損は圧延方向の磁区である180°磁区の磁壁間隔が狭い程低減されることが磁区構造の詳細な研究により解明された。そこで磁区の細分化技術が種々考案されてきた。
That is, the higher the magnetic flux density and the lower the iron loss and magnetostriction, the better the grain-oriented electrical steel sheet as a transformer material. Among them, iron loss is the most important index, and various measures for reducing iron loss have been devised.
Iron loss is separated into eddy current loss and hysteresis loss. In grain oriented electrical steel sheets, eddy current loss accounts for more than half of iron loss. Hysteresis loss tends to be lower for materials with higher B8, and development of high B8 materials has been performed from the viewpoint of reducing iron loss.
Eddy current loss is divided into classical eddy current loss and abnormal eddy current loss. Since the classical eddy current loss is proportional to the plate thickness of the steel plate, it has been reduced by making the material thinner. On the other hand, it has been elucidated by a detailed study of the magnetic domain structure that the abnormal eddy current loss is reduced as the domain wall interval of the 180 ° magnetic domain, which is a magnetic domain in the rolling direction, is reduced. Therefore, various techniques for subdividing magnetic domains have been devised.

その中で最も磁区細分化効果が高く、実用的な技術はレーザを用いる方法である。特許文献1には、YAGレーザの照射により圧延方向にほぼ垂直で周期的な線状の残留歪みを導入し、鉄損を低減する方法が開示されている。この方法は、残留歪みを起点として発生する環流磁区が、その近傍の静磁エネルギーを増加させるため、そのエネルギー不均一性を鋼板全体で緩和するように180°磁区が細分化するという原理に基づいている。この技術は一般にレーザ磁区制御と呼ばれ、非常に高い鉄損低減効果があり、また導入される環流磁区の体積は比較的少ないため、素材の結晶方位性にはほとんど影響せずB8の変化もほとんどないという特徴がある。残留歪を利用して鉄損を低減した電磁鋼板は、トランスの製造過程で歪取り焼鈍を行う巻トランスには使用できないが、歪取り焼鈍を行わない積トランスには適している。   Among them, the magnetic domain refinement effect is the highest, and a practical technique is a method using a laser. Patent Document 1 discloses a method of reducing iron loss by introducing a linear residual strain that is substantially perpendicular to the rolling direction by irradiation with a YAG laser. This method is based on the principle that the 180 ° magnetic domain is subdivided so that the non-uniformity of energy in the entire steel sheet is alleviated because the circulating magnetic domain generated from the residual strain increases the magnetostatic energy in the vicinity. ing. This technique is generally called laser magnetic domain control, has a very high iron loss reduction effect, and the volume of the introduced recirculating magnetic domain is relatively small, so that it hardly affects the crystal orientation of the material and changes in B8. There is almost no feature. An electromagnetic steel sheet that uses residual strain to reduce iron loss cannot be used for a wound transformer that performs strain relief annealing in the manufacturing process of the transformer, but is suitable for a product transformer that does not perform strain relief annealing.

歪取り焼鈍にも耐えられる磁区制御方法として、例えば特許文献3に示されるように、表面に溝を形成する方法がある。この方法の原理として、溝部の壁面での磁極生成による静磁エネルギー増加に基づく磁区細分化効果があると考えられている。しかし、溝部の空隙が磁束の流れを阻害するためB8が低下する傾向にあり、小型化が要求されるような大型積トランスには不適である。従って、高性能な積トランス材料にはレーザ磁区制御材が最も適した鋼板である。
レーザ磁区制御技術として様々な方法が開示されており、例えば、特許文献2にはパルス発振COレーザを用いる方法、また、上記特許文献1には連続発振YAGレーザを用いて、照射ビーム径、パワー、走査速度等を規定し、しかも表面照射痕が発生しない方法も開示されている。
As a magnetic domain control method that can withstand strain relief annealing, for example, as disclosed in Patent Document 3, there is a method of forming grooves on the surface. As a principle of this method, it is considered that there is a magnetic domain refinement effect based on an increase in magnetostatic energy by magnetic pole generation on the wall surface of the groove. However, since the gap in the groove blocks the flow of magnetic flux, B8 tends to decrease, which is not suitable for a large product transformer that requires downsizing. Therefore, the laser magnetic domain control material is the most suitable steel plate for high-performance product transformer materials.
Various methods have been disclosed as laser magnetic domain control techniques. For example, Patent Document 2 uses a pulsed CO 2 laser, and Patent Document 1 uses a continuous-wave YAG laser. A method is also disclosed in which power, scanning speed, etc. are defined and surface irradiation traces are not generated.

図2は、W17/50平均値とB8の関係のレーザ照射前後の変化を示した模式図である。図中の点線で示されるように、B8増加に対してW17/50は低下するというほぼ線形の関係にある。レーザ磁区制御後は、B8はほとんど変化なく、渦電流損が低下する結果、B8とW17/50は線形関係を維持したまま、低W17/50側にほぼ平行移動する。すなわち、全B8領域にわたり鉄損低下代は同程度であった。しかし、高性能な積トランス材料としては更に低い鉄損が求められており、特にトランス小型化にも有利な高B8領域での鉄損低減が望まれていた。更に、磁歪を抑制してトランス騒音を低減できる電磁鋼板とその製造方法が望まれていた。
特公平6−19112号公報 特開平6−57333号公報 特公昭63−44840号公報
FIG. 2 is a schematic diagram showing the change between the W17 / 50 average value and B8 before and after laser irradiation. As indicated by the dotted line in the figure, there is a substantially linear relationship that W17 / 50 decreases with increasing B8. After the laser magnetic domain control, B8 hardly changes and the eddy current loss decreases. As a result, B8 and W17 / 50 move substantially in parallel to the low W17 / 50 side while maintaining the linear relationship. That is, the iron loss reduction margin was almost the same over the entire B8 region. However, lower iron loss is demanded as a high-performance product transformer material, and reduction of iron loss in the high B8 region, which is advantageous for transformer miniaturization, has been desired. Furthermore, there has been a demand for an electromagnetic steel sheet that can suppress magnetostriction and reduce transformer noise and a method for manufacturing the same.
Japanese Patent Publication No. 6-19112 JP-A-6-57333 Japanese Examined Patent Publication No. 63-44840

本発明の課題は、高磁束密度で非常に低い鉄損の得られる方向性電磁鋼板を提供することにある。更に、磁歪も小さい方向性電磁鋼板とその製造方法を提供することにある。   An object of the present invention is to provide a grain-oriented electrical steel sheet capable of obtaining a very low iron loss at a high magnetic flux density. It is another object of the present invention to provide a grain-oriented electrical steel sheet having a small magnetostriction and a method for producing the same.

上記課題を達成するための本発明の要旨は次の通りである。
(1)レーザビームを照射して鉄損を低減した方向性電磁鋼板であって、800A/mの磁化力で発生する鋼板の磁束密度をB8とし、圧延方向と磁化容易軸(100)<001>の角度偏差の板厚方向成分をβ角として、B8が1.92T以上であり、且つ結晶粒内にβ角絶対値が0.5°以下の領域と2°乃至6°の領域を同時に含む結晶粒の合計面積が鋼板全面積中に占める割合をRsとしたとき、Rsが30%乃至100%であることを特徴とする磁気特性の優れた方向性電磁鋼板。
(2)結晶粒内において、β角絶対値が2°乃至6°の領域の合計面積が当該結晶粒の全面積中に占める割合の鋼板全体での平均値をRtと定義したとき、Rtが20%乃至70%であることを特徴とする(1)に記載の磁気特性の優れた方向性電磁鋼板。
(3)レーザビームの表面照射痕の圧延方向幅、またはレーザ照射部に形成される環流磁区の圧延方向幅が10μm乃至200μmであることを特徴とする(1)または(2)に記載の磁気特性の優れた方向性電磁鋼板。
(4)(3)に記載の方向性電磁鋼板の製造方法であって、前記レーザビームを発生するレーザ装置がファイバコア径が5μm乃至400μmのファイバレーザであることを特徴とする磁気特性の優れた方向性電磁鋼板の製造方法。
The gist of the present invention for achieving the above object is as follows.
(1) A grain-oriented electrical steel sheet in which iron loss is reduced by irradiating a laser beam, where the magnetic flux density of the steel sheet generated by a magnetizing force of 800 A / m is B8, the rolling direction and the easy axis (100) <001 The thickness deviation component of the angle deviation of> is the β angle, B8 is 1.92T or more, and the region where the absolute value of β angle is 0.5 ° or less and the region of 2 ° to 6 ° are simultaneously included in the crystal grains. A grain-oriented electrical steel sheet having excellent magnetic properties, wherein Rs is 30% to 100%, where Rs is a ratio of the total area of crystal grains to be included in the total area of the steel sheet.
(2) When the average value in the whole steel sheet of the ratio of the total area of the region where the β angle absolute value is 2 ° to 6 ° to the total area of the crystal grain is defined as Rt in the crystal grain, Rt is The grain-oriented electrical steel sheet having excellent magnetic properties according to (1), characterized by being 20% to 70%.
(3) The magnetism according to (1) or (2), wherein the width in the rolling direction of the surface irradiation trace of the laser beam or the width in the rolling direction of the circulating magnetic domain formed in the laser irradiation portion is 10 μm to 200 μm. Oriented electrical steel sheet with excellent characteristics.
(4) The method for producing a grain-oriented electrical steel sheet according to (3), wherein the laser device for generating the laser beam is a fiber laser having a fiber core diameter of 5 μm to 400 μm. A method for producing a grain-oriented electrical steel sheet.

本発明により、特に高磁束密度の方向性電磁鋼板に於いて、鉄損と磁歪が極めて低い方向性電磁鋼板が提供できる。本発明の方向性電磁鋼板を用いることで、高効率、小型、低騒音のトランスが製造可能である。また前記方向性電磁鋼板をレーザ照射によって製造するにあたり、簡易な方法で安定的に製造できる。   The present invention can provide a grain-oriented electrical steel sheet having extremely low iron loss and magnetostriction, particularly in a grain-oriented electrical steel sheet having a high magnetic flux density. By using the grain-oriented electrical steel sheet of the present invention, a highly efficient, small and low noise transformer can be manufactured. Further, when the grain-oriented electrical steel sheet is manufactured by laser irradiation, it can be stably manufactured by a simple method.

本発明者らは、比較的高いB8を持つ方向性電磁鋼板のレーザ磁区制御後の到達鉄損W17/50が、鋼板の結晶構造に依存することを発見し、ある特定のB8と結晶構造の関係を持つ素材にレーザを照射することで、従来にない低い鉄損が得られる本発明に至った。更に加えてレーザ照射痕の圧延方向幅、またはレーザ照射部直下に形成される環流磁区の圧延方向幅をある特定の範囲に限定することで磁歪も低い方向性電磁鋼板の発明に至った。以下、本発明の電磁鋼板を説明する。   The present inventors have discovered that the ultimate iron loss W17 / 50 after laser magnetic domain control of a grain-oriented electrical steel sheet having a relatively high B8 depends on the crystal structure of the steel sheet. By irradiating a material having a relationship with a laser, the present invention has been achieved in which an unprecedented low iron loss is obtained. In addition, the invention has led to the invention of a grain-oriented electrical steel sheet having a low magnetostriction by limiting the rolling direction width of the laser irradiation trace or the rolling direction width of the circulating magnetic domain formed immediately below the laser irradiation part to a specific range. Hereinafter, the electrical steel sheet of the present invention will be described.

図2は、方向性電磁鋼板に対してレーザ磁区制御を行った場合の、レーザ照射前後のB8とW17/50の関係である。B8とW17/50は単板磁気測定装置で測定した。本実施例の鋼板は、一般的な方向性電磁鋼板の地鉄成分として、Si:3.0〜3.4mass%を含み、比抵抗を上げるような副成分は特に添加されておらず、例えばCrの成分濃度は0.04mass%以下である。地鉄表面に電気絶縁性の被膜を有しており、板厚は0.23mmである。   FIG. 2 shows the relationship between B8 and W17 / 50 before and after laser irradiation when laser magnetic domain control is performed on a grain-oriented electrical steel sheet. B8 and W17 / 50 were measured with a single plate magnetometer. The steel plate of the present example contains Si: 3.0 to 3.4 mass% as a base iron component of a general grain-oriented electrical steel plate, and no subcomponent that increases the specific resistance is added. The component concentration of Cr is 0.04 mass% or less. It has an electrically insulating coating on the surface of the ground iron, and the plate thickness is 0.23 mm.

図2の結果より、W17/50のB8依存性のバラツキはレーザ照射前では比較的大きいものの、レーザ照射後は特定の線形関係に収束する傾向がある。その中で、本発明者らは図2枠内に示されるような、特に高B8領域で、線形関係から逸脱して非常に低い鉄損値が得られる鋼板に着目した。そこで、当該鋼板サンプルの結晶方位性に注目して結晶構造を詳細に調べた。
結晶方位性の指標として、圧延方向と磁化容易軸(100)<001>の角度偏差の板厚方向成分であるβ角を詳細に調べた。結晶方位角はX線ラウエ法を用いた。鋼板はコイル状に圧延方向に曲率をつけた状態で高温焼鈍し再結晶させた後平坦としたため、結晶粒内でβ角が圧延方向に変化している。
From the result of FIG. 2, although the variation of B17 dependency of W17 / 50 is relatively large before laser irradiation, it tends to converge to a specific linear relationship after laser irradiation. Among them, the present inventors paid attention to a steel plate as shown in the frame of FIG. 2 that can obtain a very low iron loss value by deviating from the linear relationship, particularly in a high B8 region. Therefore, the crystal structure was examined in detail by paying attention to the crystal orientation of the steel sheet sample.
As an index of crystal orientation, the β angle, which is the thickness direction component of the angle deviation between the rolling direction and the easy axis (100) <001>, was examined in detail. X-ray Laue method was used for the crystal orientation angle. Since the steel sheet is flattened after being annealed at high temperature and recrystallized in a coiled shape with a curvature in the rolling direction, the β angle changes in the rolling direction within the crystal grains.

図1は方向性電磁鋼板の磁区模様を示した図である。判別しやすいように結晶粒界を太線で示してある。図1中に例示として示したように磁区模様が粗い部分がβ角の絶対値がほぼ0°の領域であり、磁区模様が非常に細かな部分がβ角の絶対値が2°から6°の領域である。調査の結果、高B8領域で線形関係から逸脱して非常に低い鉄損値が得られた鋼板に特徴的なこととして、一つの結晶粒の中にβ角の絶対値が0°の領域(以下β0と呼ぶ)から2°以上、且つ6°以内の領域(以下β2と呼ぶ)までが同時に含まれる結晶粒が比較的多いことを見い出した。ここで、β角の測定に用いたX線ラウエ法の測定精度は±0.5°である。従って、β0領域のβ角絶対値の実効範囲は0.5°以下と規定する。β0とβ2が同時に含まれる結晶粒を図1に結晶粒Aとして示す。本発明者らは、この様な結晶粒が一定量以上含まれることが、レーザ磁区制御を実施した後に非常に低い鉄損を提示する原因と推測した。そこで、これを実証するため以下の検証実験を行った。   FIG. 1 is a diagram showing a magnetic domain pattern of a grain-oriented electrical steel sheet. The grain boundaries are indicated by thick lines for easy identification. As shown in FIG. 1 as an example, the portion with a coarse magnetic domain pattern is a region where the absolute value of the β angle is approximately 0 °, and the portion with a very fine magnetic domain pattern has an absolute value of the β angle of 2 ° to 6 °. It is an area. As a result of the investigation, as a characteristic of the steel plate that has obtained a very low iron loss value by deviating from the linear relationship in the high B8 region, the region where the absolute value of the β angle is 0 ° in one crystal grain ( It was found that there are relatively many crystal grains simultaneously including a region from 2 ° to 6 ° (hereinafter referred to as β2). Here, the measurement accuracy of the X-ray Laue method used for measuring the β angle is ± 0.5 °. Therefore, the effective range of the absolute value of the β angle in the β0 region is defined as 0.5 ° or less. A crystal grain containing β0 and β2 simultaneously is shown as crystal grain A in FIG. The present inventors speculated that the presence of a certain amount or more of such crystal grains is a cause of presenting a very low iron loss after the laser magnetic domain control. Therefore, the following verification experiment was conducted to verify this.

まず、圧延方向に長い60mm×300mmの鋼板サンプルにおいて、β0とβ2を同時に含む結晶粒の合計面積が鋼板全面積中に占める割合をRsと定義した。単板磁気測定器を用いて同サンプルのB8、レーザ照射前後のW17/50を測定した。表1はB8=1.92T近傍でほぼ一定の鋼板における、Rsとレーザ前後のW17/50の測定結果である。この結果より、同等のB8において、Rsが30%を超えるような鋼板はレーザ照射前の鉄損は多少高い傾向があるものの、レーザ照射後の鉄損はRsが30%未満の鋼板に比べて非常に低い値を示すことがわかった。   First, in a steel plate sample of 60 mm × 300 mm long in the rolling direction, the ratio of the total area of crystal grains containing β0 and β2 simultaneously in the total area of the steel plate was defined as Rs. Using a single plate magnetometer, B8 of the same sample and W17 / 50 before and after laser irradiation were measured. Table 1 shows the measurement results of Rs and W17 / 50 before and after the laser in a steel plate that is substantially constant in the vicinity of B8 = 1.92T. From this result, although the steel loss before laser irradiation tends to be somewhat higher in the steel plate with Rs exceeding 30% in the same B8, the iron loss after laser irradiation is lower than that in the steel plate with Rs less than 30%. It was found to show a very low value.

次に表2に示すように、Rsが40%程度でほぼ一定で、B8に差違のあるサンプルを準備し、同様にレーザ照射前後のW17/50を調べた。その結果、B8が1.92T未満とそれ以上の鋼板を比べると、後者の方がレーザ照射後のW17/50が顕著に低いことが判明した。
従って、B8が1.92T以上で、且つRsが30%を超えるような鋼板にレーザ磁区制御した方向性電磁鋼板では、他の鋼板に比べ非常に低い鉄損が得られるという知見を得た。
更に、本発明者らは上記本発明の条件を満たす鋼板において、β2領域の面積率の影響を検討した。そこで、本発明の特徴を満たす、B8=1.925〜1.940T、Rs=30〜40%の素材において、各結晶粒内におけるβ2の占有面積率の鋼板全体での平均値をRt(%)で定義しRtの異なる素材を用意し、レーザ磁区制御前後の特性を調べた。結果を表3に示す。これより同等のB8、Rs値を持つ素材でも、Rtが20%から70%の場合にレーザ照射後の鉄損はより低い値であることが判明した。
Next, as shown in Table 2, Rs was approximately constant at about 40%, and a sample having a difference in B8 was prepared. Similarly, W17 / 50 before and after laser irradiation was examined. As a result, it was found that W17 / 50 after laser irradiation was significantly lower in the latter when B8 was less than 1.92T and more than that.
Therefore, it has been found that a grain-oriented electrical steel sheet that has been subjected to laser magnetic domain control on a steel sheet having B8 of 1.92 T or more and Rs exceeding 30% can obtain a much lower iron loss than other steel sheets.
Furthermore, the present inventors examined the influence of the area ratio of the β2 region in the steel sheet satisfying the above-described conditions of the present invention. Therefore, in the material of B8 = 1.925-1.940T and Rs = 30-40%, which satisfies the characteristics of the present invention, the average value of the occupied area ratio of β2 in each crystal grain is Rt (% ) And different Rt materials were prepared, and the characteristics before and after laser magnetic domain control were examined. The results are shown in Table 3. From this, it was found that even with a material having an equivalent B8 and Rs value, the iron loss after laser irradiation was a lower value when Rt was 20% to 70%.

この様な特性が得られる理由について以下に考察する。
まず、β0、β2領域の磁区構造の基本性質について説明する。
結晶粒の中でβ0領域は方向性電磁鋼板として理想的な結晶方位を持ち、180°磁区を形成する。しかし、この様な領域では磁化成分がすべて圧延方向を向いているため鋼板表面に現れる表面磁極が発生しにくく、そのため磁壁間隔によらず静磁エネルギーが低く、磁壁の生成エネルギーを下げる方向で磁壁間隔は広くなる。磁壁間隔が広いほど同じ磁束密度の変化に対する磁壁の移動速度が大きくなる。磁壁が移動した部分の磁化方向が反転することに伴う局所的渦電流は、磁壁移動速度の二乗に比例するので、磁壁間隔が広く磁壁数が少ないと異常渦電流損は増える。よって、レーザ照射による磁区細分化作用がない状態では、β0領域では180°磁壁間隔が広い磁区構造を持ち、また異常渦電流損が比較的大きい。
The reason why such characteristics are obtained will be discussed below.
First, the basic properties of the magnetic domain structure in the β0 and β2 regions will be described.
In the crystal grains, the β0 region has an ideal crystal orientation as a grain-oriented electrical steel sheet and forms a 180 ° magnetic domain. However, in such a region, since all the magnetization components are oriented in the rolling direction, surface magnetic poles appearing on the surface of the steel sheet are difficult to be generated, so that the magnetostatic energy is low regardless of the domain wall interval, and the domain wall is lowered in the direction of reducing the domain wall generation energy. Spacing increases. The wider the domain wall spacing, the greater the domain wall moving speed for the same change in magnetic flux density. Since the local eddy current accompanying the reversal of the magnetization direction of the portion where the domain wall has moved is proportional to the square of the domain wall moving speed, the abnormal eddy current loss increases if the domain wall interval is wide and the number of domain walls is small. Therefore, in a state where there is no magnetic domain subdivision effect due to laser irradiation, the β0 region has a magnetic domain structure with a wide 180 ° domain wall interval, and the abnormal eddy current loss is relatively large.

一方、β角の絶対値が2°以上、且つ6°以下のβ2領域では板厚方向の磁化成分ベクトルを持つため表面磁極が発生し易く、180°磁区は形成されるものの、表面磁極発生により、静磁エネルギーが増大する。しかし、この表面磁極は、板厚方向に磁化した環流磁区を発生させることで静磁エネルギーを緩和し、同時に180°磁壁間隔は多少狭くなって、異常渦電流損は減少する。よって、レーザ照射による磁区細分化作用がない状態において、β2領域では多少狭い180°磁壁間隔の中に環流磁区が存在する磁区構造を持ち、β0領域に比べると異常渦電流損は小さい。尚、β角が6°を超えるような領域では理想結晶方位からのズレが過大であるため、安定的に180°磁区が形成されず、またB8も大きく低下させるため良好な磁気特性が得られない。よって、本発明のβ2領域の定義はβ角が2°以上、6°以下とした。
β0、β2領域がそれぞれ別々の結晶粒に存在すると、β0とβ2領域の相互作用はほとんどなく、それぞれ独立の静磁エネルギーバランスにより、上述のような独自の磁区構造を持つと考えられる。
On the other hand, in the β2 region where the absolute value of the β angle is 2 ° or more and 6 ° or less, the surface magnetic pole is easily generated because of the magnetization component vector in the plate thickness direction, and although the 180 ° magnetic domain is formed, The magnetostatic energy increases. However, this surface magnetic pole relaxes the magnetostatic energy by generating a circulating magnetic domain magnetized in the plate thickness direction, and at the same time, the 180 ° domain wall interval is somewhat narrowed to reduce abnormal eddy current loss. Therefore, in a state where there is no magnetic domain subdivision effect by laser irradiation, the β2 region has a magnetic domain structure in which a circulating magnetic domain exists in a slightly narrow 180 ° domain wall interval, and the abnormal eddy current loss is small compared to the β0 region. In the region where the β angle exceeds 6 °, the deviation from the ideal crystal orientation is excessive, so that the 180 ° magnetic domain is not stably formed, and B8 is also greatly reduced, so that good magnetic characteristics can be obtained. Absent. Therefore, in the definition of the β2 region of the present invention, the β angle is set to 2 ° or more and 6 ° or less.
If the β0 and β2 regions are present in separate crystal grains, there is almost no interaction between the β0 and β2 regions, and it is considered that each has a unique magnetic domain structure as described above due to an independent magnetostatic energy balance.

次に、外部磁界が印加された場合に、β0、β2領域の磁束密度、および透磁率について説明する。
外部から交流磁界が印加されると、磁壁は動き、磁化方向が外部磁界と同じ方向の磁区は幅が広がり、反対方向の磁区は幅が狭くなる。β0領域では磁区幅が拡大しても静磁エネルギーが増大しないため磁壁は移動しやすいが、β2領域では磁区幅の拡大に伴い静磁エネルギーが増大するため、拡大した磁区の中で環流磁区が増大して静磁エネルギーを緩和しようとする。この環流磁区の発生過程は磁壁の移動に対する抵抗力となり、それはβ角の絶対値の増大とともに増加する。よって、β0領域では一定磁界に対して、より多くの磁束が流れ、つまり磁束密度は高い。反対にβ2領域の磁束密度は小さくなる。すなわち、β角のバラツキが大きい鋼板内では一定磁界において発生する磁束密度の空間的不均一度が大きい。
Next, the magnetic flux density and magnetic permeability in the β0 and β2 regions when an external magnetic field is applied will be described.
When an AC magnetic field is applied from the outside, the domain wall moves, the width of the magnetic domain whose magnetization direction is the same as that of the external magnetic field is widened, and the width of the magnetic domain in the opposite direction is narrowed. In the β0 region, even if the magnetic domain width is expanded, the magnetostatic energy does not increase and the domain wall is likely to move. However, in the β2 region, the magnetostatic energy increases with the expansion of the magnetic domain width. It tries to relax the magnetostatic energy. The generation process of the recirculating magnetic domain becomes a resistance force against the domain wall movement, which increases as the absolute value of the β angle increases. Therefore, more magnetic flux flows with respect to a constant magnetic field in the β0 region, that is, the magnetic flux density is high. Conversely, the magnetic flux density in the β2 region is small. That is, the spatial non-uniformity of the magnetic flux density generated in a constant magnetic field is large in a steel sheet having a large β-angle variation.

鉄損測定において、例えばW17/50は、鋼板で発生する平均磁束密度が1.7Tの場合の鉄損である。しかし、鋼板内で空間的に磁束密度のバラツキが発生すると局所的な鉄損値が変化する。ここで鉄損測定時の平均磁束密度をBmとし、局所的な磁束密度の平均値からの偏差を△Bとする。鉄損は磁束密度の二乗に比例するため、同じ平均鉄損Bmを持つ鋼板でも偏差のない場合と偏差のある場合の鉄損は、それぞれBm、および(Bm±△B)に比例する。従って、偏差が大きいほど鉄損は大きくなる。よって、磁束密度分布のバラツキが少ない素材、あるいは磁界と発生磁束密度の比率である透磁率の均一度の高い素材ほど鉄損は小さいといえる。 In the iron loss measurement, for example, W17 / 50 is the iron loss when the average magnetic flux density generated in the steel plate is 1.7T. However, when the magnetic flux density varies spatially in the steel plate, the local iron loss value changes. Here, the average magnetic flux density at the time of measuring the iron loss is Bm, and the deviation from the average value of the local magnetic flux density is ΔB. Since the iron loss is proportional to the square of the magnetic flux density, the iron loss when there is no deviation and when there is a deviation is proportional to Bm 2 and (Bm ± ΔB) 2 , respectively, even if the steel sheet has the same average iron loss Bm. . Accordingly, the iron loss increases as the deviation increases. Therefore, it can be said that the iron loss is smaller as a material with less variation in magnetic flux density distribution or a material with higher uniformity of magnetic permeability, which is a ratio between the magnetic field and the generated magnetic flux density.

以上の基本的性質を鑑み、本発明の電磁鋼板の結晶構造においてレーザ照射後に非常に優れた鉄損特性が得られる理由を本発明者らは次のように推測している。
本発明のように、結晶粒中にβ0領域とβ2領域が同時に存在する特別な場合、磁壁はβ0領域とβ2領域を貫通することから、β0領域とβ2領域の間で静磁エネルギーが緩和して安定するような磁区構造がとられる。具体的には、β2領域においては、粒界から伸びたスパイク磁区が発生し、且つそれがβ0領域の180°磁区に割り込む構造をとることにより静磁エネルギーが緩和されていると考えられる。スパイク磁区は180°磁壁からなるが、その先端は閉じており、結晶粒の磁化には寄与しないが、磁区幅が拡大する磁区内では伸び、磁区幅が狭くなる磁区内では縮むことにより磁化に伴う静磁エネルギーの緩和に寄与している。磁壁の移動に伴うスパイク磁区の伸縮は磁壁の移動に対する抵抗となるが、環流磁区の生成消滅に伴う抵抗よりも小さいと考えられる。
In view of the above basic properties, the present inventors presume the reason why a very excellent iron loss characteristic is obtained after laser irradiation in the crystal structure of the electrical steel sheet of the present invention as follows.
In the special case where the β0 region and the β2 region exist simultaneously in the crystal grains as in the present invention, since the domain wall penetrates the β0 region and the β2 region, the magnetostatic energy is relaxed between the β0 region and the β2 region. And a stable magnetic domain structure. Specifically, in the β2 region, it is considered that a spike magnetic domain extending from the grain boundary is generated, and the magnetostatic energy is relaxed by adopting a structure that interrupts the 180 ° magnetic domain of the β0 region. The spike magnetic domain consists of a 180 ° domain wall, but its tip is closed and does not contribute to the magnetization of the crystal grains, but it expands in the magnetic domain where the magnetic domain width expands, and shrinks in the magnetic domain where the magnetic domain width becomes narrower. It contributes to the relaxation of the accompanying magnetostatic energy. The expansion and contraction of the spike magnetic domain accompanying the domain wall movement becomes a resistance against the domain wall movement, but is considered to be smaller than the resistance accompanying the generation and disappearance of the circulating domain.

この様なβ0領域とβ2領域を含む結晶粒に対して、レーザ照射によって板幅方向に渡り、線状あるいは点列状の環流磁区を形成すると、β0とβ2がレーザによる環流磁区で分断される領域が多数発生する。その結果、β0領域においては、180°磁区は細分化され、異常渦電流損は低下する。レーザによる環流磁区でβ0領域から分断されたβ2領域では、もはやβ0領域と静磁エネルギーのバランスをとる必要がなくなり、スパイク磁区は180°磁区に変化し、環流磁区を通してβ0領域の180°磁壁と連動して結晶粒の磁化に寄与するようになると考えられる。また、磁区は環流磁区で細分化されるため異常渦電流は大幅に減少すると考えられる。   When such a crystal grain including the β0 region and the β2 region is formed with a laser beam irradiation in the form of a linear or dot-circular circulating magnetic domain across the plate width direction, β0 and β2 are divided by the laser circulating magnetic domain. Many areas occur. As a result, in the β0 region, the 180 ° magnetic domain is subdivided and the abnormal eddy current loss is reduced. In the β2 region separated from the β0 region by the circulating magnetic domain by the laser, it is no longer necessary to balance the β0 region and the magnetostatic energy, and the spike magnetic domain changes to the 180 ° magnetic domain, and the It is thought that it contributes to the magnetization of the crystal grains in conjunction. In addition, since the magnetic domains are subdivided into circulating magnetic domains, the abnormal eddy current is considered to be greatly reduced.

更に、β0とβ2領域をが同じ結晶粒中に近接して存在するため、各領域で発生する磁束密度は平均化される効果があると考えられる。磁束密度の均一化効果はβ0とβ2領域が別々の結晶に分散している場合も多少発生するが、β0とβ2領域が離れるため、効果は本発明の場合の方が顕著であると推測される。すなわち本発明の場合、磁束密度分布のバラツキは小さくなり、鋼板全体の鉄損はより低くなると考えられる。すなわち、結晶粒内にβ0とβ2領域を同時に含む結晶粒を多く含むことにより、レーザ照射後の鋼板の鉄損が大幅に低下すると考えられる。   Furthermore, since the β0 and β2 regions exist close to each other in the same crystal grain, it is considered that the magnetic flux density generated in each region has an effect of being averaged. The effect of homogenizing the magnetic flux density occurs somewhat even when the β0 and β2 regions are dispersed in separate crystals, but since the β0 and β2 regions are separated, the effect is presumed to be more remarkable in the case of the present invention. The That is, in the case of the present invention, the variation in the magnetic flux density distribution is reduced, and the iron loss of the entire steel sheet is considered to be lower. That is, it is considered that the iron loss of the steel sheet after laser irradiation is greatly reduced by including many crystal grains containing β0 and β2 regions simultaneously in the crystal grains.

この様な優れた特性はB8が1.92T以上の素材において顕著であった。B8が低い素材では平均的な結晶方位性が低いため、つまりβ2領域内でもβ角が比較的大きい5〜6°の割合が大きいと推測される。その様な結晶構造では、磁化方向は板厚方向に向く傾向が強いため、レーザ照射後のβ2領域のスパイク磁区が180°磁区に変化しきれず、すなわち鉄損低下を制限していると推測される。よって、本発明ではB8は1.92T以上が好ましい。
以上の考察より表1、2に示したように、B8が1.92T以上で且つβ0とβ2領域を多く含む素材、具体的にはRsが30〜100%の方向性電磁鋼板においてレーザ照射後に非常に優れた鉄損特性が得られたものと考えられる。
Such excellent characteristics were remarkable in a material having B8 of 1.92T or more. A material having a low B8 has a low average crystal orientation, that is, it is estimated that a ratio of 5 to 6 ° having a relatively large β angle is large even in the β2 region. In such a crystal structure, since the magnetization direction tends to be in the direction of the plate thickness, the spike magnetic domain in the β2 region after laser irradiation cannot be completely changed to a 180 ° magnetic domain, that is, it is estimated that the iron loss is limited. The Therefore, in the present invention, B8 is preferably 1.92T or more.
From the above consideration, as shown in Tables 1 and 2, B8 is 1.92T or more and a material containing a lot of β0 and β2 regions, specifically, in a grain-oriented electrical steel sheet with Rs of 30 to 100% after laser irradiation. It is considered that very good iron loss characteristics were obtained.

次に、β0領域とβ2領域を同時に含まない結晶粒が支配的な素材の場合を考えてみる。例えば、β0領域のみでβ2領域を含まない結晶粒の場合、β0領域では静磁エネルギーは低いため、180°磁壁間隔が非常に広く、異常渦電流損は非常に大きくなる。この様な素材にレーザを照射することで磁壁間隔を狭くして、ある程度の異常渦電流損低減は可能であるが、元々広い磁壁間隔を一定幅以下まで狭くするには、より大きなレーザエネルギーが必要となる。しかし、過大なレーザエネルギーを投入するとヒステリシス損の増加が無視できなくなり、その結果、渦電流損とヒステリシス損の合計鉄損で比較した場合は、本発明の電磁鋼板より高い鉄損となる。
逆に、β0領域を含まずβ2領域のみの素材では、β2領域での表面磁極の発生で磁壁間隔はある程度細分化されており、レーザ照射前の素材としての異常渦電流損は比較的低い。しかし、理想的な結晶方位を持たないため、レーザ照射後に到達し得る鉄損値としては、理想方位を多く含む本発明の電磁鋼板には及ばない。
Next, let us consider a case where a crystal grain that does not include the β0 region and the β2 region is a dominant material. For example, in the case of a crystal grain that includes only the β0 region and does not include the β2 region, since the magnetostatic energy is low in the β0 region, the 180 ° domain wall interval is very wide and the abnormal eddy current loss becomes very large. By irradiating such a material with a laser, the domain wall spacing can be narrowed to reduce anomalous eddy current loss to some extent. Necessary. However, when excessive laser energy is input, an increase in hysteresis loss cannot be ignored. As a result, when compared with the total iron loss of eddy current loss and hysteresis loss, the iron loss is higher than that of the electrical steel sheet of the present invention.
On the contrary, in the material only including the β2 region without including the β0 region, the domain wall interval is subdivided to some extent by the generation of the surface magnetic pole in the β2 region, and the abnormal eddy current loss as the material before laser irradiation is relatively low. However, since it does not have an ideal crystal orientation, the iron loss value that can be reached after laser irradiation does not reach the electrical steel sheet of the present invention that includes many ideal orientations.

従って、β0領域とβ2領域間での静磁エネルギーの緩和作用、すなわちエネルギーバランスの観点から、本発明の電磁鋼板ではβ0領域とβ2領域の体積比率が重要と推測される。体積比率は板厚一定の場合は面積比率で考えることができる。すなわち、β2領域の平均面積比率であるRtに最適な範囲があると推測される。Rtが過小であると、前述のβ0領域のみの結晶粒と同じ傾向を示し、またRtが過大であればβ2領域のみの結晶粒と同じ傾向を示すと考えられる。逆に、Rtをある特定の範囲に限定すればβ0領域とβ2領域が同時に存在するという本発明の効果が最大限に発揮されると考えられる。以上の考察から表3の結果に示されるように、Rtが20〜70%の範囲でより低い鉄損が得られたものと考えられる。   Therefore, it is presumed that the volume ratio of the β0 region and the β2 region is important in the electrical steel sheet of the present invention from the viewpoint of the magnetostatic energy relaxation action between the β0 region and the β2 region, that is, the energy balance. The volume ratio can be considered as an area ratio when the plate thickness is constant. That is, it is estimated that there is an optimum range for Rt, which is the average area ratio of the β2 region. If Rt is excessively small, the same tendency as that of the crystal grains of the β0 region described above is exhibited, and if Rt is excessively large, the same tendency as that of the crystal grains of the β2 region is likely to be exhibited. On the contrary, if Rt is limited to a specific range, it is considered that the effect of the present invention that the β0 region and the β2 region exist simultaneously is exhibited to the maximum extent. From the above consideration, as shown in the results of Table 3, it is considered that a lower iron loss was obtained when Rt was in the range of 20 to 70%.

次に、磁歪特性も優れる本発明の電磁鋼板を説明する。
本発明のかかわるレーザ磁区制御技術ではレーザ照射によって鋼板表面の絶縁皮膜が変質、あるいは蒸発し、あるいは場合によっては被膜直下の地鉄が露出し、一部溶融部も発生する場合もある。この照射部は目視観察、あるいは光学顕微鏡観察によって判別可能なレーザ照射痕となる。その際は照射痕の圧延方向幅hが定義できる。また、レーザビームの集光パワー密度を低く抑えることで、皮膜の変質や蒸発を避け、照射痕が発生しないレーザ照射も可能である。その際の特徴は、レーザ照射部直下にレーザビーム集光径とほぼ同等の圧延方向幅を持つ環流磁区が形成される。磁区構造は従来から知られている磁区観察方法、例えば200kVの加速電圧を持つ走査型電子顕微鏡で観察可能であり、環流磁区幅hが定義できる。
Next, the electrical steel sheet of the present invention that is excellent in magnetostriction characteristics will be described.
In the laser magnetic domain control technique according to the present invention, the insulating film on the surface of the steel sheet may be altered or evaporated by laser irradiation, or in some cases, the ground iron directly under the film may be exposed and a part of the melted part may be generated. This irradiation part becomes a laser irradiation mark that can be discriminated by visual observation or optical microscope observation. In that case, the rolling direction width h of the irradiation mark can be defined. Further, by suppressing the laser beam condensing power density to a low level, it is possible to perform laser irradiation that avoids alteration and evaporation of the coating and does not generate irradiation marks. The feature at that time is that a circulating magnetic domain having a rolling direction width substantially equal to the laser beam condensing diameter is formed immediately below the laser irradiation portion. The magnetic domain structure can be observed with a conventionally known magnetic domain observation method, for example, a scanning electron microscope having an accelerating voltage of 200 kV, and the circulating magnetic domain width h can be defined.

図3は前記発明の特徴範囲であるB8=1.930T、Rs=40%の電磁鋼板にレーザ照射を行い、レーザ照射痕の幅、または環流磁区幅hと磁歪λ17の関係を調べた結果である。λ17は最大磁束密度1.7Tにおける鋼板の伸縮率であり、これは(1)式で定義される。尚、λ17の測定は鋼板圧延方向に圧縮応力をかけない状態で交流励磁の周波数50Hzで測定した。磁化による最大伸縮長さはレーザ変位計を用いて測定した。
λ17=(磁化による最大伸縮長さ)/(消磁状態での鋼板長) (1)
λ17が大きい程、伸縮量も大きいことを示し、トランスの騒音も大きくなる傾向にある。
FIG. 3 shows the result of examining the relationship between the width of the laser irradiation trace or the recirculation magnetic domain width h and the magnetostriction λ17 by irradiating the electromagnetic steel sheet with B8 = 1.930T and Rs = 40%, which is the characteristic range of the invention. is there. λ17 is a steel sheet expansion / contraction rate at a maximum magnetic flux density of 1.7 T, which is defined by equation (1). Note that λ17 was measured at an AC excitation frequency of 50 Hz without applying compressive stress in the steel sheet rolling direction. The maximum stretching length due to magnetization was measured using a laser displacement meter.
λ17 = (maximum stretch length due to magnetization) / (steel plate length in a demagnetized state) (1)
As λ17 increases, the amount of expansion / contraction increases, and the noise of the transformer tends to increase.

レーザ装置としては、ファイバレーザを用い、集光径を10〜300μmの範囲で変更した。圧延方向のレーザ照射間隔は4mmである。ファイバレーザのファイバのコア径は10μm、波長は1.085μmである。図3よりh≦200μmにおいて磁歪は顕著に低いことが判明した。   As the laser device, a fiber laser was used, and the condensing diameter was changed in the range of 10 to 300 μm. The laser irradiation interval in the rolling direction is 4 mm. The fiber laser has a fiber core diameter of 10 μm and a wavelength of 1.085 μm. FIG. 3 shows that the magnetostriction is remarkably low at h ≦ 200 μm.

hが狭い範囲で磁歪が低下する理由について、本発明者らは以下のように考察している。レーザ照射によって生じる環流磁区は磁化成分が圧延方向と異なる。従って、圧延方向に磁化される際には大きな磁気モーメント変化が必要であり、その際、結晶を構成する鉄原子間距離に僅かながら変化を生じると考えられる。従って、環流磁区の導入によって鋼板伸縮特性に影響を与える。ここで圧延方向に幅広の環流磁区が形成されるとその伸縮への影響度は大きくなり、逆に狭ければ伸縮への影響は少ないと考えられる。従って、h>200μmでは磁歪が増大すると考えている。また、hが非常に狭い範囲まで磁歪は低い値を維持しているが、h<10μmの領域は実用的なファイバレーザの集光限界以下である。そこで、本発明で良好な磁歪特性が得られる範囲は10≦h≦200μmとした。従って、hを本発明の上記範囲に限定した鋼板では磁歪が極めて低いため、騒音の小さいトランスを製造できる。   The present inventors consider the reason why magnetostriction decreases in a narrow range of h as follows. The circulating magnetic domain generated by laser irradiation has a magnetization component different from the rolling direction. Therefore, a large change in magnetic moment is required when magnetized in the rolling direction, and it is considered that a slight change occurs in the distance between iron atoms constituting the crystal. Therefore, the steel sheet expansion / contraction characteristics are affected by the introduction of the circulating magnetic domain. Here, if a wide circulating magnetic domain is formed in the rolling direction, the degree of influence on expansion / contraction increases, and conversely, if it is narrow, the influence on expansion / contraction is considered to be small. Therefore, it is considered that magnetostriction increases when h> 200 μm. Further, the magnetostriction is kept low until h is in a very narrow range, but the region of h <10 μm is below the condensing limit of a practical fiber laser. Therefore, the range in which good magnetostriction characteristics can be obtained in the present invention is set to 10 ≦ h ≦ 200 μm. Therefore, a steel plate in which h is limited to the above range of the present invention has a very low magnetostriction, so that a transformer with low noise can be manufactured.

h≦200μmを実現するためには、照射するレーザビームを200μm以下に集光すればよい。YAGレーザ、COレーザ等、従来から一般的に使用されているレーザも当然使用可能であるが、ファイバコア径400μm以下のファイバレーザを用いることが最も適する。これはファイバレーザの集光能力はコア径の半分程までは容易に且つ安定的に集光可能であるためである。よって、本発明の方法ではコア径400μm以下のファイバレーザを使用するものである。一方、工業的に利用される波長1〜2μmのファイバレーザで発振可能な最小コア径は5μm程度であり、それ以下では発振モードが成立しにくい。よって、使用するファイバレーザの最小コア径は5μmとする。 In order to realize h ≦ 200 μm, the laser beam to be irradiated may be condensed to 200 μm or less. Of course, conventionally used lasers such as YAG laser and CO 2 laser can also be used, but it is most suitable to use a fiber laser having a fiber core diameter of 400 μm or less. This is because the focusing ability of the fiber laser can be easily and stably focused up to about half the core diameter. Therefore, in the method of the present invention, a fiber laser having a core diameter of 400 μm or less is used. On the other hand, the minimum core diameter that can be oscillated by a fiber laser having a wavelength of 1 to 2 μm that is industrially used is about 5 μm. Therefore, the minimum core diameter of the fiber laser used is 5 μm.

尚、本発明の本質は、方向性電磁鋼板の結晶構造/組織、B8、及びレーザ磁区制御の適用にあるため、元素組成については上記実施例の素材に限定されるものではない。また、本実施例では板厚0.23mmの方向性電磁鋼板を用いたが、現在一般的に製造されている板厚0.27mm、0.30mm等の板厚の方向性電磁鋼板にも適用できる。   The essence of the present invention lies in the application of crystal structure / structure of grain-oriented electrical steel sheet, B8, and laser magnetic domain control, so that the elemental composition is not limited to the materials of the above-described embodiments. Further, in this example, the grain-oriented electrical steel sheet having a thickness of 0.23 mm was used. However, the present invention is also applied to grain-oriented electrical steel sheets having a thickness of 0.27 mm, 0.30 mm, etc. that are generally manufactured at present. it can.

本発明の方向性電磁鋼板の結晶粒の説明図である。It is explanatory drawing of the crystal grain of the grain-oriented electrical steel sheet of this invention. 本発明に係わる方向性電磁鋼板のB8とW17/50の関係図である。It is a related figure of B8 and W17 / 50 of the grain-oriented electrical steel sheet concerning this invention. レーザ照射痕の圧延方向幅Wと磁歪の関係図である。It is a related figure of the rolling direction width W of a laser irradiation trace, and magnetostriction.

符号の説明Explanation of symbols

β0: 圧延方向と磁化容易軸(100)<001>の角度偏差の板厚方向成分β角の絶対値が0°の領域
β2: β角の絶対値が2°以上、且つ6°以下の領域
A: β0とβ2を同時に含む結晶粒
β0: The region where the absolute value of the β-angle component of the plate thickness direction component of the angle deviation between the rolling direction and the easy axis (100) <001> is 0 ° β2: The region where the absolute value of the β angle is 2 ° or more and 6 ° or less A: Crystal grains containing β0 and β2 simultaneously

Claims (4)

レーザビームを照射して鉄損を低減した方向性電磁鋼板であって、800A/mの磁化力で発生する鋼板の磁束密度をB8とし、圧延方向と磁化容易軸(100)<001>の角度偏差の板厚方向成分をβ角として、B8が1.92T以上であり、且つ結晶粒内にβ角絶対値が0.5°以下の領域と2°乃至6°の領域を同時に含む結晶粒の合計面積が鋼板全面積中に占める割合をRsとしたとき、Rsが30%乃至100%であることを特徴とする磁気特性の優れた方向性電磁鋼板。   A grain-oriented electrical steel sheet in which iron loss is reduced by irradiating a laser beam, where the magnetic flux density of the steel sheet generated by a magnetizing force of 800 A / m is B8, and the rolling direction and the easy axis (100) <001> angle A crystal grain having a component in the thickness direction of the deviation as a β angle, B8 being 1.92T or more, and a region having an absolute value of β angle of 0.5 ° or less and a region of 2 ° to 6 ° simultaneously in the crystal grain A grain-oriented electrical steel sheet having excellent magnetic properties, wherein Rs is 30% to 100%, where Rs is a ratio of the total area of the steel sheet to the total area of the steel sheet. 結晶粒内において、β角絶対値が2°乃至6°の領域の合計面積が当該結晶粒の全面積中に占める割合の鋼板全体での平均値をRtと定義したとき、Rtが20%乃至70%であることを特徴とする請求項1に記載の磁気特性の優れた方向性電磁鋼板。   When the average value in the whole steel sheet of the ratio of the total area of the region where the β angle absolute value is 2 ° to 6 ° to the total area of the crystal grain is defined as Rt in the crystal grain, Rt is 20% to The grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the grain-oriented electrical steel sheet is 70%. レーザビームの表面照射痕の圧延方向幅、またはレーザ照射部に形成される環流磁区の圧延方向幅が10μm乃至200μmであることを特徴とする請求項1または2に記載の磁気特性の優れた方向性電磁鋼板。   The direction with excellent magnetic properties according to claim 1 or 2, wherein the width in the rolling direction of the laser beam surface irradiation trace or the width in the rolling direction of the circulating magnetic domain formed in the laser irradiation portion is 10 µm to 200 µm. Electrical steel sheet. 前記請求項3に記載の方向性電磁鋼板の製造方法であって、前記レーザビームを発生するレーザ装置がファイバコア径が5μm乃至400μmのファイバレーザであることを特徴とする磁気特性の優れた方向性電磁鋼板の製造方法。   4. The method for producing a grain-oriented electrical steel sheet according to claim 3, wherein the laser device for generating the laser beam is a fiber laser having a fiber core diameter of 5 μm to 400 μm. Method for producing an electrical steel sheet.
JP2004334153A 2004-11-18 2004-11-18 Method for producing grain-oriented electrical steel sheet Active JP4616623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334153A JP4616623B2 (en) 2004-11-18 2004-11-18 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334153A JP4616623B2 (en) 2004-11-18 2004-11-18 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006144058A true JP2006144058A (en) 2006-06-08
JP4616623B2 JP4616623B2 (en) 2011-01-19

Family

ID=36624102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334153A Active JP4616623B2 (en) 2004-11-18 2004-11-18 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4616623B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782248B1 (en) * 2010-07-28 2011-09-28 新日本製鐵株式会社 Oriented electrical steel sheet and manufacturing method thereof
WO2013099219A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
WO2013099258A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Grain-oriented electrical steel sheet
CN105451902A (en) * 2013-07-24 2016-03-30 Posco公司 Grain-oriented electrical steel sheet and method for manufacturing same
JP2017095735A (en) * 2015-11-18 2017-06-01 新日鐵住金株式会社 Oriented magnetic steel sheet and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761375B2 (en) * 2011-12-22 2015-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037128B2 (en) * 1972-07-09 1975-12-01
JPS61190017A (en) * 1985-02-20 1986-08-23 Nippon Steel Corp Production of grain oriented silicon steel sheet having low iron loss
JPH11131139A (en) * 1997-10-24 1999-05-18 Kawasaki Steel Corp Production of low core loss grain-oriented silicon steel sheet
JP2003034822A (en) * 2001-07-26 2003-02-07 Nippon Steel Corp Grain-oriented electromagnetic steel sheet superior in magnetic properties
WO2004083465A1 (en) * 2003-03-19 2004-09-30 Nippon Steel Corporation Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037128B2 (en) * 1972-07-09 1975-12-01
JPS61190017A (en) * 1985-02-20 1986-08-23 Nippon Steel Corp Production of grain oriented silicon steel sheet having low iron loss
JPH11131139A (en) * 1997-10-24 1999-05-18 Kawasaki Steel Corp Production of low core loss grain-oriented silicon steel sheet
JP2003034822A (en) * 2001-07-26 2003-02-07 Nippon Steel Corp Grain-oriented electromagnetic steel sheet superior in magnetic properties
WO2004083465A1 (en) * 2003-03-19 2004-09-30 Nippon Steel Corporation Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659693B2 (en) 2010-07-28 2017-05-23 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
US8790471B2 (en) 2010-07-28 2014-07-29 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
JP4782248B1 (en) * 2010-07-28 2011-09-28 新日本製鐵株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR101296990B1 (en) 2010-07-28 2013-08-14 신닛테츠스미킨 카부시키카이샤 Orientated electromagnetic steel sheet and manufacturing method for same
WO2012014290A1 (en) 2010-07-28 2012-02-02 新日本製鐵株式会社 Orientated electromagnetic steel sheet and manufacturing method for same
CN104011231A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 Device For Improving Core Loss In Grain-Oriented Electrical Steel Sheet
WO2013099258A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Grain-oriented electrical steel sheet
CN104011246A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 Grain-oriented electrical steel sheet
KR20140109409A (en) * 2011-12-27 2014-09-15 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
JPWO2013099258A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 Oriented electrical steel sheet
WO2013099219A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
KR101580837B1 (en) 2011-12-27 2015-12-29 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
RU2570250C1 (en) * 2011-12-27 2015-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Textured sheet of electrical steel
US11377706B2 (en) 2011-12-27 2022-07-05 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
US9646749B2 (en) 2011-12-27 2017-05-09 Jfe Steel Corporation Grain-oriented electrical steel sheet
JPWO2013099219A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 Iron loss improvement device for grain-oriented electrical steel sheet
US10745773B2 (en) 2011-12-27 2020-08-18 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
CN107012309A (en) * 2011-12-27 2017-08-04 杰富意钢铁株式会社 The iron loss of orientation electromagnetic steel plate improves device
CN107012309B (en) * 2011-12-27 2020-03-10 杰富意钢铁株式会社 Apparatus for improving iron loss of grain-oriented electromagnetic steel sheet
CN105451902A (en) * 2013-07-24 2016-03-30 Posco公司 Grain-oriented electrical steel sheet and method for manufacturing same
JP2017095735A (en) * 2015-11-18 2017-06-01 新日鐵住金株式会社 Oriented magnetic steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP4616623B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
RU2570250C1 (en) Textured sheet of electrical steel
KR101421391B1 (en) Grain oriented electrical steel sheet
US11984249B2 (en) Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
JP2008106288A (en) Grain-oriented magnetic steel sheet excellent in core-loss characteristic
JP5866850B2 (en) Method for producing grain-oriented electrical steel sheet
KR101551782B1 (en) Grain-oriented electrical steel sheet and method for producing same
US8699190B2 (en) Soft magnetic metal strip for electromechanical components
KR20160009707A (en) Grain-oriented electrical steel sheet and transformer iron core using same
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
CA3088125C (en) Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
JP4616623B2 (en) Method for producing grain-oriented electrical steel sheet
JP6090553B2 (en) Iron core for three-phase transformer
JPH11293340A (en) Low core loss oriented silicon steel sheet and its production
JP3500103B2 (en) Unidirectional electrical steel sheet for transformers
RU2710496C1 (en) Textured sheet of electrical steel and method for production of such sheet
Paltanea et al. Influence of cutting technologies on the magnetic anisotropy of grain oriented electrical steel
JP7240874B2 (en) MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR
JP2006117964A (en) Grain-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
KR20130075780A (en) Soft-magnetic metal strip for electromechanical components
KR20230167105A (en) Grain-oriented electrical steel sheet
JPH1187122A (en) Grain oriented magnetic steel sheet for low-noise transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R151 Written notification of patent or utility model registration

Ref document number: 4616623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350